
1

Resilient Control Plane Design for Virtualized 6G
Core Networks

Ferenc Mogyorósi, Péter Babarczi, Johannes Zerwas, Andreas Blenk, and Alija Pašić

Abstract—With the advent of 6G and its mission-critical and
tactile Internet applications running in a virtualized environment
on the same physical infrastructure, even the shortest service
disruptions have severe consequences for thousands of users.
Therefore, the network hypervisors, which enable such virtualiza-
tion, should tolerate failures or be able to adapt to sudden traffic
fluctuations instantaneously, i.e., should be well-prepared for such
unpredictable environmental changes. In this paper, we propose
a latency-aware dual hypervisor placement and control path
design method, which protects against single-link and hypervisor
failures and is ready for unknown future changes. We prove that
finding the minimum number of hypervisors is not only NP-
hard, but also hard to approximate. We propose optimal and
heuristic algorithms to solve the problem. We conduct thorough
simulations to demonstrate the efficiency of our method on real-
world optical topologies, and show that with an appropriately
selected representative set of possible future requests, we are not
only able to approach the maximum possible acceptance ratio but
also able to mitigate the need of frequent hypervisor migrations
for most realistic latency constraints.

Index Terms—software defined networks, virtual networks,
resilient hypervisor placement, intelligent algorithms

I. INTRODUCTION

Future 6G applications demand a flexible and adaptable
control plane design providing low-latency [1]–[3]. Such
applications range from electronic health, tele-presence and
holographic communications, industrial automation towards
smart environments with augmented or virtual reality. In such
cyber-physical applications, 6G networks are expected to be

The work of F. Mogyorósi and A. Pašić was supported by the ÚNKP-
21-3 New National Excellence Program of the Ministry for Innovation and
Technology from the source of the National Research, Development and In-
novation Fund, and by the KDP-2021 Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and
Innovation Fund. This work was supported by Projects no. 134604, no. 137698
and no. 128062 that have been implemented with the support provided by the
National Research, Development and Innovation Fund of Hungary, financed
under the FK 20, PD 21, and K 18 funding schemes, respectively. The work
of A. Pašić was supported by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences. This work received funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
438892507. The authors acknowledge the financial support by the Federal
Ministry of Education and Research of Germany (BMBF) in the programme
of “Souverän. Digital. Vernetzt.” joint project 6G-life, project identification
number 16KISK002.

F. Mogyorósi, P. Babarczi and A. Pašić are with the Department of Telecom-
munications and Media Informatics, Faculty of Electrical Engineering and
Informatics, Budapest University of Technology and Economics, Műegyetem
rkp. 3., H-1111 Budapest, Hungary and with the ELKH-BME Information
Systems Research Group, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
(e-mail: {mogyorosi, babarczi, pasic}@tmit.bme.hu).

J. Zerwas is with the Chair of Communication Networks, Technical
University of Munich, Germany (e-mail: johannes.zerwas@tum.de)

A. Blenk is with Siemens AG, Corporate Technology, Munich, Germany
(e-mail: andreas.blenk@siemens.com)

integrated as a mission-critical component. This requires 6G
networks to go even beyond the reliability and resilience
as provided by 5G ultra-reliable low-latency communica-
tions [4]–[6]. Additionally, it is envisioned that applications
can run isolated on one physical infrastructure using the
concept of end-to-end network slicing. Hence, slicing the 6G
core network is an integral part of future networks [7]. In order
to realize such slicing and virtual control, a virtualization layer
is needed. This virtualization layer is realized by so-called
network hypervisors [8].

In a nutshell, the network hypervisors sit between the
Software-Defined Network (SDN) switch and the tenant (ap-
plication) controllers. They intercept and modify control plane
messages in order to abstract the physical topology and isolate
controllers of different tenants. The tenant controllers can only
operate on their respective slice – virtual SDN (vSDN) – of the
physical network. As a result, the SDN control path extends
and spans over the application controller, the virtualization
layer, and the assigned slice of the network.

In order to meet the stringent demands of the applications,
the virtualization layer itself needs to be reliable and also to be
able to adapt to sudden (load) changes in the environment [9].
Distributed control and virtualization layers have become the
default approach. However, distributed designs introduce the
question of how many hypervisor instances are needed and
where to place them. Existing solutions to design and dimen-
sion such layers cover a wide range of optimizations w.r.t.
to latency, e.g., minimizing latency [10], providing Quality
of Service (QoS) guarantees [11], balancing the load in the
virtualization layer [12] or optimizing for resilience [13].

Dynamic load scenarios are addressed by migrating hy-
pervisor instances to other locations or assigning switches to
other hypervisor instances [12], [14]. This re-active approach
is no longer suited given the anticipated tight delay constraints
of future 6G applications. Also optimization of hypervisor
placements with respect to resilience currently only covers
single link failures but leaves out failures of hypervisor in-
stances [13].

In this paper we present a dual hypervisor placement and
a switch-to-hypervisor assignment method. The protection-
based approach creates two control paths via different hyper-
visor instances for each slice to control the vSDNs in the net-
work. The algorithm leverages knowledge from past requests
– where available – and optimizes against a representative set
of future demands. Thereby, it generates a prepared placement
that alleviates the need for reconfigurations, such as migrations
of hypervisor instances, in case of sudden demand changes or
failures. Our particular contributions are as follows:

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

• We introduce a dual hypervisor placement problem with
edge-disjoint control paths to protect against single link
and hypervisor failures.

• In our latency-aware design both paths meet the latency
requirement of the vSDN request, thus, enable hypervisor
migration without any QoS degradation.

• We minimize the number of hypervisors [13] while
maximizing preparedness, i.e., leaving enough reaction
possibilities open to unknown failures and vSDN requests
with the application of representative request sets.

• We prove that minimizing the number of hypervisors is
NP-hard and hard to approximate, and propose a heuristic
and an Integer Linear Program (ILP) to solve it.

The rest of the paper is organized as follows. Section II
summarizes the related work on resilient control plane design.
We formulate our latency-aware resilient hypervisor placement
problem in Section III. We prove that approximating the
optimal number of hypervisors is as hard as set cover in
Section IV, and propose a data structure which is leveraged
in our greedy heuristic and ILP formulation. Given the above
hypervisor number, Section V introduces an optimal method
for maximizing acceptance ratio of a given request set, and
discusses the generation of representative sets to prepare the
initial hypervisor placement for future changes. Finally, we
present the experimental results in Section VI and conclude
the paper in Section VII.

II. RELATED WORK

A. Self-Stabilizing Distributed In-Band Control Plane

In [18], the authors argue that in order to provide high avail-
ability for connections in SDN, the control plane must be dis-
tributed. Furthermore, despite data and control packets arrive
at the same port, in-band control is desired in these networks to
leverage the network’s high path diversity instead of operating
and maintaining a dedicated expensive (and sparse) control
network. In the introduced self-stabilizing control plane, au-
tomatic topology discovery and management of controllers
is possible in a distributed manner. Furthermore, it provides
a switch-to-controller assignment and quickly establishes in-
band control paths between the control- and data-plane and
between the distributed controller instances, even after adding
or removing controllers or after edge failures. Renaissance [19]
deals with the design of a reliable in-band and distributed
control plane which tolerates concurrent controller, link and
communication failures. The proposed algorithms ensure that
every switch is managed by an operational controller all the
time, moreover, the switch can be reached within a bounded
communication delay after a bounded number of failures.

In vSDNs, the control paths from each switch to the virtual
controller must traverse a network hypervisor instance, which
besides abstraction of physical network resources provides the
isolation of both data- and control plane traffic of different ten-
ants. In [8], different software- and hardware-based hypervisor
implementation were enumerated, and presented a high vari-
ety of possible distributed vSDN control plane architectures,
e.g., flexible control plane virtualization techniques [20] or

using multi-controller switches [15]. In [13], resilient (edge-
disjoint) in-band control paths were designed between the
virtual switches and the virtual controller, traversing the single
hypervisor instance responsible for the given switch. In our
control plane operation, we build on the above concepts, which
enable a distributed resilient in-band control plane.

B. Network Preparedness: Maximizing Future Options

Preparedness for unseen challenges in the future is a desired
property in communication networks and has been thoroughly
investigated in the literature [21]–[25]. Preparedness could
range from being resilient against edge- or node-failures
(i.e., being fault-tolerant [13], [18], [19]), through timely
response to disaster alerts [14] to adaptation to changing
traffic patterns [23], [26]. Although the proposed solutions to
these problems significantly differ, they share the same design
principle: 1) prepare a computationally tractable model of
future challenges, and 2) propose a metric which can measure
how well-prepared the network is against them.

Traditional optimization methods rely on finely-tuned ob-
jective functions which are carefully tailored to the actual
parameters of the problem, and owing to the huge number of
options cannot incorporate all future possibilities in a tractable
manner. Robust and stochastic optimization [21] make a step
towards resolving this issue, and already can handle some sort
of uncertainty in the input parameters or provide a solution
without exact knowledge of the (future) inputs. Similarly to
optimization, machine learning, e.g., reinforcement learning
algorithms still require an external reward system and often a
specific training set on which the algorithm can rely on [27].

In [25], an information-theoretic tool-set, called empow-
erment was proposed, where no external reward system is
provided for the agent – relies only on its own observations –,
which distinguishes it from machine learning and traditional
optimization problems. In a discrete setting, the metric returns
the number of different states (its logarithm to be precise) the
network can adapt to in response to challenges, which was
later applied to reconfigurable networks [28]. Future freedom
of action can be modeled as a physical force as well which
tries to maximize the entropy of the system [22], and was
applied to several use cases.

In networking, minimum interference routing shows a huge
resemblance with this principle, as through appropriately se-
lected link weights it keeps bottleneck resources open as long
as possible [23], i.e, it maximizes future acceptable requests
without explicitly being told to do so. A less powerful version
of this approach was applied to resilient hypervisor placement
in vSDNs [13]. Without the knowledge of such intrinsic
motivation which drives the network towards maximum future
options, the proposed solution leaves multiple placements
available from which the network was able to select in a self-
driving manner. In this paper, we significantly improve this
model with the application of representative request sets.

C. Hypervisor Placement Problem

Similarly to other placement problems (e.g., SDN controller
placement [29]), finding appropriate hypervisor locations boils

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

TABLE I
COMPARISON OF HYPERVISOR PLACEMENT METHODS.

vSDN requests Placement method Optimized locations Min. objective Constraint Preparedness

All known
k-HPP [15] controller and hypervisor max/avg latency # hypervisor -

Joint Placement (JHCP) [10] joint controller/hypervisor max latency # hypervisor -

Deployed set
Dynamic HPP (ILP) [16] hypervisor max/avg latency # hypervisor hypervisor migration (traffic load)

Dynamic HPP (Genetic) [12] hypervisor max latency & load # hypervisor hypervisor migration (traffic load)
Dynamic HPP (MILP) [14] hypervisor max latency migration time hypervisor migration (disaster alerts)

Unspecified
Resilient HPP [13] joint controller/hypervisor # hypervisor max latency single-link failure + migration

Betweenness-based HPP [17] controller and hypervisor betweenness centrality - -
Latency-Aware Resilient HPP joint controller/hypervisor # hypervisor max latency single-link/node failure + migration

down to the mathematical task of facility location [30]. How-
ever, in the Hypervisor Placement Problem (HPP), additional
requirements and constraints must be considered. We summa-
rize the main directions in Table I.

Several works [10], [15], [31] investigate the static version
of the HPP. Here, all virtual networks – set of virtual switches
and their controllers – are given as input to the placement
algorithm. The task is to find a hypervisor placement which
minimizes the maximum or average latency both for all
control paths and per individual virtual network. Note that,
these formulations are not appropriate for dynamically arriving
(future, thus unknown) vSDN requests, nor can they handle
failures in the network. Furthermore, owing to the fact that all
requests are considered in their ILP at the same time, it has an
excessive running time, thus, it is not applicable for frequently
changing and/or thousands of vSDN requests [13]. In [11], the
latency requirement of 5G and future 6G network were con-
sidered in the controller and hypervisor placement problem,
and the proposed multi-objective optimization algorithm was
able to minimize the propagation latency of network function
demands and improve QoS. Dobrijevic et al. [17] provide an
availability analysis of the static HPP under node and link fail-
ures. They consider placements without protection and three
protection-based versions. Their placement, however, is solely
based on the betweenness centrality of the possible locations
and does not provide any guarantees regarding latency or load.

In contrast, [12], [16], [27] introduce a reactive approach
called Dynamic Hypervisor Placement Problem (DHPP): the
hypervisor placement as well as the switch to hypervisor
assignments are redesigned in order to balance load and
react to fluctuating demands. However, adaptation is only
considered in reactive manner. Chen et al. [16] propose an
ILP to minimize control path latency and take the migration
overhead of hypervisors into account. Their approach lowers
the migration cost. Amjad et al. [12] specifically focus on load
balancing within a distributed network virtualization layer.
The DHPP is also considered in the context of resilience:
the embedding of virtual networks and control planes might
be redesigned in reaction to disaster alerts [14]. The authors
propose two models in [14], where 1) the hypervisor-to-switch
assignment is fixed but the hypervisor instance can be migrated
to a safe location, and 2) the hypervisor locations are fixed
but the switches can be reassigned to different hypervisor
instances. However, the temporal disruption of the control path
and the transient behavior of the network during migration of

the (single) hypervisor instance responsible for a given switch
are not considered in these works [14], [27].

None of the aforementioned works maximizes the reaction
possibilities of the network pro-actively through an intelligent
algorithm design or adds backup hypervisors to lower the
severity of disruptions due to migrations. Such an approach
will be discussed in this paper. A first step was made to-
wards a well-prepared control plane in [13] where the au-
thors investigated the Resilient Hypervisor Placement Problem
providing pre-allocated link-disjoint switch-to-hypervisor and
hypervisor-to-controller control paths between the physical
switch, virtual controller and the corresponding hypervisor in-
stance(s), respectively. Although there are multiple hypervisor
locations with a running hypervisor instance [13], the proposed
architecture does not consider any backup hypervisors and
each switch is controlled by a single hypervisor instance only.

III. PROBLEM FORMULATION

We argue that a pro-active design of backup SDN control
paths and hypervisors is necessary if we desire to meet
the strict recovery time requirements declared in the Service
Level Agreement (SLA) of the vSDN requests [13], [32]–
[36]. Similarly to previous approaches on control plane design
we do not consider edge capacities in our formulations [15],
[29]–[31], [37], i.e., control paths of different switches can
be calculated as independent sub-problems. Therefore, in our
intelligent problem formulation, we focus on the number and
location of hypervisor instances shared by multiple switches
and vSDNs.

A. Physical SDN Network Model

The network topology is modeled as a graph G(V, E) with
nodes (locations) v ∈ V connected by undirected edges
e ∈ E . Each location might host a physical SDN switch
S ⊆ V (usually S = V), while potential hypervisor and
controller locations are given in the sets H ⊆ V and C ⊆ V ,
respectively. The latency l(e) of an edge e is computed from
the geographical distance between the two network nodes that
are connected via edge e (i.e., the capacity of the edge is
not considered in our control plane design), which is used
for evaluating the latency of end-to-end network paths. The
set P(s, t) contains simple paths between network nodes s
and t. The i-th simple path in P(s, t) is denoted as pi(s, t).
When the end nodes of the path are irrelevant or clear from

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

TABLE II
NOTATION FOR THE PHYSICAL SDN NETWORK G

Notation Description

G(V, E) Physical SDN network graph
V Set of physical locations (network nodes) v ∈ V
E Set of physical network edges e ∈ E
S Set of physical swtich locations with S ⊆ V
H Set of potential hypervisor locations with H ⊆ V
C Set of potential controller locations with C ⊆ V
l(e) Latency of edge e, with l(e) ∈ R+

P(s, t) Set of simple paths between locations s and t
d(pi) Latency of path pi ∈ P(s, t): d(pi) =

∑
e∈pi l(e)

L Maximum global control path latency constraint
P(s, h, c) Set of paths between nodes s and c passing

through node h with ∀pi ∈ P(s, h, c) : d(pi) ≤ L

TABLE III
NOTATION FOR THE VIRTUAL SDN (VSDN) REQUESTS R

Notation Description

R Set of vSDN requests r ∈ R
Vr Set of virtual network nodes of vSDN request r, r ∈ R
vr Virtual network node vr ∈ Vr

Lr Maximum control latency for vSDN request r, r ∈ R
cr Virtual controller node of vSDN request r, r ∈ R
Hvr Hypervisor nodes {h1, h2} of virtual network node vr

the context, we will simply use pi. The total latency of path
pi(s, t) is d(pi(s, t)) =

∑
e∈pi(s,t)

l(e). Table II summarizes
the notations used for the physical SDN network.

B. Virtual SDN Requests

Our focus in this paper is resilient control plane design.
Therefore, we assume that the data plane (virtual SDN nodes
and virtual links) is already given and embedded to a set of
physical SDN nodes by an arbitrary embedding algorithm.
Accordingly, a vSDN request r ∈ R is defined by the set of
SDN nodes Vr ⊆ V . In contrast to [10], [15], [31] where the
tenant’s requested topology is considered as part of the input of
the joint control- and data-plane design, this set contains the
virtual switches of the tenant’s request, as well as possibly
some additional (intermediate) physical nodes as the results
of virtual (data-plane) edge embeddings spanning multiple
physical hops. Hence, without loss of generality, we assume
that Vr is a connected subgraph of the network. Furthermore,
each request has a given latency constraint Lr declared in
the SLA which all control paths have to satisfy. Table III
summarizes the notation for the vSDN requests R.

C. Resilient Virtual Control Plane

In Figure 1, we present the considered control plane archi-
tecture in this paper. In order to satisfy the SLA, all nodes
in vr ∈ Vr have to be controlled by the request’s virtual
controller1 cr within the specified latency, i.e., ∀vr ∈ Vr :

1In this paper we assume that an embedded vSDN request is operated by
a single virtual controller. However, our model can be easily extended to
multiple controllers per request in the future.

vr

cr

h1 h2

p1(v
r, h1, c

r)

p2(v
r, h2, c

r)

(a) Logical view

vr

cr

h1 h2

(b) Physical view

Fig. 1. Edge-disjoint control paths p1(vr, h1, cr) and p2(vr, h2, cr) be-
tween the switch virtual controller traversing the corresponding hypervisors.

d(p(vr, cr)) ≤ Lr. Furthermore, in a control plane resilient
against single edge failures and prepared for hypervisor mi-
gration, all vSDN nodes vr ∈ Vr of a request r have to
be connected to their corresponding controller location cr

through edge-disjoint paths (both paths satisfying the latency
constraint) traversing hypervisor instances Hvr = {h1, h2},
where h1 and h2 denotes the two (primary and backup)
hypervisor assigned to vr, respectively. Note that, a backup
hypervisor for a given switch can be a primary for another
one and vice versa, which significantly lowers the overhead
of our solution.

Opposed to [15], [31], the controller location cr is not
specified in advance, i.e., not part of the input vSDN request
r. It can be chosen from the set C to satisfy the latency
requirement of the vSDN request2 depending on the switch
to hypervisor assignment, which improves latency [10] and
enables self-driving operation [13]. For a fair comparison of
different design methods, we will assume in this paper that
∀r ∈ R : Lr = L, where L is the maximum global control
path latency constraint for each request.

D. Latency-Aware Resilient Hypervisor Placement Problem

Without controllers (without vSDN requests) the resilient
hypervisor placement problem is essentially a modified facility
location problem on the physical network topology where each
customer must be served by two facilities that reach them
on disjoint paths. In our case, the hypervisors can be viewed
as facilities and the physical switches as customers. In [30],
the authors considered two special cases of the “cover-by-
pairs” optimization problem that arise when facilities need to
be placed so that each customer is served by two facilities with
reaching them on two disjoint paths. We will shortly present
the definitions of the pathwise-disjoint problem [30] and
modify them to our resilient hypervisor placement problem by
extending them with latency constraints and possible controller
locations as follows.

In [30], a strongly connected graph G(V, E) is given,
together with sets S ⊆ H ⊆ V , where S is the set of
customer (switch) locations and H is the set of potential
facility (hypervisor) locations. For each pair (s, h), s ∈ S
and h ∈ H set P(s, h) contains simple (and also shortest

2Without loss of generality, we assume that C is the same set of controller
locations for all vSDN requests.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

in [30]) paths from s to h in G, which is nonempty by the
strong connectivity assumption.

Definition 1. Suppose s ∈ S is a customer location and
{h1, h2} is a pair of potential facility locations in H\{s}. We
say that pair {h1, h2} covers s in a pathwise-disjoint fashion
if there exist paths p1 ∈ P(s, h1) and p2 ∈ P(s, h2) that are
edge-disjoint.

Next, we can generalize this definition from a single cus-
tomer to all s ∈ S in network G.

Definition 2. A subset H′ ⊆ H is called a pathwise-disjoint
cover for S if (1) ∀s ∈ S \ H′ there is a pair {h1, h2} ⊆
H′ \ {s} such that {h1, h2} cover s in a pathwise-disjoint
fashion, or (2) ∀s ∈ H′ the facility at s covers itself.

In order to extend the above facility location definitions
of [30] and apply them to our hypervisor placement problem,
we drop the S ⊆ H requirement, i.e., S and H can be arbitrary
subsets of V . Moreover, we assume that edge lengths l(e)
on G(V, E), possible controller locations c ∈ C and latency
requirement L are given. Let P(s, h, c) denote the set of (not
necessary simple) paths from s to c traversing node h satisfiing
the latency requirement L, i.e., ∀p ∈ P(s, h, c) : d(p) ≤ L.

Definition 3. Suppose s ∈ S is a switch location and {h1, h2}
is a pair of potential hypervisor locations in H\ {s}. We say
that pair {h1, h2} can control s in a latency-aware pathwise-
disjoint fashion if there exists c ∈ C for which paths p1 ∈
P(s, h1, c) and p2 ∈ P(s, h2, c) are edge-disjoint.

Next, we can generalize this definition from a single switch
to all s ∈ S in network G.

Definition 4. A subset H′ ⊆ H is called a latency-aware
pathwise-disjoint control cover for S if (1) ∀s ∈ S \H′ there
is a pair {h1, h2} ⊆ H′ \{s} such that {h1, h2} can control s
in a latency-aware pathwise-disjoint fashion, or (2) ∀s ∈ H′
the hypervisor at s can control that switch.

Note that, the latter condition does not harm the resilience of
our approach even if s is assigned only to a single hypervisor,
as there is no physical edge between the two which can fail.
Moreover, the unavailability of that location disrupts both
the switch and the hypervisor. However, we need to handle
the lack of backup hypervisor for these switches when the
hypervisor should be migrated to a new location.

Finally, we define the main problem investigated in this
paper. Our goal is to provide the required level of resilience
at minimal operational cost, which is ultimately the goal of
the provider. Fewer hypervisors are cheaper to deploy and
operate, and that is the main goal in addition to meeting the
SLA requirements.

Problem 1. Latency-Aware Resilient Hypervisor Placement
Problem (LHPP): Given G(V, E), sets S ⊆ V,H ⊆ V, C ⊆ V
and maximum global control path latency L, find a latency-
aware pathwise-disjoint control cover H′ ⊆ H for S where
the number of hypervisors |H′| is minimal.

The result of an (optimization) algorithm for Problem 1
is the set of selected hypervisor locations H′ ⊆ H and the

primary and backup switch-to-hypervisor assignment of the
switches ∀s ∈ S \ H′ : Hs = {h1, h2} ⊆ H′.

E. Preparedness of Different Hypervisor Placements

Our goal in this paper is to find a hypervisor placement
and switch-to-hypervisor assignment which is well-prepared
for future vSDN requests. By “preparedness” we mean that our
initial placement is capable of serving a variety of requests,
but is also prepared to being migrated in response to serve
dynamically arriving vSDN requests. The required control-
plane reconfiguration can be initiated periodically in a self-
driving manner by the network to adapt to day-night or hourly
load shifts. Note that in these control-plane reconfigurations,
only the hypervisors are relocated, while the controllers and
vSDNs remain in the same place.

In addition, the network can continuously monitor its own
performance by calculating the gap between the current and
optimal hypervisor locations calculated for the current vSDN
requests. If the gap between the current and the optimal
solution is larger than a certain threshold (e.g., 5%), the
network should initiate reconfiguration and hypervisor migra-
tion immediately, or at the end of a certain period if slotted
operation is assumed. In the latter case, the time slots and thus
the frequency of hypervisor migrations can be adapted to the
dynamics of the network either by the network operator or by
the network itself in a self-driving manner.

Another important aspect of dynamic network management
is the hypervisor migration process itself, which is crucial
for providing a certain QoS. Our proposed architecture in
Figure 1 with two redundant hypervisor instances provides
great flexibility in the reconfiguration process compared to
approaches using a single hypervisor per switch [12], [14],
[16], [27]: during migration one of the instances can be
fixed while the second instance is moved (transferring the
primary role between the two instances if necessary). After
state synchronization with the new instance it can be promoted
as primary hypervisor and the old instance can be migrated if
necessary. However, a thorough analysis of different strategies
is out of the scope of the paper.

IV. LATENCY-AWARE RESILIENT HYPERVISOR
PLACEMENT ALGORITHMS

In this section, we investigate the computational complexity
and propose different solution possibilities for our resilient
control plane design problem. In Section IV-A, we prove that
the LHPP formulated in Problem 1 is not only NP-hard but
also as hard to approximate as set cover. We introduce an effi-
cient representation of hypervisor locations which can provide
latency-aware pathwise-disjoint control covers and discuss
the computational cost of path and set pre-computations in
Section IV-B. Section IV-C contains our algorithmic solution
for the problem using greedy set cover. Finally, Section IV-D
provides our ILP formulation for LHPP to minimize the
number of hypervisors in the latency-aware pathwise-disjoint
control cover for dynamically arriving vSDN requests.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

s1

s2

...

sn

x0

x1

x2

...

xn

h0

h1

h2

...

hm

c0

Fig. 2. Polynomial-time transformation of an arbitrary set cover instance
into a corresponding instance of LHPP. In the example red and green edges
represent that s1, s2 ∈ U1 and s2, sn ∈ Um, respectively.

A. Computational Complextiy and Approximability of LHPP

It was shown that pathwise-disjoint facility location [30] and
set cover by pairs [38] are not only NP-hard but also are at
least as hard to approximate as Set Cover (SC). Therefore, they
cannot be approximated within (1−ε) lnn for any ε > 0 unless
P = NP [39]. We will prove the same inapproximability
result for LHPP as well.

Theorem 1. LHPP is NP-hard and at least as hard to
approximate as SC.

Proof: In a nutshell, we prove the theorem by converting
an arbitrary instance of SC into an equivalent instance of
LHPP in polynomial-time whose optimal solution differs from
the optimal solution of the SC instance by 1. Thus, any
approximation factor for our problem would imply a same
factor for SC as well.

Given an arbitrary instance of SC which consists of a ground
set S = {s1, . . . , sn} and a collection U = {U1, . . . , Um}
of subsets of S, for which without loss of generality S =
∪U∈UU . In the transformed instance of LHPP, the graph
G′(V ′, E ′) has the following nodes in V ′:

1) switch nodes si ∈ S for i = 1, . . . , n,
2) auxiliary nodes x0 and xi for i = 1, . . . , n,
3) a single controller location C = {c0},
4) and potential hypervisor locations hj for each Uj ∈ U

and h0 which doesn’t correspond to any member of U ,
resulting in H = ∪j{hj}, j = 0, . . . ,m.

We add the following undirected edges to E ′ in the transformed
graph, with latency ∀e ∈ E ′ : l(e) = 1:

1) edges connecting switches and auxiliary nodes: {si, x0}
and {si, xi}, for i = 1, . . . , n,

2) edges connecting auxiliary nodes and hypervisor loca-
tions: {x0, h0} and {xi, hj} if si ∈ Uj , for i = 1, . . . , n,
j = 0, . . . ,m,

3) edges connecting the controller location with hypervisor
locations: {c0, hj}, for j = 0, . . . ,m.

We set the global latency constraint L = 4. The constructed
graph3 is given in Figure 2. For all switch si there is a
path p1(si, x0, h0, c0) with d(p1) = 3 to c0 through x0 and
h0. Furthermore, ∀i, j : si ∈ Uj there are further paths

3Note that, a similar transformation was given for the pathwise facility
location problem in [30]. However, it is not directly applicable for LHPP.

p2(si, xi, hj , c0) through xi with d(p2) = 3. All the other
paths from si to c0 through an arbitrary h node have a latency
d(p) ≥ 5. Consequently, setting the latency constraint of the
LHPP to L = 4 will eliminate those longer paths, leaving p1
and one of the p2 paths as the only edge-disjoint path-pair
which can provide a latency-aware pathwise-disjoint control
cover for any si ∈ S in the above LHPP instance.

In order to conclude our proof, we have to demonstrate that
the optimal solution of the above LHPP instance is exactly
one more than the optimal solution for the SC instance.

(SC⇒ LHPP) Assume that U∗ is a feasible solution to SC.
In this case, one can see that {h0} ∪ {hj : Uj ∈ U∗} is a
feasible solution for LHPP, as each si ∈ S is connected to c0
through h0 and hj such that si ∈ Uj . Note that, such hj exists
because U∗ is a cover for S. Owing to the polynomial-time
construction Hsi = {h0, hj} can control si in a latency-aware
pathwise-disjoint fashion. Hence, the LHPP solution has one
more hypervisors (i.e., h0) than the number of sets in the SC
instance.

(SC ⇐ LHPP) Assume that H′ ⊆ H is a feasible solution
for our constructed LHPP instance. For each switch node si ∈
S, there is at least one hypervisor in H′ that does not equal to
h0, thus it can reach c0 through hj ∈ H′ − {h0}. Hence, the
correspdonding Uj sets for hj ∈ H′−{h0} provides a set cover
for S. Again, the LHPP solution has one more hypervisor than
the number of sets in the SC instance.

Therefore, LHPP and SC have solution at the same time
which differs by one, which proves the NP-hardness of Prob-
lem 1. Furthermore, a polynomial-time algorithm with any
approximation guarantee for LHPP would yield one for SC as
well, which proves the second part of our claim.

B. Representing Latency-Aware Pathwise-Disjoint Covers

We introduce a representation of the control architecture
shown in Figure 1 without the a priori knowledge of the
vSDN request set. We store the possible locations satisfying
Definition 3 from which the feasible hypervisor placements for
every physical switch s ∈ S in the network can be efficiently
queried. Hence, we define quartets (c, h1, h2, s), where c ∈ C,
h1, h2 ∈ H, and s ∈ S , which represent that the maximum
global latency constraint L is met by controller location c ∈ C
with edge-disjoint paths p1 ∈ P(s, h1, c) and p2 ∈ P(s, h2, c).
We define Q as the set of all quartets that have a disjoint
control path-pair satisfying the latency requirement, formally:

Q = {(c, h1, h2, s) | ∃p1 ∈ P(s, h1, c), p2 ∈ P(s, h2, c) :
p1, p2 are edge-disjoint, and d(p1) ≤ L, d(p2) ≤ L}.

One can observe that the quartets in Q corresponding to
s contain all possible controller and hypervisor locations for
that node which satisfy the latency constraint L. Note that,
Q contains (s, s, s, s) for each s ∈ H and possibly other
quartets satisfying Definition 3 for s ∈ S where h1 6= h2.
However, important to note that in practice P(s, t) contains
only a predefined number of P simple paths for each (s, t)
pair; thus, the concatenation of path in P(s, h) and P(h, c)
to P(s, h,c) will contain a limited number of paths as well.
Therefore, if path number P is not carefully selected and not

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

large enough, it is possible that Q will not contain all feasible
quartets. Please refer to Section VI-A for further analysis of
this question.

The projections of Q to different dimensions can be ef-
ficiently leveraged in the algorithms proposed for LHPP. For
example, if we select s and fix the hypervisor pair h1, h2 ∈ H,
then we can obtain from Q all possible controller locations
for s for that primary and backup hypervisor pair. Owing
to its importance in our LHPP algorithms, we define set T
from the projection of Q which represent that {h1, h2} ∈ H
is a primary and backup hypervisor pair for s ∈ S which
possibly can provide latency-aware pathwise-disjoint cover for
a (unknown) vSDN request in the future, formally:

T = {(h1, h2, s) | ∃c ∈ C : (c, h1, h2, s) ∈ Q}.

As a result, T contains all hypervisor pairs which can cover
∀s ∈ S in a latency-aware pathwise-disjoint fashion with an
appropriately selected controller location, denoted as T (s) for
a specific switch s.

Lemma 1. Pre-calculating sets T and Q require O(|V|6 ·P 4)
steps, where P = maxi,j |P(vi, vj)|.

Proof: In order to construct sets P(s, hi, c), as a first
step we find the P -shortest simple paths P(vi, vj) (if exist)
between all node-pairs in the network topology in O(|V|3 ·P)
steps [40]. Next, we need to check each path-combination from
p1 ∈ P(s, hi) and p2 ∈ P(hi, c) whether their concatena-
tion satisfy the global latency requirement L or not, which
can be done in one step for each P 2 path-pair since their
latency is already given by the path generation algorithm. If
d(p1)+d(p2) ≤ L we add the resulting (possibly non-simple)
p(s, hi, c) path to P(s, hi, c). As a result, |P(s, hi, c)| ≤ P 2.

Calculating Q = {(c, h1, h2, s)} requires to check at
most |C| · |H|2 · |S| times whether p1 ∈ P(s, h1, c) and
p2 ∈ P(s, h2, c) is edge-disjoint or not, which can be done
in linear-time in the number of edges |E| ≤ |V|2. As there are
at most P 2 · P 2 number of p1, p2 path-pairs and at most |V|4
quartets (c, h1, h2, s) in Q, the total complexity of the quartet
generation is O(|V|6 · P 4).

Generating T and T (s) from Q can be done even by a
naive implementation by checking all O(|V|4) elements of
Q. Therefore, the overall complexity of the pre-processing
is dominated by the Q generation, resulting in an overall
complexity of O(|V|6 · P 4).

Although an expensive process (please, refer to Table VI for
concrete values), we need to make the above pre-calculation
only once for the physical topology, as owing to the high-
priority of control plane traffic edge latency values are not
influenced by traffic fluctuations of the data plane. Further-
more, in the simulations in Section VI we set P to a small fix
constant (i.e., P = 16), therefore the pre-computation time is
mainly affected by the number of nodes – O(|V|6) – in the
network.

C. Greedy Heuristic Approach
Owing to the high computational complexity of Problem 1,

in this section we propose a greedy heuristic for LHPP, sum-
marized in Algorithm 1. The algorithm takes the pre-calculated

Algorithm 1: Greedy Heuristic Algorithm for LHPP
Input: ∀s ∈ S : T (s) = {(h1, h2)} - set of feasible

hypervisor pairs for s;
Output: H′ - hypervisor locations;
∀s ∈ S : Hs = {h1, h2} - switch-to-hypervisor
assignment;

1 Initialize H′ := ∅;
// Phase 1: Perform greedy set cover

2 while ∃s ∈ S not covered by H′ do
3 Find h∗ ∈ H \ H′ for which H′ ∪ h∗ covers most

uncovered switches according to sets ∀i : T (si);
4 Add h∗ to hypervisors H′ := H′ ∪ h∗;
// Phase 2: Post-processing

5 for h ∈ H′ do
6 if H′ \ {h} is a cover for S then
7 H′ := H′ \ {h};

// Phase 3: Switch-to-hypervisor
assignment

8 Select Hs = {h1, h2} ∈ H′ for every switch
s ∈ S \ H′ where (h1, h2) ∈ T (s);

T (s) sets as input, and returns the set of hypervisors H′ and
switch-to-hypervisor assignment ∀s ∈ S : Hs = {h1, h2} that
cover S in a latency-aware pathwise-disjoint fashion.

In Phase 1 initially, the cover H′ is an empty set, and in
Step 2, we perform a greedy set cover [41] as long as H′
does not cover all s ∈ S (or no solution exists): find h∗ ∈
H\H′ such that H′∪{h∗} provides a latency-aware pathwise-
disjoint control cover for most s ∈ S which did not have
one previously, formally @hi, hj ∈ H′ : (hi, hj) ∈ T (s) but
∃hi ∈ H′ : (hi, h∗) ∈ T (s). Hypervisor locations at switches
s ∈ H ∩ S will cover at least one switch – i.e., {(s, s)} ∈
T (s) – if selected. If there are multiple h∗ locations with the
maximum number of newly covered switches, then we select
one of them randomly. As we add a new hypervisor in each
step, the algorithm will terminate in at most |H| iterations.
In Phase 2 we adopt the post-processing phase of the greedy
algorithm from [30] in Step 5 to check whether we can remove
some locations from H′ while maintaining the latency-aware
pathwise-disjoint control cover for every switch. As proposed
in [30], we run Alg. 1 400 times and then one solution is
randomly selected from the ones with minimal |H′|. Finally,
in Phase 3 we assign a hypervisor pair for every switch s ∈
S \ H′, and if multiple options available we choose the one
with minimal average switch-to-hypervisor latency.

Lemma 2. The time-complexity of Algorithm 1 is O(|S|·|H|3).

Proof: One can observe that we have at most |H| iter-
ations in Step 2 of Phase 1 (each element of H is added to
H′). In each iteration we have to calculate the number of newly
covered switches by every hypervisor location h ∈ H \ H′,
which requires to check the T (si) sets for each uncovered
switch (∀si ∈ S : |T (si)| ≤ |H|2), resulting in |S| · |H|2
operations per iteration and O(|S| · |H|3) complexity for
Phase 1 altogether. Post-processing in Phase 2 requires to

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

TABLE IV
NOTATIONS OF THE ILP FORMULATIONS

Notation Description

wh = 1 if a hypervisor is placed at potential
hypervisor node h ∈ H; 0, otherwise

xh,s = 1 if hypervisor node h ∈ H controls
vSDN node s ∈ S; 0, otherwise

yh1,h2,s = 1 if vSDN node s ∈ S is controlled by
hypervisors h1, h2 ∈ H; 0, otherwise

k number of hypervisors in the optimal solution (i.e., |H∗|)
ar = 1 if r ∈ R is acceptable; 0, otherwise
ar,c = 1 if c ∈ C can control every vSDN

node s ∈ Sr ; 0, otherwise
zc,s = 1 if c ∈ C can control vSDN node s ∈ S

through its currently active hypervisor pair

check the same sets and properties as in Phase 1; thus, it has
the same number of operations in worst case. Finally, selecting
hypervisor pairs from T (s) for every s ∈ S \ H′ in Phase 3
requires O(|S| · |H|2) time. Therefore, Algorithm 1 runs in
polynomial-time O(|S| · |H|3).

Assuming that both |H| and |S| is in the order of |V|,
Lemma 2 gives O(|V|4) complexity. In this setting the
greedy heuristic proposed for the pathwise facility location
problem [30] requires at least O(|V|3) steps (no latency
constraint considered), while the hypervisor placement with
set cover [13] takes O(|V |2(|E| + |V | log2 |V |)) steps (only
single-link failure resilience ensured), thus, we pay a linear
complexity increase for a latency-aware resilient placement in
worst case even with the usage of the pre-calculated T (s)
sets. However, in practice the |T (s)| � |V|2 set sizes are
small for reasonable global latency constraints L, resulting
in an efficient algorithm. We also note that greedy set cover
approximates the optimal number of sets within a factor of∑|V|

i=1 1/i ≤ ln |V| + 1 for the general unweighted case [41],
[42], where |V| refers to the maximum size of any set.
Although this approximation factor was successfully trans-
formed for hypervisor placement with greedy set cover in [13],
owing to the non-monotonicity of uncovered sets according to
the T (s) values in Step 2 the factor is not transferable for
Algorithm 1.

D. Integer Linear Program for LHPP

In order to find the minimum number of hypervisors k in
a latency-aware pathwise disjoint cover, in this section, we
present a mixed integer linear program for LHPP denoted as
ILPk. The required parameters and binary decision variables
are summarized in Table IV.

The variable wh determines whether a hypervisor is located
at the network node h ∈ H. Note that, after having solved
the model, the variables wh specify the optimal set H∗ of
hypervisor nodes, specifically, H∗ = {h ∈ H : wh = 1}. The
variable xh,s is set to one if switch s ∈ S is controlled by
the hypervisor instance placed at node h ∈ H. Similarly, the
variable yh1,h2,s is set to one if switch s ∈ S is controlled by
the hypervisor instances placed at nodes h1, h2 ∈ H (including

variables ys,s,s). Our objective is to minimize the number of
hypervisors:

min
∑
h∈H

wh , (1)

subject to the following constraints.
1) Hypervisor Activation Constraints: Eq. (2) ensures that

only active hypervisors can control switches:

xh,s ≤ wh ∀s ∈ S,∀h ∈ H, (2)

while Eq. (3) says that hypervisors without controlled switches
are inactive:

wh ≤
∑
s∈S

xh,s ∀h ∈ H. (3)

2) Resilient Control Constraints: Each switch is controlled
by a pair of hypervisors, except when there is a hypervisor
at the switch’s location when it controls itself (Case (2) in
Definition 4):

xs,s +
∑
h∈H

xh,s = 2 ∀s ∈ S. (4)

3) Valid Hypervisor-Pair Constraints: The hypervisor pair
{h1, h2} controls switch s if and only if both of them are
controlling it, formulated in Eq. (5)-(7):

yh1,h2,s ≤ xh1,s ∀h1, h2 ∈ H,∀s ∈ S, (5)

yh1,h2,s ≤ xh2,s ∀h1, h2 ∈ H,∀s ∈ S, (6)

xh1,s + xh2,s − 1 ≤ yh1,h2,s ∀h1, h2 ∈ H,∀s ∈ S. (7)

The hypervisor pairs which can control s in a latency-aware
pathwise-disjoint fashion can be obtained from T in Eq. (8):∑

(h1,h2,s)∈T (s)

yh1,h2,s = 1 ∀s ∈ S. (8)

The above formulation gives a set of hypervisors H∗
which has a minimum size k = |H∗|. We will use this
k number in Section V as the input hypervisor number for
the full-knowledge algorithms to demonstrate the cost of our
intelligent algorithm design which does not have any a priori
knowledge about the vSDN requests.

V. OPTIMAL HYPERVISOR PLACEMENT WITH MAXIMUM
ACCEPTANCE RATIO

In this section, we introduce an algorithm that provides
the optimal locations of k hypervisors (obtained from Sec-
tion IV-D, running the ILPk algorithm) to maximize the
number of accepted requests from a given vSDN request set
R. We formulate the static LHPP problem in Section V-A,
while Section V-B introduces our ILP formulation (denoted
as ILPa). We argue that the presented formulation is multi-
purpose depending on the input set R. On the one hand, if
set R contains all currently embedded and future (arriving in
the next time step) requests in the network, then the ILP has
full knowledge to present the optimal hypervisor placement
and gives us an optimal acceptance ratio we can use for
comparisons. On the other hand, R can be a representative
set of vSDN requests we expect – but has no exact knowledge
about – in the future, which can be used either in LHPP for

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

an initial hypervisor placement or in the static algorithm for
planning hypervisor migrations. The usage and generation of
representative sets will be discussed in Section V-C.

A. Static LHPP Problem Formulation

Similarly to other approaches [10], [15], [31] with full
knowledge about the vSDN request set R, our objective in the
static problem formulation is to provide the resilient control
architecture presented in Figure 1 (i.e., disjoint control path-
pair satisfying the latency requirement traversing different
hypervisor instances) to as many vSDN requests as possible,
i.e., maximize the number of accepted requests. Using the pre-
calculated Q set, a request r ∈ R is acceptable for a given
hypervisor placement if

∃c ∈ C : ∀vr ∈ Vr (c, h1, h2, v
r) ∈ Q,

where {h1, h2} is the hypervisor pair controlling vr. We define
acceptance ratio as the fraction of acceptable requests in the
request set:

a =

∑
r∈R ar

|R|
, (9)

which will be used as the main performance metric. Therefore,
the static LHPP problem can be formulated as follows:

Problem 2. Static Latency-Aware Resilient Hypervisor
Placement Problem (SHPP): Given G(V, E), sets S ⊆ V,H ⊆
V, C ⊆ V , maximum global control path latency L and vSDN
request set R, find a latency-aware pathwise-disjoint control
cover H′ ⊆ H for S with k hypervisors where the acceptance
ratio of R is maximal.

B. Integer Linear Program for SHPP

Here, we present the mixed integer linear program of SHPP
for a given request set R. Note that in the experimental results
for comparison, this ILP is used in two manners:
• If we know exactly all the current and future requests,

the results are denoted as OPT.
• If we do not have exact information about the arriving

requests, and we prepare our network for the current
request set or for some representative set. The results are
denoted as ILPa.

Table IV specifies the parameters and the binary decision
variables used in the formulation.

Similarly as in the ILPk, variable wh determines whether a
hypervisor is located at the network node h ∈ H or not. Note
that, after having solved the model, the variables wh specify
the set H∗ of hypervisor nodes, specifically, H∗ = {h ∈ H :
wh = 1}. The variable xh,s is set to one if switch s ∈ S is
controlled by the hypervisor instance placed at node h ∈ H.
Similarly, the variable yh1,h2,s is set to one if switch s ∈ S is
controlled by the hypervisor instances placed at nodes h1, h2 ∈
H. Additionally to LHPP, in the SHPP ILP we need to add
∀r ∈ R request specific varaibles as well. The variable ar is
set to one if r ∈ R is acceptable, while ar,c indicates whether
c ∈ C can control every vSDN node vr ∈ Vr. The variable
zc,s is set to one if c ∈ C can control switch s ∈ S through

a given hypervisor-pair. Finally, k represents the number of
hypervisors which has to be used in the solution.

Our objective is to maximize the number of acceptable
requests (or equivalently acceptance ratio) for R:

max
∑
r∈R

ar, (10)

subject to the following constraints.
In order to obtain the resilient control architecture presented

in Figure 1, we need the constraint groups 1)-3) from Sec-
tion IV-D. Additionally, we need the following constraints for
SHPP:

4) Hypervisor Number: There should be exactly k hyper-
visors in the solution: ∑

h∈H

wh = k. (11)

5) Controller Competency Contraint: We obtain from quar-
tets Q the possible hypervisor pairs {h1, h2} that allow c to
control s:

yh1,h2,s ≤ zc,s ∀(c, h1, h2, s) ∈ Q. (12)

If none of the hypervisor-pairs provide a latency-aware
pathwise-disjoint control cover for the switch s, then the
controller location c is not appropriate for s:

zc,s ≤
∑

(c,h1,h2,s)∈Q

yh1,h2,s ∀s ∈ S,∀c ∈ C. (13)

6) Request Acceptability Contraints: A request can be
accepted with a given controller location if it can control all
switches in the request:

ar,c ≤ zc,s ∀s ∈ Sr,∀c ∈ C,∀r ∈ R, (14)∑
s∈Sr

zc,s − |Sr|+ 1 ≤ ar,c ∀c ∈ C,∀r ∈ R. (15)

The request is acceptable if there is a controller that can control
all of its switches:

ar,c ≤ ar ∀c ∈ C,∀r ∈ R, (16)

while the request is not acceptable if there is no such con-
troller:

ar ≤
∑
c∈C

ar,c ∀r ∈ R. (17)

We primarily use the above formulation to calculate an
optimal solution (i.e., with maximum acceptance ratio) for a
certain request set R. Note that, owing to its high complexity,
the possible huge number of requests in R, and the frequent
usage in each time step, this static algorithm has little practical
relevance in a dynamically changing environment. Thus, we
only use it as an optimal value to demonstrate the efficiency
of our intelligent LHPP algorithms. However, in Section V-C,
we show that the same ILP formulation can be used in LHPP
to distinguish the quality of different hypervisor placements
using a representative request set Rrep, obtained either purely
from graph metrics or historical data where available.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

TABLE V
NETWORK CHARACTERISTICS (|V |, |E|, γ – AVERAGE NODE DEGREE).

Network |V | |E| γ

Janos-US [43] 26 42 3.23
Italy [44] 25 35 2.72
COST 266 [43] 37 57 3.08
Germany [43] 50 88 3.52

TABLE VI
RUNTIME OF SHORTEST PATH PRE-CALCULATION, Q GENERATION AND

NUMBER OF QUARTETS |Q| IN THE 25-NODE ITALY NETWORK (L = 1.0).

P P calculation [s] Q generation [s] |Q|
1 0.08 1.31 36472
2 0.24 2.2 54941
4 0.65 4.11 65988
8 1.62 9.7 68712

16 3.73 33.75 69150
32 8.17 146.24 69194
64 18.42 499.53 69194

C. Representative Request Set Generation

It is obvious that if an empty set is used as the representative
set, i.e. Rrep = ∅, the ILP for SHPP (denoted as ILPa) is the
same as the ILP for LHPP (denoted as ILPk) and the solution is
one of the many possible latency-aware hypervisor placements.
These possible solutions can provide very different acceptance
ratios for the possible request sets: some of them are generally
dysfunctional placements and have low acceptance ratio for
most request sets and high for only a few, while some of
them are generally good placements and have high acceptance
ratio for most request sets and low for only a few cases. The
representative request set aims to separate the wheat from the
chaff: it filters out the dysfunctional hypervisor placements
from the possible solutions, leaving mainly “good” hypervisor
placements as possible solutions. In this way, Rrep helps us
prepare our hypervisor placement for the future.

Since the future requests are unspecified, it is impossible
to construct a representative request set that perfectly resem-
bles them. If the representative set is not selective enough
(too small, contains mostly easily acceptable or unaccept-
able requests), it cannot filter out the “inferior” hypervisor
placements. On the other hand, if the representative set is not
broad/universal enough (i.e., it contains mostly alike requests),
it will favor some hypervisor placements that are not necessar-
ily good overall. Note that ILPa gets most of its information
from the acceptable requests in Rrep; thus, an overall good
representative set should contain mostly acceptable requests,
but not too easily acceptable ones. We will show that with
a carefully selected small representative request set (≈ 0.1%
of all possible vSDN requests), the optimal solution can be
approached with a significantly lower runtime, presented in
Section VI.

VI. EXPERIMENTAL RESULTS

In this section, we provide a comprehensive study of
the different aspects of our solutions. In particular, first, in

0.2 0.4 0.6 0.8 1

102

104

106

L

|Q
|

Italy
Janos-US

COST 266
Germany

Fig. 3. Number of quartets at different global latency requirements in the
analysed networks.

TABLE VII
AVERAGE ACCEPTANCE RATIO OF THE ILPa WITH DIFFERENT Rrep

PARAMETERS IN THE ITALY NETWORK (AVERAGES BASED ON 10
INDEPENDENT RUN)

|Vr|max
|Rrep|

2 5 10 20 50 100 200

2 0.40 0.42 0.52 0.49 0.44 0.53 0.40
3 0.37 0.50 0.45 0.60 0.51 0.60 0.60
4 0.45 0.54 0.55 0.61 0.62 0.62 0.63
5 0.44 0.56 0.59 0.61 0.64 0.64 0.64
6 0.45 0.57 0.61 0.61 0.63 0.64 0.64
7 0.47 0.56 0.59 0.60 0.64 0.64 0.64

13 0.57 0.58 0.59 0.61 0.62 0.63 0.64

Section VI-A we analyze the preprocessing steps and the
quartets. In Section VI-B we present the request generation
methods utilized for the experimental results, meanwhile in
Section VI-C the guidelines for the representative set genera-
tion are discussed. Finally, in Section VI-D the preparedness
analysis is presented.

The investigated real-life optical backbone networks are
given in Table V. The Janos-US, COST 266, and Germany
network topologies are obtained from [43], and the link lengths
are defined as the distances between nodes assuming that the
node locations (given with latitude and longitude coordinates)
are known for each node. For Italy [44], the links are defined as
a series of points (starting with the source and ending with the
target node) with straight lines between them. Therefore, the
link length is defined as the summed length of the straight lines
of the link assuming that longitude and latitude coordinates
are known for each point. In our experiments, without loss
of generality, we investigate the most general version of
Problem 1 where S = H = C = V . The global latency
requirement is given as a ratio to the diameter of the network,
i.e., L = 0.5 means that the latency requirement is 0.5 times
the diameter of the network.

We conduct our simulations on a virtual machine with 8
cores (Intel® Xeon® E5-2630 v3 @ 2.4GHz) and 32GB of
RAM running Ubuntu 18.04.1 LTS with kernel 4.15.0-151-
generic. The simulation environment and the algorithms are
implemented in Python 3.8.2. The ILP instances are created
with the Gurobi Python Interface (gurobipy) and solved with
the Gurobi solver (version 9.1.2) [45].

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

0 5 10 15 20 25

100

103

106

n

N
um

be
r

of
su

bg
ra

ph
s

Italy Janos-US

Fig. 4. The number of possible subgraphs of size n in the Italy and Janos-US
networks.

TABLE VIII
EVALUATION SETTINGS IN THE PREPAREDNESS ANALYSIS

Parameter Values
Network topology Italy, Janos-US

COST 266, Germany
Latency requirement 0.1, . . . , 1.0
P 16
vSDN request size (|Vr|) 2, . . . , |V|
vSDN request count 100 (maximal)
|Rrep| 100
max request size in Rrep

|V|
4

Hypervisor Placement Alg. 1, ILPk , ILPa, OPT
Runs per setup 10

A. Preprocessing Analysis

This subsection investigates the complexity of the prepro-
cessing steps and provides an analysis of the quartets. In
the preprocessing phase, we calculate the P -shortest simple
paths between each node-pair and generate Q and T . We
showed in Lemma 1 that the pre-calculation times depend
on the network topology and the P parameter. Similarly, the
number of quartets (|Q|) depends on the network topology, the
P parameter, and the global latency requirement L. If P is too
low, some of the possible quartets cannot be found, resulting
in lower performance. If P is too high, the pre-calculation
times are unnecessarily high. Table VI presents the runtimes
of the path calculation and quartet generation for several P
values. The size of Q varies only little for P ≥ 16 but the
runtime of the preprocessing grows significantly. According to
these results, we select P = 16 for further investigations since
it provides a great balance between runtime and accuracy.

Figure 3 shows the number of quartets for all the investi-
gated networks subject to the global latency requirement. At
low L values, there are only a few thousand of quartets, but
their number increases drastically with L even reaching 106

in case of the Germany network. Note that while the Germany
network has twice more nodes and edges than the Janos-US
network it has nearly 10 times more quartets.

B. vSDN Request Generation

The vSDN requests are connected subgraphs in our network
(cf. Section III-B). Therefore, to generate requests, we use the
Simple method from [46] to enumerate all connected induced
subgraphs of size n. It has a complexity of O(n2 × δmax)

0.2 0.4 0.6 0.8 1
0

10

20

L

N
um

be
r

of
A

ct
iv

e
H

yp
er

vi
so

rs Alg. 1
ILPk

Fig. 5. The number of active hypervisors subject to the global latency
requirement L in the Italy network.

0 5 10 15 20 25

0

0.1

0.2

Pr
ob

ab
ili

ty

Alg. 1
ILPk

0 5 10 15 20 25

0

0.1

0.2

Node id

Pr
ob

ab
ili

ty
ILPa

OPT

Fig. 6. Probability of the used hypervisor locations of the placement methods
in the Italy network based on the 10 simulation runs.

where δmax is the maximal node degree in the graph. The
authors provide an implementation of their algorithms in
Python that we use in our framework.

Let Rn and R≤n denote the set of all connected induced
subgraphs of size n and ≤n in the network, respectively.
Therefore, R≤n =

⋃n
i=2Rn. It is apparent that set R≤|V|

contains all possible subgraphs of the network while set R2

contains all adjacent node pairs. Figure 4 presents the number
of subgraphs according to the size of the subgraphs for the
Italy and Janos-US networks.

The Rn sets are used for benchmarking purposes as it helps
to estimate the performance of the hypervisor placement on
requests with a given size, which are selected from R|Vr|,
where |Vr| is the fixed size of the requests. The R≤n sets
represent real-life-like requests with given maximal size, and
they are used to generate the representative set for ILPa in
our evaluations. In this method, a given number of subgraphs
are selected from R≤|Vr|max

where |Vr|max is the maximal
request size. The vSDN request count is an upper bound for
the number of generated subgraphs since in some cases it is
greater than the number of possible subgraphs.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

C. Representative Request Set Generation

In this subsection, we study the effect of the representative
request set (denoted as Rrep) generation on the acceptance
ratio of ILPa, which corresponds to the preparedness of the
hypervisor placement. For demonstration purposes, we present
the results of the Italy network, but the trends and the takeaway
message is general to all the topologies studied. In our
simulations, Rrep is sampled from R≤n, where the maximal
request size n varies between 2 and |V|/2 and the number of
requests varies between 2 and 200. For each representative set
parameter combination, a preparedness analysis is performed
with the same settings as in Section VI-D. Table VII contains
the results for given representative set parameters.

To compare the different parameter combinations, the aver-
age acceptance ratio is calculated over all 10 runs and vSDN
request sizes ranging from 2 to |V|/2. As expected, when
Rrep contains easily acceptable requests, e.g., |Vr|max = 2,
ILPa achieves lower acceptance ratio. Similarly, from a small
representative set (|Rrep| ≤ 10) less information can be
obtained by ILPa resulting in a lower acceptance ratio again.
According to the simulations, ILPa makes the most out of
challenging representative sets (|Rrep| ≥ 50 and |Vr|max ≥ 4)
achieving acceptance ratios consistently over 0.62, above these
boundaries no parameter combination seems superior to the
others. The same tendencies can be observed in the other
networks. Since we assume that no specific knowledge is
available about the future requests and corresponding vSDN
embeddings, we use |R| = 100 and |Vr|max = |V|

4 in our
simulations.

D. Preparedness Analysis

In this subsection, we evaluate the hypervisor placement
methods on the presented network topologies (Table V) in
a static scenario. The analysis focuses on the number of
hypervisors used, hypervisor usage probability, and acceptance
ratio of the requests. The evaluation settings are summarized
in Table VIII. For each setting, the hypervisor placement and
the evaluation are repeated 10 times with different seeds. Each
evaluation consists of multiple vSDN request sets with specific
request sizes (from 2 to |V|), each containing 100 requests if
possible. Note that the hypervisor placements are evaluated on
the same request sets in the corresponding runs (e.g., 1st run).

The hypervisor placement methods of the LHPP, i.e., Alg. 1
and ILPk, are calculated solely based on the network topology,
the path count parameter P , and the global latency requirement
L. They do not take into account any knowledge about the
possible requests, and their goal is to find a placement with a
minimal number of hypervisors. On the other hand, ILPa uses
a representative request set Rrep to obtain a more suitable
placement than ILPk generated according to the findings in
Section VI-C. Additionally, to assess how close our placement
methods are to the theoretical maximum in terms of acceptance
ratio, OPT is used to find the hypervisor placement with the
highest acceptance ratio for each evaluated request set. Note
that while the other placements are calculated once in each run
and evaluated for many request sets (with different request
sizes) OPT is calculated for each request set in each run

resulting in the theoretical maximum acceptance ratio for each
request set that may not be reachable in practice.

Alg. 1 and ILPk are the two methods that try to find a
placement with a minimal number of hypervisors. Figure 5
presents the results for the Italy network which show that both
algorithms deliver the same minimal number of hypervisors
in each case. Clearly, at lower L values, more hypervisors
are required to resiliently control the switches, while at higher
L values, less is sufficient. For example, at L = 0.4, eight
hypervisors must be used in the Italy network, but at L = 0.6,
four are sufficient.

Despite the consensus on the number of hypervisors, the
algorithms differ in the hypervisor locations. To illustrate
this, Figure 6 presents the usage frequency of hypervisor
locations. It aggregates results from all configurations listed in
Table VIII. The methods optimizing for maximum acceptance
ratio, i.e., ILPa and OPT agree mostly with Alg. 1 and ILPk

on the hypervisor locations apart from some minor differences.
Not surprisingly, the most frequent hypervisor locations are all
central nodes in the network (e.g., nodes 0, 20, 23, and 24 of
the Italy network are in Central-Italy). Although the hypervisor
usage of Alg. 1 and ILPk seems not too distinct from the
hypervisor usage of ILPa and OPT, the minor differences
significantly impact the acceptance ratio.

Figure 7 shows the average acceptance ratio of the hypervi-
sor placement methods for several vSDN request sizes at three
global latency requirements. Next to each L value the number
of active hypervisors is also displayed. In Figure 7a, the low L
is very strict and leaves little room for hypervisor placement
optimization thus only the small vSDN requests (|Vr| ≤ 5)
have an acceptance ratio over 50%. In Figure 7b, L is large
enough to enable higher acceptance ratios. Note that the
occasional significant gap (such as in Figure 7b) between
Alg. 1 and ILPk is due to the ability of Alg. 1 to randomly
select a solution from many (i.e., 400) in the end, while
ILPk returns the first feasible solution, which usually performs
poorly according to the simulations. At L = 0.6, it is possible
to accept every request with a carefully selected hypervisor
placement which is exactly what ILPa does. The large gap
between the acceptance ratios of Figure 7b and 7c is caused
by the relaxation of the latency requirement (from 0.5 to 0.6)
and the decrease of active hypervisors (from 6 to 4).

One can observe that ILPa with the proposed representative
set generation outperforms both Alg. 1 and ILPk, and finds
the placement with the best acceptance ratio among the three
approaches, always close to the optimal. Figure 8 presents the
acceptance ratio of the hypervisor placement methods subject
to the vSDN request size for all four networks with L = 0.6.
The results of each network show the impressive benefits of
the representative request set as ILPa consistently performs
much better than Alg. 1 and ILPk. In the case of the Italy
and COST 266 networks (Figure 8a and 8c), ILPa is able
to find the optimal solution, while in the case of the Janos-
US and Germany networks, it finds a solution that is very
close to the optimal one. On the COST 266 network with
L = 0.6 (Figure 8c), ILPk performs surprisingly well, much
better than Alg. 1. In this case, the acceptance ratio of the
first feasible solution is much better than the average of the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

0 10 20
0

0.2

0.4

0.6

0.8

1

vSDN request size |Vr|

A
cc

ep
ta

nc
e

R
at

io

Alg. 1
ILPk

ILPa

OPT

(a) L = 0.4 (k = 8)

0 10 20
0

0.2

0.4

0.6

0.8

1

vSDN request size |Vr|

A
cc

ep
ta

nc
e

R
at

io

(b) L = 0.5 (k = 6)

0 10 20
0

0.2

0.4

0.6

0.8

1

vSDN request size |Vr|

A
cc

ep
ta

nc
e

R
at

io

Alg. 1
ILPk

ILPa

OPT

(c) L = 0.6 (k = 4)

Fig. 7. Comparison about the acceptance ratio of the hypervisor placement methods in the Italy network subject to the vSDN request size (|Vr|) for given
latency requirement L (averages based on 10 independent runs). After each L value the number of active hypervisors (k) is displayed.

0 10 20
0

0.2

0.4

0.6

0.8

1

vSDN request size |Vr|

A
cc

ep
ta

nc
e

R
at

io

Alg. 1
ILPk

ILPa

OPT

(a) Italy (k = 4)

0 10 20
0

0.2

0.4

0.6

0.8

1

vSDN request size |Vr|
(b) Janos-US (k = 4)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

vSDN request size |Vr|
(c) COST 266 (k = 3)

0 20 40
0

0.2

0.4

0.6

0.8

1

vSDN request size |Vr|
(d) Germany (k = 3)

Fig. 8. Comparison about the acceptance ratio of the hypervisor placement methods in the investigated networks subject to the vSDN request size (|Vr|) for
latency requirement L = 0.6 (averages based on 10 independent runs). After each network name the number of active hypervisors (k) is displayed.

random ones. In summary, we can state that the representative
requests enable us to reliably obtain a hypervisor placement
close to the optimal in terms of acceptance ratio.

VII. CONCLUSIONS

In this paper we introduced a novel latency-aware con-
trol plane design with primary/backup hypervisors and edge-
disjoint control paths to protect against single-link and hyper-
visor failures. Based on this design, the latency-aware resilient
hypervisor placement problem was formulated. We proved that
minimizing the number of hypervisors is NP-hard and hard to
approximate, and proposed a polynomial-time algorithm based
on greedy set cover and an integer linear programming model.
Our simulation results show that our algorithm approaches the
optimal solution in terms of hypervisor number. Furthermore,
we extended the previous problem formulation by adding a
request set for which the hypervisor placement providing the
highest acceptance ratio must be determined. We presented an
integer linear programming formulation for this problem and
argued that it can be used not only to find the optimal place-
ment for a certain request set but also to obtain a hypervisor
placement prepared for the future by utilizing a representative
request set. For evaluation of the three hypervisor placement
methods, we have investigated the impact of the hypervisor
placement on the vSDN request acceptance ratio. Our results

show that the representative set significantly improves the
hypervisor placement and helps to obtain close-to-optimal
acceptance ratio in every scenario.

As a future work, we will analyse our proposed placement
methods in a dynamic scenario, where the network needs to
migrate hypervisors in order to meet the SLA requirements of
the currently active vSDNs and maximize the acceptance ratio
of the newly arrived requests.

REFERENCES

[1] H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,”
IEEE Access, vol. 8, pp. 57 063–57 074, 2020.

[2] A. Shahraki, M. Abbasi, M. Piran, M. Chen, S. Cui et al., “A compre-
hensive survey on 6G networks: Applications, core services, enabling
technologies, and future challenges,” arXiv preprint: 2101.12475, 2021.

[3] Y. Lu and X. Zheng, “6G: A survey on technologies, scenarios,
challenges, and the related issues,” Journal of Industrial Information
Integration, p. 100158, 2020.

[4] 6G – Connecting a cyber-physical world. [Online]. Avail-
able: https://www.ericsson.com/en/reports-and-papers/white-papers/
a-research-outlook-towards-6g

[5] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “To-
ward 6G networks: Use cases and technologies,” IEEE Communications
Magazine, vol. 58, no. 3, pp. 55–61, 2020.

[6] C. J. Bernardos and M. A. Uusitalo, “European Vision for the 6G
Network Ecosystem.” [Online]. Available: https://zenodo.org/record/
5007671

[7] L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong, “Network
slicing: Recent advances, taxonomy, requirements, and open research
challenges,” IEEE Access, vol. 8, pp. 36 009–36 028, 2020.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

[8] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on net-
work virtualization hypervisors for software defined networking,” IEEE
Communications Surveys Tutorials, vol. 18, no. 1, pp. 655–685, 2016.

[9] A. Blenk, A. Basta, W. Kellerer, and S. Schmid, “On the impact of
the network hypervisor on virtual network performance,” in 2019 IFIP
Networking Conference (IFIP Networking), 2019, pp. 1–9.

[10] B. P. R. Killi and S. V. Rao, “On placement of hypervisors and
controllers in virtualized software defined network,” IEEE Transactions
on Network and Service Management, vol. 15, no. 2, pp. 840–853, 2018.

[11] D. Basu, A. Jain, U. Ghosh, and R. Datta, “QoS-aware controller and
hypervisor placement in vSDN-enabled 5G networks for time-critical
applications,” in IEEE INFOCOM WKSHPS, 2021, pp. 1–6.

[12] S. Amjad, A. Varasteh, N. Deric, and C. Mas-Machuca, “Delay-aware
dynamic hypervisor placement and reconfiguration in virtualized SDN,”
in 12th International Conference on Network of the Future (NoF), 2021.

[13] P. Babarczi, “Resilient control plane design for virtual software defined
networks,” IEEE Transactions on Network and Service Management,
vol. 18, no. 3, pp. 2557–2569, Sept 2021, Special Issue on Design and
Management of Reliable Communication Networks.

[14] M. Tornatore, P. Babarczi, O. Ayoub, S. Ferdousi, R. Lourenco, J. Zer-
was, A. Blenk, M. Klügel, and W. Kellerer, “Alert-based network
reconfiguration and data evacuation,” in Guide to Disaster-resilient
Communication Networks, J. Rak and D. Hutchinson, Eds. Springer,
2020, ch. 14, pp. 1–24.

[15] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control
plane latency with SDN network hypervisors: The cost of virtualization,”
IEEE Transactions on Network and Service Management, vol. 13, no. 3,
pp. 366–380, 2016.

[16] S. Chen, W. Sun, and W. Hu, “On dynamic hypervisor placement in
virtualized software defined networks (vSDNs),” in 2020 22nd Interna-
tional Conference on Transparent Optical Networks (ICTON), 2020, pp.
1–5.

[17] O. Dobrijevic, C. Natalino, M. Furdek, H. Hodzic, M. Dzanko, and
L. Wosinska, “Another price to pay: An availability analysis for SDN
virtualization with network hypervisors,” in 2018 10th International
Workshop on Resilient Networks Design and Modeling (RNDM), 2018,
pp. 1–7.

[18] L. Schiff, S. Schmid, and M. Canini, “Ground control to major faults:
Towards a fault tolerant and adaptive SDN control network,” in 2016
46th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshop (DSN-W), 2016, pp. 90–96.

[19] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, “Re-
naissance: A self-stabilizing distributed SDN control plane,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 233–243.

[20] A. Blenk, A. Basta, and W. Kellerer, “HyperFlex: An SDN virtualiza-
tion architecture with flexible hypervisor function allocation,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), 2015, pp. 397–405.

[21] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications
of robust optimization,” SIAM review, vol. 53, no. 3, pp. 464–501, 2011.

[22] A. D. Wissner-Gross and C. E. Freer, “Causal entropic forces,” Phys.
Rev. Lett., vol. 110, p. 168702, Apr 2013.

[23] K. Kar, M. Kodialam, and T. V. Lakshman, “Minimum interference
routing of bandwidth guaranteed tunnels with MPLS traffic engineering
applications,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 12, pp. 2566–2579, Dec 2000.

[24] C. Griner, J. Zerwas, A. Blenk, S. Schmid, M. Ghobadi, and C. Avin,
“Cerberus: The power of choices in datacenter topology design (A
throughput perspective),” in Proc. ACM SIGMETRICS, 2021.

[25] A. S. Klyubin, D. Polani, and C. L. Nehaniv, “Empowerment: a
universal agent-centric measure of control,” in 2005 IEEE Congress on
Evolutionary Computation, vol. 1, Sep. 2005, pp. 128–135 Vol.1.

[26] P. Babarczi, M. Klügel, A. M. Alba, M. He, J. Zerwas, P. Kalmbach,
A. Blenk, and W. Kellerer, “A mathematical framework for measuring
network flexibility,” Computer Communications, vol. 164, pp. 13–24,
Dec 2020, Special Issue on IFIP Networking 2019 Conference.

[27] A. Blenk, “Towards virtualization of software-defined networks: Analy-
sis, modeling, and optimization,” PhD Dissertation, Technische Univer-
sität München, 2018.

[28] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, and
S. Schmid, “Empowering self-driving networks,” in ACM SIGCOMM
Workshop on Self-Driving Networks (SelfDN), Aug 2018, pp. 8–14.

[29] P. Vizarreta, C. M. Machuca, and W. Kellerer, “Controller placement
strategies for a resilient SDN control plane,” in Workshop on Resilient
Networks Design and Modeling (RNDM), Sept 2016, pp. 253–259.

[30] D. S. Johnson, L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu, M. Ha-
jiaghayi, H. Karloff, M. G. C. Resende, and S. Sen, “Near-optimal
disjoint-path facility location through set cover by pairs,” Operations
Research, vol. 68, no. 3, pp. 896–926, 2020.

[31] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, “Pairing SDN with
network virtualization: The network hypervisor placement problem,”
in IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), 2015, pp. 198–204.

[32] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Fast
failure recovery for in-band OpenFlow networks,” in Proc. IEEE Design
of reliable communication networks (DRCN), 2013, pp. 52–59.

[33] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “In-
band control, queuing, and failure recovery functionalities for Open-
Flow,” IEEE Network, vol. 30, no. 1, pp. 106–112, 2016.

[34] R. Khalili, Z. Despotovic, and A. Hecker, “Flow setup latency in SDN
networks,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 12, pp. 2631–2639, 2018.

[35] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-
architecture networks,” in 2011 IEEE Global Telecommunications Con-
ference (GLOBECOM), 2011, pp. 1–6.

[36] B. P. R. Killi and S. V. Rao, “Optimal model for failure foresight
capacitated controller placement in software-defined networks,” IEEE
Communications Letters, vol. 20, no. 6, pp. 1108–1111, 2016.

[37] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in SDN-based core
networks,” in Teletraffic Congress (ITC). IEEE, 2013, pp. 1–9.

[38] R. Hassin and D. Segev, “The set cover with pairs problem,” in
International Conference on Foundations of Software Technology and
Theoretical Computer Science. Springer, 2005, pp. 164–176.

[39] R. Raz and S. Safra, “A sub-constant error-probability low-degree test,
and a sub-constant error-probability PCP characterization of NP,” in
Proc. of ACM symposium on Theory of computing, 1997, pp. 475–484.

[40] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

[41] L. Lovász, “On the ratio of optimal integral and fractional covers,”
Discrete Mathematics, vol. 13, no. 4, pp. 383 – 390, 1975.

[42] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
J. Comput. Syst. Sci., vol. 9, no. 3, p. 256–278, Dec. 1974.

[43] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proc. INOC, 2007.

[44] A. Valentini, B. Vass, J. Oostenbrink, L. Csák, F. Kuipers, B. Pace,
D. Hay, and J. Tapolcai, “Network resiliency against earthquakes,” in
Workshop on Resilient Networks Design and Modeling (RNDM), 2019,
pp. 1–7.

[45] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[46] C. Komusiewicz and F. Sommer, “Enumerating connected induced
subgraphs: Improved delay and experimental comparison,” Discrete
Applied Mathematics, 2020.

Ferenc Mogyorósi received the MSc (summa cum
laude) degree in Electrical Engineering from the
Budapest University of Technology and Economics
(BME), Hungary, in 2020. He is currently a PhD
student at High-Speed Networks Laboratory, Depart-
ment of Telecommunications and Media Informatics
at Doctoral School of Electrical Engineering, BME.
He was awarded the UNKP doctoral fellowship of
the Hungarian Ministry of Innovation and Tech-
nology (ITM) for the university year 2021 - 2022
and the Cooperative Doctoral Programme Doctoral

Scholarship of the ITM. His research interests focus on survivability in optical
backbone networks, artificial intelligence (AI) and mobile positioning.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

Péter Babarczi (Senior Member, IEEE) received
the M.Sc. and Ph.D. (summa cum laude) degrees
in computer science from the Budapest University
of Technology and Economics (BME), Hungary, in
2008 and 2012, respectively. In 2017-2019 he was
an Alexander von Humboldt Post-Doctoral Research
Fellow with the Chair of Communication Networks
at the Technical University of Munich, Germany. He
is currently working as an Associate Professor with
the Department of Telecommunications and Media
Informatics at BME. His current research interests

include intelligent self-driving networks, multi-path Internet routing, cloud
gaming, network coding in transport networks, and combinatorial optimization
in softwarized networks. He received the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences in 2013, and the Post-Doctoral Research
Fellowship of the Alexander von Humboldt Foundation in 2017. Since 2020,
he is the lead researcher of an OTKA FK Young Researchers’ Excellence
Programme supported by the National Research, Development and Innovation
Fund of Hungary.

Johannes Zerwas received his M.Sc. degree in
Electrical Engineering and Information Technology
from Technical University of Munich (TUM), Ger-
many, in 2018. He joined the Chair of Communica-
tion Networks at the TUM as a research and teaching
associate in February 2018. His research is focused
on flexible and predictable network virtualization,
adaptive topologies, as well as data-driven network-
ing algorithms.

Andreas Blenk received the Dr.-Ing. degree (Ph.D.)
from the Technical University of Munich in 2018
with the highest distinction (summa cum laude). He
is currently a Research Scientist at Siemens AG, Mu-
nich, Germany, and a Lecturer at the Chair of Com-
munication Networks of the Technical University of
Munich, Munich, Germany. His research interests
are data-driven and machine learning-based network
designs, algorithms, and network monitoring.

Alija Pašić received the MSc (summa cum laude)
and PhD (summa cum laude) degrees in Electri-
cal Engineering from the Budapest University of
Technology and Economics (BME), Hungary, in
2013 and 2019, respectively. His is currently an
Assistant Professor at High-Speed Networks Labora-
tory, Department of Telecommunications and Media
Informatics at BME. His research interests focus
on survivability in optical backbone networks, net-
work coding, machine learning, artificial intelligence
(AI) and mobile positioning. He received the János

Bolyai Research Scholarship of the Hungarian Academy of Sciences in 2021.
Since 2021, he is the lead researcher of an OTKA PD postdoctoral Excellence
Programme supported by the National Research, Development and Innovation
Fund of Hungary.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3193241

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

