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1Institute of Informatics, University of Szeged, Hungary
2MTA-SZTE Research Group on Artificial Intelligence, ELRN, Szeged, Hungary

{ egasj, vetrabm, tothl, ggabor } @ inf.u-szeged.hu

Abstract

Computational paralinguistics is concerned with the automatic

identification of non-verbal information in human speech. The

Interspeech ComParE challenge features new paralinguistic

tasks each year; this time, among others, a cross-corpus conflict

escalation task and the identification of primates based solely

on audio are the actual problems set. In our entry to ComParE

2021, we utilize x-vectors and Fisher vectors as features. To im-

prove the robustness of the predictions, we also experiment with

building an ensemble of classifiers from the x-vectors. Lastly,

we exploit the fact that the Escalation Sub-Challenge is a con-

flict detection task, and incorporate the SSPNet Conflict Corpus

in our training workflow. Using these approaches, at the time of

writing, we had already surpassed the official Challenge base-

lines on both tasks, which demonstrates the efficiency of the

employed techniques.

Index Terms: human-computer interaction, computational par-

alinguistics, x-vectors, Fisher vectors, ensemble learning

1. Introduction

Speech is the primary communication channel of humans. Evi-

dently, human speech not only encodes the actual words spoken,

but it incorporates a wide range of non-verbal content as well,

transmitting a variety of information about the physical and

mental state of the speaker. In the past decade, a subfield has

grown around the automatic identification of this ‘paralinguis-

tic’ (that is, ‘beyond linguistic’) aspect of human speech. This

area covers a wide variety of tasks from emotion detection [1, 2]

to determining the alcohol intoxication of the speaker [3], esti-

mating the sleepiness of the subject [4], screening mental or

physical illnesses like depression [5], Parkinson’s disease [6]

and Alzheimer’s disease [7].

Perhaps the most important task of computational paralin-

guistics is the choice of the features extracted from the au-

dio utterances. In general, one might choose from two differ-

ent approaches: to apply general feature extraction methods,

which can be expected to work on a wide variety of tasks, or to

incorporate external knowledge and develop task-specific fea-

tures. A good example for the former, general feature type is

the ‘ComParE functionals’, introduced by Schuller et al. [8],

consisting of applying utterance-level statistical functions (e.g.

mean, standard deviation, percentiles) for specific frame-level

attributes. Other general feature sets include Bag-of-Audio-

Words (BoAW, [9]) and Fisher vectors (FV, [10]), both of which

were applied in several studies [2, 11, 12, 13].

The so-called i-vectors [14] were originally developed for

speaker recognition, but they turned out to be suitable feature

extractors for paralinguistic tasks as well (see e.g. [15, 16, 17,

18]). Recently, x-vectors [19] have become state-of-the-art in

speaker recognition, and, similarly to i-vectors, they have been

applied in a handful of studies like paralinguistic and medical

feature extractors from voice [4, 20, 21, 22].

X-vectors are basically neural networks which map a

variable-length speech utterance into a fixed-dimensional fea-

ture space; the extracted features (the x-vectors) are utterance-

level embeddings, i.e. they are the activations of a specific layer

of the DNN. But, similarly to other neural networks, they might

prove to be sensitive to several training meta-parameters such as

the number of hidden layers and neurons, to the learning rate or

the number of training epochs. Furthermore, since when trained

from scratch, the weights of a neural network are usually initial-

ized randomly, they can even prove to be sensitive to the random

seed of this weight initialization step. This might also hold for

x-vectors, even if they are used only for feature extraction.

Our solution to this, on which we base our entry for

the Escalation and the Primates sub-challenges of the 2021

Interspeech Computational Paralinguistic Challenge (Com-

ParE, [23]), is the ensemble x-vector technique. That is, to re-

duce the stochasticity of the features extracted by the x-vectors,

we repeat the x-vector DNN training step several times. Then,

after extracting the x-vector features, we train independent clas-

sifier models on each of them, and simply average out the pre-

dictions (i.e. the posterior estimates). This process is sup-

posed to reduce the stochasticity of the predictions themselves;

that is, it should improve their robustness. Furthermore, as it

turned out, it might even provide improvements in the classi-

fication performance over the individual x-vector-based mod-

els. Besides x-vectors, we also experiment with Fisher vectors

(FV, [10]); and, similarly to our entries to the previous ComParE

challenges (e.g. [24, 25]), we apply a fusion of the predictions.

Then, in the last part of our study, we will focus on the Escala-

tion sub-challenge by exploiting that it is essentially a conflict

detection task, which allows us to utilize the recordings of the

public SSPNet Conflict corpus [26] in our prediction workflow.

Note that, following the Challenge guidelines (see [23]),

we omit the detailed description of the tasks, datasets and the

method of evaluation, and focus on the techniques we applied.

We shall treat both sub-challenges (i.e. Escalation and Pri-

mates) in the same way, measuring the performance via the Un-

weighted Average Recall (UAR) metric.

2. X-vector Embeddings

The x-vector approach is a neural network-based feature extrac-

tion method that provides fixed-dimensional embeddings for

variable-length utterances. Basically, it is a feed-forward Deep

Neural Network (DNN) that computes such embeddings.

Fig 1 shows the structure of the DNN. The lower, frame-

level layers have a time-delay architecture. After the frame-

level layers, the stats pooling layer gets the frame-level acti-

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-1173476



...

Stats pooling layer

embedding

embedding

frame

level

segment

level

Frame-level features (e.g. MFCCs)

Speaker posterior estimates

Figure 1: The structure of the x-vector extractor neural network.

vations of the last frame-level layer, aggregates over the in-

put segment, and computes the mean and the standard devia-

tion. These statistics are concatenated and used as input for the

next, segment-level layer, which is followed by one (or possi-

bly more) additional segment-level layers. The x-vectors em-

beddings can be extracted from any of segment layers [27], but

from experience, embeddings from the segment6 layer give a

better performance than those from segment7 [19]. Instead of

predicting frames, the DNN is trained to predict speakers from

variable-length utterances. Therefore, the output softmax layer

has as many neurons as there are speakers in the training set.

Notice that, to calculate the embeddings, this output layer is not

required any more, so it can be discarded after training.

2.1. Ensemble X-vectors

The basic principle of ensemble learning is to train several dif-

ferent, but similar machine learning models, and combine their

outputs in some way. In this study we build an ensemble based

on the x-vector feature extractors. That is, we propose training

several x-vector neural network models on the same data, but

each time using a different random seed during random DNN

weight initialization. By calculating the embeddings for each of

them, we get a number of different representations of the same

training data. Although in theory concatenating these feature

vectors and training only one classifier model might lead to a

more robust performance than relying on any of the individual

representations, we would end up with an unfeasibly large fea-

ture vector. Therefore we chose to train separate machine learn-

ing (e.g. SVM) models on these x-vector representations in the

next step. To make the predictions more robust (and thus, mak-

ing hyperparameter selection more reliable), we suggest simply

averaging out the prediction scores got after evaluation in an un-

weighted manner. Formally, we calculate the posterior estimate

provided by the ensemble model as

Pe(ci|X) =
1

m

m∑

j=1

Pj(ci|X) =
1

m

m∑

j=1

Pj(ci|H
j), (1)

where ci denotes the ith class (1 ≤ i ≤ K), X is the frame-

level feature sequence of the actual utterance, Hj is the repre-

sentation of X calculated by the jth x-vector extractor DNN,

and the Pj value is the individual posterior estimate provided

by the jth SVM model.

3. Fisher Vector Representation

The basic idea of the Fisher Vector (FV) representation, adapted

to audio processing (see e.g. [13, 2]), is to take the frame-level

feature vectors of some corpus and model their distribution by

a probability density function p(X|Θ), Θ being the parameter

vector of the model. For example, when using Gaussian Mix-

ture Models with a diagonal covariance matrix, Θ will corre-

spond to the priors, and the mean and standard deviation vec-

tors of the components. The Fisher score describes X by the

gradient GX
Θ of the log-likelihood function, i.e.

G
X
Θ =

1

T
∇Θ log p(X|Θ). (2)

This gradient function describes the direction in which the

model parameters (i.e. Θ) should be modified to best fit the

data. The Fisher kernel between the frame-level feature vector

sequences (i.e. utterances) X and Y is then defined as

K(X,Y ) = G
X
ΘF

−1

Θ G
Y
Θ , (3)

where FΘ is the Fisher information matrix of p(X|Θ), defined

as

FΘ = EX [∇Θ log p(X|Θ)∇Θ log p(X|Θ)T ]. (4)

Expressing F−1

Θ
as F−1

Θ
= LT

ΘLΘ, we get the Fisher vectors as

GX
Θ = LΘG

X
Θ = LΘ∇Θ log p(X|Θ). (5)

4. Experimental Setup

4.1. X-vector DNN Training

Since speaker ID is required to train x-vectors, and it was

not available for either sub-challenge corpus, we trained our

x-vector extractor DNN models on an external dataset: on

the combined training and development sets of the Dusseldorf

Sleepy Language (SLEEP) corpus (11 hours and 39 mins) [28].

We employed the Kaldi framework [29] to do this; for this

step, we did not add noise or reverberation to the training sam-

ples. (For the details, see [22].) We experimented with using

23-dimensional MFCCs, 40-dimensional FBANKs and spectro-

grams as features. The segment6 layer of the DNN was used to

compute the 512-dimensional x-vector embeddings. The num-

ber of models in the ensemble (m) was set to 10.

4.2. Fisher Vectors

We used the open-source VLFeat library [30] to fit GMMs and

to extract the FV representation; we fitted Gaussian Mixture

Models with 2, 4, 8, 16, 32, 64 and 128 components on the train-

ing sets of the sub-challenges. As the input frame-level feature

vectors, we employed 40-dimensional FBANKs with energy as

frame-level attributes; and following our previous experiments

(e.g. [25]), we also experimented with adding the first and sec-

ond order derivatives (i.e. ∆ and ∆∆).

4.3. Classification

Support Vector Machines (SVM) were utilized for classifica-

tion; we relied on the LIBSVM implementation[31] with a lin-

ear kernel (nu-SVR method), and set the C complexity param-

eter in the range 10−5, . . ., 101. All the features were standard-

ized by removing the mean and scaling to unit variance before

training the model. Since the datasets both in the Escalation

and in the Primates sub-challenges were imbalanced, we han-

dled this issue by employing downsampling: we randomly dis-

carded training examples from the more frequent classes during
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Table 1: The results obtained for the Escalation Sub-Challenge

Feature Set Dev Test

ComParE functionals 72.8% —

Ensemble x-vectors (MFCC) 62.6% —

Ensemble x-vectors (FBANK) 68.0% —

Ensemble x-vectors (spectrogram) 72.5% —

Fisher vectors (FBANK + ∆ + ∆∆) 74.3% —

ComParE + x-vectors (spectr.) 74.5% 61.5%

ComParE + FV (FBANK + ∆ + ∆∆) 77.8% 63.2%

Official ComParE baseline — 59.8%

Feature sets
MFCC FBANK Spectr. MFCC FBANK Spectr.
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Figure 2: The UAR scores of the individual and the ensemble

x-vector approaches obtained on the development set; the error

bars indicate minimum and maximum values.

training. As downsampling introduces a further random fac-

tor into the training process, we decided to train several models

and average out the resulting posterior values. For the Esca-

lation sub-challenge, model training was repeated 100 times,

while we trained 10 models in each case for the Primates sub-

challenge. Test set predictions were obtained by training on the

training and development sets together.

4.4. Prediction Combination

From experience (e.g. [12]) we know that it might be benefi-

cial to use multiple different (utterance-level) feature sets, as

these might represent the individual utterances from a different

aspect, and improve classification. We decided to opt for late

fusion [12]: we trained independent SVM models for the differ-

ent types of features, and combined the predictions in the sec-

ond step. Following our previous studies, we took the weighted

mean of the posterior estimates; the weights were determined

on the development set with 0.05 increments.

5. Results

Fig. 2 shows the results obtained on the development sets with

the individual x-vectors and the ensemble x-vectors. Notice that

the ensemble approach always outperformed the average of the

individual models. In the Escalation task, there was a large

difference (4-10%) between the performance of the best model

and the worst model, probably because of the limited amount of

data. For the Primates sub-challenge, this variance was smaller

(although still significant: between 1.4% and 3.6%); however,

Table 2: The results obtained for the Primates Sub-Challenge

Feature Set Dev Test

ComParE functionals 81.1% —

Ensemble x-vectors (MFCC) 75.7% —

Ensemble x-vectors (FBANK) 78.3% —

Ensemble x-vectors (spectrogram) 70.7% —

Fisher vectors (FBANK) 82.7% —

ComParE + x-vectors (FBANK) 82.6% 83.3%

ComParE + FV (FBANK) 87.5% 88.8%

ComParE + FV (FBANK) + auDeep 88.2% 89.8%

Official ComParE baseline — 87.5%

in this case, the ensemble model outperformed even the best of

the 10 individual x-vector models. This, in our opinion, con-

firms that ensemble x-vectors is a viable approach.

Table 1 shows the results obtained for the Escalation Sub-

Challenge. We can see that the ensemble x-vector approach per-

formed well, considering that it is a 3-class classification task:

the UAR values are in the range 62.6 . . . 72.5%, the last being

just as effective as ComParE functionals (72.8%). By combin-

ing the two feature types, we achieved a slight improvement

(74.3%). Fisher vectors were slightly better (note that, due to

the lack of space, we only reported the best FV configuration);

in the end, we achieved the best results with the combination

of ComParE functionals and FVs. Our two test set submissions

achieved similar results to the scores on the development set:

FVs slightly outperformed the ensemble x-vectors. However,

both approaches scored above the official Challenge baseline

(obtained via Bag-of-Audio-Words).

Table 2 lists our results obtained for the Primates Sub-

Challenge. For this task, FBANK-based and MFCC-based (en-

semble) x-vectors turned out to be better than the spectrogram-

based one; and although even the best one, relying on FBANKs,

performed below the standard ComParE functionals attribute set

(78.3% and 81.1%, respectively), they could be combined ef-

fectively, as the UAR score on the development set improved to

82.6% in this case. Just like that for the Escalation corpus, we

achieved even better scores with the Fisher vectors (although

now ∆s and ∆∆s proved to be redundant); this UAR score

of 82.7%, measured on the development set, could further be

improved to 87.5% by a combination with the ComParE func-

tionals. Regarding the test set scores, the combination of the

ComParE feature set with ensemble x-vectors resulted in a test

set UAR value below the Challenge baseline. However, we still

managed to surpass the ComParE functionals score reported in

the baseline paper (see [23]), while with the ComParE + FV

method we even exceeded the official baseline score of 87.5%,

which was a fusion of five(!) methods itself. This value was

further exceeded by incorporating the auDeep features as well.

Of course, the performance of the ensemble x-vector ap-

proach (where the feature extractor neural networks used were

identical) might be affected by the tasks themselves as well.

That is, x-vectors were developed for speaker recognition, and

the models were also trained on human speech (i.e. on the Dus-

seldorf Sleepy Language corpus). From the two sub-challenges,

the recordings of Escalation indeed contained human speech,

and the x-vectors proved to be quite efficient there. However, in

the Primates task the “speakers” were different animals; there,

DNNs trained solely on human speech might give a subopti-

mal performance (although, as we could see from the results,
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Figure 3: The distribution of the conflict intensity predictions

(based on the SSPNet Conflict Corpus) for the training set of

the Primates Sub-Challenge.

x-vectors were still relatively effective). On the other hand,

the GMMs of the Fisher vector technique were trained on the

training set of the given corpus, meaning a smaller mismatch;

perhaps this also contributed to the difference between the per-

formance of the two approaches.

6. Using the SSPNet Conflict Corpus

In our last experiment, we exploit the fact that the Escalation

sub-challenge is a conflict detection task. As permitted by

Challenge guidelines, we used another public dataset for model

training purposes: the SSPNet Conflict Corpus [26], which con-

tains recordings of Swiss French political TV debates. The total

duration of this dataset is significantly larger than that of the Es-

calation Sub-Challenge: 11 hours and 55 minutes. However, in

this corpus the task was to estimate the conflict intensity scores

in the range -10 (no conflict at all) to 10 (very high level of

conflict), while the Escalation sub-challenge was a classifica-

tion task with three intensity labels. (For the better readability,

we used the labels Low, Medium and High instead of the over-

simplified 0 / 1 / 2 labels assigned by the Challenge organiz-

ers [23].) Next, we will describe our approach to handle this

mismatch, and to utilize a corpus with continuous conflict level

annotation to a categorical classification task.

Following the experimental setup of our former study

(see [32]), we trained an SVR on the training set of the SSPNet

Conflict corpus. It used the 130-sized frame-level feature set

calculated by the OpenSMILE tool [33], and used Fisher vec-

tors (with 32 Gaussian components) to extract utterance-level

attributes. The SVR was trained using a linear kernel, with

C = 10−4; then we evaluated this model on all the utterances

of the Escalation task (i.e. on its training, development and test

sets). The distribution of these predictions (on the training set)

can be seen in Fig. 3; it is obvious that the predictions do corre-

late with the class labels, although (as expected) it is not possi-

ble to perfectly separate the Low, Medium and High categories

based on the intensity predictions alone.

As we sought to combine the predictions of the Escalation

test set with the other approaches tested, we had to employ an

approach that provided posterior estimates (or values satisfying

the formal requirements of posteriors, i.e. falling in the interval

[0, 1] and adding up to one). To do this, we modeled the dis-

tribution of the SSPNet-based predictions using a normal distri-

bution for each class; these can also be seen in Fig. 3. To obtain

‘posterior estimates’ for a predicted conflict intensity value, we

Table 3: The results obtained for the Escalation Sub-Challenge

with the SSPNet Conflict Corpus-based approaches

Feature Set Dev Test

ComParE functionals 72.8% —

SSPNet Conflict Corpus-based 62.6% —

ComParE + SSPNet Conflict 73.8% 62.4%

ComParE + x-vectors + FV + SSPNet 79.8% 63.9%

Official ComParE baseline — 59.8%

just calculated the probability density of each class, and nor-

malized these values to add up to one.

Table 3 shows the UAR values obtained via this approach.

Although the UAR score of 62.8% on the development set

might seem low compared to the ComParE functionals case, for

a 3-class (and cross-corpus, as the test set of the Escalation sub-

challenge is comes a different dataset than its training and de-

velopment sets) task it is realistic, as it significantly exceeds the

33.3% value achievable via random guessing. Furthermore, we

did not want to utilize this approach on its own, but we sought

to use it to aid the other classification methods; and by combi-

nation, we achieved an UAR value of 73.8%. On the test set

we reached 62.4% with this approach, which was improved to

63.9% by combining all four methods. Both values exceed the

official baseline of the Escalation sub-challenge, which, in our

opinion, indicates the usefulness of this cross-corpus method.

7. Conclusions

This study describes the techniques we based our entry on the

Escalation and Primates sub-challenges of the Interspeech 2021

Computational Paralinguistic Challenge. Our main contribution

was to employ x-vectors as features; to improve both the robust-

ness and the performance of the x-vectors, we built an ensemble

x-vector classifier by training 10 independent x-vector extrac-

tor neural networks on the same data. Our UAR scores on the

development set demonstrated the superiority of the ensemble

classifiers over the independent x-vector-based ones.

Since Challenge guidelines allow only five submissions for

each task, we were unable to extensively verify the performance

of all our approaches on the test set. Therefore, we can only ex-

trapolate from the test UAR scores of specific combinations;

but based on these values, ensemble x-vectors seem to be an

effective approach. Our other, perhaps more traditional feature

extractors, Fisher vectors, were even more successful. Our last

technique, which used the SSPNet Conflict Corpus in the Esca-

lation sub-challenge, also led to promising UAR values. Overall

we managed to exceed the official Challenge baselines for both

tasks, which, our opinion, supports the efficacy of the applied

techniques.
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[3] C. Montacié and M.-J. Caraty, “Combining multiple phoneme-
based classifiers with audio feature-based classifier for the detec-
tion of alcohol intoxication,” in Proceedings of Interspeech, 2011,
pp. 3205–3208.

[4] M. Huckvale, A. Beke, and M. Ikushima, “Prediction of sleepi-
ness ratings from voice by man and machine,” in Proceedings of

Interspeech, Shanghai, China, Oct 2020, pp. 4571–4575.

[5] G. Kiss, M. G. Tulics, D. Sztahó, and K. Vicsi, “Language inde-
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