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Abstract

Motivation: Bioproduction of value-added compounds is frequently achieved by utilizing enzymes from other spe-
cies. However, expression of such heterologous enzymes can be detrimental due to unexpected interactions within
the host cell. Recently, an alternative strategy emerged, which relies on recruiting side activities of host enzymes to
establish new biosynthetic pathways. Although such low-level ‘underground’ enzyme activities are prevalent, it
remains poorly explored whether they may serve as an important reservoir for pathway engineering.

Results: Here, we use genome-scale modeling to estimate the theoretical potential of underground reactions for en-
gineering novel biosynthetic pathways in Escherichia coli. We found that biochemical reactions contributed by
underground enzyme activities often enhance the in silico production of compounds with industrial importance,
including several cases where underground activities are indispensable for production. Most of these new capabil-
ities can be achieved by the addition of one or two underground reactions to the native network, suggesting that
only a few side activities need to be enhanced during implementation. Remarkably, we find that the contribution of
underground reactions to the production of value-added compounds is comparable to that of heterologous reac-
tions, underscoring their biotechnological potential. Taken together, our genome-wide study demonstrates that
exploiting underground enzyme activities could be a promising addition to the toolbox of industrial strain
development.

Availability and implementation: The data and scripts underlying this article are available on GitHub at https:/
github.com/pappb/Kovacs-et-al-Underground-metabolism.

Contact: szappanos.balazs@brc.hu or richard.notebaart@wur.nl or papp.balazs@brc.hu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to our strong dependency on fossil materials, there is a growing
interest for the development of sustainable ways to replace them and
to provide alternative approaches to produce chemical compounds
with application in fields such as medicine (pharmaceuticals),
cosmetics, materials (e.g. bioplastics) and food. One promising ap-
proach is the use of microbial cell factories to produce such value-
added compounds. More specifically, the metabolic network of
these species can be redesigned and engineered to optimize the pro-
duction of the desired compounds (Hadadi and Hatzimanikatis,
2015; Ko et al., 2020; Nielsen and Keasling, 2016; Wang et al.,
2017; Yim et al., 2011).

©The Author(s) 2022. Published by Oxford University Press.

Several metabolic engineering approaches have been developed
to improve the production of value-added compounds (Okano et al.,
2018; Pontrelli e al., 2018). Up till now, the most widely applied
approach is the introduction and expression of heterologous meta-
bolic reactions (i.e. reactions from a different organism), which gen-
erate heterologous biosynthetic pathways that enable the production
of non-native value-added compounds by the host organism
(Lechner et al., 2016; Pickens et al., 2011). Several computational
approaches have been proposed to facilitate pathway engineering
through heterologous reactions using genome-scale metabolic mod-
eling (Ko er al., 2020; Wang et al., 2017). Genome-scale metabolic
models are available for the most common microorganisms used in
metabolic engineering and they can accurately predict how the
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addition of heterologous enzymes affect metabolite production
(Pharkya et al., 2004). Although the vast repertoire of available
heterologous reactions provide a huge potential for value-added
compound production, there are several limitations. First, heterol-
ogous enzymes often require specific cofactors which cannot be pro-
vided by the host organism hindering the biosynthetic pathway of its
proper working (Boynton et al., 1996). Second, heterologous expres-
sion could lead to stress response due to protein overproduction or
accumulation of toxic intermediates (Gill et al., 2000; Martin et al.,
2003). Third, microorganisms containing heterologous reactions are
considered as GMO, whose commercial application, especially in
food industry, relies on the juristic regulations of countries.

One possible approach to overcome these limitations is to ex-
ploit what is known as the underground metabolism, i.e. the collec-
tion of enzyme side activities in a cell (D’Ari and Casadests, 1998;
Fig. 1). In addition to their native activities, most enzymes display
weak side activities by which substrates are turned into products, al-
beit at low rates, due to the limited substrate specificity of the en-
zyme. Although the physiological effect of such underground
reactions is mostly neglected given their inefficient kinetics, they can
often be enhanced by only a few mutations (Aharoni et al., 2005;
Khersonsky and Tawfik, 2010; Notebaart et al., 2014). Such genetic
changes allow underground metabolism to contribute to microbial
growth and adaptation to novel nutrient conditions (Cam et al.,
2016; King et al., 2017; Notebaart ef al., 2014; 2018). Although
underground activities have been utilized for pathway development
in case studies, no comprehensive work has yet explored the biotech-
nological potential of the underground metabolic network
(Notebaart et al., 2018; Rosenberg and Commichau, 2019). In par-
ticular, it remains unexplored whether biochemical reactions cata-
lyzed by enzyme side activities are as likely to contribute to new
biosynthetic pathways toward value-added compounds as those cat-
alyzed by heterologous enzymes.

Here, we aim to systematically assess the extent to which under-
ground metabolism can increase the production of industrially im-
portant compounds. As genome-scale computational modeling of
underground metabolism successfully predicts the potential to utilize
new nutrient sources in Escherichia coli (Notebaart et al., 2014), we
reasoned that a similar approach could be employed to characterize
the theoretical potential of underground reactions to produce indus-
trially relevant chemical compounds. To this end, we integrated ex-
perimentally reported and predicted underground reactions into a
genome-scale metabolic reconstruction of E. coli (Orth et al., 2011)
and characterized its biosynthetic properties across 64 different in-
dustrially important compounds spanning diverse applications, such
as health, material sciences, chemical industry and food. Our com-
putational analyses demonstrate that underground enzyme activities
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Fig. 1. Utilization of underground activities as an alternative to incorporating heter-
ologous enzymes. The schematic figure depicts two strategies to enhance or establish
the production of industrially relevant chemicals in microorganisms. The conven-
tional strategy is to introduce one or more heterologous enzymes from a different
organism (cell with long flagella, blue) to create a heterologous pathway capable of
producing the value-added compound (lower part). A less well explored alternative
is to amplify existing low-activity underground reactions (upper part, orange arrow)
catalyzed by the endogenous enzymes of the organism (A color version of this figure
appears in the online version of this article)

frequently enhance the production of value-added compounds with
industrial importance, which is comparable to heterologous enzyme
activities that enhance such value-added compounds. Notably, we
find that activation of only a single underground reaction can al-
ready substantially increase the production of important industrial
compounds, such as a precursor of bioplastics (3-hydroxypropa-
noate) and a potential biofuel (1-butanol). Overall, our work reveals
that the underground metabolic network provides a promising meta-
bolic engineering tool to improve the production of both native and
non-native value-added compounds.

2 Materials and methods

2.1 Reconstruction of the E. coliunderground

metabolism version 2.0

To study the industrial potential of the underground metabolic net-
work, we extended a previously reconstructed underground meta-
bolic network of E. coli K-12 MG1655 (Notebaart et al., 2014)
with additional underground reactions. These additional under-
ground reactions were in silico predicted by the PROPER algorithm
and 20% of them were validated experimentally (Oberhardt ez al.,
2016). In brief, these underground activities were predicted to be
associated with an enzyme based on its sequence similarity to orthol-
ogous enzymes (Oberhardt et al., 2016). We next integrated the set
of underground reactions into the native E. coli genome-scale meta-
bolic model iJO1366 (Orth et al., 2011). We removed duplicate
reactions and ‘perpetuum mobile’ cycles, that is, flux distributions
that are able to produce energy without the presence of available
nutrients (Fritzemeier et al., 2017). Note that underground reactions
u0291 and u0227 were adjusted to contain 1-propanol instead of
isopropanol according to the literature references in the Brenda
database. The resulting metabolic model (hereby termed under-
ground model) contains 3146 reactions and 2172 metabolites, of
which 563 reactions and 367 metabolites are not part of the native
model, respectively. The reconstruction is available as a computa-
tional SBML model (Supplementary File S1, also downloadable
from https://github.com/pappb/Kovacs-et-al-Underground-metabolism).

2.2 Compiling a list of value-added compounds

To get a broad view of the potential of underground metabolism in
industrial bioproduction, we compiled a comprehensive list of
value-added compounds (Supplementary Dataset S1). A compound
was considered to hold a value if it fulfills a role in industrial proc-
esses such as precursor, building block, reagent, solvent or final
product. Most compounds are adapted from the Standard Industrial
Classification Manual of United States Department of Labor
(Industrial Organic Chemicals, Industry Group 286; Major Group
28: Chemicals and Allied Products | Occupational Safety and Health
Administration). The other major source is an exhaustive report of
Werpy and Petersen presenting the most wanted value-added com-
pounds whose sustainable production is a crucial issue (Werpy and
Petersen, 2004). In addition, the list was extended by individual
studies that attempted bioproduction of value-added compounds
(Supplementary Dataset S1). Because we are interested in com-
pounds that are known as metabolites and because the association
of compounds with their representation in the model is based on
their KEGG database IDs (Kanehisa et al., 2017), we excluded com-
pounds without a KEGG ID. This resulted in a list of 160 value-
added compounds that qualify as metabolites and used for subse-
quent analyses (see Supplementary Dataset S1).

2.3 Defining in silico media

We simulated the growth of E. coli in M9 minimal medium adapted
from a glucose minimal medium of a previous model (Feist et al.,
2007). In order to estimate the influence of nutrients, we run our yield
calculations on seven different carbon sources: p-glucose (Bhatia et al.,
2012), glycerol (Clomburg and Gonzalez, 2013), p-xylose (Bhatia
et al., 2012), p-fructose (Aristidou et al., 1999), L-fucose (Kim et al.,
2019), L-arabinose (Bhatia et al., 2012) and acetate (Wu et al., 2016).
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These carbon sources are either already used or suggested to be used
in industrial compound production by prior works. In our simulations,
we enabled the uptake of only a single carbon source at a time.

2.4 Calculating the production yield of value-added

compounds

To calculate the production yield of value-added compounds we
applied Flux Balance Analysis (FBA) (Orth ez al., 2010). First, we
constrained the biomass production to 10% of its maximal value to
ensure that cellular growth is not completely halted by the com-
pound production. Second, we extended the model with a virtual
‘demand’ reaction that has the value-added compound as the sub-
strate and no product to mimic the industrial extraction of the com-
pound. Third, we run FBA simulation to maximize the flux on the
demand reaction, i.e. to maximize the production of the value-
added compound. The flux of the demand reaction equals to the
production rate of the target compound. Finally, we calculated the
Maximum Theoretical Yield (shortened as yield) as a metric to as-
sess the efficiency of predicted biosynthetic pathways according to
the following equation (Campodonico et al., 2014):

Production rate (Value — added compound)

Yield =

Uptake rate (Carbon source)
Carbon atom number (Value — added compound)

Carbon atom number (Carbon source)

We defined biotechnologically relevant (i.e. significant) yield
increments in the underground metabolic model as those that
enhanced the theoretical yield of the native model by at least 5%.
The same criterion was applied when determining the impact of
adding heterologous reaction sets to the native model. Although this
threshold is arbitrary, our results were rather insensitive to the ac-
tual value (see Section 3).

2.5 Determining the minimum number of underground

reactions needed for increasing the production yield

We used a mixed integer linear programming (MILP) algorithm
inspired by our previous study and the Optcouple algorithm to iden-
tify minimal underground reaction sets that are directly involved in
the production of value-added compounds (Jensen et al., 2019;
Szappanos et al., 2016). Our algorithm looked for a minimal set of
underground reactions sufficient for yield increment for each target
compound. Although there might be multiple such minimal reaction
sets we collected only one for each target compound as an example
reaction set and to determine the minimal number of underground
reactions necessary for yield increment. We excluded those value-
added compounds from the MILP analysis where the production
yield is enhanced by less than 5% by underground reactions. The
basis of the MILP problem was the steady-state assumption:

Sv=0

where § is the stoichiometric matrix and v is the flux vector for all
reactions. The reactions of the model were distinguished according
to their origin: native or underground. The flux constraints on the
E. coli reactions were the same as in FBA:

LB; < v; < UB;

where v; is the flux of a reaction, LB; and UB, is the lower and upper
flux bounds, respectively.

We interpreted our goal as a dual optimization problem. While
the primal objective function was the flux maximization of a value-
added compound, the dual objective was the minimization of the
number of active underground reactions. The activation of under-
ground reactions was controlled with binary variables:

bieBVie{l, ....N'}

where b is a binary variable, 7 is the index of an underground reac-
tion, B is the set of binary variables and N’ is the number of

underground reactions. The binary variable b; tells whether the
underground reaction 7’; (i=1, ..., N’) is active (b;=1) or not
(b;=0). The following equations ensure these rules:

vl >ex by
UBi*b,ZZ/;

where v’; is the flux and UB’; is the maximal possible flux of under-
ground reaction 7’;, while ¢ is the minimal non-zero flux value (in
our calculations ¢ = 107%). Reversible underground reactions of the
underground network were decomposed into two opposing irrevers-
ible reactions. This way the fluxes of the underground reactions can
only take positive values, which is a prerequisite for MILP. In add-
ition, to avoid having two opposing reactions derived from the same
reversible reaction being active simultaneously we introduced the
following constraint:

bi+bj < 1;(i,]) € {set of opposing reaction pairs}

To solve the first optimization problem, we calculated the max-
imal production rate for each value-added compound (see Section
2.4). Next, for each value-added compound we constrained the flux
of the demand reaction of the value-added compound to be equal to
its maximum value to ensure the maximal production of the
compound.

Finally, the second objective of the MILP problem was to minim-
ize the active underground reactions:

minimize Zb,—; ie{l, ...,N'}

The result of this optimization is the minimum number of under-
ground reactions whose collective presence is required for the
enhanced value-added compound production.

2.6 Statistical comparison of underground and

heterologous reactions

To compare the industrial potentials of underground and heterol-
ogous enzyme activities, we extended the native E. coli metabolic
model iJO1366 (Orth et al., 2011) with a large set of heterologous
reactions (hereby termed heterologous model). Data on heterol-
ogous reactions were obtained from the MetaCyc database (version
22.5), a comprehensive database of metabolism from all domains of
life (Caspi et al., 2020). All MetaCyc reactions not present in the E.
coli native network were considered as heterologous. Next, we dis-
carded heterologous reactions that were not mass-balanced or con-
tained metabolites without a KEGG ID association (Kanehisa et al.,
2017). We used the associated KEGG IDs to identify compounds
that are already present in the native E. coli network. We also added
the remaining non-native compounds to the metabolic model and
integrated the heterologous reactions into the model. After that, we
removed duplicate reactions and ‘perpetuum mobile’ cycles, that is,
flux distributions that are able to produce energy without the pres-
ence of available nutrients (Fritzemeier e al., 2017). Finally, to
make the heterologous model comparable to the underground
model, we added further exchange and native reactions that were
also incorporated into the underground model based on literature
evidence (Notebaart et al., 2014). The resulting heterologous meta-
bolic model contains 8050 reactions and 5538 metabolites, whereof
5686 reactions and 3495 metabolites are not part of the native
model, respectively. The heterologous model is available as a com-
putational Systems Biology Markup Language (SBML) model
(Supplementary File S2, https://github.com/pappb/Kovacs-et-al-
Underground-metabolism).

Since the set of collected heterologous reactions is much larger
than the set of underground reactions, we generated 1000 heterol-
ogous subsets. Each subset contained a random set of heterologous
reactions chosen from the heterologous model. The number of heter-
ologous reactions in each random set matched the number of under-
ground reactions in the underground model. For each of the 1000
heterologous subsets, we then calculated the maximum theoretical
yield and yield increments of the value-added compounds in the
same way as we did for the underground model (see Section 2.4).
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Out of the 160 value-added compounds with KEGG IDs, 110 were
present in the heterologous model either as native or heterologous
metabolites and therefore the heterologous production of these 110
compounds were tested. Calculations with the heterologous subsets
were done only on glucose minimal medium to reduce computation-
al time.

The combined effect of underground and heterologous reactions
was assessed using a model reconstruction that contain both the
heterologous and underground reactions. This model is based on the
heterologous model described above and extended with the under-
ground reaction sets (the model is available as SBML file in
Supplementary File S3 and under the following GitHub link: https://
github.com/pappb/Kovacs-et-al-Underground-metabolism).  Yield
increments were calculated for this combined model under glucose
minimal medium as described in Section 2.4.

2.7 Software and computation used in metabolic

simulations

All simulations were implemented in python3.6 (Python Software
Foundation. Python Language Reference, version 3.6. Available at
http://www.python.org) using cameo (Cardoso et al., 2018) and
cobrapy (Ebrahim et al., 2013) python packages for constraint-
based modeling. As an optimizer for linear programming and MILP
we used GUROBI 8.1 (Gurobi Optimization, LLC, 2021). The lin-
ear programming was done on a 64-bit Ubuntu Linux system with
an Intel Core-i7 quad core processor. MILP problems were solved
on a Red Hat Enterprise Linux Server release 6.2 with 96 Intel Xeon
central processing units.

3 Results

3.1 Reconstructing an expanded model of E. coli

underground metabolism

To achieve high coverage of potential underground reactions of E.
coli, we extended our previously published list of experimentally
reported E. coli underground activities (Notebaart ez al., 2014) with
predicted ones and incorporated them into the iJO1366 genome-
scale metabolic reconstruction of this species (Orth ez al., 2011).
Specifically, we utilized the predictions of the PROPER algorithm,
which assigns native activities of homologous enzymes from other
bacteria as underground activities to E. coli enzymes (Oberhardt
et al., 2016). Importantly, this algorithm achieved good overlap
with multicopy suppression studies in E. coli where the over-
expression of a ‘replacer’ gene rescues an otherwise lethal loss-of-
function mutation.

Our updated underground network contains 543 underground
reactions, which is approximately 20% of the number of native
reactions in the genome-scale model. By incorporating the under-
ground reactions into the E. coli metabolic network, we also intro-
duced 311 novel compounds that are not present in the native
network. Hence, the extended metabolic network model contains
22% more metabolites than the native model (Fig. 2, Supplementary
Dataset S1). Overall, the updated underground metabolic network
reconstruction contains 107% and 12% more reactions and metab-
olites, respectively, compared to the previous version, indicating a
substantial increase in coverage.

Underground reactions do not necessarily have the potential to
carry flux due to missing connections to the rest of the metabolic
network. Nevertheless, we found that 79% of the compiled under-
ground reactions are either fully or partially connected to the native
network (i.e. either the substrates or the products, or both are pre-
sent in the native network). This result suggests that many under-
ground reactions may have the potential to participate in novel
biosynthetic pathways.

3.2 Underground reactions can often increase the yield

of value-added compounds
To explore the potential utility of underground reactions for biopro-
duction of desired chemicals, we compiled a list of value-added
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Fig. 2. Reconstructing an expanded underground metabolic network of E. coli.
First, the native E. coli metabolic model was extended with both experimentally
validated (Notebaart et al., 2014) and predicted (Oberhardt et al., 2016) under-
ground reactions. Next, value-added compounds were collected from the literature
and those that are present in the model were kept

compounds from literature. As we are interested in bioproduction,
we focused on compounds that have been described as metabolites
according to the KEGG database (Kanehisa et al., 2017). Our list
includes not only the desired end products (e.g. biofuels) but also
precursors, building blocks and relevant reagents and solvents as
well (see Section 2). Out of the 160 value-added metabolites col-
lected, 64 (40%) are present in the extended metabolic network re-
construction and thus have the potential to be produced by E. coli.
We excluded 20 compounds because they cannot be produced in
any of the simulated media even when all underground reactions are
available for biosynthesis. The remaining set of 44 value-added com-
pounds consists of 42 native metabolites that are already present in
the native E. coli network and 2 novel metabolites that are partici-
pating in underground reactions only. Importantly, 16 out of the 44
target-compounds are among the top 30 most sought-after value-
added compounds to be produced from renewable carbon sources
(Werpy and Petersen, 2004). For example, ethylene glycol is used as
antifreeze and also as a building block for plastics (Curme Jr and
Young, 1925; Liu et al., 2013).

Underground reactions may contribute to the production of
value-added compounds in two ways. First, they may open up more
efficient biosynthetic pathways for a compound that can already be
produced by the native network. Second, they may enable the pro-
duction of entirely new compounds that cannot be produced by the
native network. To investigate the feasibility of these two scenarios,
we systematically tested whether the presence of underground reac-
tions increases the maximal theoretical yield of each value-added
compound using flux balance analysis (Campodonico et al., 2014)
(see Section 2). Maximum theoretical yield (yield for short) meas-
ures production efficiency by calculating the fraction of carbon
atoms coming from the carbon source that is converted into the pro-
duction of the target compound (Campodonico et al., 2014).

We allowed the utilization of all underground reactions simul-
taneously to identify all potential cases where the underground net-
work facilitates the production of a target compound, including
those where multiple underground reactions are required. These
simulations were run on glucose as the sole carbon source. We re-
port that underground reactions enhanced the maximum theoretical
yield by more than 5% in 9 out of the 44 target compounds
(Fig. 3A). These 9 compounds have various industrial applications
including plastic manufacturing, flavoring, antifreeze production,
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Fig. 3. Impact of underground metabolism on the production potential of value-
added compounds. The impact of underground reactions is inferred by simultan-
eously enabling all underground reactions to allow for potential pathways that re-
quire multiple underground reactions. (A) Number of value-added compounds
showing no yield increment (35, green), showing increased yield in the underground
model compared to the native model (5, red) and showing production only in the
presence of underground reactions (4, blue). (B) Table of compounds with increased
yield (native production available, red) and exclusive production (no native produc-
tion, blue) in the presence of underground reactions. Yield increment percentage
cannot be calculated for the latter as the native model cannot produce those com-
pounds (A color version of this figure appears in the online version of this article)

etc. (Fig. 3B). Increasing the threshold of yield increment to 10%
would eliminate only a single hit (glycerol), showing that our results
are robust to this parameter. In more than half of the cases (five out
of nine), the native metabolic network is already capable of produc-
ing the compound but the underground reactions opened a new
pathway with a higher yield. Out of those four compounds not pro-
duced by the native model (see Fig. 3B), two (D-tartrate and buta-
nol) were already present in the native network, indicating that the
underground reactions created new routes between existing parts of
the native network to enable their production. In the remaining two
cases (ethylene glycol and 1-propanol), the underground reactions
extended the native network to reach the target compound
(Fig. 4C).

To assess the extent to which these results depend on the applied
nutrient conditions, we repeated the simulations on seven other car-
bon sources deemed relevant in metabolic engineering (see Materials
and Methods). Generally, the yield increments showed little vari-
ation between carbon sources indicating that our results are robust
to the choice of carbon source (Supplementary Dataset S1). This
general lack of condition-dependency can be explained by the fact
that most target compounds are biosynthesized from intermediates
of central carbon metabolism with the sole exception of acrolein.
Notably, acrolein can be produced only on p-xylose as the sole car-
bon source (see Supplementary Dataset S1).

Collectively, these results show that underground reactions often
have the potential to increase the production efficiency of value-
added compounds and can even confer the ability to synthesize new
chemicals.

3.3 Yield increase can be achieved with a handful of

underground reactions
Biosynthetic pathways with fewer underground reactions are
expected to be easier to implement in biotechnological applications.
Therefore, we next examined the number of underground reactions
that are directly involved in the biosynthesis of a given target com-
pound. This was achieved by applying a mixed integer linear pro-
gramming (MILP) algorithm to find the minimum number of
underground reactions necessary for the yield increment (Fig. 4, see
Materials and Methods). In two-thirds of the cases (six out of nine),
the presence of a single underground reaction is sufficient to increase
the production yield and a maximum of four underground reactions
are sufficient in all cases (Fig. 4A and B, Supplementary Dataset S1).
The set of underground reactions involved in the production of spe-
cific target compounds are generally unique, with only a single
underground reaction, catalyzed by glycerol dehydrogenase (gldA),
being advantageous for the production of more than one compound.
Notably, in three out of the four target compounds that cannot be
produced by the native model, the involved underground reactions
are located at the end of the biosynthetic pathway (Supplementary
Dataset S1, Fig. 4C). In contrast, target compounds that can already
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Fig. 4. The presence of one or two underground reactions can be sufficient to in-
crease production yield. (A) Distribution of the number of underground reactions
needed to increase production yields of target compounds. No more than four
underground reactions have to be added to the native model to increase the yield in
all cases. Furthermore, in most cases a single underground reaction is sufficient. (B)
Matrix of underground reactions that contribute to the yield increments of each tar-
get compound. The columns represent the underground reactions (e.g. u0008, etc.)
and their standard gene associations in parentheses, while the rows represent the
target compounds. Cells in the upper part (marked as ‘Increased yield’, red) belong
to metabolites that can also be produced by the native metabolic network while the
ones in the lower part (marked as ‘No native production’, blue) require the presence
of underground reactions. Multiple cells in one row account for multiple under-
ground reactions whose joint presence is needed for production of the target com-
pound. (C) Schematic view of central carbon metabolism (gray arrows) with
underground reactions (red arrows) that enable the production of new compounds
(yellow highlight) that cannot be produced by the native metabolic network. For
details, see Supplementary Dataset S1 (A color version of this figure appears in the
online version of this article)

be produced by the native model are never direct products of the
underground reactions (Supplementary Dataset S1). These results sug-
gest that underground reactions directly involved in the production of
the target compound have higher impact on the yield. Future studies
are demanded to test the generality of this hypothesis.

3.4 Empirical support for the biotechnological

application of underground reactions

Literature survey provides empirical support for several of our com-
putational predictions. First, consistent with the predictions, overex-
pressing gldA is a crucial part of the experimental strain design for
(S)-propane-1,2-diol production (Clomburg and Gonzalez, 2011).
The gene gldA is an endogenous aldehyde reductase with a primary
role in removal of dihydroxyacetone by converting it to glycerol
(Subedi et al., 2008). However, it has also been shown to catalyze
the conversion of methylglyoxal to lactaldehyde, a precursor of (S)-
propane-1,2-diol (Clomburg and Gonzalez, 2011). Our method suc-
cessfully identified this reaction as the underground reaction neces-
sary to enhance (S)-propane-1,2-diol production. Furthermore, in
line with our simulations, experiments show that production of (S)-
propane-1,2-diol is more efficient on glycerol than on glucose as the
carbon source (Clomburg and Gonzalez, 2011) (see Supplementary
Dataset S1). Another example is the production of ethylene glycol,
where a previous experimental implementation utilized the same
underground activity and gene (fucO) as predicted here. Specifically,
a key step in engineering a novel pathway for ethylene glycol
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production relied on the underground activity of FucO, which con-
verts glycolaldehyde to ethylene glycol (Pereira et al., 2016).

1-Propanol emerged as one of the compounds that cannot be
produced by native E. coli metabolism, but can be synthesized by
simultaneously adding two underground reactions to the network
(Fig. 4B). 1-Propanol is used as a solvent during production of cos-
metics, and it is also used to manufacture cellulose-based plastics
(Gonzalez-Garcia et al., 2017). Moreover, 1-propanol is a promising
alternative biofuel to bioethanol considering its higher energy dens-
ity (Jun Choi et al., 2012). There are multiple pathways engineered
to produce 1-propanol and one of them includes the two under-
ground reactions predicted by our method (Jun Choi et al., 2012)
(Fig. 4B). In particular, the study of Jun Choi ez al. (2012) demon-
strates the experimental feasibility of the predicted underground
pathway converting propionyl-CoA into propionyl-aldehyde and
further to 1-propanol. Note, however, that the associated gene
(adbE) in this experimental study is different from those predicted
by our analysis (mhpF and yghD), indicating that the underground
network reconstruction is far from complete.

Overall, despite the sparse usage of enzyme side activities in
metabolic engineering (Pontrelli et al., 2018), these examples pro-
vides support for our simulations.

3.5 Underground reactions show a similar potential to
produce value-added compounds as heterologous

reactions

To systematically assess the utility of underground pathways in the
production of value-added compounds, we next compared their
ability to increase production yield to that of heterologous pathways
from other species, which are commonly employed in strain devel-
opment. To this end, we first compiled a dataset of heterologous en-
zymatic reactions that are absent from E. coli, but have been
described in other organisms according to the MetaCyc database
(see Section 2). This resulted in 5686 distinct heterologous reactions
that were added to the native E. coli model.

To compare the production potentials of underground and heter-
ologous reactions while controlling for the different sizes of these
two sets, we generated random sets of heterologous reactions having
the same size as the total number of underground reactions. Next,
we calculated how frequently these subsets of ‘heterologous’ reac-
tions facilitate the production of value-added compounds compared
to the model containing underground reactions. Note that out of the
160 compiled value-added metabolites, here we evaluated all 110
ones that participate in either a heterologous or a native reaction
(Section 2). We found that, on average, random heterologous reac-
tion sets increase the production of 6.1 target compounds. Statistical
comparison to the nine cases where the underground reactions
increased the production yield of a target compound revealed no sig-
nificant difference (randomization test; P=0.168; Fig. SA).
Furthermore, underground reactions can produce a similar number
of novel compounds which cannot be produced by the native net-
work (4), compared to heterologous reaction sets (2.4 on average;
randomization test; P=0.238; Fig. 5B). Together, these results
show that underground reactions have a comparable potential to
contribute to the production of value-added compounds as heterol-
ogous reactions.

Last, we asked whether a combined strategy using both under-
ground and heterologous activities would improve the production of
specific compounds to extents that cannot be achieved by either re-
action repertoire alone (i.e. synergistic effects). To examine this, we
calculated the yield increment using a model containing all under-
ground and heterologous reactions simultaneously. Notably, we
identified four value-added compounds that showed an enhanced
production yield only when both underground and heterologous
reactions were made available for the calculations (see
Supplementary Dataset S1). This result shows that the combined use
of underground and heterologous enzyme activities can further ex-
tend the biotechnological potential of an organism.
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Fig. 5. Underground reactions show similar potential to produce value-added com-
pounds as heterologous reactions. The figure compares the impact of adding the set
of 543 underground reactions to the native network (vertical line) with that of add-
ing the same number of randomly selected heterologous reactions (histograms). (A)
Distribution of the number of target compounds where sufficient yield increment
was attained across 1000 instances of randomly selected heterologous reaction sets.
Underground reactions show comparable yield increment (nine cases, P =0.168,
randomization test). (B) Distribution of the number of non-native target compounds
which cannot be produced by the native metabolic network. There is no significant
difference compared to underground reactions (four cases, P=0.238, randomiza-
tion test). Vertical line represents the production properties of the underground
metabolic network on both plots

4 Discussion

By extending the native metabolic network of E. coli by under-
ground reactions, we present a framework to further broaden the
metabolic engineering application for the production of value-added
compounds (Pontrelli ez al., 2018). Our genome-scale computation-
al analysis gave several new insights. First, we show that under-
ground metabolism can enhance the production yield of numerous
industrially relevant compounds and even enable the production of
new compounds that cannot be produced by the native metabolic
network.

Second, we also demonstrate that production of a given value-
added compound through underground metabolism often hinges on
one or few underground reactions only. This implies that it would
be sufficient to engineer only few enzyme side activities for any given
target compound. Engineering a small number of enzymatic steps
would likely benefit a successful metabolic engineering strategy, es-
pecially since it concerns weak-side activities of the enzyme. There
are several ways to translate our predictions toward the production
of engineered strains iz vivo, which is clearly the next major step.
First, mutations that increase the underground activity could be
engineered via various genome editing techniques, such as CRISPR-
Cas and MAGE-based methods (Csorgé et al., 2020; Jakociunas
et al., 2016; Wang et al., 2009). Second, adaptive laboratory evolu-
tion has shown to be successful in increasing underground activities
(Guzman et al., 2019; Pontrelli et al., 2018), and third, a combin-
ation of editing and evolution could be applied (Pontrelli et al.,
2018; Wannier et al., 2020).

Perhaps the most important new insight provided by our study is
that underground and heterologous reactions have similar theoretic-
al potentials to contribute to the production of value-added com-
pounds. Thus, underground enzyme activities may provide a
complementary source of biochemical reactions for overproduction
purposes. This is a notable result, because the use of heterologous
genes might be unfavorable for applications that demand a GMO-
free status, such as food fermentation products. In contrast, the use
of underground reactions coupled with adaptive evolution does not
involve the introduction of specific DNA from other organisms. As
such, the second approach may contribute to applications that go
beyond GMO. Moreover, in a preliminary analysis we found several
cases where specific underground and heterologous activities are
jointly required to improve the production yield of value-added
compounds. This result suggests that combining the two reaction
repertoires can be advantageous for industrial applications. Clearly,
future works are needed to fully explore this possibility. Last, we ex-
pect that underground activities might have a limited potential com-
pared to heterologous enzyme activities in one particular area of
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application: many industrially relevant metabolites are produced
through secondary metabolism in plants, which are unlikely to be
producible by side activities of microbial host enzymes.

We note that our estimate of the industrial potential of under-
ground reactions might be distorted by at least two phenomena. On
the one hand, the applied modeling framework might overestimate
the contribution of underground reactions to new pathways for sev-
eral reasons. First, we used a simple FBA framework that ignores
thermodynamic realizability and therefore some of the predicted
pathways might be unrealistic under physiologically relevant metab-
olite concentrations. Genome-scale modeling methods that incorp-
orate thermodynamics as well as enzyme constraints through
kinetics could address this shortcoming (Hoppe et al., 2007; Salvy
et al., 2019; Sanchez et al., 2017). Recent frameworks allow the in-
corporation of enzyme kinetics data as well as quantitative omics
data into models, which could result in the prediction of biological
relevant phenotypes through FBA (Filippo et al., 2022; Sanchez
et al., 2017). Second, underground enzyme activities should not
interfere with the native metabolic network structure to become bio-
chemically and physiologically functional. As such, it might be chal-
lenging to enhance underground activities in vivo, especially if
extensive protein engineering is needed (Porokhin et al., 2021).
Third, the FBA-based modeling framework might be over-optimistic
and in reality, multiple genetic modifications are needed to achieve
the desired production. For example, a single underground activity
associated with the fucO gene is sufficient for efficient ethylene gly-
col production in silico. However, in addition to fucO overexpres-
sion, three other native and two heterologous enzymes had to be
overexpressed and a gene deleted to achieve a high-flux pathway
from glucose to ethylene glycol in vivo (Pereira et al., 2016).
Similarly, to produce (S)-Propane-1,2-diol, a previous work overex-
pressed three genes, replaced an enzyme with a more efficient heter-
ologous enzyme and disrupted pathways that alter the flux from the
synthesis (Clomburg and Gonzalez, 2011). In contrast, the addition
of a single underground activity is sufficient to increase the predicted
yield in our simulations. Therefore, hits from our simulations are
potentially needed to be expanded with further pathway improve-
ments, including deletion of genes that divert the flux from biosyn-
thesis and modifications that alter the redox balance. Nevertheless,
our method gives suggestions that open new ways to produce im-
portant chemicals after further refinement. On the other hand, our
knowledge of underground activities is still rudimentary and there
might be orders of magnitude more side activities than currently
known that could potentially be recruited for new pathways.
Notably, there are various promising recent reports to predict meta-
bolic (side) reactions from cheminformatics, enzyme structures and
machine learning (Amin et al., 2019; Carbonell et al., 2014;
Carbonell and Faulon, 2010; Koch et al., 2017; Mou et al., 2021,
Robinson ef al., 2020). We therefore anticipate that future advances
in machine learning and cheminformatics will further expand the
known ‘metabolic reaction space’ of species, i.e. the total number of
metabolic reactions that could potentially be active in a species
(Hafner et al., 2021; Tyzack et al., 2019). This ‘space’ could be
exploited for the production of value-added compounds
(Campodonico et al., 2014; Carbonell et al., 2014).

The present study focused on underground reactions as raw
materials for building new pathways, however, promiscuous activ-
ities of enzymes in the existing metabolic network may also affect
negatively the production of target compounds (Kim and Copley,
2012). For example, it has been shown that promiscuous phosphat-
ase activities redirect flux from a heterologous terpenoid biosynthet-
ic pathway, hence decreasing its efficiency (Wang er al., 2018). A
more complete knowledge of the repertoire of underground reac-
tions, including those catalyzed by native and heterologous enzymes
alike, would therefore be instrumental to avoid network disruptions
arising from enzyme promiscuity (Porokhin et al., 2021).

Our research focuses on public information of value-added com-
pounds used in the industry, but this is likely an underestimate of
the total complement of compounds of interest. Therefore, our ap-
proach could easily be adapted for the needs of the industry to in-
corporate their compound of interest. Moreover, we report that

changes in the exact nutrient environment does not alter the predic-
tions substantially, since the value-added compounds are produced
from central metabolism. This may, however, change once the
underground metabolic network is further extended in the future, as
well as when additional value-added compounds are added to the
network. Hence, our approach may also predict new industrially
relevant cost-reducing environments to produce similar product
yield or even increased yields. Our results pave the way for exploit-
ing underground metabolism to produce novel strains and we antici-
pate that a growing interest in underground metabolism will go
together with a rise of biotechnological applications.
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