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Objectives: The aim was to investigate the fatigue performance of endodontically treated 

(ET) molars restored by various dentin-replacing materials and material configurations. 
Moreover, the impact of additional adhesive treatment with glass-ionomer cement (GIC) 
was evaluated. 

Methods: 250 intact molars were collected and randomly distributed into ten groups 

(n = 25). After endodontic procedure standard Class I cavities were prepared and restored 
with different direct restorative techniques and dentin-replacing materials. Two-group 
were restored with either packable or flowable short fiber-reinforced composites (SFRCs). 
Two-group were restored by experimental fiber-reinforced GIC with and without adhesive 
treatment. Four-group were restored by conventional and resin-modified GICs with or 
without adhesive treatment. One-group was restored with a dual-cure composite resin and 
last group was restored with only conventional composite resin (control). Fatigue-survival 
was measured for all specimens using a cyclic-loading machine until fracture occurred or a 
number of 40.000 cycles were achieved. Kaplan-Meyer survival analysis was conducted, 
followed by pairwise log-rank post hoc comparisons. Fracture mode was then examined by 
means of optical microscopy and SEM. 

Results: Group restored with flowable SFRC showed significantly higher survival (p  <  0.05) 
compared to all of the groups, except for group restored with packable SFRC (p  >  0.05). 
Group restored with fiber-reinforced GIC had significantly (p  <  0.05) higher survival rates 
compared to other commercial GICs. SEM demonstrated change of the fracture line when 
fracture reached the SFRC layer. 
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Significance: Direct restoration of Class I in ET molars with the use of SFRCs as dentin- 
replacing materials demonstrated its ability to reinforce the dental structures and to in
crease the fatigue resistance in this specific clinical situation. 

© 2022 The Author(s). Published by Elsevier Inc. on behalf of The Academy of Dental 

Materials. 

CC_BY_4.0   

1. Introduction 

Due to their compromised structural integrity, en
dodontically treated (ET) teeth require specialised restorative 
treatment [1]. This is mostly necessitated by extensive caries 
or trauma and subsequent root canal treatment, which may 
lead to the loss of the pulp chamber roof, the pericervical 
dentin or even the marginal ridges [2]. Consequently, ET 
teeth have a higher chance of fracture [3–7]. Reinforcing root 
canal treated molar teeth is therefore of key importance as 
molars are exposed to the highest maximum biting forces in 
the mouth. The stressful lifestyle and the growing incidence 
of temporomandibular disorders resulting to bruxism in 
modern Western societies further increase the stress that 
restorations in the molar region must withstand [8]. 

In ET teeth, the restorative treatment of choice largely 
depends on the dimensions of the cavity, namely the number 
of remaining cavity walls and their thickness [6,9]. While a 
MOD cavity causes an average of 63% loss of relative cuspal 
stiffness [10], a Class I occlusal cavity causes only 5–20% loss  
[6,11]. This significant difference can be attributed mainly to 
the fact that in Class I both marginal ridges are preserved. As 
Class I cavities are more favorable in terms of preserved tooth 
structure compared to MO/OD/MOD cavities, it has been 
often suggested that Class I occlusal cavities can be safely 
restored directly with fillings in ET teeth [12–14]. 

A variety of choices are available to substitute the missing 
dentin when preparing direct restorations in deep cavities. 
These include glass ionomer cements (GICs), resin-modified 
GICs (RMGICs), conventional packable composite resins, 
short fiber-reinforced composite resins, dual-cure core build- 
up composite resins, etc. 

The so-called “super-closed” sandwich technique uses GIC 
or RMGIC as a dentin-substituting material over the adhe
sively treated cavity walls, covered with packable composite 
resin [15,16]. A number of laboratory studies have shown that 
using this technique decreases microleakage and increases 
marginal efficiency [17,18]. On the other side, from clinical 
point of view, it has been proposed that the use of glass io
nomer cavity bases would diminish the overall strength of 
the composite restoration [19]. Though, long-term clinical 
study by van de Sande and her colleagues showed that pre
sence of a GIC base did not affect the survival of posterior 
composite restorations [20]. 

Short fiber-reinforced composite resin (SFRC) has been 
recommended to reinforce composite restoration in high 
stress-bearing areas, including ET posterior teeth [21,22]. This 
SFRC was reported to exhibit improved performance in 
shallow and deep MOD cavities in the context of fracture 
resistance and/or fracture pattern [8,23]. The flowable ver
sion of SFRC was launched in 2019 with the promise of easy 

handling and adaptability. So far, flowable SFRC has shown 
promising results when utilized in direct restorations in dif
ferent clinical situations [24–26]. 

The question arises as which material would be best to 
substitute the missing dentin in occlusal cavities of root 
canal treated molar teeth. The necessity of bonding when the 
“super-closed” sandwich technique is used is also an open 
question. Therefore, the purpose of this study was designed 
to analysis the fatigue performance and failure mode of Class 
I cavities in ET molar teeth restored by different direct re
storative techniques and dentin-replacing materials. 

2. Materials and methods 

The University of Szeged's Ethics Committee approved all of 
the study's procedures, and the research was carried out in 
conjunction with the Helsinki Declaration. Two hundred fifty 
intact mandibular 3rd molars, extracted for orthodontic or 
periodontal causes were collected primarily for the current 
research. The freshly extracted teeth were kept in 5.25% 
NaOCl for 5 min before being preserved at room temperature 
in 0.9% saline solution. Within 2 months after extraction, 
teeth were used. Hand scalers were used to scrape the soft 
tissue covering the root surface during specimen preparation. 
The following were the inclusion criteria: no caries or root 
cracks, no prior endodontic procedures, no posts or other 
coronal restorations, and no resorptions. The coronal di
mensions of the included teeth were standardized as follows: 
only specimen with a 10.0–10.9 mm in size, measured at the 
widest bucco-lingual dimension were used for this study. The 
specimens' mesio-distal dimension was also measured, and 
this parameter allowed for a maximum deviation of 10% from 
the calculated mean. In the end 250 teeth met the inclusion 
criteria and were included for restorative treatment. 

These teeth were distributed at random among ten study 
groups (G1–10) (n = 25/group). 

2.1. Specimen preparation 

All of the groups were received a Class I cavity preparation, 
which was then continued into a conventional endodontic 
access (TEC) using the same concepts as previously stated  
[27,28]. The size of the occlusal cavities was standardised 
with the aid of periodontal probe in both buccol-lingual and 
mesio-distal directions (Hu-Friedy Mfg. Co., Chicago, USA). In 
any case when the access cavity had to be increased due to 
anatomical variations, leading to undermined walls or wall 
parts, the teeth were excluded from the study. Endodontic 
treatment was exactly carried out as described in one of our 
previous studies [29]. The access cavity was temporarily filled 
with Cavit W (3 M ESPE, St. Paul, MN, USA) after the 
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guttapercha was cut back to the level of the orifice. To pre
vent leakage through the apex, Fuji Triage Pink was applied 
to the apical part of the root. The teeth were kept in water for 
a week (at 37 °C) in an incubator (mco-18aic, Sanyo, Japan). 
The temporary material was then removed, and the access 
cavity was refreshened with a diamond bur. The guttapercha 
was cut back 4 mm under the orifice with a No. 3 Gates 
Glidden bur (Dentsply Maillefer, Ballaigues, Switzerland). The 
root canal was rinsed with chlorhexidine and dried with 
paper points after the gutta-percha was cut back. Cavities in 
Group 1,2,3,5,7,9 and 10 obtained the same adhesive treat
ment, whereas the rest of the groups received no adhesive 
treatment at this stage. 

During the adhesive treatment, the enamel was acid- 
etched selectively with 37% phosphoric acid for 15 s and 
rinsed with water. After drying the coronal cavity and the 
coronal part of the root canal with paper points and air, a 
dual-cure one-step self-etch adhesive system (G-Premio Bond 
and DCA, GC Europe, Leuven, Belgium) was used, according 
to the manufacturer’s instructions using a microbrush-X 
disposable applicator (Pentron Clinical Technologies, LLC, 
USA). The adhesive was light-cured for 60 s using an Optilux 
501 quartz-tungsten-halogen light-curing unit (Kerr Corp., 
Orange, CA, USA). The average power density of the light 
source, measured with a digital radiometer (Jetlite light 
tester; J. Morita USA Inc. Irvine, CA, USA) prior to the bonding 
procedure, was 840  ±  26.8 mW/cm2. The distance from the 
light-curing tip to the material to be cured was al
ways 1–2 mm. 

In Groups 4, 6 and 8 the dentin was conditioned with 
polyacrylic acid (Cavity Conditioner, GC Europe) according to 
the manufacturer’s instructions. 

Different materials and material configurations were used 
to substitute the missing dentin and to restore the specimens 
in Groups 1–10 (Fig. 1): 

Group 1: The cavities including the 4 mm deep “post 
space” were restored with packable SFRC (everX Posterior, GC 
Europe) applied in a horizontal layering technique (approx. 
4 mm thick each) according to the anatomy of the dentin, 
leaving 1.5–2 mm occlusally for the final composite layer. The 
first layer of SFRC was light-cured for 60 s, all other layers 
were cured for 40 s. The last occlusal layer was conventional 
composite resin (G-aenial Posterior PJ-E, GC Europe) covering 
the SFRC, which was light-cured for 20 s 

Group 2: The cavities were restored with flowable SFRC 
(everX Flow, GC Europe) as described in Group 1. 

Group 3: The cavities were restored with experimental 
fiber-reinforced RMGIC which was prepared according to our 
previous research [30,31]. The fiber-reinforced RMGIC was 
applied and light-cured according to the respective manu
facturers’ instructions of RMGIC material and following the 
anatomy of the dentin. Then the fiber-reinforced RMGIC was 
adhesively treated with a self-etch adhesive (G-Premio Bond, 
GC Europe). The excess adhesive was removed with a suction 
tip and was light-cured for 20 s. The last occlusal layer was 
reconstructed with conventional composite resin (G-aenial 
Posterior PJ-E) as in Group 1. 

Group 4: The cavities (with no adhesive treatment) were 
restored with fiber-reinforced RMGIC as in Group 3. After 
applying and light-curing the fiber-reinforced RMGIC, the 

remaining cavity walls and the dentin substituting material 
has been adhesively treated the same way as described ear
lier in case of Groups 1,2,3,5,7,9,10. Once the adhesive was 
light-cured, the remaining 1.5–2 mm occlusally was restored 
with conventional composite resin (G-aenial Posterior PJ-E) as 
in Group 1. 

Group 5: The cavities were restored with RMGIC (Fuji II LC, 
GC Europe) applied and light-cured according to the re
spective manufacturers’ instructions and following the 
anatomy of the dentin. Then the rest of the remaining cavity 
was restored as described in Group 3. 

Group 6: The cavities (with no adhesive treatment) were 
restored with RMGIC as in Group 5. Then the rest of the re
maining cavity was adhesively treated and restored as de
scribed in Group 4. 

Group 7: The cavities were restored with GIC (Equia Forte, 
GC Europe) applied in a bulk-fill technique according to the 
anatomy of the dentin. Then the rest of the remaining cavity 
was restored as described in Group 3. 

Group 8: The cavities (with no adhesive treatment) were 
restored with GIC applied in a bulk-fill technique according to 
the anatomy of the dentin. Then the rest of the remaining 
cavity was restored as described in Group 4. 

Group 9: The cavities were restored with a dual-cure 
composite resin (Gradia Core, GC Europe) applied and light- 
cured (40 s) in a bulk-fill technique according to the anatomy 
of the dentin. Gradia Core was inserted using its own au
tomix cartridge with an ‘elongation tip’ for direct root canal 
application. The last occlusal layer was conventional com
posite resin (G-aenial Posterior PJ-E) covering the core build- 
up material. 

Group 10: The cavities were restored with conventional 
(micro-hybrid) composite resin (G-aenial Posterior PJ-E) ap
plied with an oblique incremental technique. First, the root 
canal was filled with 2 consecutive layers (each 2 mm thick) 
of flowable composite (G-aenial Flow X, GC Europe). After 
light-curing the flowable layers (each) for 60 s, packable 
conventional composite resin was placed in consecutive 
2 mm thick increments to restore the whole cavity. Each in
crement was light-cured for 40 s. The most occlusal layer was 
light-cured for 20 s 

Finally, for all restored specimens, glycerine gel (DeOx Gel, 
Ultradent Products Inc., Orange, CA, USA) was applied and 
final curing from the occlusal side for 40 s was performed. 
The restorations were finished with a fine granular diamond 
burs (FG 7406–018, Jet Diamonds, USA and FG 249-F012, 
Horico, Germany) and aluminum oxide polishers (OneGloss 
PS Midi, Shofu Dental GmbH, Ratingen, Germany). 

2.2. Mechanical loading of the specimen 

The restored specimens were stored in distilled water at 37 °C 
for a week. Embedding of the samples was performed the 
same way as in our previous articles [24,26]. To simulate the 
periodontal ligament, the root surface of each tooth was 
coated with a layer of liquid latex separating material 
(Rubber-Sep, Kerr, Orange, CA) prior to embedding. Speci
mens were embedded in methacrylate resin (Technovit 4004, 
Heraeus-Kulzer) at 2 mm from the cementoenamel junction 
(CEJ) to simulate the bone level. For mechanical testing, the 
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restored specimens were submitted to an accelerated fatigue- 
testing protocol [15,32–34]. 

Cyclic isometric loading was performed by a hydraulic 
testing machine (Instron ElektroPlus E3000, Norwood, MA, 
USA) vertically, in the long axis of each tooth with a round- 
shaped metallic tip. A cyclic load was applied at a fre
quency of 5 Hz, starting with gradually increasing static 

loading till 100 N in 5 s, followed by cyclic loading in stages 
of 200 N, 400 N, 600 N, 800 N, 1000 N, 1200 N, 1400 N, 1600 N 
at 5000 cycles each. The specimens were loaded until 
fracture occurred or a total of 40.000 cycles for the whole 
procedure. For the survival analyses for the simulation of 
forces, the amount of cycles at which the specimen failed 
were recorded. 

Fig. 1 – Schematic figure representing the test groups (Group 1–10) with different dentin replacing materials. Gr1: Packable 
SFRC; Gr2: Flowable SFRC; Gr3: Fiber-reinforced RMGIC with adhesive; Gr4: Fiber-reinforced RMGIC without adhesive; Gr5: 
RMGIC with adhesive; Gr6: RMGIC without adhesive; Gr7: GIC with adhesive; Gr8: GIC without adhesive; Gr9: Dual-cure 
composite resin; Gr10: Conventional light-cure composite resin (control).   
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2.3. Fracture mode analysis 

The failed specimens were examined both visually and under 
stereomicroscope (Heerbrugg M3Z, Heerbrugg, Switzerland) 
with different magnifications (6.5 and 15x) and illumination 
angles to detect the type and location of failure, as well as the 
direction of crack propagation. According to Scotti and co- 
workers, a distinction was made between restorable or non- 
restorable fractures with a two-examiner agreement. A re
storable fracture is above the CEJ, meaning that in case of 
fracture, the tooth can be restored, while a non-restorable 
fracture extends below the CEJ and the tooth is likely to be 
extracted [35]. The representative loaded specimens were se
lected and examined by scanning electron microscopy (SEM, 
LEO, Oberkochen, Germany). Prior to observation, all sectioned 
specimens were cleaned by alcohol and then coated with a 
gold layer using a sputter coater in vacuum evaporator (BAL- 
TEC SCD 050 Sputter Coater, Balzers, Liechtenstein). 

2.4. Statistical analysis 

Statistical analyses were performed in SPSS 21.0 (SPSS, IBM 
Corp., NY, USA). 10 groups were defined according to the method 
of restoration. The number of survived cycles was analysed de
scriptively for each group and with the Kaplan-Meier method 
across the groups (with the Breslow test for the pairwise ana
lyses). The frequency of restorable and non-restorable fractures 
was calculated for each group. 

3. Results 

The Kaplan–Meier survival curves for the accelerated fatigue 
test are presented in Fig. 2. Table 1 presents the p values for 
group-wise comparisons. Group 2 (flowable SFRC) revealed 
significantly higher survival (p  <  0.05) compared to all of the 
groups, except for Group 1 (packable SFRC) (p = 0.189). The 
control group (Group 10; conventional composite resin) 
showed significantly higher (p = 0.005) survival rate compared 
to Group 6 (RMGIC without adhesive), and simultaniously 
showed significantly lower (p = 0.008) survival rate compared 
to Group 2 (flowable SFRC). The rest of the groups did not differ 
significantly from the control group (p  >  0.05). The restored 
Group 4 (fiber-reinforced RMGIC without adhesive) had sig
nificantly (p = 0.025) higher survival rates compared to Group 3 
(fiber-reinforced RMGIC with adhesive), Group 5 (RMGIC with 
adhesive) (p = 0.013), Group 6 (RMGIC without adhesive) 
(p = 0.000), and Group 9 (dual-cure composite resin) (p = 0.003). 
Adhesive treatment has no significant (p  >  0.05) influence on 
the fatigue performance of tested commercial glass ionomer 
materials (Groups 5–8). Table 2 presents the maximum load 
value recorded for each specimen before failure. 

Regarding fracture mode, all restored groups showed 
dominantly catastrophic non-restorable fractures (Table 3 
and Fig. 3). However, in Groups 1 and 2 more than 60% of 
restored teeth did not fail after completion of 40.000 cycles. 

Optical microscope and SEM images of tested restorations 
showed that the fatigue crack path propagated from loading 

Fig. 2 – Fatigue resistance survival curves (Kaplan-Meier survival estimator) for all tested groups.    
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surface (occlusally) to the inner part at dentin-replacing 
materials (Fig. 4). Fig. 4d showed fracture propagation 
through particluate fillers of the occlusal composite resin and  
Fig. 4e change of the direction of the fracture when the 
fracture continued in the layer of SFRC. Fig. 4f showed cut 
fiber ends of the SFRC which suggests specific fiber orienta
tion and that the fracture propagation was in-plane directed 
in the SFRC. 

4. Discussion 

Teeth that have been endodontically treated (ET) are more 
likely to crack than teeth that have not been ET treated [36–38]. 
Therefore, it is of high importance that the coronal restoration 
of these teeth should also serve as structural reinforcement. In 
our study, multiple direct restorative techniques and fiber-re
inforced dentin-replacing materials were used to restore Class I 
cavities in ET molars. Of all the possible direct restorative op
tions in this specific situation, clinicians choose composite 
fillings the most often. Thus, we used direct composite re
storation as control (Group 10). Whether direct composite re
storations would be the best option in this situation is a matter 
of debate. Many studies have concluded that ET molars, when 
root canal treated through an occlusal cavity/TEC, can be re
stored safely with a direct composite filling [6,12–14]. However, 
other studies have found significantly lower fracture resistance 
in such teeth as compared to intact teeth [27,39,40]. Further
more, layering composite resin for filling in such deep cavities 
is time-consuming compared to any bulk-fill technique. Even 
more importantly, from a biomechanical perspective, in most 
cases when fracture occurs in deep cavities restored with only 
composite filling, dominantly irreparable fractures develop, 
leaving the tooth unrestorable [9,23]. Bilayered restorations 
utilizing SFRCs have shown superior fracture resistance with a 
favorable fracture pattern [23,41,42]. In our study, the flowable 
SFRC restoration (everX Flow, Group 2) showed the highest 
survival among the tested groups. Remarkably, it showed sig
nificantly higher survival than the control group (p = 0.008). To 
our knowledge, everX Flow has not been tested in restoring 
root canal treated molar teeth before. The explanation for the 
favorable outcome may lie in the individual characteristics 
especially high fiber content of the flowable SFRC. The effec
tiveness of fiber reinforcement is determined by a variety of 
factors, including the resins used, the weight, orientation, and 
location of the fibers, the aspect ratio, the fibers' adhesion to 
the polymer matrix, and the fibers' impregnation into the resin  
[22]. The length of the fiber in relation to its diameter (l/d) is 
referred to as the aspect ratio. This parameter is critical in 
advanced fiber-reinforced materials because it affects the ma
terial's tensile strength, flexural modulus, and reinforcing 
performance [43]. Though millimeter-long fibers are used in 
packable SFRC, micrometer-long fibers are used in flowable 
SFRC. Despite the fact that fibers in the flowable material are 
shorter than the critical fiber length. The aspect ratio is be
tween 30 and 94 [44], which offers reinforcement to the ma
terials and probably to the adhered dental tissues. 

Although everX Flow has little higher fracture toughness 
value than everX Posterior [45] when the materials are tested 
themselves (i.e. not applied to an actual cavity), teeth restored 
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with everX Posterior (Group 1) did not differ in terms of sur
vival from those restored with everX Flow (Group 2). This is in 
line with our previous findings in premolars [26]. This result 
may be explained by the fact that both materials contain ran
domly oriented short fibers, resulting in isotropic performance 
and multidirectional reinforcement inside the cavity [46]. Be
side the already proven biomechanical advantages of SFRC 
materials, they are also transparent, and the fibers scatter the 
light, so they can be used up to 4–5 mm thick increments  
[47–49]. However, as the cavities used in this study were quite 
deep, they cannot be considered a real bulk fill option as the 
SFRCs were used in 3 consecutive layers. 

As GIC materials are continuously improved, the ques
tion arises as to whether they could be used to restore and 
reinforce root canal treated molars as a dentin-replacing 
material. Whether a GIC core could benefit from adhesive 
pre-treatment (like in the “super-closed sandwich tech
nique”) is also an intriguing question. This is the first re
search that we are aware of that compares various GIC 
materials, both with and without adhesive treatment, as 
dentin-replacing direct restorative materials for restoring ET 
molar teeth. In our study, adhesive treatment prior to the 

application of any of the studied GIC materials did not result 
in increased survival. GIC materials form a weak but real 
chemical bond to dentin and do not seem to remarkably 
benefit from prior adhesive treatment when used as dentin- 
replacing materials. Nevertheless, there was a clear differ
ence in survival between the different GIC materials. The 
modern hybrid GIC restorative material (Equia Forte, GC 
Europe) outperformed the resin-modified GIC (RMGIC) re
storations (Fuji II LC), both with (Group 7 was significantly 
better than Group 5, p = 0.046) and without (Group 8 was 
significantly better than Group 6, p = 0.004) adhesive pre- 
treatment. This is in clear contradiction to the results of 
Magne et al., who found that conventional GIC did not differ 
from the RMGIC variant [15]. However, they worked with 
MOD cavities, which might explain the difference. Our 
findings are probably best explained by the improved me
chanical features to modern GIC materials. As an alternative 
to composite resins in the posterior region, a high-viscosity 
GIC restorative system (EQUIA, GC Europe) was launched in 
2007 [50]. Smaller and more reactive silicate particles with 
higher molecular weight acrylic acid molecules are used to 
reinforce these modern GICs [51]. 

Table 2 – Maximum load (Newton) recorded for each failed specimen.            

Gr1 Gr2 Gr3 Gr4 Gr5 Gr6 Gr7 Gr8 Gr9 Gr10  

1200 1600 1400 1600 1600 800 1200 1600 1400 1000 
1000 1000 1400 1400 1600 800 1200 1400 1600 800 
1200 1600 1600 1000 1600 1000 1400 1000 600 1000 
1600 1000 1400 1600 1000 1400 1200 1600 1400 1200 
1600 1600 1200 1200 1200 1200 1000 1400 1000 800 
1600 1600 1200 1600 1200 600 1000 1200 1000 1600 
1600  1000 1400 1600 800 1600 1200 600 1400 
1000 800 1200 800 1600 1000 1200 1200 1200 
1200 800 1400 1200 1000 1600 1600 800 1600  

1600 1600 800 1400 1600 1600 1200 1400 
1400 1200 1400 800 1600 1400 1400 1200 
1200 1600 1200 600 1600 1600 600 1600 
1600 1600 1400 1000 1600 1000 1000 800 
1400 1200 1400 1400 1400 1200 800 1200 
1000 1600 1000 1400 1400 1200 1600 1600 
1200  1600 600 1600 1400 1000  
1400 1600 600   1200 
1600 1000 1600 1400 
1000 1200 800 1200 
1200 800 1600   

1200 1200 
n = 9 n = 6 n = 20 n = 15 n = 21 n = 21 n = 16 n = 16 n = 19 n = 15   

Table 3 – The distribution of fracture mode among the tested groups (n = 25).                        

Gr1 Gr2 Gr3 Gr4 Gr5 Gr6 Gr7 Gr8 Gr9 Gr10 

N % N % N % N % N % N % N % N % N % N %  

Did not fail 16 64 19 76 5 20 10 40 4 16 4 16 9 36 9 36 6 24 10 40 
Non-restorable 9 36 6 24 17 68 14 56 18 72 20 80 16 64 15 60 16 64 12 48 
Restorable 0 0 0 0 3 12 1 4 3 12 1 4 0 0 1 4 3 12 3 12 
Total 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100   
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Furthermore, restorations utilizing GIC materials did not 
differ significantly in survival from the control group (Group 
10), except for Group 6 (p = 0.005). This shows that direct re
storations with GIC materials could be a good alternative to 
direct composite fillings in ET molar teeth in case of deep 
Class I cavities. In this respect, our findings are in line with 
those of Magne and his colleagues [15]. 

In Groups 3 and 4, the missing dentin was replaced with a 
new fiber-reinforced RMGIC material. This material devel
oped by incorporating short glass microfiber (200–500 µm in 
length) to the powder of RMGIC (Fuji II LC) with 20 wt% 
weight ratio. Previous materials research studies revealed 
that combining short microfiber with RMGIC matrix im
proved toughening and flexural efficiency as compared to 
particulate RMGIC [30,31]. However, this material has not 
been tested in teeth restorations and loading setup. The fiber- 
reinforced RMGIC restorations showed significantly higher 
survival in cavities without prior adhesive treatment (Group 
4) as compared to when the material was placed on the ad
hesive layer (Group 3) (p = 0.025). Furthermore, fiber-re
inforced RMGIC without prior adhesive treatment (Group 4) 
did not differ in survival from either the control group (Group 
10) or teeth restored with packable SFRC (Group 1). This may 
be attributed to the random orientation of microfibers in the 
RMGIC matrix (Fig. 4), which seemed to improve the materi
al's ability to resist fatigue crack propagation as well as in
crease fracture energy and toughness. According to Garoushi 
et al., the fracture toughness of this material is 1.7 MPam1/2, 
which is comparable to commercial conventional composite 
resins (range of 1.1–1.9 MPam1/2) [31,52–54]. 

In this study, fracturegraphy was conducted on tested 
restorations utilizing a combination of optical stereomicro
scope and SEM approach. According to this analysis, the 
primary crack formed on the occlusal surface of the restora
tion, propagated downward, and spread through the various 
layers of the restoration and tooth structure. This kind of 
fracture behavior was also observed in other loading studies  
[25,55,56]. 

Most of the failed specimen, irrespective of whether fibers 
were incorporated or not, demonstrated mainly catastrophic 
non-restorable fractures, which tends to be median-radial 
cracks extending into the restorative material from the loading 
point (Fig. 4). This again demonstrated that improved load 
bearing and failure mode (i.e. direction of fracture propagation) 
do not necessarily occur together/simultaniously (e.g. com
paring Group 4 to control group). However, in case of restora
tions reinforced by SFRCs (Groups 1 and 2) more than 50% of 
the specimens withstood the accelerated testing including 
40.000 loading cycles without any type of fracture, whereas no 
such achievement could be seen with any other tested direct 
restorative technique. This could again indicate that SFRC is 
able to both increase load bearing and also modify the pattern 
of fracture towards favourable types [22,47]. On the other hand, 
analysis of failed specimen clearly revealed that the brittleness 
of the conventional particle-reinforced materials generated the 
bulk fracture propagating easily through the whole thickness 
of the restoration (Fig. 4c & d). Thus, the basic characteristics of 
the material do not significantly enhance the resistance of fa
tigue crack propagation. On the other side, fiber-reinforced 
composites showed the ability to re-direct and stop crack pro
pagation within the materials. As shown in Fig. 4, the presence 
of such energy-absorbing and stress-distributing fibers allows 
crack propagation to be deflected away from the bulk of the 
material and toward the peripheries. 

Regarding this fracture behavior of SFRC restorations, 
Lassila et al., reported that the optimum layer thickness of 
the veneering conventional composite resin over the SFRC- 
core is between 0.5 and 1 mm [41]. Given that the SFRC-re
inforcement core's function is based on a crack-stopper me
chanism, the distance between the stress starting point's 
surface and the SFRC-core is critical. As a result, the thick
ness of the conventional composite resin on the surface of 
the restorations can play a role in crack propagation and re
storation survival. This is in line with previous research that 
demonstrated the value of applying SFRC and conventional 
surface layers at different thicknesses [57,58]. 

Fig. 3 – Photographs of non-restorable (A) and restorable (B) fracture mode of the tested specimens.    
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5. Conclusion 

For the direct restoration of Class I in ET molars, the use of short 
fiber-reinforced composites as dentin-replacing material de
monstrated its ability to reinforce the dental structures and to 
increase the fatigue resistance in this specific clinical situation. 
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