
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Skills to Drive: Successor Features for Autonomous
Highway Pilot

Laszlo Szoke, Szilard Aradi, Member, IEEE, Tamas Becsi, Member, IEEE, Peter Gaspar, Member, IEEE

Abstract—Reinforcement learning applications are spreading
among different domains, including autonomous vehicle control.
The diverse situations that can happen during, for instance,
at a highway commute are infinite, and with labeled data, the
perfect coverage of all use-cases sounds ambitious. However, with
the complex tasks and complicated scenarios faced during an
autonomous vehicle system design, the credit assignment problem
arises. How to construct appropriate objectives for the artificial
intelligence to learn and the preferences between the different
goals also matter of the designer’s choice. This work attempts to
tackle the problem by utilizing successor features and providing
a possible decomposition of the reward functions, guiding the
agent’s actions. This method makes the training easier for the
agent and enables immediate, profound performance on new
combined tasks. Furthermore, with the optimal composition, the
desired behavior can be fine-tuned, and as an auxiliary gain,
the decomposition empowers different driving styles and makes
driving preferences rapidly changeable.

We introduce the adaptation of FastRL algorithm to au-
tonomous vehicle domain, meanwhile developing a stabilizing way
of using Successor Features, namely DoubleFastRL. We compare
our solution for a highway driving scenario with basic agents such
as Q-learning having multi-objective training.

Index Terms—Autonomous Vehicles, Intelligent agents, Ma-
chine learning, Highway Assist, Reinforcement Learning, Suc-
cessor Features

I. INTRODUCTION

RECENTLY, many research areas pay increasing attention
to artificial intelligence (AI). However, today, “powered

by AI” mostly means using machine learning, deep learning,
or artificial neural networks in the products or during their pro-
duction. From computer vision, through speech recognition, to
camera applications, we can find AI-based code whose goal
is to make our lives easier and better. In this aspect, another
rapidly developing and industrially backed research area is
autonomous vehicles. Among others, the main driving force

The research was supported by the Ministry of Innovation and Technology
NRDI Office within the framework of the Autonomous Systems National
Laboratory Program.

The research reported in this paper is part of project no. BME-NVA-
02, implemented with the support provided by the Ministry of Innovation
and Technology of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021 funding scheme.

This paper was also supported by the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences

Laszlo Szoke, Szilard Aradi and Tamas Becsi are with the De-
partment of Control for Transportation and Vehicle Systems, Budapest
University of Technology and Economics, Budapest, Hungary (e-mail:
szoke.laszlo;aradi.szilard;becsi.tamas;@kjk.bme.hu).

Laszlo Szoke is also a researcher at Robert Bosch Kft., Budapest Hungary,
laszlo.szoke@hu.bosch.com

Peter Gaspar is with the Systems and Control Laboratory, Institute
for Computer Science and Control, Budapest, Hungary (e-mail: gas-
par.peter@sztaki.hu).

to apply AI in commercial vehicles lies within safer driving
and comfortable travels. Many companies invest in developing
autonomous vehicles, and an immense amount of research
focuses on designing appropriate algorithms for diverse and
challenging tasks. Supervised learning is popularly applied in
different domains. Still, for autonomous vehicles (AV) other
fields of machine learning, like Reinforcement Learning (RL)
is also being considered because it supports online learning
and interaction with the surroundings.

Furthermore, RL applications develop rapidly due to their
recent success in different fields of life. Google DeepMind’s
AlphaGo Zero showed impressive performance in the game of
Go several years ago. Since then, other successful implemen-
tations and agents have been published in even more complex
domains, see [1]–[5]. Despite the success of RL methods,
there are some disadvantages, must be solved problems that
wait for solutions, one being the credit assignment. Finding
the appropriate rewarding in case of a desired self-driving
behavior is even more challenging. Since, in the conventional
sense, the RL agents learn from scalar feedback, also known
as a reward, the function encompassing the different aspects
of behavior could become tangled. Hence, designing the
appropriate reward function for a suitable credit assignment is
key to RL-based systems’ successful application. [6] further
elaborates on the topic, pointing out design errors in the
latest publications and formulating the problem with reward-
shaping, reward tuning, and unintentionally included loop-
holes. Additionally, the authors also suggest sanity tests, a
guide, how to find reward misdesign. Others, e.g., [7] show
alternatives or possible solutions in their recently published
work that can solve the more complex rewarding systems
(such AVs have) by decomposition of the reward functions.
Albeit the work focuses on a scavenger setting, using the so-
called Successor Features, they provide tools for the agents to
decompose and better understand their tasks.

Our choice of using highway scenarios of all possible
situations is based on that it may seem simple at first glance,
but there are many soft rules, e.g., keeping right or changing
lanes, which creates the possibility of different driving styles
based on the skills or the attitude of the driver. During highway
control, there can be several styles induced by using SFs,
which are not present in the case of other traffic scenarios.
In our method, we wish to emphasize the advantages of using
SFs, for which this highway scenario is essential. Also, a mul-
tilane highway provides several conflict situations because of
the need for maneuvering. The reason is that rapidly changing
weights result in different driving styles and behaviour, which
are not only visible, but show meaningful information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

In this work, after a mathematical background review,
we look at the existing literature on simulation-based RL
in the autonomous vehicle control domain, and set up a
suitable environment for our perspectives. Moreover, we look
at the literature available on successor features and the recent
achievements of its usage. We concisely clarify its methodol-
ogy and show how it works. As our contribution, we propose
a way to define tasks for an agent in highway scenarios using
the successor features by adapting them to the autonomous
vehicle control case. We adopt the original FastRL learning
algorithm [7] and with doing so we propose an agent that
understands its tasks on a highway, meanwhile it is enabled
to decompose the rewards and create meaningful features or
”skills” that is beneficial in unknown situations. Basically,
a different implementation and application of the method is
given.

Furthermore, we stabilize the learning process of the
adopted algorithm for our case, and thus introduce Double-
FastRL (DFRL). As a consequence: upon changes in our
preferences just by adjusting the policy, we can alter the
behavior of a trained agent and induce different driving styles
without any need of retrain. By decomposition during training
and composition in inference time, the skill set of the RL agent
becomes expandable, resulting in much less training and better
performance on new tasks.

The results imply that the different combinations of learned
skills can induce different driving styles and various situa-
tional understanding and actions. It is an efficient way of
addressing compact problems such as autonomous driving and
effectively tackling new function implementation. Our original
intention was not to outperform the standard algorithms,
like Q-networks, though the results show that the evaluation
performance of the proposed algorithms surpass the baseline,
with the additional benefit of applying the trained model on
new tasks with instant performance.

II. RELATED WORK

a) Reinforcement Learning in vehicle control: The recent
improvements of computer science and hardware resources
made it possible for artificial intelligence and machine learning
to have their renaissance. Fields like reinforcement learning
also got their fair share of the renewals by the enabling of
deep learning. In 1998, Sutton and Barto revisited the concept
of RL [8]. Since then, there are thousands of articles and
papers using the knowledge they laid down as building blocks.
The research tries to make RL handier and more competent
to solve the real problems in life. Thus, every now-and-
then new methods, algorithms present themselves to making
reinforcement learning more capable and powerful.

As [9] investigated, autonomous vehicles (AV) pose a chal-
lenging domain not only for the AI researchers but transport,
vehicle, and network security engineers also. The interaction
with the surroundings of a self-driving car must be seamless.
Thus communication and its role in the traffic must be well
defined. During operation, it can not malfunction, make bad
choices because lives are at stake. Supervised Learning (SL)
applications provide significant results in the topic. However,

some think with proper rewarding, reinforcement learning
could constitute a solution to artificial general intelligence
[10]. Simultaneously, this allows us to consider it as a possible
solution to the field of vehicle control. A further advantage of
RL compared to SL is that the online interaction allows us to
explore any exciting situation and thus extend our expectations
and beliefs about how the world works. One must add that
SL-based methods are often utilized for various tasks in RL
settings, such as sensor data processing, classification, and
object recognition. [11], [12]

Today, there are a vast amount of examples of RL in the
vehicle domain. [13] provides an overview on the hierarchical
motion planning problems and the basics of Deep Reinforce-
ment Learning. The key elements of designing RL systems are
drawn, and the paper also provides insight into vehicle models,
simulation possibilities, and computational requirements of
such tasks. Furthermore, the paper surveys the state-of-the-
art solutions systematized by the different tasks and levels of
autonomous driving.

Other works on the topic show different algorithms and
approaches to apply in the field. E.g., complex urban scenarios
with Double Deep Q-Network (DDQN), Soft Actor-Critic
(SAC) and Twin Delayed Deep Deterministic Policy Gradient
(TD3) [14], changing highway scenarios with modified Deep-
Q-Networks (DQN) [12], deep deterministic policy gradient
(DDPG) for lane change on highway [15]. However, no matter
the applied algorithm, the environment, and the target task,
none of the mentioned papers guarantee 100% performance.
Our previous works also show examples of RL agents built
with simple neural networks performing in highway scenarios
[16], [17], but the perfect behavior can not be assured in every
situation. Further examples of autonomous driving functions
solved by RL, such as car-following, lane-keeping, trajectory
following, merging, or driving in dense traffic, can be found
in the following collection: [18]–[23].

There are examples of how an agent can be trained in
an environment with a defined reward and goal, but further
investigation and improvements are needed to achieve flawless
behavior. Mostly, the definition of the environment contains
anomalies, or the reward formulation is not perfect. It is a
common mistake to use reward shaping, a detailed description
of the problem found in [6], which can tweak the training but
alters actual performance. Moreover, as the rewards change or
the environment alters, the trained agents’ performance tends
to worsen due to the specific training circumstances.

The problem seems to initiate from that for every task, the
RL agents - in general - learn their behavior from scratch,
which highly differs from the way humans do.

Leveraging prior knowledge can offer a solution. Thus, in
theory, the range of problems our agents can tackle can be
significantly extended if they are endowed with the appropriate
mechanisms, so-called ”skills”. The ”skills” can be defined
as solutions to distinct sub-tasks or elementary moves, which
contribute to the solution of a bigger, more complex problem.
For instance, to walk, one must first learn how to bend the
knee or balance one foot. Such skills are building on top of
each other, and combining them integrates to more intricate
dilemmas. In recent literature, there are plenty of articles



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

promoting this idea of skills, called successor features (SF)
[7], [24]–[27].

The key idea behind SFs is to decompose the state changes
into features, which coincide with the skills in solving a
problem. If we accept the features as different skills, we are
one step from defining tasks with different reward functions
and the combination of skills. This results in outstanding
inference performance on unseen tasks, with the combination
of previously learned skills [25]. The following subsection
presents some of the significant papers on the topic.

b) Successor Features: The basic concept of successor
features was set by Dayan [27]. He uses the fact that the focus
of temporal difference algorithms is on the good estimation of
returns over time. In conclusion, he states that the similarity
of successors determines how appropriate the generalization
between states is. By defining the term of successor repre-
sentation, he bedded ground for future works. An example,
[28] deals with end-to-end training from raw sensory data and
presents deep successor reinforcement learning. The authors
decompose value functions into two components, one being
the reward prediction and a map of successors. Then they use
the inner product of them to compute the value functions of
the states. Another example is an application for navigation
of robots in single maze-like environments, where the authors
use the successor features [29]. [30] also leverages the power
of Dayan’s successor representation by demonstrating the
efficiency of their approach on a collection of grid-worlds, and
on Fetch, a high-dimensional robotic control environment. [31]
presented at ICML1 argues that optimal value function com-
position can be achieved in entropy-regularised reinforcement
learning (RL). They show the composition of value functions
in a high-dimensional video game and extend their result to
the standard RL settings.

After Dayan, the first related article on Successor Features
is [24]. This paper recycles Dayan’s idea and extends it
with General Policy Improvement (GPI), a generalization of
policy improvement operation of dynamic programming that
considers a set of policies rather than a single one. The seam-
less integration into RL is derived, and the authors provide
performance guarantees for the transferred policy without any
additional learning. Moreover, the authors do not stop at the
application of GPI, but in a later published paper, they extend
the idea with General Policy Evaluation (GPE). The next
subsection collects some related work on the matter.

c) GPE & GPI: General Policy Evaluation (GPE) and
General Policy Improvement (GPI) or as usually referred to as
General Policy Update, are extensions of policy evaluation and
improvement, respectively. However, instead of point-based
operations, we extend the terms to set-based ones. [25] takes
a further step in the application of successor features and
introduces an algorithm to be used with deep reinforcement
learning and successor features. In this way, the solution of
previously solved tasks can be reused. Beyond theoretical
proof of applicability, the authors reveal an agent trained on
different tasks and then can combine its ”skills” to act on
new ones. Related to this development, [26] describes how to

1International Conference on Machine Learning

combine skills in reinforcement learning best. The possibilities
of exploiting SFs seem plenty. Others, for instance, [32]
combine the advantages of the scalability of Universal Value
Function Approximators, the instant inference of Successor
Features, and the strong generalization of GPI. [33] shows
another powerful application of SFs with GPI and GPE. The
authors use Variational Intrinsic Successor Features to create
VISR that can outperform state-of-the-art RL models. First, by
unsupervised pre-training, they define the successor features
purely from state transformations, then they add rewards with
reinforcement learning. It is definitely a step towards general
reinforcement learning.

A good example for the full utilization of SF + GPE + GPI
is described in [7]. FastRL shows how to apply the divide-
and-conquer approach to RL, and the theory is supported by
a vast amount of experiments.

In this work, we concentrate on the usability of
SF+GPE+GPI in the domain of AVs and RL. For further
articles on the topic considering transfer learning, hierarchical
RL, GPI, GPE, and related applications of RL, see [34]–[36].

III. METHODOLOGY

RL itself is based on online action-reaction scenarios. There
is an actor, also called an agent, who gets information about
the surroundings (usually referred to as the environment). In
the case of an AV, this information might be a camera image,
LIDAR, or other sensory input. Still, in general, any useful
information about the environment that helps the agent in its
decisions is acceptable. This meaningful information, which is
the input of the agent, is referred to as a state. After observing
the state of the environment, each RL agent tries to output
an action that will maximize its rewards. Rewards, which are
normally scalar signals, results of the state transitions caused
by the agent’s actions, a type of goodness indicator of the last
decision. This enables the domain to solve tasks that can not
be exactly defined, e.g., optimal highway driving. The result
of reward-based training is similar to what humans experience
when they learn based on the interaction and its consequences.
Deciding the goodness of a complete process is much easier
than evaluating each step and assessing exactly, which was
a good or bad move. Contrary to Supervised Learning, RL
does not require labelled training data, or exact definition of
a proper action, instead it figures out the relations between
interactions by trial and error and thus generates only the data
it needs. However, one must note here the problem of credit
assignment, which can hinder the successful trainings, but this
will be detailed later.

A. Markov Decision Processes

The underlying mathematical formulation of RL problems
is done through Markov Decision Processes, a mathematical
framework for decision making in a situation where the
system’s output (environment) is partially randomized but
depends on the actual current action. Suppose an MDP system
has the Markov property. In that case, it means that the
conditional probability distribution of the following state of a
random process depends only on the current state, given all the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1: RL loop of a time step

previous states [8]. This implies that the state should contain
all information needed to draw this probability and also helps
us to make decisions based on the current observable state.

An MDP can be defined with a 4 element tuple, M ≡<
S ,A , PS,A,R >, where at every given discrete time step
of an episode, RL agents interact with the environment. As
a result, they observe the changes at every t ∈ {1, 2, 3, 4, ...}
as state s ∈ S , then choose action a ∈ A to maximize the
expected reward r ∈ R. During this process the environment
transforms from state s to s′. This process is depicted in Figure
1. This is one step, and in the long run, the agent tries to find
the maximum of the reward function.

[24] thinks of the reward functions as different tasks and
thus, the goal of RL is to find a policy π : S 7→ A that
maximizes the value of every state-action pair:

Qπr (s, a) ≡ E
[∑∞

i=0 γ
ir (St+i, At+i, St+i+1) |St = s,At = a

]
,

(1)
where Eπ[·] denotes expectation over the trajectories induced
by π, and γ ∈ [0, 1) is the discount factor, used for discounting
future rewards. Using (1) we can proceed to the formulation
of GPE and GPI with SFs.

B. SFs, GPE and GPI

The utilization of these concepts results in ”the capability
of an agent to learn about complex reward functions at the
same time has the potential benefits of the decomposition of
complex tasks into simpler ones, the exchange of information
between tasks, and the reuse of skills” [7]. Without the
fully detailed deduction of the equations, based on [24] the
following terms are used in our work:

First, we choose φ : S ×A ×S 7→ Rd as our arbitrarily
selected feature function vector, where each element is a
”feature”. Then according to [24] any arbitrary preference
vector w ∈ Rd, we can define the reward function as:

rw(s, a, s′) = φ(s, a, s′)>w. (2)

Examples for such features are shown in Section IV-A2 ,
which induce the traditional scalar reward function when mul-
tiplied with w. In general RL, this multiplication is included
inside the environment in case of a multi-objective reward
function, where the different components of the reward are
”hard-coded”, and thus cannot be changed rapidly. However,
using (2) , we can alter the reward function values instantly
by changing w.

Following [7] , the successor features are defined as the
expected value of our discounted feature functions along a

trajectory when acting on policy π. This yields to equation
(3).

ψπ(s, a) ≡ Eπ
[∑∞

i=0 γ
iφ (St+i, At+i, St+i+1) |St = s,At = a

]
,

(3)
If we multiply (3) with w on both sides, we can deduce the
following:

ψπ(s, a)>w = Eπ
[∑∞

i=0 γ
iφ (St+i, At+i, St+i+1)

>
w|St = s,At = a

]
= Eπ

[∑∞
i=0 γ

irw (St+i, At+i, St+i+1) |St = s,At = a
]

= Qπrw(s, a) ≡ Qπw(s, a)
(4)

Consequently, Qπw(s, a) is the same Q-function as in (1),
but now, it is parametrized by w, and most importantly is
simplified to the inner product of ψπ(s, a)>w. If we have
n policies, we generate an n × d dimensional ψ and the
dimensionality of w is d× k, k ∈ R. This results in a very
efficient form of GPE, where for all policies we can calculate
the value function. This property we will use to our advantage.
For more details on the deduction and proof of (4) see [7].

The last missing piece of the method is GPI. In this context,
after Barreto et al. the improved policy yields to:

π′(s) ∈ argmax
a∈A

(max
π∈Π

Qπr (s, a)) (5)

Basically, we evaluate the value function of the state-action
pair over all policies (GPE) and based on (5)2 we choose the
actions with the highest values.

After discussing the main prerequisites to the investigated
method, we quickly review the environment and provide the
details of the applied neural networks and training settings in
the next section.

IV. USED AGENTS

A. Environment

There are a lot of available simulators for vehicle control
purposes, depending on the dynamics models required, the
traffic scenarios, and the purpose. Popular ones include Carla
[37], PreSCAN [38] and CarSim [39]. However, they are
mostly suitable for problems in need of high accuracy vehicle
dynamics model and simulations with few vehicles. Our choice
to simulate the highway scenarios is Simulation of Urban MO-
bility (SUMO), a free open-source program designed for micro
and macroscopic traffic simulation [40]. Refer to documents
[41], [42] for an in-depth introduction to SUMO, in which
the authors detail and explore the available operations in the
software. TraCI is a submodule of SUMO, which establishes
TCP/IP connection and thus can control the software in real-
time. This supports C++. Python and MATLAB coding, and
provides an interface to enhanced control of the software. To
ease the usage of our environment, we use the OpenAI Gym
interface and structure.

2In [24] theorem 1 shows (5) is a legitimate form of GPI.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Vehicle type δ pv [µ, σ] p(exists) p(kr) p(coop)
car1 0.5 (1,0.5) 0.2 0.5 0.2
car2 0.4 (1, 0.3) 0.1 0 0.3
car3 0 (1.5, 0,45) 0.3 0 0
car4 1 (1.2, 0.2) 0.3 1 1
car5 0.8 (1, 0.2) 0.1 0.7 0.5
EGO 0 (1, 0) 1 0 0

TABLE I: Surrounding vehicle parameters

Fig. 2: The structured state space

1) Setup: Our environment setting is based on a highway
scenario, which is justified by allowing recognizable changes
during driving, thus helps visualizing the usage of SFs. We
use episodic RL, where the termination events are collision,
too slow commuting v < 60 [km/h], or leaving the high-
way. A 1000 [m] straight highway was designed with three
lanes. Other traffic participants are generated randomly with
randomized behavior and speed profile. Table I shows how
the vehicles are generated. pv[µ, σ] gives the speed attribute
distribution of the vehicle with µ mean and σ variance relative
to the allowed lane speed. p(exists) is the probability of
generating each car in the flow, p(kr) indicates the probability
of keeping right for that vehicle type, p(coop) shows the
percentage of cooperation: e.g willingness of yielding, lane-
change or respect for others. The maximum speed is 50
[m/s], and the desired speed randomly regenerates after 50
steps between 28 − 43 [m/s]. Meanwhile, the average speed
of the surrounding vehicles is around 25 [m/s]. This ensures
that if the EGO wants to keep the desired speed, it has to
overtake and change lanes. The simulation time and interaction
frequency influences the performance of the system. With
more frequent decisions the system gets slower due to the
high number of inference of the agents, meanwhile with a
sparser intervention period we could face possible danger
due to latency in situation recognition. Considering general
practice and the reasons mentioned, we selected 100 [ms]
as our interaction and simulation step size, where the agent
can select both lateral and longitudinal control. Thus, the
action space stands from 3 lateral (left, keep, right) and
3 longitudinal control (slow down, keep speed, speed up),
and the combination results in 9 actions. The lateral control
hence entails only lane-change commands to both sides, which
actualize instantly. It is considered a higher-level command,
and our action space is similar to [43], [44]. The state-space
includes information about the front and rear vehicles in both
neighboring lanes, in a structured manner as Figure 2 depicts.
The relative distance and speed are given, except for the side
vehicles of the EGO. There only the presence is signaled
with the values 1 or 0. To make the MDP fully defined,
additional details include the EGO speed, heading, desired
speed, and lane id. Thus, the state space can be written as an
18 element vector. All state vector values are normalized and
scaled between [−1, 1] element-wise. For other works using
similar observation representation, see [29], [45].

2) Rewards: For SFs, the environment supports vectored
rewards instead of scalar feedback. We described 6 different
reward functions.
• r1 signals the terminating events and results in −1 if any

occurs, 0 otherwise.
• r2 considers the divergence from the desired speed, with

a maximum value of 0 and the minimum of −1,
• r3 is an immediate reward for each successful lane-

change 1 or 0.
• r4 is designed to urge keeping right, and is 1 if the EGO

is at the available most right lane, 0 otherwise.
• r5 intends to enforce the following distance of the front

vehicle. Its value is max(− dv
vego

,−1), where dv and
vego is always positive, where dv is the speed difference
between the EGO and the front vehicle and vego denotes
the speed of the EGO.

• r6 mirrors r5 but for the vehicle behind the ego. It is
designed to reduce cut-in when changing lanes.

As one can see, our environment contains terminal states due
to the formulation of the problem. Thus, we have one SF for
terminal events and others for immediate rewards.

B. Experiments

Parameters
Transitions 20 000 000
Learning policies 6
Model hidden size / feature 128, 64
Replay memory size 20 000
Initial learning rate α 0.001 (AdamW)
Discount factor γ 0.9
Exploration factor ε 0.5 - 0.1
EGO reference speed change interval 50 steps

TABLE II: Training parameters

Our experiments with the proposed methods and explained
environment contain several different training settings. Table
II lists the parameters used by the most optimal training. As
agents, first we adapt the FastRL algorithm proposed by [7]
to the highway driving problem, and extend it with replay
memory. FastRL is a modified Q-learning algorithm prepared
for the usage of SFs. Our implementation is somewhat differ-
ent from that of [7] , and can be leveraged from Algorithm
1 and 2 by choosing θtarget ≡ θacting . Furthermore, as a
stabilizing factor, we propose an updated FastRL algorithm,
DoubleFastRL (DFRL). The pseudocode for the proposed
algorithms is given in Algorithm 1 and 2. Our DFRL draws
ideas from DQN [46] and DDQN [47], and applies a second
neural network (θtarget), that serves as a target successor
features predictor. Similar to what DDQN added to DQN, our
modified FastRL training method is more stable, and during
training it has lower variance of loss of the predicted SF
values. Both agents were developed in Pytorch implementing
the SFs for RL trainings.

First, the agent acts based on a pre-selected policy for each
episode. We observe the next states, rewards and save each
interaction to the replay memory. Then, in the update function,
the weights of the acting neural network θacting are updated
by the loss back-propagation, which is the following. First,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 3: The structure of the model

Algorithm 1 Proposed DoubleFastRL (DFRL) algorithm

procedure TRAIN
Initialize weights:
θactingi , θtargeti , i ∈ [0, d]

Set w ∈ Rj×d, j is arbitrary, wj induces πj
for each episode do

st ← reset environment state . t = 0
j ← Uniform(w)
while not done do

if Bernoulli(ε) = 1 then
at ← Uniform(A )

else
ψπj ← θactingj (st, b) . ∀b ∈ A

at ← argmax
b∈A

(ψπj>wj) . ∀b ∈ A

st+1, φt, done← Env(at) . step with at
memory ← Push(st, at, st+1, φt, done, j)
st ← st+1

UPDATE NETWORKS()

we predict the SF values ψπj

pred for the current states (sampled
from the memory). Just to clarify the dimensionality of ψπj

pred

is [batch× policies× actions× SFs]. Then, we get optimal
next actions at+1 based on the next states. Inferencing our
target network θtarget with the next action at+1 and next state
st+1, we get the target SFs ψπj

target. Our proposed method
(DFRL) naturally falls back to FastRL, if we inference ψπj

target

with θacting instead of θtarget.
All this is based on a batch operation sampled from the

memory. In the algorithms denote φt the feature function,
which provides the element-wise rewards for the different
features when multiplied with w. Further parameters are the
learning rate α, and the discount factor γ.

We designed d = 6 features correlating with the rewards
mentioned above. Thus w ∈ Rn×d induces a set of policies
{π1, π2, . . . πn} ∈ Π. We chose n = d, and linearly indepen-

Algorithm 2 Network updates with Replay memory

function UPDATE NETWORKS()
if memory > batch then

(st, at, st+1, φt, jt)← Sample(memory)

ψ
πj

pred ← θactingj (st, at)

ψ
πj

temp ← θactingj (st+1, b) . ∀b ∈ A

at+1 ← argmax
b∈A

(ψ
πj

temp
>
wj) . ∀b ∈ A

ψ
πj

target ← θtarget(st+1, at+1)

δ ← φt + γψ
πj

target − ψ
πj

pred

θacting ← θacting + αδ∇θactingψ
πj

pred

if update target then
θtarget ← θtarget · (1− τ) + θacting · τ

return δ

dent wjs, thus w is a diagonal matrix.
Based on the rewards, the policies give the following behavior:

• π1 concentrates on avoiding the terminating events,
• π2 acts to keep the reference speed,
• π3 changes lanes when possible,
• π4 wants to be in the most right lane,
• π5 keeps a safe following distance when possible,
• π6 prevents cut-ins to rear vehicles

Although π3 is not optimal behavior in the case of highway
driving, it can be used to get a drastically different behavior
and thus show how the SFs work with the different preferences
wj. Figure 3 shows the inference process of the agent. During
training, we select the acting policy randomly as mentioned
above rather than taking the maximum over policies, but in
inference time, the maximum Qπw is chosen. The network
structure is also depicted on the right side of Figure 3,
where one can see that each SF has its own MLP network
with 2 linear layers. The numbers represent the input and
output dimensions of the layers. The hidden space has 128



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 4: Q-learning agent represented with MLP layers

and 64 neurons and is connected with BatchNorm and
ReLU activation layers. We use a replay memory with a
batch size of 4096. One should also note that the immediate
rewards are independent of each other. For instance, π3 got no
punishment, even if the lane-change resulted in the departure
of the highway (a terminating event), or π2 got its step reward
even if it collided. With this, all the policies are concentrating
on their tasks, and try to maximize the rewards

To be able to compare both DFRL and FastRL algorithms
in the case of highway driving, we trained a simple Q-learning
agent as well, which task was to maximize a composed
complex reward function rwQ

expressed with φ:

rwQ
= φ>wQ, (6)

where wQ = [1, 1,−0.5, 0.5, 0.5, 0.5]>. Hence, a behavior is
expected, where the agent keeps the desired speed if possible,
it avoids the terminating events while trying to keep right,
avoid unnecessary lane change and have decent distances
both from front and back vehicles. Note that the agent is in
a more difficult situation because it has to decompose and
learn the different feature rewards by itself. Also, to make
an even chance for the Q-agent, the number of parameters
are 6 ∗ 128, and 6 ∗ 64, and the resulting dimensions of
the network are shown in Figure 4. After the Q values are
provided for the actions, we take the action with the maximum
value as usual. As before, the numbers represent the input
and output dimensions of each layer. All other objectives
of the trainings are the same, to provide a fair comparison.
Theoretically, the inference time of the SF-based agents scales
linearly with the applied number of SFs compared to the Q-
Learning baseline. In our work, we compared three agents with
approximately the same number of layers and parameters. To
make it even for Q-Learning, the SF models have one-sixth of
the parameters per feature, resulting in a forward pass, which
has approximately the same time demand in all three cases
due to the technical and implementational considerations. The
only additional calculation time is the multiplication by the
preference vector. However, since our simulation runs with
0.1 [s] simulation steps, and the mentioned forward pass and
dot product are faster, the additional latency is neglectable, and
our agents run in real-time. Due to this, we do not conduct
further performance optimization or comparison.

(a) training reward (b) training loss

Fig. 5: Training results of the SF-based agents

(a) evaluation reward (b) evaluation success

Fig. 6: Quantitative comparison of evaluation performances

V. RESULTS

This section evaluates both the FastRL and DFRL agent
against a Q-learning baseline and shows, how the different
features have learned to behave according to our intentions.

In Figure 5 we plot the measured parameters throughout
the training of the SF-based agents. The x-axis is in training
hours, because each agent experienced 20 million transitions,
as stated in II, and based on the episodic performance of the
agents some may finish with less episodes. Figure 5 gives
insight of the training processes. That is no need to investigate
the Q-agent in this manner, because it has a different objective,
it learns on different tasks and with a different loss function. It
is clear that DFRL outperforms the adopted FastRL algorithm
both in terms of reward and success rate. DFRL converges
faster to the episodic reward maximum it can reach during the
constantly changing tasks. Also interesting to see is that the
DFRL agent learns to succeed during training approximately
30% of the time, however, both SF-based agents have the
preference w1 selected only one-sixth of the episodes. This
expectation is exactly what performance the FastRL agent
presents. This can be explained with the implicit effect of the
following distance feature, which promotes safer distance, thus
causing less collisions. It seems that DFRL can deplete this in-
trinsic information better. It also has lower estimation error for
the successor feature values. 5b disguises how the loss of the
SF-based agents changed over time, which is calculated based
on δ = φt+γψ

πj

target−ψ
πj

pred as seen in Algorithm 2. The plot
indicates well that our proposed DFRL algorithm has a smaller
loss value and deviation compared to FastRL, which helps the
training as supported by Figure 5a; promotes better reward
exploitation and more successful episodes. It can approximate
the SF values more precisely, entailing a more meaningful SF
representation, due to the additional stability provided by the
double network structure. On the other hand, Figure 6a and
6b reflect on the evaluation performance of the agents during



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

the training processes, because evaluating on the task of the
Q-agent, which learns to master this task during training as
well, can emphasise why our method is advantageous. After
every 100 episodes of training, we choose a preference vector
weval ≡ wQ = [1.0, 1.0,−0.5, 0.5, 0.5, 0.5]>. This gives us a
fair comparison on the FastRL and DFRL agents’ performance
with regard to the baseline. Figure 6a and 6b depict that DFRL
has a slight superior performance over the others, meanwhile
both SF-based agents exploit the rewards better than the Q-
agent. Our Q-agent sticks to a safe policy and thus settles
with a smaller but secure reward. Note: these agents have been
trained on the same machine and thus we can see that for the
same amount of experience Q-learning needed 16 hours, and
the SF-based agents required approximately 22 hours training.
This differences come mostly from the episodic reload of the
simulations, because Q-learning had the 20 million transitions
in approximately 74k episodes, meanwhile, SF-based agents
had 125k episodes to achieve the same. The plot length
embodies that the SF-based methods, and most importantly our
suggested one; do not have a huge overhead on the training
compared to the baseline. Moreover, they can perform just
effectively if not better on new tasks as well.

The plots of Figure 5 do not show the possible behavior
changes of the SF-based agents with different preferences.
Therefore, to fully emphasize the advantages of SF-based
learning (and the usage of our proposed algorithm) in the
case of the highway control domain, we have logged several
essential data during the evaluation simulations and created
box-plot comparisons of their diversity caused by the pref-
erences. Figure 7 visualizes 100 runs of DFRL with one-hot
vector preferences where the features are tested one-by-one.
Safe means w = [1, 0, 0, 0, 0, 0] resulting in a Qw(s, a) = φ1.
The other rows are interpreted accordingly based on the feature
preference vectors described in IV-B. During the evaluation
process, only the preferences change, the trained model is the
same. The boxplots show the distribution of the episodic values
throughout the 100 runs, and compare how the parameters
vary. The yellow line represents the median of the values.
The lane changes and ”keeping right” subplots show the dis-
tribution of the percentage values over the steps. Meanwhile,
the others present the summed episodic average values also
evaluated during the same episodes.

The different preferences cause clearly distinguishable dis-
tributions of the measured data, which are visualized by the
boxplots. One can recognize how the Safe feature results in
slower commute, relatively low lane changes, bigger front and
rear TIV3. Definitely interesting is the behavior of the Speed
keeper controlled by φ2. It concentrates on the reference speed
and thus has a slight speed error and higher average value. The
existing difference can be originated form the different traffic
situations and the constantly changing desired speed. The Lane
changer also behaves as expected. It changes lanes whenever
possible, almost 100% of all steps. This, however, affects the
other parameters like the TIV values. As mentioned above, the
constant lane-change is not desired behavior, but it perfectly
shows how well the successor feature-based learning works.

3TIV means time-in-between vehicles

Fig. 7: Behavior difference of features in 100 runs

The Right keeper similarly satisfies our belief and, when
possible, stays on the most-right lane. The deviation again
is induced by the random starting lane of the EGO vehicle
and the traffic scenes, which do not always make it feasible
to occupy the ideal lane instantly. Finally, the Safe follower
and No cut-in driver make exciting numbers in the front and
rear TIV boxplots. It shows that limited by the simulation
scenarios, the corresponding features (φ5, φ6) attempt to keep
a safe time-in-between vehicles.

After investigating the successor features and their distinct
way of acting, we conduct the same 100 episodes with several
different preferences. Here, the SFs are combined and thus
the Qw(s, a) is the dot-product of w and ψi as shown in
(4). Figure 8 gives some examples for different preference
behavior comparisons in a more realistic desired behavior
setting. The bars show the successfully completed episodes
from 100 runs compared between the Q-learning baseline,
and both of the SF-based agents. The plot further explains
the cause of the early termination achieved by the agents. To
better evaluate the achieved performance, we compare not only
our DFRL model with the basic Q-learning agent, but our
implementation of FastRL as well. All of the baselines use
w = [1, 1,−0.5, 0.5, 0.5, 0.5] as preference and hence, a re-
ward function of R(t) = r1+r2−0.5r3+0.5r4+0.5r5+0.5r6.
In the case of the Q agent, this means a complex reward
function, and it is equal with the one it experiences during
training. Meanwhile, for the FastRL and DFRL baselines
only the evaluation is done with this preference vector. Our



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 8: Success rate of different preference runs

evaluation in Figure 8 depicts that from 100 episodes, the
Q-baseline performs the episodes 98% successfully, and fails
2 times due to slow speed. The FastRL baseline collides 29
times. Parallel, during the same simulations, our DFRL model
improves the previous performance and gets only 7 collisions
and 5 slow speed termination. The slow speed terminations
are usually due to traffic reasons, where all the lines are
blocked with slowly overtaking vehicles. In the video review,
it is clear that the Q version chose the safer way and stayed
mainly in the most-right lane, thus maximizing the overall
reward. Meanwhile, the FastRL and DFRL baselines, change
lanes and dare to take a bit riskier actions before the too slow
other environmental vehicles hinder the reasonable commute.
It must be stated, that although our SF-based agents perform
worse on the scenarios, they were not trained with these
tasks, thus it is new to them. Moreover, this 88 and 71 %
performance gives a great insight of how task composition
can be rapidly created by using SFs. The rest of Figure 8
compares the performance of the FastRL and DFRL agents
with different preferences, where episodes without termination
(None) are considered successful. The A - D decodes the
following preference vectors:

wA = [1.0, 1.0,−0.5, 0.0, 1.0, 1.0],

wB = [1.0, 1.0, 0.0, 0.0, 1.0, 1.0],

wC = [1.0, 1.0, 0.5, 0.0, 1.0, 1.0],

wD = [1.0, 0.0,−0.5,−0.5, 1.0, 1.0]

For instance, Preference A is similar to wQ, however it does
not care about keeping right, and has a higher interest in the
safe following and cut-in distance. As seen on the plot, this

Fig. 9: Behavior difference of different preferences in 100 runs

preference change results in only 4 terminations, which in case
of our DFRL is mostly slow speed. Compared to Preference
B, where the lane-change is not punished, we achieve only
2 terminations, comparable to the Q-baseline performance
and outperforms FastRL. A further observation comes from
Preference C. We reward lane-changes and thus induce more
collisions and termination. Perhaps, the most significant differ-
ence can be seen here between the two SF-based agents, DFRL
being on top. In case of Preference D we discourage keeping
right and lane-change, meanwhile do not care about the desired
speed. The encountered results show high termination due to
slow commute, which is mostly caused by the agent following
a vehicle that are designed to commute with low speed. We can
state that our improved algorithm DFRL outperforms in every
case the implementation adaptation of FastRL. This means
it learns more meaningful SF representations, and generalizes
better to new tasks. Furthermore it has smaller termination rate
due to collision. This finding coincides with the expectations
derived from the training/evaluation figures, and lower loss
function.

To be thorough regarding the full evaluation of the agents,
Figure 9 characterizes the episodic parameters seen above for
feature comparison. Looking at the values, one can gain more
intuition on the induced behaviors of the features. The same
values are monitored and depicted with boxplots. Medians are
marked with yellow, and the 2σ deviation is shown by the lines
outside the boxes. First, let us have a look at the baselines. It



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

is clear from the boxplots that all agents commute with similar
speed and desired speed difference. The front TIV shows
some difference between them, where DFRL has the lower
values. Observing the average rewards one can conclude that
the Q-baseline plays it safe, just as expected, meanwhile the
SF-based agents reach multiple times more rewards per step.
The most important result is that from feature-based learning
and then composing an abstract behavior, our agents could
commute with reaching more rewards than the one trained
on the behavior. Despite this and the unseen task, as seen in
Figure 8 the performance of DFRL is not significantly worse.
It is insightful to evaluate the Preferences A - D as well. With
the combined preferences, and learnt policies the agents do
not follow the desired speed that accurately.

The reason is that all policies promote a behavior whilst
learning from the mistakes of the other policies. When we
inference the agents, we select the policy with the highest Q
value, thus it can happen, that the safe policy π1 discourages
high speeds and present the highest Q value. The most evident
influence on the parameters is caused by the lane-change
preference value. When we have negative preference, the
agents minimize the lane-changes, however, by Preference B
a frequent lane-change is observable. Similarly the sign of
the feature of keeping right can be estimated based on the
plots. Positive preferences cause mostly steps spent in the
most-right lane. Last, but not least, the front and back TIV is
similar for the SF-based agents, nevertheless, a higher weight
results in bigger TIV values. In terms of rewards, we can see
that both FastRL and DFRL has high values, DFRL having
smaller variance. The average reward however can only be
interpreted with the preference pairs, due to addition of the
reward components are not equal among the preferences A -
D.

To visualize the different behaviors delivered by the agents
depending on various weights, Figure 10a provides an over-
take scenario, where the red car is the ego vehicle, which
should overtake the car in front. For this demonstration we
selected Preference A and D (wA and wD and added 3
extra weight vectors wE1 = [1, 1,−0.5,−0.5, 1, 1], wE2 =
[1, 2,−0.3, 0, 0.2, 1] and wE3 = [1, 2,−0.5, 0, 0.5, 1]. In Fig-
ure 10b the trajectories of these agents are visualized from
the starting position during the next 10 seconds, which meet
the expectations. A and E3 are not expected to keep right, D
and E1 are discouraged to do so. Although neither is E2, due
to the minor punishment for a lane change, it proceeds to the
rightmost lane because it can keep the speed and safe distances
better. Figure 10c depicts the speed profile of the cars during
the monitored time window. D has no interest in keeping the
desired speed, so it adjusts its speed to the traffic. Meanwhile,
E2 gets to the farthest due to keeping a higher speed and
considers the lane change worthwhile to exhaust other rewards
later. We think this highlights the essence of the whole method.
We achieve new behavior by changing the preferences rapidly,
without further training. A short video of this scenario is pre-
sented in https://www.youtube.com/watch?v=8NiWP xNQBI.

(a) Initial scenario

0 50 100 150 200 250 300 350

Distance [m]

A

D

E1

E2

E3

(b) Trajectories of the agents

0 1 2 3 4 5 6 7 8 9 10

time [s]

60

70

80

90

100

110

120

130

140

s
p
e
e
d
 [
k
m

/h
]

A

D

E1

E2

E3

(c) Speed profiles of the agents

Fig. 10: Comparing different preferences of the same agent

VI. CONCLUSION

Our work reviewed the literature of successor features,
general policy evaluation, and improvement, introduced the
FastRL methodology adaptation, and designed a possible way
to apply it in highway scenario training. A potential decom-
position of the reward function is proposed and evaluated
for the application in vehicle control realm. Furthermore,
an improvement of the FastRL model is presented (DFRL),
where the learning is stabilized by using a double architecture,
similar to DDQN. We compared the achieved behavior of the
agents with a general Q-Learning baseline, and outline the
advantages of using the former solutions in case of multi-
objective learning. Additionally, the environmental consider-
ation as the basis of the whole domain transfer is detailed
in our paper. In the results section, we point out how much
better the credit assignment of the different tasks could be if
the tasks are learned one by one, distinctly and later composed
together for new challenges. DFRL outperforms the modified
and adopted FastRL in this domain on many levels, which
we emphasised throughout the paper. Besides, we provided
experiments with different preferences of the same agent and

https://www.youtube.com/watch?v=8NiWP_xNQBI


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

demonstrated how the learned behavior could quickly change
and be changed simply by modifying the preference vector.
With feature-based training, the agent gets more flexible, and
its behavior can be altered rapidly, without additional learning,
saving us hundreds of hours of training time. This can be a
desirable property when designing reward composition, since
the search through the possible reward functions does not
require retraining. The discussed results make feature-based
training of AI-controlled AVs attainable, where the appropriate
skills and their expeditious combination can have considerable
advantages in personalization, driving style management and
adaptive reflection of changing conditions. Code for the train-
ing can be found open-sourced on GitHub 4.

REFERENCES

[1] D. Silver and et al., “A general reinforcement learning algorithm
that masters chess, shogi and Go through self-play,” 2017. [Online].
Available: http://arxiv.org/abs/1712.01815

[2] O. Vinyals, I. Babuschkin, and et al., “AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II,” https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[3] OpenAI, :, C. Berner, and et al., “Dota 2 with Large Scale
Deep Reinforcement Learning,” arXiv, dec 2019. [Online]. Available:
http://arxiv.org/abs/1912.06680

[4] J. Schrittwieser and et al., “Mastering Atari, Go, Chess and Shogi by
Planning with a Learned Model,” arXiv, nov 2019. [Online]. Available:
http://arxiv.org/abs/1911.08265

[5] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi,
D. Guo, and C. Blundell, “Agent57: Outperforming the Atari
Human Benchmark,” arXiv, mar 2020. [Online]. Available: http:
//arxiv.org/abs/2003.13350

[6] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone, “Reward
(Mis)design for Autonomous Driving,” apr 2021. [Online]. Available:
http://arxiv.org/abs/2104.13906

[7] A. Barreto, S. Hou, D. Borsa, D. Silver, and D. Precup, “Fast rein-
forcement learning with generalized policy updates,” Proceedings of the
National Academy of Sciences, vol. 117, no. 48, pp. 30 079–30 087, dec
2020.

[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[9] T. Tettamanti, I. Varga, and Z. Szalay, “Impacts of autonomous
cars from a traffic engineering perspective,” Periodica Polytechnica
Transportation Engineering, vol. 44, no. 4, pp. 244–250, 2016.
[Online]. Available: https://pp.bme.hu/tr/article/view/9464

[10] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is
enough,” Artificial Intelligence, p. 103535, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0004370221000862

[11] M. Henaff, A. Canziani, and Y. LeCun, “Model-Predictive Policy
Learning with Uncertainty Regularization for Driving in Dense Traffic,”
7th International Conference on Learning Representations, ICLR 2019,
jan 2019. [Online]. Available: http://arxiv.org/abs/1901.02705

[12] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-End Model-Free
Reinforcement Learning for Urban Driving using Implicit Affordances,”
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 7151–7160, nov 2019. [Online].
Available: http://arxiv.org/abs/1911.10868

[13] S. Aradi, “Survey of Deep Reinforcement Learning for Motion
Planning of Autonomous Vehicles,” 2020. [Online]. Available:
http://arxiv.org/abs/2001.11231

[14] J. Chen, B. Yuan, and M. Tomizuka, “Model-free Deep Reinforcement
Learning for Urban Autonomous Driving,” 2019 IEEE Intelligent
Transportation Systems Conference, ITSC 2019, pp. 2765–2771, apr
2019. [Online]. Available: http://arxiv.org/abs/1904.09503

[15] P. Wang, H. Li, and C.-Y. Chan, “Continuous Control for Automated
Lane Change Behavior Based on Deep Deterministic Policy Gradient
Algorithm,” IEEE Intelligent Vehicles Symposium, Proceedings, vol.
2019-June, pp. 1454–1460, jun 2019. [Online]. Available: http:
//arxiv.org/abs/1906.02275

4https://github.com/szkLaszlo/fastrl training

[16] L. Szőke, S. Aradi, T. Bécsi, and P. Gáspár, “Driving on highway by
using reinforcement learning with cnn and lstm networks,” in 2020
IEEE 24th International Conference on Intelligent Engineering Systems
(INES), 2020, pp. 121–126.

[17] L. Szoke, S. Aradi, T. Becsi, and P. Gaspar, “Vehicle control in
highway traffic by using reinforcement learning and microscopic traffic
simulation,” in 2020 IEEE 18th International Symposium on Intelligent
Systems and Informatics (SISY), 2020, pp. 21–26.

[18] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end
deep reinforcement learning for lane keeping assist,” arXiv preprint
arXiv:1612.04340, 2016.

[19] S. S. Gu and et al., “Interpolated Policy Gradient: Merging On-
Policy and Off-Policy Gradient Estimation for Deep Reinforcement
Learning,” in Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc., 2017, pp. 3846–
3855. [Online]. Available: https://proceedings.neurips.cc/paper/2017/
file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf

[20] P. Wang and C. Chan, “Formulation of deep reinforcement learning
architecture toward autonomous driving for on-ramp merge,” in 2017
IEEE 20th International Conference on Intelligent Transportation Sys-
tems (ITSC), 2017, pp. 1–6.

[21] M. Zhu, X. Wang, and Y. Wang, “Human-like autonomous car-
following model with deep reinforcement learning,” Transportation
Research Part C: Emerging Technologies, vol. 97, pp. 348–368,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0968090X1830055X

[22] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Cooperation-aware reinforcement learning for merging in dense traffic,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
2019, pp. 3441–3447.

[23] B. Kővári, F. Hegedüs, and T. Bécsi, “Design of a Reinforcement
Learning-Based Lane Keeping Planning Agent for Automated Vehicles,”
Applied Sciences, vol. 10, no. 20, p. 7171, oct 2020. [Online]. Available:
https://www.mdpi.com/2076-3417/10/20/7171

[24] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, and T. Schaul, “Successor
features for transfer in reinforcement learning,” Advances in neural
information processing systems, vol. 30, 2017.

[25] A. Barreto, D. Borsa, J. Quan, and T. Schaul, “Transfer in deep
reinforcement learning using successor features and generalised pol-
icy improvement,” in International Conference on Machine Learning.
PMLR, 2018, pp. 501–510.

[26] A. Barreto, D. Borsa, and S. Hou, “The option keyboard: Combining
skills in reinforcement learning,” Advances in Neural Information Pro-
cessing Systems, vol. 32, 2019.

[27] P. Dayan, “Improving Generalization for Temporal Difference Learning:
The Successor Representation,” Neural Computation, vol. 5, no. 4, pp.
613–624, jul 1993. [Online]. Available: https://www.mitpressjournals.
org/doix/abs/10.1162/neco.1993.5.4.613

[28] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep
Successor Reinforcement Learning,” jun 2016. [Online]. Available:
http://arxiv.org/abs/1606.02396

[29] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in IEEE International Conference on Intelligent
Robots and Systems, vol. 2017-September. Institute of Electrical and
Electronics Engineers Inc., dec 2017, pp. 2371–2378.

[30] R. Ramesh, M. Tomar, and B. Ravindran, “Successor options: An
option discovery framework for reinforcement learning,” arXiv preprint
arXiv:1905.05731, 2019.

[31] B. Van Niekerk, S. James, A. Earle, and B. Rosman, “Composing value
functions in reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2019, pp. 6401–6409.

[32] D. Borsa, A. Barreto, J. Quan, D. Mankowitz, R. Munos, H. Van Hasselt,
D. Silver, and T. Schaul, “Universal successor features approximators,”
arXiv preprint arXiv:1812.07626, 2018.

[33] S. Hansen, W. Dabney, A. Barreto, T. Van de Wiele, D. Warde-Farley,
and V. Mnih, “Fast task inference with variational intrinsic successor
features,” arXiv preprint arXiv:1906.05030, 2019.

[34] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever,
and P. Abbeel, “RL$ˆ2$: Fast Reinforcement Learning via Slow
Reinforcement Learning,” nov 2016. [Online]. Available: http://arxiv.
org/abs/1611.02779

[35] A. S. Vezhnevets and et al., “FeUdal Networks for Hierarchical
Reinforcement Learning,” 34th International Conference on Machine
Learning, ICML 2017, vol. 7, pp. 5409–5418, mar 2017. [Online].
Available: http://arxiv.org/abs/1703.01161

http://arxiv.org/abs/1712.01815
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/2003.13350
http://arxiv.org/abs/2003.13350
http://arxiv.org/abs/2104.13906
https://pp.bme.hu/tr/article/view/9464
https://www.sciencedirect.com/science/article/pii/S0004370221000862
http://arxiv.org/abs/1901.02705
http://arxiv.org/abs/1911.10868
http://arxiv.org/abs/2001.11231
http://arxiv.org/abs/1904.09503
http://arxiv.org/abs/1906.02275
http://arxiv.org/abs/1906.02275
https://proceedings.neurips.cc/paper/2017/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf
http://www.sciencedirect.com/science/article/pii/S0968090X1830055X
http://www.sciencedirect.com/science/article/pii/S0968090X1830055X
https://www.mdpi.com/2076-3417/10/20/7171
https://www.mitpressjournals.org/doix/abs/10.1162/neco.1993.5.4.613
https://www.mitpressjournals.org/doix/abs/10.1162/neco.1993.5.4.613
http://arxiv.org/abs/1606.02396
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1703.01161


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[36] T. Zahavy, A. Hasidim, H. Kaplan, and M. Com, “Planning in
Hierarchical Reinforcement Learning: Guarantees for Using Local
Policies Yishay Mansour,” Tech. Rep., jan 2020. [Online]. Available:
http://proceedings.mlr.press/v117/zahavy20a.html

[37] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[38] “PreScan — TASS International.” [Online]. Available: https://tass.plm.
automation.siemens.com/prescan

[39] “Mechanical Simulation.” [Online]. Available: https://www.carsim.com/
[40] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,

R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[41] D. Krajzewicz, G. Hertkorn, P. Wagner, and C. Rössel, “SUMO
(Simulation of Urban MObility),” 2002. [Online]. Available: https:
//elib.dlr.de/6661/2/dkrajzew{ }MESM2002.pdf

[42] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO –
Simulation of Urban MObility An Overview,” 2011. [Online]. Available:
https://elib.dlr.de/71460/1/SUMO{ }survey{ }SIMUL2011.pdf

[43] A. Alizadeh and et al., “Automated lane change decision making using
deep reinforcement learning in dynamic and uncertain highway envi-
ronment,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), 2019, pp. 1399–1404.

[44] S. Nageshrao, H. E. Tseng, and D. Filev, “Autonomous highway
driving using deep reinforcement learning,” in 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), 2019, pp. 2326–
2331.

[45] Z. Bai, W. Shangguan, B. Cai, and L. Chai, “Deep reinforcement
learning based high-level driving behavior decision-making model in
heterogeneous traffic,” in 2019 Chinese Control Conference (CCC),
2019, pp. 8600–8605.

[46] V. Mnih and et al., “Playing Atari with Deep Reinforcement Learning,”
dec 2013. [Online]. Available: https://arxiv.org/abs/1312.5602v1

[47] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement
Learning with Double Q-learning,” 30th AAAI Conference on Artificial
Intelligence, AAAI 2016, pp. 2094–2100, sep 2015. [Online]. Available:
https://arxiv.org/abs/1509.06461v3

Laszlo Szoke received the B.Sc. degree in mecha-
tronics in 2018, the M.Sc in autonomous vehicle
control engineering in 2020, both from Budapest
University of Technology and Economics, Budapest,
Hungary.

He is currently pursuing the Ph.D. at the De-
partment of Control for Transportation and Vehicle
Systems, Budapest University of Technology and
Economics, meanwhile simultaneously being a Ph.D
researcher at Robert Bosch Kft., Budapest, Hungary.
His research interest includes artificial intelligence,

machine learning, reinforcement learning, mechatronics and vehicle control.

Szilárd Aradi (M’14) received the M.Sc. degree
in 2005 and Ph.D. in 2015 from the Budapest
University of Technology and Economics, Budapest,
Hungary, where he is currently working with the De-
partment of Control for Transportation and Vehicle
Systems.

Since 2021, he has been an Associate Professor
at the Department of Control for Transportation and
Vehicle Systems, Budapest University of Technology
and Economics. His research interests include em-
bedded systems, communication networks, vehicle

mechatronics, and reinforcement learning. His research and industrial works
have involved railway information systems, vehicle on-board networks, and
vehicle control.

Tamas Becsi (M’14) Tamás Bécsi received the
M.Sc. and Ph.D. degrees from the Budapest Uni-
versity of Technology and Economics, Budapest,
Hungary, in 2002 and 2008, respectively.

Since 2005, he has been an Assistant Lecturer
and since 2014, he is an Associate Professor, at
the Department of Control for Transportation and
Vehicle Systems, Budapest University of Technology
and Economics. His research interests include linear
systems, embedded systems, traffic modeling, and
simulation. His research and industrial works have

involved railway information systems and vehicle control.

Péter Gáspár received the M.Sc. and Ph.D.degrees
from the Budapest University of Technology and
Economics (BME), Faculty of Transportation Engi-
neering and Vehicle Engineering (KJK), in 1985 and
1997, respectively, and the D.Sc. degree in control
from the Hungarian Academy of Sciences (MTA),
in 2007. Since 1990, he has been a Senior Research
Fellow with the Institute for Computer Science and
Control (SZTAKI). Since 2016, he has also been a
Research Professor. In 2004, he became the Head of
the Vehicle Dynamics and Control Research Group

and then in 2017, he became the Head of the Systems and Control Laboratory,
SZTAKI. He was habilitated at the BME, in 2008, and he was appointed
as the University Professor. Since 2013, he has also been the Head with
the Department of Control for Transportation and Vehicle Systems (KJIT),
BME KJK. His research interests include linear and nonlinear systems,
robust control, multi-objective control, system identification, and identification
for control and artificial methods. His research and industrial works have
involved mechanical systems, vehicle structures, and vehicle dynamics and
control. Since 2016, he has also been a Corresponding member of MTA.
He is also a member of the IFAC Automotive Control and Transportation
Systems Technical Committee, and the Chair of the International Federation
of Automatic Control (IFAC) Hungary National Member Organization.

http://proceedings.mlr.press/v117/zahavy20a.html
https://tass.plm.automation.siemens.com/prescan
https://tass.plm.automation.siemens.com/prescan
https://www.carsim.com/
https://elib.dlr.de/124092/
https://elib.dlr.de/6661/2/dkrajzew{_}MESM2002.pdf
https://elib.dlr.de/6661/2/dkrajzew{_}MESM2002.pdf
https://elib.dlr.de/71460/1/SUMO{_}survey{_}SIMUL2011.pdf
https://arxiv.org/abs/1312.5602v1
https://arxiv.org/abs/1509.06461v3

	Introduction
	Related work
	Methodology
	Markov Decision Processes
	SFs, GPE and GPI

	Used Agents
	Environment
	Setup
	Rewards

	Experiments

	Results
	Conclusion
	References
	Biographies
	Laszlo Szoke
	Szilárd Aradi
	Tamas Becsi
	Péter Gáspár


