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The modulatory effect of adaptive 
task‑switching training 
on resting‑state neural network 
dynamics in younger and older 
adults
Boglárka Nagy1,2*, Andrea B. Protzner3,4,5, Gwen van der Wijk3, Hongye Wang3, 
Filomeno Cortese4,6, István Czigler1,7 & Zsófia Anna Gaál1

With increasing life expectancy and active aging, it becomes crucial to investigate methods which 
could compensate for generally detected cognitive aging processes. A promising candidate is adaptive 
cognitive training, during which task difficulty is adjusted to the participants’ performance level to 
enhance the training and potential transfer effects. Measuring intrinsic brain activity is suitable for 
detecting possible distributed training-effects since resting-state dynamics are linked to the brain’s 
functional flexibility and the effectiveness of different cognitive processes. Therefore, we investigated 
if adaptive task-switching training could modulate resting-state neural dynamics in younger (18–
25 years) and older (60–75 years) adults (79 people altogether). We examined spectral power density 
on resting-state EEG data for measuring oscillatory activity, and multiscale entropy for detecting 
intrinsic neural complexity. Decreased coarse timescale entropy and lower frequency band power 
as well as increased fine timescale entropy and higher frequency band power revealed a shift from 
more global to local information processing with aging before training. However, cognitive training 
modulated these age-group differences, as coarse timescale entropy and lower frequency band 
power increased from pre- to post-training in the old-training group. Overall, our results suggest that 
cognitive training can modulate neural dynamics even when measured outside of the trained task.

Cognitive training, i.e., practicing a specific and demanding cognitive task for a few weeks or months, has 
received attention as a potential method for compensating for or delaying age-related cognitive decline (e.g., 
processing speed, executive functions, attention, and long-term memory;1–5). Although results are mixed in con-
nection with general efficacy (supporting reviews about the positive effects of cognitive training on performance 
and cognitive functioning in healthy and clinical aging groups6–9; opposing reviews about the lack of specific 
cognitive training-related benefits on cognitive performance and functioning10–12), cognitive training has been 
shown to improve cerebral blood flow, and reduce age associated structural shrinkage, decreases in white matter 
integrity and functional dedifferentiation13–17.

A particular type of cognitive training is adaptive cognitive training, where the trained task’s difficulty level is 
adjusted based on performance18 so that task demand remains slightly higher than the current cognitive capacity. 
This process is believed to build behavioural and brain flexibility19 and lead to larger training effects20,21 when 
compared to cognitive training tasks where there is no variation in the difficulty level22. These training-related 
changes occur even in older participants due to sustained cognitive and brain plasticity like neurogenesis, net-
work reorganization or modified behavioural responses to internal demand or external stimuli16,17,23–26.
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The cognitive training literature suggests that training has a significant impact mainly within task-related 
structural, functional and cognitive domains. In our work we examined the influence of adaptive task-switching 
training27 where participants had to make decisions about a letter-number pair (vowel/consonant or odd/even, 
respectively) based on the colour of the previously presented cue. Participants switched between the letter and 
number tasks during the training (informatively cued task-switching). Additionally, special characters were 
shown in some trials in which cases response had to be withhold (no-go stimuli). Behavioural and ERP results 
showed that after training, older adults performed as well as young adults. Specifically, age-related differences 
in hits, reaction time and mixing costs (the reaction time difference between mixed and single trials, lower 
performance in mixed-task repeat trials compared to single-task trials) disappeared for the old-training group, 
but not the old-control group, while switching costs (the slower reaction time for switch than repeat trials in 
mixed-task) did not show changes in any of the groups. The P3b component, which was not seen in older adults 
in pre-training, had comparable amplitudes in old-training and young groups after training, although with 
different scalp distributions. We also observed training-related enhancement for the N2 amplitude mainly in 
older adults. Additionally, these behavioural and electrophysiological training-related gains were also seen in 
different but related tasks. These results suggested that neurocognitive aging processes can be altered, and that 
these alterations transferred to non-trained tasks.

The main goal of cognitive training interventions is to gain more general neural and cognitive benefits. 
These more general effects can be detected with the presence of a transfer effect (i.e., training-related changes 
on non-trained tasks and cognitive functions), as we showed in our adaptive task-switching training. Even more 
general transfer effects include using knowledge or skills which were learned in one scenario to achieve differ-
ent goals in another scenario28. Meta-analyses and reviews about transfer effects revealed the general presence 
of near-transfer (training-related improvement in tasks similar to the training task) in cognitive training but 
results regarding far-transfer (training-related improvement in tasks which are different from the training task in 
nature or design29) are inconsistent (evidence for existing far-transfer effect, e.g.30–32; evidence against far-transfer 
effect, e.g.33–35). However, even though the more widespread effects of cognitive training are currently debatable, 
cognitive training is still an efficient and suitable method for exploring how different cognitive processes and 
their neural underpinnings can be altered in old age.

The far-transfer effect is not the only measure which can indicate distributed effects of cognitive training. A 
promising candidate could be the observation of brain changes in resting-state dynamics during cognitive train-
ing. Resting state networks show complex yet spatiotemporally structured dynamics that are linked the brain’s 
functional flexibility through the exploration of possible functional network configurations36–40. These dynam-
ics have been related to the effectiveness of different cognitive processes (e.g. attention41,42; memory43; working 
memory44; cognitive flexibility45; cognitive control46–49), task-related behavior (e.g.50–53), changes in psychiatric 
disorders54,55 and aging (e.g.56–63).

One way to examine resting-state neural dynamics is by measuring brain signal variability. Even though signal 
variability has been defined as neural noise, recent research has begun to emphasize the importance of these 
temporal fluctuations of brain activity mainly in information processing capacity and functional integrity. Such 
variability is a crucial characteristic for complex neural interactions, effective and optimal brain functioning, 
and flexibly responding to internal and external stimuli37,38,64–67. At the cellular level, neuronal populations with 
more diverse firing patterns to the same stimulus (local noise) can encode and generate representations more 
effectively and adaptively (probabilistic population code;68–70) and they can detect weaker signals as well71–74. At 
a more global level, large-scale networks with more dynamic functional connectivity and temporally fluctuating 
activation patterns show larger information processing capacity and integration, therefore they can maintain 
optimal learning, environmental adaptation, and flexibility in neural processing67,75. In general, a more complex 
neural system in resting state can model the external environment in a more detailed and effective way, thus is 
more adaptable76.

These dynamic and flexible neural reconfigurations are the main processes behind neural signal complexity. 
Complexity is linked to the information content of neural activity and its unpredictability which can be meas-
ured with entropy. Higher neural complexity is associated with more stochastic and flexible processes within a 
network while lower neural complexity shows more rigid, regular, and deterministic processes in brain signal 
dynamics65,77–82. Additionally, high neural complexity is accompanied by both high functional integration and 
segregation, and highly integrated (mutual) information83,84. To detect meaningful recurring patterns across 
a range of different time scales, we employed a multiscale entropy (MSE) measure developed by Costa and 
colleagues85,86. MSE is most suitable for data which has high temporal resolution like EEG, and is sensitive to 
both linear and nonlinear patterns at multiple time scales87. Thus, MSE analysis is a great addition for more com-
monly applied spectral power analyses which can detect only linear trends in EEG data through measuring the 
distribution of signal power over different frequencies. Consequently, comparing the results of these two methods 
can reveal differing contributions from linear and nonlinear processes88. MSE can detect temporal complexity 
and unpredictability at shorter-range/higher frequency (fine scales) and longer-range/lower-frequency (coarse 
scales) dynamics. Previous studies found that fine scale MSE is connected to local information processing while 
coarse scale MSE is connected to distributed information processing79,82,89.

In the context of healthy aging, several studies have demonstrated increased fine time scale MSE and decreased 
coarse time scale MSE in older adults as compared to younger adults, which reveals a shift from greater flexibility 
in distal to greater flexibility in local information processing65,79,82,90–92. However, this shift in brain signal com-
plexity is modulated by spatial and cognitive aging dependent variables. Global information processing is more 
reduced between hemispheres with aging79 and the age-related MSE difference is more pronounced at posterior 
channels91. Additionally, the age-related shift from long-range to local processing has been linked to cognitive 
resilience and better cognitive health, but these results are mixed. Greater fine scale MSE and a greater shift from 
long-range to local processing predicted better cognitive functions with higher everyday physical activity in older 
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people93. However, higher MSE associated with both local and long-range processing was found to be crucial 
for achieving better performance in perceptual, attentional, and lexical tasks in older individuals53,92. Finally, 
less local and more global information processing was found in clinical aging groups like dementia, Alzheimer’s 
and Parkinson’s disease patients89,94–96.

Corresponding to the age-related differences in temporal neural dynamics, resting-state spectral power also 
shows significant differences in frequency band power between younger and older individuals97. Even though 
there are inconsistencies in the current literature, in general, low frequencies (delta, theta, alpha bands) show 
decreased power91,98–100, while higher frequencies (beta) show increased power92,101 with healthy aging (i.e., 
and age-related shift in spectral power density;102–107). These results are in line with the age-related brain signal 
complexity changes, namely the decreased power in lower frequency bands with healthy aging can be linked 
to decreased coarse time scale entropy while the increased power in higher frequency bands can be linked to 
increased fine time scale entropy88.

Earlier studies have revealed notable training-related structural and functional changes in resting-state neural 
networks mainly in older age-groups, e.g., increased cerebral blood flow, neural activity, white matter integ-
rity, and increased functional connectivity within- and decreased functional connectivity between resting state 
networks13,14,108–111. However, there is only one previous study which applied entropy measures on cognitive 
training data from older adults112, but it was an fMRI and not an EEG study. This experiment had only healthy 
older participants, and they were randomly assigned to one of the three experimental groups: multi-domain 
training, single-domain training, and a control group. Resting-state fMRI was recorded at baseline and 1 year after 
training and two entropy measures were calculated. One was time-domain entropy, which shows the temporal 
variability of BOLD signals during spontaneous brain activity. Time-domain entropy decreased with aging, and 
indexed alterations in brain structure and reduced cerebral blood flow113–115. The other measure was functional 
entropy, which detects the relative orderliness of time series patterns (synchronization) among brain regions, 
thus it is a similar measure to functional connectivity in resting-state networks. Healthy aging was accompanied 
by increased functional entropy which indicated more widely distributed spontaneous brain activity, thus less 
differentiated resting-state brain networks and disrupted functional connectivity116. Li and colleagues’ cogni-
tive training study revealed lower functional entropy but higher time-domain entropy in both training groups 
compared to the control group which shows that cognitive training can influence intrinsic brain activity and 
neural signal complexity.

In our study we examined how adaptive training can modulate general resting-state neural dynamics and 
information processing, and more specifically, how cognitive training can affect the age-related changes in intrin-
sic brain activity. We analysed resting-state EEG data from our previously published adaptive task-switching 
training task27. This method is well suited for identifying training-related resting-state neural plasticity in older 
adults since cognitive control processes, which are crucial for task-switching performance and rely on prefrontal, 
frontoparietal and basal ganglia activation and functional connectivity, show the most pronounced age-related 
decline117–122. Altogether, we hypothesized that the adaptive task-switching training could modulate the age-
related resting-state brain dynamics in both complexity and oscillatory measures revealing distributed training-
related effects outside of the trained task.

Methods
Detailed descriptions of the participants, the task-switching paradigm and the training process have been pub-
lished in Gaál and Czigler (2018)27.

Participants.  We recruited 39 young (18–25 years) and 40 older (60–75 years) women in this study who were 
divided into control and training groups. Therefore, we had young-control (20 participants, 21.7 ± 1.6 years), 
young-training (19 participants, 21.4 ± 1.7  years), older-control (20 participants, 66.1 ± 3.1  years) and older-
training (20 participants, 65.3 ± 3.3 years) groups. We measured participants’ IQ by the Hungarian version of the 
Wechsler Adult Intelligence Scale (WAIS-IV123,124) in order to detect potential training-related cognitive changes 
as well as to rule out those subjects whose IQ score was too low. Our groups’ IQ scores (mean ± SD) and their 
difference from the average IQ score were the following: IQ (young-control) = 109.4 ± 14.4, t(19) = 2.92, p = 0.009; 
IQ (young-training) = 107.9 ± 12.3, t(18) = 2.80, p = 0.012; IQ (old-control) = 120.1 ± 15.8, t(19) = 5.69, p < 0.001; 
and IQ (old-training) = 117.9 ± 16.7, t(19) = 4.79, p < 0.001. Additionally, older participants had higher IQ scores 
as compared to younger ones (main effects ANOVA: F(1, 76) = 9.543, p = 0.003). Every participant was right-
handed, had normal or corrected-to-normal vision, and had no history of neurological or psychiatric disorder.

The protocol was approved by the United Ethical Review Committee for Research in Psychology (EPKEB, 
Hungary) and the study and all of the applied methods were conducted in accordance with the Declaration of Hel-
sinki. A written informed consent was obtained from all participants, and they were paid for their contribution.

Procedure.  During the first session in the laboratory, each participants’ health status, habits, demographic 
data, and IQ were documented. Electroencephalogram (EEG) was recorded in the second and final sessions 
which were conducted one month apart. These EEG data were part of a larger project that included eyes closed 
and open as well as different task-related recordings. The full protocol was described in detail by Gaál and 
Czigler (2018)27, and a detailed description of the experimental and training procedure can be seen in Fig. 1. 
Particiapnts performed several different tasks during EEG recording, in the following order: (1) eyes closed and 
open resting-state for 2 min each, (2) informatively cued task-switching paradigm with no-go stimuli—letter 
classification and parity task (this is the trained task), (3) non-informatively cued task-switching paradigm with 
nogo stimuli—letter classification and parity task (this task was used for for detecting near-transfer effects in 
the original study, and it was not trained), (4) informatively cued task-switching paradigm—colour and shape 
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classification (this task was used for detecting near-transfer effects in the original study, and it was not trained), 
and (5) Attentional Network Test (this task was used for detecting far-transfer effects in the original study, and 
it was not trained). Each task began with a practice block where participants were given the instructions both 
orally and in writing.

In connection with the current study’s goals, we are focusing on the trained, informatively cued task-switching 
paradigm with no-go stimuli, thus we describe it in more detail here (Fig. 1). Every trial started with a coloured 
cue where yellow and orange cues were assigned to the letter classification task (vowel/consonant decision) and 
blue and green cues to the number classification task (odd/even decision). After 700 ms, a letter-number target 
pair was shown in the centre of the screen. Participants pressed the button of a game pad with their left or right 
index finger based on the mapping of the letter and parity task which was counterbalanced. In all trials except 
four per block, the two stimuli required opposite button presses. In 25% of the trials, special characters were 
shown as targets where response had to be withheld (nogo trial). The target was shown until response (maximum 
2,000 ms) and feedback was displayed post-response on the screen for 200 ms. The paradigm had the following 
restrictions: (1) cue colour was never repeated in successive trials, (2) target stimuli were presented in pseudor-
andom order with no repetition on successive trials, (3) 50% switch probability, (4) two nogo trials could not 
follow each other, (5) maximum three switch or repeat trials could follow each other. Two blocks of single letter, 
and two blocks of number classification trials were presented at the beginning of each session (104 trials each). 
These were followed by 10 blocks of mixed trials (50 trials per block).

While the control groups participated only in the aforementioned three sessions (passive control), the train-
ing groups completed eight 1-h adaptive training sessions of the informatively cued task-switching paradigm 
with no-go stimuli. The difficulty level was personalized in each block based on the current performance of each 
participant and it varied based on the number of tasks (1–4) and the number of cues for each task (1–2): (1) 
parity task—odd/even number decision (blue and green cue), (2) letter classification task—vowel/consonant 
decision (yellow and orange cue), (3) magnitude task—less/more than five decision (lilac and pink cue), (4) 
letter classification task—lower/uppercase decision (red and brown cue). This adaptive cognitive training took 
place between the second and last session for every participant who underwent training. Thus, we refer to these 
sessions as pre-training (first and second sessions) and post-training (last session).

For the current analyses, we used the pre-training open-eyed resting-state EEG data for detecting general 
age-related differences in the neural network dynamics, as well as pre- and post-training open-eyed resting-
state EEG data in order to examine training-related changes in the neural network dynamics and its age-related 
modifications. Additionally, we used the informatively cued task-switching with no-go stimuli (letter/parity 
decision) task’s cue- and target-locked event-related potentials (ERPs) from pre- and post-training conditions for 
detecting those electrodes where training-related changes could be detected. We focused on this task because it 
was used in the adaptive training, thus its cue-and target-locked ERP data could reveal training-related changes 

Figure 1.   Experimental design of the adaptive task-switching training study27. (a) The structure of the 
executed tasks. Sitting with eyes closed (1a) and open (1b) for 2 min each, (2) informatively cued task-switching 
paradigm with no-go stimuli—letter classification and parity task (trained task), (3) non-informatively cued 
task-switching paradigm with no-go stimuli—letter classification and parity task, (4) informatively cued task-
switching paradigm—colour and shape classification, and (5) Attentional Network Test. In the training sessions 
the difficulty of the informatively cued task-switching paradigm with no-go stimuli was modified block by block 
based on performance. The resting-state EEG with eyes open from pre- and post-training sessions (1b) were 
analysed in this study. (b) The schema of the informatively cued task-switching paradigm with no-go stimuli—
letter classification and parity task (trained task). TR: task-repeat, TS: task-switching.
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in the younger and older age-groups connected to anticipatory and task-execution processes, respectively. More 
detailed description of these analyses are provided in the “EEG acquisition and preprocessing” and “PLS analysis 
of task data to identify training-relevant electrodes” sections below.

EEG acquisition and preprocessing.  Electrophysiological recording was performed in an electrically 
and acoustically shielded room. In the adaptive training sessions, stimuli were presented by Presentation soft-
ware in the centre of a monitor (LG 915FT Plus 19”; 800 × 600 pixels; 60 Hz refresh rate) at a viewing distance 
of 125 cm. Continuous EEG was recorded by NuAmps amplifiers (bandpass: DC-70 Hz) using NeuroScan 4.4 
software (Compumedics, Victoria, Australia; sampling rate: 1000 Hz). Thirty-five passive Ag/AgCl electrodes 
were placed on Fp1, AFz, Fp2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, TP9, CP5, 
CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10, referenced to the tip of the nose, with FCz as 
ground. Vertical and horizontal eye movements were recorded by electrodes placed above and below the left eye 
(VEOG) and in the outer canthi of the eyes (HEOG). The impedance of the electrodes was kept below 10 kΩ.

In order to preprocess raw resting-state EEG data offline for further analyses, functions of EEGLAB 
v.14.1.0b125 were applied for finite impulse response band-pass filtering at 0.5–40 Hz followed by independent 
component analysis (ICA) for removing ocular (i.e., eye blinks, horizontal eye movements), muscle and cardiac 
artefact. Data were segmented into 2500 ms epochs continuously and epochs were rejected if they had a voltage 
change larger than 100 µV between their minimum and maximum. The average number of rejected epochs were 
the following (mean ± SD): young-control pre-training: 2.9 ± 4.1, young-control post-training: 5.2 ± 9.7, young-
training pre-training: 6.8 ± 10.9, young-training post-training: 7.9 ± 11.0, old-control pre-training: 7.7 ± 12.7, 
old-control post-training: 4.8 ± 7.8, old-training pre-training: 2.7 ± 4.6, old-training post-training: 2.2 ± 3.6. As 
for the ERP analysis, the preprocessing of raw task-related EEG data was started with 0.1–30 Hz filtering followed 
by segmentation (cue-locked ERPs: − 100 ms to 700 ms relative to cue onset; target-locked ERPs: -100 ms to 
1000 ms relative to target onset), baseline correction (using prestimulus interval) and automatic artifact rejection 
(epochs were rejected if they had a voltage change larger than 80 µV between their minimum and maximum).

Multiscale entropy estimation of brain signal variability.  Full details of multiscale entropy (MSE) 
and its relevance for the analyses of signal complexity are provided in studies by Costa et  al.85,86. The MSE 
method calculates sample entropy as a measure of the unpredictability of the EEG signal at different timescales, 
where greater MSE values represent greater entropy. The calculation of MSE involves two steps. First, data are 
resampled into different timescales, then the sample entropy for each time series is calculated. For each time-
scale, data points are averaged within non-overlapping windows of the scale’s length. For example, the original 
time series corresponds to scale 1 (i.e., 1 ms windows in the context of our 1000 Hz sampling rate), scale 2 is 
averaged over two time points (i.e., 2 ms windows), and so on. After that, sample entropy of each coarse-grained 
time series for each epoch is calculated, measuring predictability by evaluating the appearance of repetitive pat-
terns based on two parameters: the pattern length (m) and the tolerance level (r). The pattern length indicates 
how many consecutive data points are used for pattern matching and the tolerance level determines the maximal 
absolute amplitude difference between two data points to consider them matching. Therefore, sample entropy 
reflects the probability that two sequences that match on the first m data points will also match on the next data 
point. We calculated MSE for each epoch and each participant using the algorithm available at www.​physi​onet.​
org/​physi​otools/​mse/, with parameter values m = 2126 and r = 0.5127. These values were chosen based on earlier 
aging studies79,88,91. The length of the time series was 2500 data points (corresponding to 2500 ms epochs at 
1000 Hz sampling rate). To ensure reliable MSE estimation, we included only those timescales for which we had 
at least 50 samples. Thus, for each participant, MSE estimates were obtained for each epoch and electrode at each 
timescale from 1 to 50 (or 1–50 ms windows) where lower values represent fine timescales and higher values rep-
resent coarse timescales. Subsequently, MSE values were averaged across all trials in every participant separately 
to obtain mean MSE for each timescale and electrode in the pre- and post-training conditions.

Spectral power density estimation.  We calculated spectral power density (SPD) in order to compare 
MSE and SPD results which could allow us to relate MSE measures to the frequency content of the EEG signal 
and to evaluate if age- and training-related differences are driven by linear (assessed by both MSE and SPD) or 
nonlinear (assessed only by MSE) dependencies in the data88. SPD of the signal was calculated using fast Fourier 
transform on single trial data. The signal was first normalized (mean: 0, SD: 1) to deal with age-related global sig-
nal power differences (e.g.,100,105,128,129). Relative contributions of different frequency bands to the total spectral 
power were calculated based on normalized data. Given a sampling rate of 1000 Hz and 2500 time points (equal 
with 2500 ms) per trial, the frequency resolution was 0.4 Hz. Single-trial estimates were averaged across trials in 
every participant to obtain mean SPD for resting-state condition.

Partial least squares analysis.  Partial least squares (PLS) analysis130–133 is a data-driven multivariate anal-
ysis technique which operates on the entire data structure at once, extracting the patterns of maximal covariance 
between brain signals and groups/conditions. Here, PLS analyses were applied first on pre-training resting-state 
MSE and SPD measures for assessing general age-related differences in every electrode. In order to examine 
training-related changes in neural network dynamics, the first step was to run PLS analyses on cue- and target-
locked ERP data of the trained reference task from our previous work (informatively cued task-switching with 
no-go stimuli—letter/parity decision;27). These analyses allowed us to identify those electrodes where significant 
training-related changes could be detected (more details in the “PLS analysis of task data to identify training-rel-
evant electrodes” section in “Results”). Therefore, a task-related (neural) network was identified, and we selected 
these specific electrodes for our main analyses on resting state EEG data. Thus, we examined whether adaptive 

http://www.physionet.org/physiotools/mse/
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training could engender more general changes in neural network dynamics at those electrode sites where task-
specific training effects could be detected. Altogether, we applied PLS analyses to assess training-related changes 
and its age-related differences in spatiotemporal distributions of resting-state MSE and SPD measures.

PLS operates on the covariance between brain signal (as measured by MSE or SPD) and the experimental 
design across participants to identify a new set of variables (so-called latent variables or LVs) that optimally 
relate the two sets of measurements. Each LV contains three vectors: design saliences, electrode saliences, and 
singular values. Design saliences indicate the degree to which each condition within each group is related to 
the brain signal pattern identified in the LV. Design saliences should be interpreted as the optimal contrast that 
codes the effect depicted in the LV. Electrode saliences are numerical weights that identify a particular pattern 
of electrodes and timescales/frequencies that are most related to the group and condition effects expressed in 
the LV. The singular values represent the strength of the effect expressed by the LV (i.e., the covariance between 
the contrast and the MSE or SPD pattern). The PLS analysis is similar to other multivariate techniques, such 
as principal component analysis (PCA), in that the algorithm extracts LVs explaining the covariance between 
conditions and brain activity in order of the amount of covariance explained, with the LV accounting for the 
most covariance extracted first.

Statistical assessment in PLS is performed across two levels. First, the overall significance of each LV is 
assessed with permutation testing134 where the group or condition labels are re-assigned for each subject. An 
LV was considered significant and different from random noise if the observed singular value exceeded the 
permuted singular value in more than 95% of the permutations (corresponding to p < 0.05). Second, bootstrap 
resampling135,136—drawing randomly with replacement from subjects in every group—is used to estimate con-
fidence intervals around electrode timescale or frequency weights in each LV as well as assessing their relative 
contribution and the stability of their relation with experimental groups. No corrections for multiple comparisons 
are necessary because the electrode saliences are calculated in a single mathematical step on the whole brain. 
In this study 500 permutations and 500 bootstrap samples were tested. For the brain data, the plotted bootstrap 
ratios (ratio of the individual weights over the estimated standard error) were proportional to z scores, with a 
minimum threshold of 2.0 corresponding approximately to a 95% confidence interval or p < 0.05.

For the visualization of our analyses, the Scientific colour map vik137 is used in this study to prevent visual 
distortion of the data and exclusion of readers with colour-vision deficiencies138. A summarized illustration of 
the applied analysis methods can be seen in Fig. 2, and the flowchart of the EEG data processing steps is shown 
in Fig. 3.

Results
General aging effects in pre‑training resting‑state MSE.  Before examining training-related changes, 
we were interested in the general age-related differences in neural network dynamics prior to training, thus task 
PLS analysis was performed on pre-training resting-state MSE using our full young and older age-group and all 
electrode sites. One significant LV was identified which revealed general age-related resting-state MSE differ-
ences (p = 0.028, Fig. 4). This LV showed decreased coarse temporal scale MSE (scales: 35–50 ms) and increased 

Figure 2.   Illustration and summary of the applied analysis methods.
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fine temporal scale MSE (scales: 1–20 ms) from young to old age-groups at nearly all electrode sites (no differ-
ence at occipital electrodes and less robust effects at frontal electrodes).

General aging effects in pre‑training resting‑state SPD.  We analysed general age-related differences 
in resting-state SPD as well with PLS using pre-training data. One significant LV was identified which revealed 
age-related resting-state SPD differences (p < 0.002, Fig. 5). This showed increased power in beta (15–30 Hz) 
and to a lesser extent in gamma (≥ 30 Hz) frequency bands and decreased power in delta and theta (1–7 Hz) 
frequency bands from young to older age-group throughout all of our analysed electrodes (these effects were less 
robust at occipital electrodes).

PLS analysis of task data to identify training‑relevant electrodes.  Using ERP data collected dur-
ing task performance (i.e., not the resting-state data used in our current analyses), we identified training-relevant 
regions where significant training-related changes could be detected in cue-locked and target-locked ERPs27. 
Our PLS analysis revealed one significant LV where the training effect could be detected in each of the cue- and 
target-locked analyses (both p < 0.002, Fig. 6). In the cue-locked analysis, the opposite training-effect was identi-
fied in the young- and older-training groups (decreased amplitudes in the young-training group and increased 
amplitudes in the older-training group from pre- to post-training) while for the target-locked ERP, the training-
effect (significant changes in target-locked ERP from pre- to post-training) was shown only in the older-training 
group. Based on electrodes in which stable cue- and target-locked effects were identified, we defined a set of 
task-related electrodes including: F3, Fz, F4, F8, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P3, Pz, P4, O1, 
Oz, O2. Peripherally located electrodes were excluded. Our resting-state analyses (aging and training effects in 
resting-state MSE and SPD) were executed using these 20 channels.

Aging and training effects in resting‑state MSE.  We examined age-related differences in potential 
training-related effects with a task PLS analysis performed on pre-training and post-training resting-state MSE. 
One significant LV was identified which revealed training-related resting-state MSE changes in the older-train-
ing group (p = 0.012, Fig. 7). This showed increased coarse temporal scale MSE (scales: 20–50 ms) from pre- to 
post-training mostly at midline and right fronto-central electrode sites in the older-training group. To a lesser 
extent, increased fine temporal scale MSE (scales: 1–20 ms) also could be detected in the same group post-
training at midline and left fronto-central areas. We did not identify any training-related MSE changes in the 
young-training group or the control groups.

Aging and training effects in resting‑state SPD.  We analysed age-related differences in potential 
training-related effects from pre-training to post-training resting-state SPD with a task PLS. We identified 
one significant LV which revealed training-related resting-state SPD changes in the young- and older-training 
groups (p = 0.008, Fig. 8). There was increased power in high delta and theta frequency bands (3–7 Hz) from 
pre- to post-training across all task-related electrodes but mainly at midline and right centro-parietal electrodes 
in the young- and old-training groups. Moreover, increased alpha power (8–14 Hz) was found at fronto-central 

Figure 3.   Flowchart and summary of the EEG data processing steps. ERP: event-related potential, MSE: 
multiscale entropy, SPD: spectral power density, PLS: partial least squares.
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Figure 4.   PLS analysis results for the general aging effect on MSE (using the pre-training resting state in our two 
age-groups). (Top) The bar graph depicts the contrast between age-groups that was significantly expressed across 
electrodes and timescales as determined by permutation tests, with error bars denoting 95% confidence intervals. 
(Bottom) The bootstrap ratio map illustrates the electrodes and timescales at which the contrast displayed in the 
bar graphs was most stable. Values represent the ratio of the individual electrode weights and the bootstrap-derived 
standard error (roughly z scores, thresholded at 2.0 which corresponds approximately to p < 0.05). Positive values are 
plotted in warm clours and indicate timescales and electrodes showing decreases from young to old age-group in 
resting state MSE. Negative values are plotted in cool colours and denote increases from young to old age-group in 
resting state MSE.
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Figure 5.   PLS analysis results for the general aging effect on SPD (using the pre-training resting state in our 
two age-groups). (Top) The bar graph depicts the contrast between age-groups that was significantly expressed 
across electrodes and frequencies as determined by permutation tests, with erros bars denoting 95% confidence 
intervals. (Bottom) The bootstrap ratio map) illustrates the electrodes and frequencies at which the contrast 
displayed in the bar graphs was most stable. Values represent the ratio of the individual electrode weights and 
the bootstrap-derived standard error (roughly z scores, thresholded at 2.0 which corresponds approximately to 
p < 0.05). Positive values are plotted in warm colours and indicate frequencies and electrodes showing decreases 
from young to old age-group in resting state SPD. Negative values are plotted in cool colours and denote 
increases from young to old age-group in resting state SPD.
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electrode sites by training in both age-groups. No changes were detected from pre- to post-training in the young- 
and old-control groups.

Discussion
The purpose of this study was to investigate the influence of age on adaptive task-switching training-related 
changes in resting-state neural activity and brain dynamics. We used resting-state EEG data from our previously 
published training study, and we ran multiscale entropy (MSE) and spectral power density (SPD) analyses in 
order to measure brain signal complexity and oscillatory activity, respectively. We compared control and training 
groups in both younger and older adults for detecting age-related differences in the training-effect, and found 
increased complexity following training mostly in connection with broader and long-range neural processing 
(increased coarse scale MSE and lower frequency power) for the old-training group.

Firstly, we established how our young and old age-groups’ pre-training brain dynamics differed prior to train-
ing, and whether these results are consistent with previous research. This pre-training comparison was important 
for evaluating training-related changes as well, by allowing us to identify baseline differences between our age-
groups to guide our evaluation of the post-training results. We replicated previous findings in connection with 
intrinsic brain signal complexity and oscillatory activity differences with aging. Increased fine temporal scale 
MSE (1–20 ms) and decreased coarse temporal scale MSE (35–50 ms) was detected in older compared to younger 
adults (similar results in e.g.:65,79,82,90–92). As in previous work, we interpret this result to reflect a shifting bal-
ance between local and long-range processing flexibility, where older adults show an increased reliance on local 
information processing and decreased long-range interactions with distant brain regions as compared to young 
adults. We also found increased high frequency power (beta, gamma) and decreased low frequency power (delta, 
theta) in older compared to younger adults (similar results in e.g.:102–107). These age-related resting-state changes 
occured broadly (closer to midline) but they were most pronounced at central and parietal channels, followed 
by frontal channels, and the weakest at occipital channels. This spatial pattern is somewhat in line with previous 
studies, since age-related changes in resting-state slow wave power is most prominent in frontal, midline and 
parietal regions100,102 while changes in beta power occurs in central regions102,104. Additionally, studies measuring 

Figure 6.   PLS analysis results on cue-locked (top row) and target-locked (bottom row) ERP for the group 
by condition effect (pre- vs. post-training task). On the left side, the bar graph depicts the contrast between 
experimental groups across age and training conditions that was significantly expressed across electrodes and 
timepoints as determined by permutation tests, with error bars denoting 95% confidence intervals. On the 
right side, the ERPs for all of the electrodes used in the original study are shown and the blue circles represent 
those timepoints where the detected contrast (LV) reaches high significance as determined by bootstrapping. 
The cue-locked waveforms show the trained task’s ERPs for the young-training group’s pre-training (blue) 
and post-training (red) as well as the old-training group’s pre-training (magenta) and post-training (green) 
conditions and the blue circles represent those timepoints where the bootstrap ratio is larger than 4.5. The 
target-locked waveforms show the trained task’s ERPs for the old-training group’s pre-training (blue) and post-
training (red) conditions, and the blue circles represent those timepoints where the bootstrap ratio is larger than 
8.1. Electrodes highlighte with red circles constitute the training-relevant electodes that were used for further 
analyses with resting-state MSE and SPD.
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Figure 7.   PLS analysis results for the group by condition effect (pre- vs. post-training resting state) on MSE. 
(Top) The bar graph depicts the contrast between experimental groups across age and training conditions that 
was significantly expressed across electrodes and timescales as determined by permutation tests, with error bars 
denoting 95% confidence intervals. (Bottom) The bootstrap ratio map illustrates the electrodes and timescales 
at which the contrast displayed in the bar graphs was most stable. Values represent the ratio of the individual 
electrode weights and the bootstrap-derived standard error (roughly z scores, thresholded at 2.0 which 
corresponds approximately to p < 0.05). Positive values are plotted in warm colours and indicate timescales and 
electrodes showing increases from pre- to post-training in resting state MSE. Negative values are plotted in cool 
colours and denote decreases from pre- to post-training in resting state MSE.
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Figure 8.   PLS analysis results for the group by condition effect (pre- vs. post-training resting state) on SPD. 
(Top) The bar graph depicts the contrast between experimental groups across age and training conditions 
that was significantly expressed across electrodes and frequencies as determined by permutation tests, with 
error bars denoting 95% confidence intervals. (Bottom) The bootstrap ratio map illustrates the electrodes 
and frequencies at which the contrast displayed in the bar graphs was most stable. Values represent the ratio 
of the individual electrode weights and the bootstrap-derived standard error (roughly z scores, thresholded 
at 2.0 which corresponds approximately to p < 0.05). Positive values are plotted in warm colours and indicate 
frequencies and electrodes showing increases from pre- to post-training in resting state SPD. Negative values are 
plotted in cool colours and denote decreases from pre- to post-training in resting state SPD.
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resting-state neural signal complexity with methods other than multiscale entropy revealed larger age-related 
changes at frontal and central regions compared to occipital ones (EEG measure:106; fMRI measure:116). However, 
we did not find an age-related decrease in resting-state alpha power (mainly at posterior electrode sites) which 
is quite unusual even in the eyes-open condition and could imply intact arousal and attention in these highly 
functioning older adults139.

The main question of our investigation was how adaptive training, undertaken to enhance cognitive control 
processes related to task-switching, could modify resting-state neural activity and complexity. Interestingly, these 
two EEG signal processing measures detected training-related changes in different experimental groups. While 
the spectral power density (SPD) showed similar training-related changes in both the young and old training-
groups, multiscale entropy (MSE) changes were unique to the old-training group. Because the two methods 
measure linear and non-linear qualities of the neural function, they capture different processes, thus MSE could 
find more complex training-related effects which could not be detected by SPD140,141.

Our training-related resting-state SPD results revealed increased low frequency power in high delta (3–4 Hz), 
theta (4–8 Hz) and alpha (8–14 Hz) bands after training mostly around central channels in both the young 
and old training-groups (more midline and right centro-parietal changes for delta and theta bands and more 
fronto-central changes for alpha band). The MSE results showed increases in coarse scale (20–50 ms) brain signal 
complexity by training mostly at midline and right fronto-central electrode sites, exclusively in the old-training 
group. These results suggest that in younger adults, only the magnitude of the large-scale resting-state networks’ 
oscillatory activity (SPD) is altered by the task-switching training possibly because their brain dynamics and 
neural processing capacities are optimal. However, in older adults, adaptive training resulted in more complex 
changes in brain dynamics (MSE), possibly because older individuals were lower-performing at baseline on 
the task-switching paradigm (in reaction time, error rate and mixing costs, see results in27), therefore benefited 
more from training as they had more room for improvement than high-performing healthy younger adults (i.e., 
compensation account of cognitive training142).

In the old-training group, adaptive training increased coarse scale MSE and low frequency power from pre- to 
post-training, and modulated the age-related shift from more global and large-scale to local neural processing 
in resting-state brain dynamics for training-related regions. This increase in global network dynamics was most 
pronounced at midline and right fronto-central channels. The importance of fronto-central areas in age-related 
neural dynamics difference was established by Sleimen-Malkoun and colleagues91, who detected the largest age-
related difference in coarse scale entropy at these fronto-central electrode sites (more complex neural signals 
in young adults). Moreover, other entropy-based measures of EEG signal complexity106 suggest that the most 
pronounced signal complexity decrease occurs at frontal and central electrode sites with aging, but this complex-
ity decrease is slower in the right hemisphere. In line with these results, the more intact dynamics in the right 
fronto-parietal regions appear to support compensatory mechanisms in cognitive aging which are connected to 
different cognitive processes like alertness, sustained attention, response to novelty, self-monitoring and working 
memory143. Therefore, our results are consistent with the idea that for older individuals, the influence of cognitive 
training on coarse scale neural dynamics and complexity is most crucial at right fronto-centro-parietal areas.

In the current study, we did not indentify training-related changes in power at high frequencies and only a 
small increase in the fine scale MSE in the old-training group. Increased local information processing seems 
to be necessary to maintain93 and achieve53,92 better cognitive performance in older people (however, in order 
to achieve better cognitive performance, simultaneously increased long-range processing could be important 
as well53,92). The less distributed but still significant increase from pre- to post-training in fine timescale MSE 
(1–20 ms) in the old-training group was detected at midline and left fronto-central channels (mostly at F3, Fz 
and Cz). Despite the low spatial resolution of EEG measures, this area, mainly the left inferior frontal junction, 
was found to be crucial in task-switching performance and cognitive flexibility through task rule representation 
and task-switch mediation measured with task-related fMRI144,145. Moreover, increased neural signal variability 
in this area (measured with BOLD-signal variability) facilitated cognitive flexibility, better task-switching per-
formance, and resistance to irrelevant distraction146,147. Therefore, training-evoked increases in local resting-state 
brain signal complexity at left fronto-central channels would support increased local network dynamics in task-
specific regions in the old-training group, which remained present even during rest.

Additionally, we found a training-related power increase mostly in theta (largest increase at midline and right 
centro-parietal areas) and alpha (largest increase at fronto-central areas) frequency bands in both the young- 
and old-training groups. Earlier studies connected theta oscillatory activity to cognitive control processes87 
and they found positive association between theta power mostly at midfrontal and parietal brain areas. Theta 
oscillatory activity has also been linked to performance on executive function tasks100,148,149 and multitasking 
training connected to cognitive control processes150. Alpha oscillatory activity has been linked to increased power 
during internally directed attention and during the inhibition and timing of specific cortical regions’ activation 
mainly in frontal and parietal areas87,151. Moreover, both theta and alpha oscillations are connected to cognitive 
performance152 and a combined neurofeedback and training study showed increased frontal theta and alpha 
activity with improved task performance153. During resting-state, Clements and colleagues154 showed that rest-
ing alpha power is connected to proactive control processes (maintenance of currently active representations), 
while resting theta power is related to reactive control (updating of representations and resolving interferences) 
in both younger and older adults. Based on these previous findings, the training-related resting-state increase 
mainly in theta and alpha power may be related to the increased internally oriented attention to the trained task 
and enhanced cognitive control processes and performance in both of our young- and old-training groups. These 
training-related changes were detected by improved attention orientation measured with Attention Network 
Test, and enhanced target-locked P3b component (which is connected to working memory updating155 and 
decision monitoring156) in both training groups, while better task performance and increased target-locked N2 



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9541  | https://doi.org/10.1038/s41598-022-13708-x

www.nature.com/scientificreports/

amplitude (which reflects cognitive control157 and attention switching158) was found in the old-training group 
in the original training study27.

Despite the novelty of the presented work, certain limitations exist. One limitation is that we used passive 
control instead of an active one in the original experimental design. Thus, we are unable to separate pure adaptive 
training effects from the effect of active and repeated engagement of a control task and increased familiarity with 
the experimental environment in our brain dynamics measures and information processing changes. However, 
because our results are robust and in line with previous literature, they still present important information about 
training and age-related changes in general and intrinsic brain dynamics more specifically. The generalizability 
of our findings is not ideal, because only women participated, and the older group was highly educated: older 
participants had significantly higher IQ scores than younger participants (see27). This pattern is a general prob-
lem in healthy aging studies since older adults who are willing to participate in EEG studies are often highly 
educated, and physically and mentally active. Thus, it would be important to engage the general older population 
in these studies since it is debatable if more impaired cognitive processes in older people would lead to an even 
larger training-effect. That is, greater improvement capacity (compensation account of cognitive training) may 
support greater training-related improvement, but lower baseline cognitive abilities may undermine potential 
training-related change (related to the magnification account of cognitive training)159.

In conclusion, we identified general, adaptive training-related changes in information processing capacity and 
neural dynamics. While in the younger age-group adaptive task-switching training generated only linear and less 
complex changes (identified with spectral power density), in the older age-group both linear and more complex 
non-linear neural dynamics (identified with multiscale entropy) were affected. Namely, the general age-related 
information processing shift from more global to more local network communication was modulated by adap-
tive training: for older participants, adaptive training resulted in increased coarse timescale MSE and increased 
oscillatory activity in theta and alpha frequency bands. Thus, adaptive training may have a general and broad 
modulatory effect on cognitive and neural aging.

Data availability
The datasets for this study can be found at https://​web.​gin.g-​node.​org/​gaalzs/​TS_​train​ing_​MSE_​SPD.
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