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Abstract: The composition or bed material plays a crucial role in the physical hydromorphological
processes of fluvial systems. However, conventional bed material sampling methods provide only
pointwise information, which can be inadequate when investigating large rivers of inhomogeneous
bed material characteristics. In this study, novel, image-based approaches are implemented to gain
areal information of the bed surface composition using two different techniques: monocular and
stereo computer vision. Using underwater videos, captured in shorter reaches of the Hungarian
Danube River, a comparison of the bed material grain size distributions from conventional physical
samplings and the ones reconstructed from the images is carried out. Moreover, an attempt is made
to quantify bed surface roughness, using the so-called Structure from Motion image analysis method.
Practical aspects of the applicability of image-based bed material mapping are discussed and future
improvements towards an automatized mapping methodology are outlined.

Keywords: bed material mapping; image processing; grain size distribution; structure-from-motion;
surface roughness; field measurements; rivers; morphodynamics

1. Introduction

There is a permanent interaction mechanism between the water flow and the riverbed, which on the
one hand determines the sediment transport capacity of the river yielding to different morphodynamic
processes, and on the other hand, the riverbed itself, through the hydraulic resistance, influences the
flow features. This back-and-forth effect eventually leads to a complex and continuously changing
system of the rivers, possessing great practical importance. For instance, the conditions of fluvial
navigation strongly depend on the riverbed morphology in the low water regime, when the ship
draught can easily exceed the available flow depth. Bank infiltrated drinking water production depends
on, e.g., porosity, stratification, permeability, armoring, colmation, and characteristic sediment grain
sizes [1,2]. Moreover, besides the human-related importance, the flow-bed interactions also affect
the conditions of aquatic habitats. For example, grain sizes, hiding-factor, inhomogeneity, bedforms,
and porosity are all essential for the spawning fish or macroinvertebrates. When analyzing reach scale
hydromorphological processes, there is a strong need to gain detailed information on the flow features,
the riverbed morphology, the sediment transport, and as a crucial boundary condition: the composition
of the riverbed.

Despite its importance, the conventional bed material sampling methods, in a lot of cases, are
time-consuming, expensive, and not representative enough, especially when dealing with large rivers
of inhomogeneous bed composition. Such problems can easily arise when investigating the transition
zones of rivers, i.e., where gravel dominated bed is transformed into sand bed, showing a highly
mixed composition, which can vary both in time and space. In these cases, the point-like, local data
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provided by the conventional sampling methods are not adequate. Methods that provide map-like
information on the riverbed composition could support a better understanding of the river flow-bed
interaction processes.

As digital image-processing and computer software are developing intensively, different methods
have already been worked out to estimate grain size distributions and other morphological parameters.
One of the increasingly used methods in river morphology measurements is based on the so-called
monocular computer vision [3] and is generally divided into two subgroups [4]. One is based on the
spectral characteristics or semivariance [5–7], while others use image segmentation [8–10]. As of now,
the former seems to be a promising way because these methods require less or no calibration at all [7].
These methods already proved to be usable, not only in the gravel, but sand beds as well. However,
they were only used to retrieve point-like information by choosing sampling points along the riverbed.
Moreover, they were not yet applied for such river reaches, where the gravel and sand bed create
mixed compositions.

Another image-based method belongs to the so-called stereo computer vision [11] group. For river
morphological application, the Structure-from-Motion (SfM) method was tested mostly from this
category so far. In this method, two or more cameras (or one camera from different directions) record
the same area of interest, from which its three-dimensional (3D) model can be created. The method
has already been used to reconstruct frozen-core samples [12] to calculate porosity or to create the
digital terrain model (DEM) of riverbanks and alluvial fans [13–15] of bedrock and gravel environment,
with centimeter-precision. Bed evolution [16] and erosion measurements [14] were also carried out
using the DEMs generated with SfM. In laboratory flume, on a gravel bed, statistical roughness analysis
was also conducted and compared to other methods, but the obtainable accuracy was lower [17]. So far,
most of the roughness studies using SfM were focusing on gravel beds and were mostly carried out
in laboratories.

The third group of image-based methods is the application of Artificial Intelligence (AI). Examples
can already be seen using Deep Learning Algorithms for landscape classification [18,19]. A great
number of drone footages are used to “teach” the algorithm for the basic class-types of the landscape
(e.g., gravel, sand, boulder, water, etc.). After a well-established learning-cycle, the algorithm will
identify and group new images into the taught categories.

The main goal of this study is to implement image-based bed material analysis methods for
field-use performing underwater imaging in a large river. From the above-mentioned three large
analysis groups, the monocular and stereo computer vision techniques were tested to see whether the
mapping of the riverbed material in reach scale is feasible for future research.

2. Study Sites

The field tests were performed along the Hungarian section of the Danube River. This reach
of the Danube is a transition zone in terms of bed slope and bed material, where the bed material
composition shows strongly varying fractions from silt to gravel even within short distances [20].
For practical reasons, two study sites were chosen, located approximately 100 km apart. The first study
site is located close to the settlement Gönyű between rkm (river kilometer) 1791.2 and 1790.6 (Figure 1).
The second one is located at Göd between rkm 1669.4 and 1667.2 (Figure 2). Both study areas can be
characterized by an approximately 300 m channel width, a bed slope of 15 cm/km, whereas the mean
discharges are around 2200 m3/s and 1500 m3/s (representing the larger branch along a 33 km long
island), respectively. At both sites, 3–3 cross-sections were studied in more detail.
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Figure 1. Study area I: Gönyű, Hungary, River Danube (between rkm 1791.2 and rkm 1790.6). Sampling
points are marked with yellow pins. Three cross-sections with 5–5 points were selected. Fixed boat
measurements were carried out.

Figure 2. Study area II: Göd, Hungary, River Danube (between rkm 1669.4 and rkm 1667.2).
Cross-sectional ADCP (Acoustic Doppler Current Profiler) and video measurements (moving boat
measurements) were carried out in the sections marked with red.

3. Materials and Methods

The field tests can be separated into two groups. The over-all flowchart of the locations, aims,
applied methods, and expected results can be seen in Figure 3. Its elements are further discussed in
Sections 3.1 and 3.2.

Figure 3. Overall flowchart of the measurements and used analysis methods with their expected results.
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3.1. Applied Monocular Computer Vision Approach for Local Bed Composition Investigation

First, the applicability of the monocular computer vision approach was investigated at Study site
I. Here, videos were captured of the riverbed from which individual images were assessed (Figure 4).
A GoPro Hero 4 camera in a waterproof case was attached to a ~50 kg heavy isokinetic weight, together
with a dive flashlight (see the setup in Figure 5). The measurement setup contained a known-sized
object fixed right under the camera, aligned with the bottom of the weight so that it touches the
riverbed when the setup lands, providing a reference length scale for the image-based analysis (see the
screw in Figure 4). The camera was set to 1920 × 1080 HD resolution and 48 fps.

Figure 4. Example of the captured images. Note that a known-sized object was fixed to the instrument
setup to provide a reference length scale for further analysis.

Figure 5. Equipment setup for riverbed imaging: an aluminum frame with an action camera, diving
lamp, isokinetic weight.

Besides the imaging, physical bed material samples were also taken, using the conventional
bucket sampler in the same verticals, where the videos were recorded. The physical samples were
needed for validation purposes of the monocular computer vision approach. The physical bed material
samples were brought to the laboratory for drying, and sieving to provide their grain size distributions
(GSDs). For the image analysis, the so-called transferable wavelet-method was chosen, using the
Matlab code of Buscombe [7], which does not need further calibrations, but the adequate measurement
instrumentation. This method converts the input image into a greyscale picture and then analyzes the
grey-value (intensity) of each pixel in given rows and columns. For each row and columns, the variation
of intensity is then treated as signals. Using continuous Morlet-type wavelet transforms (instead
of Fourier transforms), the signals are decomposed, and the power spectra of the transforms are
calculated, finally resulting in the grain size distribution in pixels. The goal of this study was to test the
method in the field performing underwater imaging in a river reach, where strongly inhomogeneous
bed material composition presents. Furthermore, the potential in extending the pointwise information
into areal, map-like information of the bed composition was investigated.

To get the GSD in the real length scale, the size of the reference object was used. Eventually, sieving
and an image-based GSD could be provided for each sample, enabling the comparison of the physical
and indirect methods. However, it is relevant to consider that while sieving gives a volume distribution,
the image processing results in an area (or grid-by-number) distribution, so a transformation of one of
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the GSDs was necessary to provide comparable datasets [7,21]. In order to transform the image-based
areal information to volume distribution, the characteristic grain shape should be known, i.e., the
thickness of the sediment particles. Results from a recent shape analysis were therefore used (Figure 6)
based on the categorization method of Zingg, which suggested that the study site can be characterized
with disk shape sediments. The average b/a and c/b values of the dataset were 0.76 and 0.62, respectively
(Figure 6, black X). Grains more or less tend to lie with their shortest (c) axes perpendicular to the
riverbed, meaning that the intermediate (b) and longest (a) axes are presented in the photos [22]. Hence,
we used the intermediate axes retrieved from the image processing, to calculate their other axes by
using the average ratio-pairs for disk shape particles (Figure 6, black X). Assuming a constant density
of 2.65 g/cm3, the weight was calculated, providing a by-weight distribution. Performing the previous
steps on all the image-based results, the direct comparison of the physical and image-based GSD could
be carried out.

Figure 6. Grain shape assessment results (with blue dots) and the calculated average shape (marked
with black X) on a Zingg diagram. The meaning of the axes is also shown. [23].

3.2. Applied Stereo Computer Vision Techniques for Estimation the Bed Surface Roughness

In the second part of the study, the stereo computer vision techniques were studied. For this
purpose, cross-sectional video-recordings were carried out in study site II by fixing the imaging
equipment on a moving vessel. The camera settings were similar to the case of Section 3.1. During
the surveys, a real-time kinematic GPS recorded the actual vessel coordinates. In this way, the grain
composition information constructed from the images could be located in the absolute coordinate
system. The imaging instrumentation used in the first case study (Figure 5) had to be slightly modified
due to the fact that the object for scale referencing needed to touch the riverbed. This restraint needed
to be avoided, therefore the system was improved using laser lights instead (four laser pointers fixed
on the frame), with a known distance between each other. The laser lights could be well-identified
on the images, enabling the transformation of the image series from the distorted image coordinate
system to a two-dimensional (2D) system.

The image processing method called Structure-from-Motion (SfM) was then applied to the image
series. The basic idea of the method is to look for and link the common features, points between
the input images. If pictures are taken from different but overlapping angles and directions, it will
result in a 3D surface model of the given object. The method is using the Scale Invariant Feature
Transform (SIFT) algorithm, known from computer vision, to first retrieve and store the strong features
and key points from the images, defining their position, magnitude, orientation, and scale. After this,
their neighborhood and other features are examined and paired. As a result, a sparse point cloud is
generated [24,25]. The next step includes using one of the Multi-View Stereo (MVS) methods to create
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a dense point cloud [26]. Finally, the points will act as nodes to generate the digital model of the object.
Instead of using several cameras for reconstructing the bed surface, we exploited the moving character
of the camera, which enabled us to capture images of the same locations from different angles, and
sometimes even different distances. For this, the Agisoft Metashape software [27] was used, which is
capable of the above-mentioned steps.

Based on the reconstructed surface models, an attempt was made to calculate bed surface
roughness. Flow resistance is influenced by skin or grain friction and form drag from developing
bedforms. Here, the investigation was carried out for evaluating the former one, by calculating the
average roughness height. For this purpose, we followed the theories laid down by mechanical
engineering and processing technology, where the surfaces are represented as a composition of
different sinusoidal waves. The high frequency waves are defining the roughness, medium frequencies
are the waviness, and low frequencies consist of the form of the given surface (Figure 7) [28–31].
The suitable decomposition of the surface profile was performed along transects, using the International
Organization for Standardization (ISO) 16610-21 closed profile Gaussian filter. With this approach,
the so-called Gaussian mean-line (consisting of the low and medium frequencies) could be produced.
Calculating the difference between the raw profile and the Gaussian mean-line gives the roughness
profile of the section [28].

Figure 7. The approach to estimate bed surface roughness from the reconstructed bed surface models:
along a normal section, surfaces can be decomposed to high frequency (roughness) and medium
frequency (waviness) sinusoidal waves (or even lower frequency ones to get the surface form, not
shown in the figure). [30].

For this purpose, one must define the value of the so-called cut-off wavelength (λc). This value
is, in fact, a filter value and is used for the Gaussian-filter function as an input. This parameter
distinguishes between roughness (shorter wavelengths than λc) and waviness (longer wavelengths
than λc). For the suitable determination of this parameter, recommendations are given in the mentioned
standard (e.g., it should be at least 2.5 times the average spacing between adjacent peaks of the
measured profile on the sampling length). For the calculation, a Matlab code was written, based on the
ISO 16610-21 closed profile Gaussian filter [31], and a case-specific cut-off wavelength was chosen,
after taking the standard recommendations into account and visualizing the data. After the separation
of the roughness profile, the average roughness height (Ra) could be calculated with Equation (1) to
describe the roughness of the given section:

Ra =
1
L
×

L∫
0

∣∣∣Z(x)∣∣∣dx (1)
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where L [m] is the sampling length (length of the investigated section) and Z(x) [m] is the roughness
value of the given x point.

4. Results

4.1. Comparative Assessment of Grain Size Distributions

In the following, a comparison between the GSDs from physical samplings together with the
conventional sieving methods and the GSDs constructed from the monocular image-based technique is
introduced. As for the latter, two types of composition curves are assessed, i.e., the raw ones resulted
directly by the imaging method and the ones after the area-volume transformation, as described above.
The median grain sizes (D50) and the standard deviations are also assessed.

Depending on the bed composition, the characteristic grain sizes, and shapes, the agreements
between the methods show different behavior. There were samples, where the grain size distributions
constructed from the images showed a good match with the sieving based GSDs. Such an example
can be seen in Figure 8, taken from the sampling point 1/1 (see the sampling location in Figure 1).
After transforming the image-based result, the GSD curves showed an even better match on the lower
tail of the curves (<30%). However, they presented coarser fractions on the higher part. A potential
explanation can be that grain-shapes of the coarser fractions differ from the assumed disk-shapes.
The standard deviation also showed a better match with the sieving after the transformation, meaning
the shapes of the curve are better captured than before the transformation. Thus, in these cases,
the fractions above 10 mm are better estimated without the area-volume transformation.

Figure 8. Size distributions of sampling point 1/1. The image-based distribution showed a good
match with the sieving results, with the closest matches being on the upper end of the curves. After
transforming it, the closest matches turned out to be on the lower tail of the curves, but the shape
resemblance became stronger too.

Furthermore, there were several samples where the area-volume transformation improved the
agreement, such as in the case of point 2/2 (Figure 9). These samples are generally taken from the
coarsest zones of the riverbed, where no sand and fine gravel fractions present. The coarsest fractions
are still not captured accurately, but the method works best when no fine fractions can be found on the
bed surface.
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Figure 9. Size distributions of sampling point 2/2. The image-based distribution showed a better match
only after transformation.

The most problematic zones are those locations, where fine, sand fractions are present. It is known
that in image-based methods, the minimum resolvable grain size depends on the image resolution [4],
and the validity of the hereby used digital image analysis method starts from approximately 0.7 mm
(it is 2–3 px normally, [6,32]) due to the applied camera settings and parameters. To see whether the
amount of the coarser fractions are well reconstructed by the image-based method, we removed the
fractions that were finer than 1 mm from the sieving based GSD. An example from point 3/4 can be
seen in Figure 10. Seeing how the curve moved closer to the image-based curve, we considered it
as a proof for the expectations and earlier experience regarding the limitations of the image-based
methods (originating from simply resolution limits). The reason for the original image-based GSD
showing better match with the sieving (after removing sand), than the transformed result, might be
because, in this case, the shortest c-axes (non-visible for the camera) of the grains is not that significant
in regards to volume (and mass), so instead of the applied ones, other ratios, or even shape, would be
more realistic.

Figure 10. Size distributions of sampling point 3/4. Due to sensing limitations from the applied resolution,
both the original and transformed image-based distributions were not matching. By removing the finer
than 1 mm fractions from the sieve, the filtered curved got closer to the image-based curve.
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Involving all the samples, a comparison of the median grain diameter (Figure 11a) as well as the
standard deviation values (Figure 11b) were performed between the image-based and sieving based
methods. Overall, an adequate agreement was found in the gravel fractions and weak estimation for
sand fractions.

Figure 11. Comparison of the (a) D50 and (b) standard deviation values from the best fitting (original
image distribution or transformed distribution) methods and the sieving results. The sandy points are
marked with red.

4.2. Bed Surface Model and Estimation of Bed Roughness

As described above, videos captured at the second study site along the river cross-sections were
used for performing a stereo computer vision-based, SfM technique. In the following, the results
prepared from survey Section 2 (see location in Figure 2) are shown. First, the series of images extracted
from the video were merged to provide a large, continuous image of the riverbed for further analysis
(Figure 12).

Figure 12. The applied Structure-from-Motion (SfM)-Multiview method analyzed and patched together
the frame images of the video. The location and placement of one image can be seen in the figure, along
with the modeled surface along the camera path.

For the sake of illustration, only an approximately 21 m long section (evaluation length) of the
whole cross-section is analyzed and showed, but the method, considering the computational demand
of the image processing, can certainly be extended for longer profiles. It is worth noting that the
computational analysis of this section took approximately 10 h on a normal PC. After the creation of
the bed surface model, a polyline was drawn along the modeled section to extract the total profile
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and calculate the roughness heights. The next step was to use closed profile Gaussian-filter to get
the mean-line (low- and medium-frequency elements of the total profile). The difference between
the filtered and original profile gives the roughness profile (Figure 13). During the video recording,
it was seen that in the middle of this section (from 10 to 12 m in Figure 13), the riverbed was coarser,
gravel dominated than in other parts (e.g., between 2 and 4 m), where rather the sand dominated.
This phenomenon was also visible after creating the 3D model (Figure 14).

Figure 13. (a) The bed elevation (top) and the calculated roughness profile (bottom). (b) A coarser part
from the analyzed section (middle part in Figure 13a). On (top), the bed surface and the Gaussian
mean-line can be seen. From these two, the roughness profile is calculated (bottom).

Figure 14. The coarser part of the section (between 10 and 12 m along the section) on the left (a,c) and a
smoother part on the right (between 2 and 4 m along the section) (b,d). The red line is the polyline
along which the total profile was retrieved. The pictures on top (a,b) are the stitched images from the
recording, while the pictures on the bottom (c,d) are the corresponding three-dimensional (3D) models
of the given parts.
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The difference in riverbed composition was also visible in the roughness profile (Figure 13).
In the coarser part, the total height (vertical distance between a maximum valley and maximum
peak) was larger, than in the sand dominated part. For the coarser part Ragravel = 0.0050 m, for the
sand part Rasand = 0.0017 m, while for the whole 21 m long section Ratotal = 0.0029 m was calculated,
as average roughness height values. Indeed, the riverbed section, where gravel was dominating,
the characteristic grain diameter fell in the range of 0.5–1 cm, whereas the typical sand fractions have
an order of magnitude lower diameter. This difference in the roughness values could well be captured,
underlining that the SfM based fine-scale bed surface model can be used for separating different bed
material classes.

5. Discussion

In this study, attempts were made to implement image-processing methods for under-water
morphological field measurements of large rivers by emphasizing the grain size distribution and
roughness of the riverbed as parameters of interest. The field tests were done in the transition
zone of the Hungarian section of the Danube River, where the conventional sampling methods are
generally inadequate for the representative characterization of bed composition. In contrast with
earlier studies applying image-based methods for bed material analysis (e.g., [2–17]), in this study,
the investigated river sections show strong inhomogeneity in terms of bed material, ranging from
silt to gravel dominated zones. The key question of this research was whether applying a suitable
underwater imaging equipment, combining with different image processing methods, could provide
areal kind information of the riverbed composition with acceptable quality for further analysis.

As for the developed field imaging equipment, it can be stated that the instrumentation, together
with the applied methods, are easy and quick to use. The moving vessel measurements would be the
best option for further studies in the future, with the improved instrumentation setup (i.e., lasers),
because it can provide adequate input for spatial referencing. It is crucial, however, to note that the
introduced underwater imaging is feasible only in low water situations when the water transparency
enables clear images. Moreover, there should be no bedload transport during imaging, because the
moving particles can bias the resulted grain composition. However, in such circumstances, a suitable
image post-processing method could exclude moving particles from the images, as was already
introduced by the authors [33].

The applied transferable wavelet-method, as a monocular approach, showed promising results
when comparing the constructed GSDs with the ones from sieving analysis. It is, however, important
to note that in the case of sand and finer fractions, the method is not able to identify them, resulting
in biased GSDs. This insufficiency can be explained with the resolution limitations of image-based
methods. To overcome this problem, a combination of the monocular and stereo vision approaches
may be necessary, where the latter can account for the separation of fine and coarse particle dominated
zones, as discussed later on. The issue of the theoretical differences between sieving and image-based
analysis, i.e., volume and areal distribution, was also addressed. A transformation procedure was
tested to account for the conversion of areal to volume distributions considering a typical grain shape
at the study site. In some cases, the applied estimation gave better results, suggesting that further and
more sophisticated involvement of the grain shapes can improve the results.

As for the stereo vision method, a great advantage is the possibility of merging continuously
collected images of the riverbed and analyzing grain size distribution for areas with arbitrary sizes,
which can eventually yield map-like GSD information. The stereo vision method enables the generation
of the 3D model of the riverbed along the camera-path. The herein applied SfM method is reasonably
robust. However, it is a key feature to find suitable measurement circumstances in terms of e.g., relative
speed of the vessel, camera resolution, framerate, or the distance of the camera from the riverbed.
If these parameters are well chosen, this method can indeed provide quantitative information on the
bed surface roughness.
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The grain-scale 3D model of the recorded bed surface contains relevant information for a better
understanding of flow riverbed interactions but can be of great importance for parameterizing
computational flow models. Moreover, as mentioned before, flow resistance is dependent not only
on the skin friction, but on the form drag as well. The herein applied filtering method is capable of
separating the roughness (skin friction), waviness (forms, form drag), and the channel shape from each
other, based on the so-called cut-off wavelengths. Hence, it could be further used in the future for
calculating other parameters.

As for future improvements, the exploitation of increasing camera resolution and framerate will
lead to more and more accurate assessments with e.g., further decreasing the lower-limit for sensible
particle sizes for both the wavelet (GSD) and the SfM (grain-scale 3D model and surface roughness)
methods. A logical continuation of the research can be the combination of the wavelet-method with
Deep Learning algorithms [18,19] that are capable of recognizing overall textures and patterns. With the
combination of the two approaches, it could also contribute to a more accurate separation of sand and
gravel patches. Regarding the distribution comparison and grain shape assessment, further studies
are planned to carry out more sophisticated transformations of the curves (e.g., not just one average
shape and axes-ratios, but different ones for each size class). In case of surface roughness, the average
roughness height (root mean square deviation) will be calculated from the presented roughness profiles
and attempt will be made to correlate these values with Nikuradse roughness heights and compare the
this-way-calculated D50 values to ones that are retrieved from sieving or the wavelet method itself.
Moreover, besides the presented line roughness (2D), area roughness (3D) [17] will be calculated as
well. The final goal would be the automatization of the wavelet-method to retrieve the grain size
distributions from any part of the riverbed, mapped by the moving camera(s).

6. Conclusions

In this paper, the first results of the assessment of the riverbed composition were introduced
based on video imaging of the riverbed. Two different approaches were tested in shorter sections
of a large river: monocular and stereo vision methods. The former provided information about
the characteristic grain size of the bed surface, whereas the second was used to create fine-scale,
3D bed surface models based on, which, information on the local roughness could be extracted.
The results clearly demonstrated the capabilities of both methods, eventually complementing each
other. The monocular method showed adequate accuracy for gravel fractions, whereas the grain
composition of finer fractions could not be reconstructed well, due to the resolution of the images.
On the other hand, the tested stereo vision method could well distinguish between sand and gravel
fractions, and so once this separation can be done using the second technique, the first one can be used
for more detailed assessment.

The greatest advantage of the introduced image analysis methods is that compared to the
conventional, physical bed sampling procedures where local, pointwise information can be extracted
from the time-consuming field campaigns, and expensive laboratory analysis, here, after the
automatization of the introduced data processing, grain composition information (even along longer
streamwise and transversal river transects) can be gained. When the physical characteristics of the
bed material strongly vary even in shorter reaches, the quantitative description of these gradients can
be crucial.

The results of this study can be well exploited in river engineering problems, when fine scale
computational hydro-morphological modelling is performed for shorter river reaches, and map sort of
information is needed of the sediment characteristics for model parameterization. Such 3D numerical
models are more and more frequently used, e.g., for supporting restoration measures. Furthermore,
when, for instance, habitat assessment of rivers is carried out, these image-based methods can also
support the description of the varying nature of the benthic zones.

The permanent development of computational capacity, video resolution as well as the new
developments in artificial intelligence methods, it is foreseen that these techniques become more and
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more suitable even for large scale analysis of rivers, moreover, the assessment of static images can
be further extended to dynamic images, i.e., the quantification of the moving particles and so the
investigation of sediment transport on the grain scale can be a realistic goal.
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