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A B S T R A C T

There is no commonly accepted and reliable design method to determine the lateral–torsional buckling (LTB)
resistance of steel trapezoidally corrugated web girders. Therefore, the focus of the current paper is on the
investigation of this failure mode, detailed evaluation of the structural behavior and determination of the
accurate LTB resistance. An advanced finite element (FE) model is developed and validated using the results
of laboratory test performed at the Budapest University of Technology and Economics in 2018. Based on the
experimental background virtual tests are performed on a simply supported beam subjected by pure bending
moment. The effect of the different flange sizes, corrugation layouts, boundary conditions and steel grade
including high-strength steel as well, are investigated. Two kinds of parametric studies are performed using
(i) deterministic and (ii) stochastic nonlinear analysis. In both cases the imperfections have a key role in the
FEM-based resistance calculation. Therefore, the imperfections are considered as initial geometric imperfections
and residual stress, and also as equivalent geometric imperfections and their results are compared. The required
equivalent geometric imperfection magnitude is determined and proposed in such a way to achieve the same
impact as the initial geometric imperfection and residual stresses have. By both the deterministic and stochastic
analysis results the required buckling curve of the Eurocode is determined by reliability assessment. The
results of the two different analyses are compared and design recommendation is given for reduction factor
determination for trapezoidally corrugated web girders.
1. Introduction

Reducing the material consumption of the structures parallel with
their sensitivity to web buckling and simplifying their transport and in-
stallation have motivated the development of trapezoidally corrugated
web girders. These girders are modifications of traditional I-beams by
using a corrugated web instead of flat webs. In the case of bridge girders
with conventional flat webs transverse and longitudinal stiffeners are
subsequently welded to the web panels to eliminate the sensitivity
to web buckling; this process needs a great amount of labor work.
An alternative to this is the application of corrugated web girders in
which no stiffeners are needed to be added for strengthening and the
web panel can be thinner than in those of conventional girders. This
generally allows to build lighter structures and avoids the need for post-
welding, however, it requires special technology for the manufacturing
of trapezoidally corrugated web girders.

Trapezoidally corrugated web girders are increasingly used in the
structural engineering practice due to their numerous favorable prop-
erties. The structural behavior of these girders is different from that
of girders with flat webs therefore they require detailed investigations.
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Many open questions are still unanswered about the lateral–torsional
buckling (LTB) behavior of corrugated web girders, which is the topic
of the current paper. Many research programs carried out so far fo-
cusing on the determination of the elastic critical moment and there
is no generally accepted method for the determination of the lateral–
torsional buckling resistance. Therefore, the aims of the current study
are (i) to determine the required equivalent geometric imperfection
shape and magnitude being applicable for geometrical and material
nonlinear imperfect analysis (GMNIA) connected to the manufacturing
tolerances of the EN 1090 [1] standard and (ii) to determine which of
the lateral–torsional buckling or flexural buckling curves of EN1993-
1-1 [2] can be used for the determination of the LTB resistance of
trapezoidally corrugated web girders. In addition, the effect of different
corrugation web arrangements, boundary conditions and steel grades
are investigated. The required buckling curves are determined in two
ways, first a deterministic numerical analysis then stochastic analysis
is carried out. In the stochastic analysis, geometrical and material
properties are determined as probabilistic variables and Monte Carlo
simulations (supplemented by the response surface method) are exe-
cuted to determine the mean and the characteristic values of the LTB
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Fig. 1. Applied notations.

resistance for typical and representative cross-sections. Based on the
results of the deterministic and stochastic analyses, semi-probabilistic
reliability assessment methodologies are applied to define the safety
level of the buckling curves of the EN 1993-1-1 [2] (level #1.). In
the stochastic calculation the so-called first-order reliability analysis
(FORM) is used (level #2.) according to EN 1990 [3], which already
takes into account the uncertainty in the evaluation of the structure due
to the geometric and material properties. The applied notations used in
the paper are given in Fig. 1.

2. Literature review

2.1. Elastic critical moment

The first studies were carried out by Lindner [4] who showed the
elastic critical moment of trapezoidally corrugated web girders, and
their lateral–torsional buckling resistance is greater than that of girders
having conventional flat web. After that numerous researchers, among
others Sayed-Ahmed [5], Moon et al. [6], Nguyen et al. [7], Zhang
et al. [8], Larsson and Persson [9] and Ilanovsky [10] confirmed this
statement. The elastic critical moment for flat web girder subjected to
uniform bending moment can be calculated by Eq. (1) according to
Timoshenko and Gere [11].

𝑀𝑐𝑟 =
𝜋

𝑘 ⋅ 𝐿

√

√

√

√𝐸𝐼𝑍

[

(

𝜋
𝑘𝑤 ⋅ 𝐿

)2
𝐸𝐼𝑤 + 𝐺𝐼𝑡

]

(1)

n the above equation E is the elastic modulus, G is the shear modulus,
is the span length, Iz is the moment of inertia about the minor axis, I t

s the torsional constant, Iw is the warping constant, k is the effective
ength factor about the weak axis rotation and kw is the effective length
actor with respect to warping.

Lindner [4] modified the above formula for trapezoidally corrugated
eb girders introducing an additional term with a correction factor 𝑐w

n the warping constant given by Eq. (2) in order to consider the greater
erformance. Conspicuous, this additional term includes the length,
espite of the fact that the warping constant is a sectional property.
ccording to Lindner the factors 𝑢x and 𝑐w should be calculated by
qs. (3)–(4), and then Eq. (1) can be applied for corrugated web girders
s well by substituting the increased warping constant.

𝑤 = 𝐼𝑤,𝑓𝑙𝑎𝑡 + 𝑐𝑤
𝐿2

𝐸𝜋2
(2)

𝑐𝑤 =
𝑎23 ⋅ (ℎ𝑤 + 𝑡𝑓 )2

𝑐1 ⋅ 𝑢𝑥 ⋅ (𝑎1 + 𝑎4)
(3)

𝑢𝑥 =
(ℎ𝑤 + 𝑡𝑓 )

2 ⋅ 𝐺 ⋅ 𝑎1 ⋅ 𝑡𝑤
+

(ℎ𝑤 + 𝑡𝑓 )2 ⋅ (𝑎1 + 𝑎4)3

𝑐2 ⋅ 𝑎21 ⋅ 𝐸 ⋅ 𝑏𝑓 ⋅ 𝑡3𝑓
(4)

n the above equations 𝐼w,f lat is the warping constant of flat web girders,
1 = 8 and 𝑐2 = 25 are constants according to Lindner. Moon et al. [6],
guyen et al. [7], Zhang et al. [8] and Ibrahim [12] also proposed dif-

erent methods to consider the increase of the elastic critical moment.
 s

2

Table 1
The imperfection factor for different buckling curves.

𝑎0 a b c d

𝛼LT 0.13 0.21 0.34 0.49 0.79

Larsson and Persson [9] made a comprehensive numerical study in
2013 and confirmed the formula proposed by Lindner. In this research
Larsson and Persson rearranged the formula by assigning the additional
term to the torsional constant according to Eq. (5). The two versions
give the same result, but with this modification none of the sectional
properties are dependent on the length of the girder.

𝐼𝑡 = 𝐼𝑡,𝑓 𝑙𝑎𝑡 +
𝑐𝑤
𝐺

(5)

In this formula 𝑐w remains the correction factor for trapezoidally cor-
rugated web girders introduced by Lindner. Using the suggestion of
Larsson and Persson, Lopes et al. in their research [13] investigated
sinusoidally and trapezoidally corrugated web girders and based on an
extensive numerical study they modified the parameters to 𝑐1 = 22
nd 𝑐2 = 300. Guo and Papangelis [14] investigated and compared

girders with trapezoidally corrugated and flat web. They applied tor-
sional moments to the beams and found that the torsional constant is
significantly higher for trapezoidally corrugated web girders, however,
there is just a minor difference between the warping constants. This
also confirmed the validity of Larsson and Persson’s interpretation.
Other proposals have been also made to address this issue. Sayed-
Ahmed [5] suggested an equivalent web thickness; Moon et al. [6],
Nguyen et al. [7], Kazemi [15] and Ibrahim [12] considered the effect
of the trapezoidally corrugated web by reducing the shear modulus;
and Ilanovsky [10] provided a simple multiplication factor to modify
the elastic critical moment for flat web girders.

2.2. Lateral–torsional buckling resistance

According to EN1993-1-1 [2] the reduction factor (𝜒LT) for the
lateral–torsional buckling strength for rolled sections or equivalent
welded sections with flat web may be calculated by Eqs. (6)–(8).

𝜒𝐿𝑇 = 1

𝛷𝐿𝑇 +
√

𝛷2
𝐿𝑇 − 𝛽𝜆

2
𝐿𝑇

but 𝜒𝐿𝑇 ≤ min
⎛

⎜

⎜

⎝

1.0; 1

𝜆
2
𝐿𝑇

⎞

⎟

⎟

⎠

(6)

𝛷𝐿𝑇 =
1 + 𝛼𝐿𝑇 ⋅

(

𝜆𝐿𝑇 − 𝜆𝐿𝑇 ,0
)

+ 𝛽𝜆
2
𝐿𝑇

2
(7)

𝜆𝐿𝑇 =

√

𝑀𝑦

𝑀𝑐𝑟
(8)

In the above equations 𝛼LT is the imperfection factor (the value for
different buckling curves is given in Table 1), 𝜆𝐿𝑇 is the relative
slenderness, 𝛽 is the multiplication factor and, 𝜆𝐿𝑇 ,0 is the relative
slenderness limit. In Eq. (8) 𝑀y is the cross-sectional bending moment
resistance as given by Eq. (9) where 𝑏𝑓,𝑒𝑓𝑓 is the effective width.

𝑀𝑦 = 𝑏𝑓,𝑒𝑓𝑓 ⋅ 𝑡𝑓 ⋅ 𝑓𝑦𝑓 ⋅ (ℎ𝑤 + 𝑡𝑓 ) (9)

Not many laboratory experiments on corrugated web girders have
een carried out so far, mostly numerical studies are available in the
nternational literature in this topic. FE analyses have been carried out
y Moon et al. [6,16] and they concluded that the use of buckling curve
(𝛽 = 1.0 and 𝜆𝐿𝑇 ,0 = 0.2) of EN1993-1-1 results in conservative solu-

tions for trapezoidally corrugated web girders. Ibrahim [12] performed
advanced FE analysis on trapezoidally corrugated web girders with
unequal flanges and found that the lateral–torsional buckling curve d
of EN1993-1-1 is applicable using 𝛽 = 0.75 and 𝜆𝐿𝑇 ,0 = 0.4; this is
lso confirmed by Hassanein et al. [17] who numerically studied high-
trength steel girders having unequal flanges. Elkawas et al. [18] also
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Fig. 2. Comparison of the test results and previous proposals with EN1993-1-1 lateral–torsional buckling curves [2,26].
numerically studied high-strength steel trapezoidally corrugated web
girders and found that the lateral–torsional buckling curve a could
be applicable using 𝛽 = 0.75 and 𝜆𝐿𝑇 ,0 = 0.4. This is confirmed by
Shao et al. [19] who numerically investigated the LTB strength of high-
strength steel girders. According to their latest result [20] the buckling
curve 𝑎0 may be applicable for corrugated web girders.

Some experimental studies have been also performed by differ-
nt researchers. Kubo and Watanabe [21] investigated nine trape-
oidally corrugated web girders loaded by three-point-bending, Han-
ebauer [22] and Pimenta et al. [23] investigated three and four
inusoidally corrugated web girders, respectively. In addition, Zhang
t al. [24] tested four sinusoidally corrugated web girders using a can-
ilever arrangement with concentrated load introduction at the end of
he cantilever. In the Structural Laboratory of the Budapest University
f Technology and Economics Department of Structural Engineering an
xtensive experimental research program was performed in 2018 [25].
n the frame of the experimental program eleven large-scale test spec-
mens were investigated by four-point-bending. Six different girder
eometries having different flange sizes and the same corrugation
rofile were examined. The test specimens were all 8.2 m long. Each
pecimen was loaded by pure in-plane bending and the length between
he out-of-plane supports was 6000 mm in each case with limited
arping and rotational restraint at the supports. The primary aim was

o determine the lateral–torsional buckling resistance of the test girders.
he reduction factors (𝜒LT,test) were determined from the test results
nd compared to the lateral–torsional buckling curves of the EN 1993-
-1 (𝛽 = 0.75 and 𝜆𝐿𝑇 ,0 = 0.4) shown in Fig. 2. For the calculation of the
elative slenderness (𝜆LT,proposals) three different analytical proposals for
he elastic critical moment were applied: (i) without any modification
n the torsional or warping constants, (ii) with an additional term in
he torsional constant proposed by Larsson and Persson presented by
q. (5) using the constants of Lindner (𝑐1 = 8 and 𝑐2 = 25) and (iii) with
he constants of Lopes et al. (𝑐1 = 22 and 𝑐2 = 300). Based on the results

the lateral–torsional buckling curve b of EN1993-1-1 was proposed as
lower bound estimate (k and 𝑘w were set to 0.5) for the prediction of the
lateral–torsional buckling resistance of trapezoidally corrugated web
girders together with the elastic critical moment of Lopes et al. [13].

Jáger and Dunai [27] carried out nonlinear analyses to determine
the required equivalent geometric imperfection shape and magnitude
for the determination of the LTB strength of corrugated web girders.
They used experimental test results as the basis of the FEM based design

resistance calibration.

3

3. Numerical model development

3.1. Geometric model, boundary conditions and validation

Based on the laboratory experiments an advanced numerical model
is developed using the finite element software Ansys 19.2 [28]. The
model is verified by checking the appropriateness of the mathematical
and geometrical finitizations and validated by test results. Results of the
model development and validation is detailed in [27]. The numerical
model used in the present paper represents a simply supported beam
subjected by concentrated bending moments at both ends where the
rotation about the vertical axis and warping can be fixed or free (see
Eq. (1)). By these three different boundary conditions can be achieved:
(i) warping and rotation free (𝑘w = 𝑘 = 1.0), (ii) warping fixed
and rotation free (𝑘w = 0.5 and 𝑘 = 1.0 indicating the presence of
strong transverse stiffeners at both ends), and (iii) warping and rotation
fixed (𝑘w = 𝑘 = 0.5). These arrangements are achieved by joining
the end cross-section nodes to one master node and by assigning the
corresponding degrees of freedoms to each coupling. The master node
is located in the center of gravity of the end cross-sections where the
vertical and lateral displacements and the twist about the longitudinal
axis are constrained. The developed model is a full shell model using
four-node thin shell elements (Shell 181) as shown in Fig. 3 with the
finite element mesh, and boundary and loading conditions. The end
moments are introduced by force couples acting on the upper and lower
flanges. The required mesh size obtained in the model verification is
𝑎1∕4, since the mesh size is calculated as the function of the profile
parameter 𝑎1 (Fig. 1), so 𝑎1∕4 would be appropriate, but due to the
accurate modeling of the residual stress pattern, a denser mesh is used
(𝑎1∕8) in the numerical parametric study.

3.2. Material model

For the nonlinear calculations a multilinear material model is used
according to Gardner at al. [29] in case of normal strength steel (NSS);
shown in Fig. 4. This multilinear material model can be defined from
three basic parameters — elastic modulus (E), yield strength (𝑓y), and
tensile strength (𝑓u). In the deterministic analysis only S355 steel grade
is used with steel yield strength of 𝑓y = 355 MPa, tensile strength of
𝑓u = 510 MPa and elastic modulus of 𝐸 = 210 GPa. In the stochastic
analysis high strength steel material is also applied. The effect of the
application of different steel grades is presented in Section 5.3.
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Fig. 3. Finite element model (mesh, boundary and loading conditions).

Fig. 4. Multilinear material model according to Gardner et al. [29].

3.3. Geometrical imperfection — out-of-straightness

In the case of trapezoidally corrugated web girders, the standards
currently do not provide global geometric imperfections, so this issue
requires more careful consideration. Based on previous laboratory ex-
periments of the authors [26], the best fit and safe side equivalent
geometric imperfection magnitudes are obtained to L/1000 and L/750,
respectively [27] using the first global eigenmode shape. The numer-
ical calculations for the twelve specimens, however, show significant
differences. In the current study the equivalent geometric imperfection
is determined by having the same impact as the combination of the
initial out-of-straightness with magnitude of L/1000 (manufacturing
olerance L/1000 in Annex B of EN 1090-2:2018 [1]) and the residual
tresses have. This method gives a lower bound estimate for the LTB
esistance. The results of this imperfection-sensitivity study is presented
n Section 4. In addition, during the nonlinear analysis in Sections 6
nd 7 both the residual stresses and initial out-of-straightness are
onsidered rather than the equivalent geometric imperfection. In this
tudy the first global eigenmode shape is applied as artificial geometric
mperfections shown in Fig. 5.

.4. Residual stresses

The applied residual-stress pattern is shown in Fig. 6 according
o [27]. The tensile stress in the flanges is equal to the yield strength
t the web-to-flange junction (𝑓y), and there is also tensile stress at
he edges of the flange from flame-cutting. The compressive stresses in
he flanges come from welding. The effect of the residual stresses in
4

Fig. 5. Applied imperfection shape.

Fig. 6. The applied residual-stress model [27].

the web is much smaller, and could be negligible, due to the so called
‘‘accordion effect’’ (the web does not work against normal directional
loads) [30,31]. There is just a small area effected by tensile residual
stresses at the web-to-flange connection, followed by a small section of
compressive stresses, and the large part of the web is practically free
of residual stresses due to the accordion effect.

4. Required equivalent geometric imperfection

The advanced analysis requires equivalent geometric imperfection
rather than the separate consideration of initial geometric imperfection
and residual stress, because it is easier to apply in the FEM based design
approach. Five different cross-sections are studied for imperfection-
sensitivity, differing in their flange sizes and corrugation profile. In all
cases the web height of the girders is 520 mm, and the web thickness
is 6 mm. The cross-sections are doubly symmetrical; the five types of
flanges are 140-14, 160-14, 180-14, 220-16 and 250-16 (flange width–
flange thickness given in mm). The same trapezoidal corrugation profile
is investigated for the different cross-sections with the parameters: 𝛼 =
45◦, 𝑎1 = 𝑎2 = 98 mm; the notations are given in Fig. 1. However,
for the 140-14 girders two more different corrugation angles are also
studied: 30◦ and 40◦ (without changing the other parameters). In
overall 6-8 different slenderness are investigated by applying different
span lengths. In the imperfection-sensitivity study the scaled-up first
global buckling eigenmode is applied from linear buckling analysis
(LBA) as artificial geometric imperfection. The required equivalent
geometric imperfection is determined in such a way to have the same
impact on the FEM-based resistance as the initial geometric imperfec-
tion with magnitude of L/1000 combined with the residual stresses
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Fig. 7. Scaling factors on L of the equivalent geometric imperfection magnitudes in the function of the relative slenderness.
s

s

have. The L/1000 is defined by the EN 1090-2 [1] as the largest
tolerated value for member out-of-straightness and the residual stress
pattern is taken from [27], which model has test-based origin. There-
fore, the FEM-based resistances calculated are surly on the safe side.
For each type of girder, the load bearing capacities are determined by
applying different equivalent geometric imperfection magnitudes and
the required equivalent geometric imperfection magnitude is derived
by linear interpolation.

Fig. 7 presents the results of the study where the vertical axis
represents the scaling factor on the span length L and the horizon-
tal axis represents the relative slenderness regarding lateral–torsional
buckling according to Eq. (8). 𝑀𝑐𝑟 is determined by LBA and 𝑀𝑦
is the cross-sectional moment capacity calculated by neglecting the
web contribution and by considering only the Steiner’s terms as a
simplification given by Eq. (9) according to EN 1993-1-5 [32] where
𝑏f ,eff is the effective width according to Jáger et al. [33,34].

Fig. 7 shows curves representing the equivalence of the impact of
equivalent geometric imperfections and initial geometric imperfections
combined with residual stresses. One can see that the trend of the
curves is the same for all cross-sections. It is shown that the wider
the flanges, the smaller is the equivalent geometric imperfection mag-
nitude replacing the effect of residual stresses and out-of-straightness
of L/1000. It is also shown that for relative slenderness less than 0.7
the differences are much smaller between the curves while at larger
relative slenderness the differences are larger. The study also showed
that the change in the corrugation angle had a minor effect; there is no
significant difference between the results.

The results suggest that the equivalent geometric imperfection is
relative slenderness dependent governed by the varying influence of
residual stresses. As a simplification, a constant value of L/350 for
equivalent geometric imperfection magnitude is proposed to be on the
safe side for all geometries and slenderness ranges analyzed.

5. Numerical parametric study

5.1. Effect of the corrugated web layout

The corrugated web periodically varies along the beam length and it
influences the stress distributions in the flanges as well proved by [35–
37]. It is also proved that the boundary conditions and the support and
loading positions compared to the corrugated web have notable effect
on the stress distributions [38]. Therefore, different layouts are studied
presented in Fig. 8. Six different cases are investigated: axially- (a, b,
c, d) or point-symmetrical (e, f) to the midspan having supports at the
inclined or parallel fold. For axially symmetric girders two versions of
these girders are studied as shown by Fig. 8 (a, b and c, d in pairs). The
difference was the direction of imperfection relative to the corrugation.
5

Fig. 8. Studied different corrugated web layouts.

Figs. 9 and 10 show the elastic critical moment and the lateral–
torsional buckling resistance, respectively, as a function of span length
for different layouts. It can be seen that the layout of the web has no
significant influence on either the elastic critical moment or the lateral–
torsional buckling resistance of the girders. In both deterministic and
stochastic study point-symmetrical girders with starting inclined folds
are investigated (e in Fig. 8).

5.2. Effect of boundary conditions

Three types of support conditions are applied in the current para-
metric study:

support #1: fork-type support where the transverse rotation and
warping of the end cross-sections are allowed (𝑘 = 1.0 and
𝑘w = 1.0),

upport #2: fork-type support with rigid transverse stiffeners anchor-
ing the bimoment (𝑘 = 1.0 and 𝑘w = 0.5),

upport #3: transverse rotation and warping are restrained anchoring
both the transverse bending moment and bimoment (𝑘 = 0.5 and

𝑘w = 0.5).
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Fig. 9. Elastic critical moment of girders with different web.
Fig. 10. Lateral–torsional buckling resistance of girders with different web.
5.2.1. Elastic critical moment
The effect of support conditions on the elastic critical moment is

shown in Fig. 11., where the vertical and horizontal axes represent
the elastic critical moment and the span length L, respectively. The
elastic critical moment is calculated in three ways: by linear buckling
analysis and with the proposals of Lindner [4] and Lopes et al. [13].
The results show that always the support #1 condition has the lowest
elastic critical moment, and the support #3 has the highest elastic
critical moment of the girders as it is expected from Eq. (1). It is
to be noted that the larger is the span length, the smaller is the
influence of the warping term. The support #1 and #2 layouts approach
faster and result in the same 𝑀cr for large spans where the torsional
constant fully governs, and the warping term vanishes. In addition, the
differences between the three calculation methods are not spectacular,
so it can be seen that the analytical methods approximate the numerical
calculations well.

Table 2 collects the statistical evaluation of the differences between
the numerical results and analytical proposals. The statistics show
that Lindner’s approximation is quite accurate for support #1. For
the shortest span length, relatively large deviations are found when
practically the failure is governed by the strength of material. It is
confirmed by the LBA results, since the combination of lateral–torsional
and local flange buckling type eigenmode shapes are appeared for short
span.
6

5.2.2. Lateral–torsional buckling resistance
The effect of support conditions on the FEM-based lateral–torsional

buckling resistance is shown in Fig. 12. As expected, support #1 has the
lowest load carrying capacity where the end cross-sections of the girder
are free to rotate and warp, and support #3 has the highest where the
end cross-sections are fixed to rotate and warp. It can be also seen that
by increasing the span length support type #2 tends faster to support
type #1 due to the progressive decreasing influence of the point-like
rigid transverse stiffeners meant to anchor the bimoment.

Fig. 13 shows a typical comparative stress diagram (von Mises
stress) for each boundary condition for short and long spans. Further-
more, a top view figure illustrates the failure mode shape in all three
cases. It can be seen that essentially strength failure occurs for short
girders, and LTB for longer girders.

In Fig. 14 all the results are plotted in the relation of the relative
slenderness and the reduction factor. The reduction factors are obtained
by Eq. (10) where 𝑀b,R is the FEM based lateral–torsional buckling
resistance for L/1000 equivalent geometric imperfection and 𝑀y is the
cross-sectional bending moment resistance according to Eq. (9). It can
be seen that all the points fall on the same curve regardless of the
support conditions with minimal deviations. Therefore, only support
type #1 is applied in further numerical simulations.

𝜒𝐿𝑇 =
𝑀𝑏,𝑅 (10)

𝑀𝑦
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Fig. 11. The effect of support conditions on the elastic critical moment.
Table 2
Comparison of the LBA results and the proposals from literature.

Support #1 Support #2 Support #3

Mcr,FEM/Mcr,Lindner Mcr,FEM/Mcr,Lopes Mcr,FEM/Mcr,Lindner Mcr,FEM/Mcr,Lopes Mcr,FEM/Mcr,Lindner Mcr,FEM/Mcr,Lopes

Average 1016 0,911 1009 1066 0,894 0,945
Std. Dev. 0,021 0,032 0,055 0,034 0,045 0,030
CoV 0,021 0,035 0,054 0,032 0,051 0,032
Min 0,964 0,871 0,924 1000 0,825 0,877
Max 1037 0,961 1085 1109 0,959 0,978
Fig. 12. Effect of supports conditions on the load carrying capacity.
.3. Effect of the steel grade

The use of high-strength steel (HSS - S420 and higher up to S960) in
tructural engineering practice is increasing rapidly due to the advan-
ages of HSS material. For this reason, in addition to the investigation
7

of normal-strength steels (NSS) high-strength steel is also used in this
paper. One girder geometry is studied (140-14 mm flange size, corru-
gation angle is 45◦), the only difference is in the steel material grades,
namely: S235, S275, S355, S460 and S960. The material behavior of
high-strength steel is different from that of normal-strength steel. The



E. Bärnkopf, B. Jáger and B. Kövesdi Thin-Walled Structures 180 (2022) 109880

T
H
K
u
i

6

6

s
a
i
o
f
o
r
t
i
r
f
(
i
a

r
r
d
a
a
t

Fig. 13. The typical failure mode of each boundary condition for short and long span.

most important differences beside the increased strength are in the
ductility and in the hardening phase. For NSS material the Gardner
model is used as mentioned earlier, but in the numerical simulations
of HSS Ramberg–Osgood-type material model is applied, which is a
nonlinear elastic–plastic material model using strain hardening to sim-
ulate the behavior of HSS material accurately. The Ramberg–Osgood
stress–strain curve is shown in Fig. 15.

The applied steel grades, and their properties is summarized in
Table 3.

Throughout this study, the factor n = 14 is used to the Ramberg–
Osgood equation [39]. This factor was determined by different coupon
tests on similar material tests that were available to the authors.

5.3.1. Lateral–torsional buckling resistance
The obtained results regarding the buckling resistance are plotted

in Fig. 16 where the vertical and horizontal axes represent the FEM
 a

8

Table 3
Properties of the steel grades studied, and the material models used for them.

fy [Mpa] fu [Mpa] Material model

S235 235 360 Gardner’s
S275 275 430 Gardner’s
S355 355 510 Gardner’s
S460 460 460 ∗ 1.1 Ramberg–Osgood
S960 960 960 ∗ 1.1 Ramberg–Osgood

based resistance (with L/1000 + residual stresses) and span length,
respectively. It is to be noted that for HSS plates the corresponding
residual stress pattern is applied according to [40]. It can be seen as
the span length increases, the differences in the load bearing capacities
are decreasing. It suggests that for high slenderness the steel grade has
minor effect on the LTB resistance, which shows elastic buckling of the
specimens.

5.3.2. Hybrid girders
Using the combination of two different steel grades two hybrid

girder types are investigated:

(i) the web is made of S235 and the flanges are made of S460,
(ii) the web is made of S355 and the flanges are made of S960.

For comparison the reference girders are made of pure S460 or pure
S960 steel grades. The results show that the differences are less than
2.5%; meaning that the ‘‘accordion effect’’ is valid for hybrid girders as
well when member type buckling governs the failure.

In addition, the results of girders made of pure S355 is compared
with the results of girders made of S355 web and S960 flanges in
Fig. 17. It is shown that for small relative slenderness the hybrid
girders have slightly greater capacity, on the other side for higher
relative slenderness (𝜆LT > 1.0) the capacity curves, however, coincides.

he difference can be explained by the smaller residual stresses in
SS structures. The same tendencies are observed by Somodi and
övesdi [40] in the case of flexural buckling where curve a can be
sed instead of the buckling curve b for HSS columns. This needs further
nvestigations in the future.

. Deterministic analysis with reliability assessment

.1. Nonlinear imperfect analysis

Five different cross-sections are investigated in the deterministic
tudy, differing in their flange dimensions and corrugation profile. In
ll cases, the web height of the girders is 520 mm and the web thickness
s 6 mm. The cross-sections are doubly symmetrical; the five types
f flanges are 140-14, 160-14, 180-14, 220-16, 250-16 (flange width–
lange thickness in mm). For the girders with 140-14 flange, three types
f corrugation profile are tested, the only difference being in the cor-
ugation angle: in addition to the traditional 45◦, 30◦ and 40◦ are also
ested, the other parameters are: 𝑎1 = 𝑎2 = 98 mm; notations are given
n Fig. 1. These girders are studied in 9 to 10 different lengths and the
esults are plotted in relation with the relative slenderness-reduction
actor diagram. The support type #1 is used for the end cross-sections
defined in Section 5.2), the initial geometrical imperfection magnitude
s considered by L/1000 out-of-plane straightness and residual stresses
re also taken into account.

The elastic critical moments are determined by LBA to calculate the
elative slenderness according to Eq. (8). The lateral–torsional buckling
esistances are determined by GMNIA, and the reduction factors are
erived according to Eq. (10). The results of the deterministic study
re compared with EN 1993-1-1 flexural buckling curves (𝑎0, a, b, c, d)
re shown in Fig. 18. It can be seen the calculation results lie between
he flexural torsional buckling curve a and b.

The elastic critical moments and thus the relative slenderness are
lso calculated with the analytical proposals of Lindner and Lopes et al.;
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Fig. 14. Effect of support conditions on the reduction factor.
Table 4
Comparison of the numerical results and proposals using a, b flexural buckling curves and c, d lateral–torsional buckling curves of
EN1993-1-1.

𝜆LT from 𝑀cr,FEM and from 𝑀cr,Lindner 𝜆LT from 𝑀cr,FEM and 𝑀cr,Lopes

𝜒a.FEM/𝜒a.Lindner 𝜒b.FEM/𝜒b.Lindner 𝜒c.FEM/𝜒c.Lindner 𝜒d.FEM/𝜒d.Lindner 𝜒a.FEM/𝜒a.Lopes 𝜒b.FEM/𝜒b.Lopes 𝜒c.FEM/𝜒c.Lopes 𝜒d.FEM/𝜒d.Lopes

Average 1.007 1.006 1.007 1.006 0.994 0.993 0.995 0.995
Std. Dev. 0.011 0.030 0.011 0.010 0.032 0.038 0.029 0.027
CoV. 0.011 0.030 0.010 0.010 0.032 0.038 0.029 0.027
Min. 0.996 0.954 0.995 0.992 0.881 0.905 0.881 0.896
Max. 1.036 1.058 1.038 1.031 1.031 1.056 1.027 1.026
Fig. 15. Ramberg–Osgood stress–strain curve (used for HSS).

esults are shown in Fig. 19. The three different colors of the points in
he figure represent the three different ways of determining the relative
lenderness. Table 4 presents the comparison of the reduction factors
rom the numerically obtained relative slenderness and from a and b

flexural buckling and c and d lateral–torsional curves using the relative
slenderness derived from the elastic critical moments of Lindner and
Lopes et al.

It can be seen that Lindner’s proposal fits the numerical results
slightly better than Lopes’ equation; and Lindner’s proposal results
in slightly higher resistances. There are negligible differences in the
average of the ratio of the corresponding reduction factors, in both
9

cases (less than 1%), but the differences in standard deviation are larger
for Lopes’ proposal. The results show that Lindner’s proposal is more on
the safe side.

6.2. Partial factor 𝛾M1 determination

In the statistical evaluation the results are compared with the
lateral–torsional buckling curves c and d (𝛽 = 0.75 and 𝜆LT,0 = 0.4)
and with the flexural buckling curves a and b of EN1993-1-1 [2]. A
comparison of the four curves with the LBA and GMNIA results is shown
in Fig. 20.

Using statistical evaluation, the safety levels of the proposed buck-
ling curves are determined in order to obtain the required partial safety
factor (𝛾M1). The calculation of the necessary statistical parameters is
executed based on the prescriptions of the EN 1990 Annex D [3]. The
applied method is summarized in Eqs. (11)–(22). The expected value of
the correction factor (b) can be calculated by comparing the FEM based
resistances (𝑟e,i) and the theoretical values (𝑟t,i). It may be estimated by
the least squares’ method according to Eq. (11).

𝑏 =
∑

𝑟𝑒,𝑖 ⋅ 𝑟𝑡,𝑖
∑

𝑟2𝑡,𝑖
(11)

The error term can be calculated for each numerical calculation by
Eq. (12).

𝛿𝑖 =
𝑟𝑒,𝑖

𝑏 ⋅ 𝑟𝑡,𝑖
(12)

The coefficient of variation of the error term (𝑉𝛿) can be estimated by
Eqs. (13)–(16) where n is the number of the sample.

𝑉𝛿 =
√

e(𝑠
2
𝛥) − 1 (13)

𝑠2𝛥 = 1
𝑛
∑

(𝛥𝑖 − 𝛥)2 (14)

𝑛 − 1 𝑖=1
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Fig. 16. Effect of the steel grade on LTB resistance.
Fig. 17. Comparison of the results of the pure S355 and the S960–S355 hybrid girders with the buckling curves of EN1993-1-1 [2].
Fig. 18. Comparison of the LBA and GMNIA results of the deterministic analysis with EN 1993-1-1 flexural buckling curves.
E
v

𝛥 = 1
𝑛

𝑛
∑

𝑖=1
𝛥𝑖 (15)

𝛥 = ln(𝛿 ) (16)
𝑖 𝑖 e

10
N 1990 Annex D also specifies how to determine the characteristic
alue of the resistance from the test results. If a large number of
xperimental results are available Eqs. (17)–(18) can be applied where
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Fig. 19. Comparison of the results of the deterministic analysis with EN 1993-1-1 flexural buckling curves. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
Fig. 20. The results of the deterministic analysis and the flexural buckling curves a, b and lateral–torsional buckling curves c, d of EN1993-1-1.
f

rt(𝑋m) is the theoretical resistance calculated from the resistance
unction, 𝑘∞ = 1.64 is the characteristic value defined as the lower
% quantile of the experimental resistances, since 𝜙(1.64) = 1/19.8 =
.05%; namely one out of 20 structural elements can have a resistance
ower than the characteristic resistance.

𝑘 = 𝑏 ⋅ 𝑔𝑟𝑡(𝑋𝑚) exp(−𝑘∞ ⋅𝑄 − 0.5 ⋅𝑄2) (17)

Q =
√

ln(V2
r + 1) (18)

The coefficient of variation 𝑉r is composed of 𝑉𝛿 and 𝑉xi, if they are
small and can be calculated by Eq. (19).

𝑉 2
𝑟 = (𝑉 2

𝛿 + 1) ⋅

[ 𝑛
∏

𝑗=1

(

𝑉 2
𝑋𝑖 + 1

)

]

− 1 (19)

The coefficients of variation of design variables can only be calculated
from experimental results if the test population is fully representative
of the variations that occur. In reality, they can be taken from previous
 c

11
research results as prior data. Based on the recommendations of JCSS
(Joint Committee on Structural Safety) [41] for the plate thickness
𝑉𝑡 = 0.05 and for the plate width 𝑉𝑏 = 0.005 are applied. The partial
factor determination can be done by Eqs. (20)–(22) where 𝑄fy = 0.07
is considered according to JCSS [41].

𝛾∗𝑀 = 𝛥𝑘 ⋅ 𝛾𝑀 (20)

𝛾𝑀 =
𝑟𝑘
𝑟𝑑

= exp(1.4 ⋅𝑄) (21)

𝛥𝑘 =
exp(−2𝑄𝑓𝑦 − 0.5𝑄2

𝑓𝑦)

𝑏 ⋅ exp(−𝑘∞𝑄 − 0.5𝑄2)
= 0.867

𝑏 ⋅ exp(−1.64 ⋅𝑄 − 0.5 ⋅𝑄2)
(22)

The resulting 𝛾M1 partial factors are summarized in Table 5. The
smallest 𝛾M1 partial factor belongs to the flexural buckling curve b, but
or each investigated flexural buckling and lateral–torsional buckling
urves the values are in between 1.0 and 1.1.
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Fig. 21. Equivalent geometrical imperfections required to recover the load capacity values corresponding to the standard buckling curves a and b and lateral–torsional buckling
curves c and d as a function of relative slenderness and their approximation functions. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Table 5
Partial factors 𝛾M1 obtained from the deterministic nonlinear analysis.

𝛾M1

a flexural buckling curve 1.05619
b flexural buckling curve 1.01618
c lateral–torsional buckling curve 1.05622
d lateral–torsional buckling curve 1.07525

6.3. Required equivalent geometrical imperfections for each buckling curves

The results of the deterministic nonlinear analysis are used to deter-
mine the required relative slenderness dependent equivalent geometric
imperfection magnitudes to recover the FEM-based resistance assigned
to the flexural and lateral–torsional buckling curves of the EN1993-1-1.
Three girder geometries are studied where the flange sizes are 140-
14 mm (girder 1) and 160-14 mm (girder 2), the corrugation angles
are set to 𝛼 = 30◦ (angle a) and 𝛼 = 45◦ (angle b), and the web fold
engths are set 𝑎1 = 𝑎2 = 98 mm. Within the numerical parametric study,
he magnitude of the equivalent geometric imperfection is changed
nd the buckling resistance is determined. To each analyzed girder ge-
metry the necessary equivalent geometric imperfection magnitude is
etermined to get equivalent buckling resistance obtained by buckling
urves of the EN 1993-1-1 [2]. Results of the parametric study is shown
n Fig. 21. The horizontal axis presents the relative slenderness of the
irders and the vertical axis shows the necessary equivalent geometric
mperfection magnitude.

In the investigated parameter domain the results prove that there
re no significant differences coming from the geometric variation. In
ig. 21 the results are plotted with four different colors according to
he four different buckling curves. It can be seen that three curves
ith the same color show a good agreement. For the four buckling

urves four approximate functions are plotted which depend only on
he relative slenderness. Table 6 gives these functions represented
12
Table 6
Relative slenderness dependent required equivalent geometric imperfection magnitudes
assigned to buckling curves.

Buckling curve Scaling factors for equivalent geometric
imperfection magnitude [L/. . . ]

a flexural 480 −
(

𝜆𝐿𝑇 + 0.85
)5.5

b flexural 300 −
(

𝜆𝐿𝑇 + 0.95
)4.8

c lateral–torsional 360 +
(

𝜆𝐿𝑇 + 1
)5.4

d lateral–torsional 200 + 22
𝜆𝐿𝑇

2

by the dashed lines in Fig. 21. In other words, by these functions
the equivalent geometric imperfection magnitudes – using the global
buckling eigenmodes – can be determined in order to reproduce FEM-
based resistance results which lie on the given buckling curve with a
small scatter.

7. Stochastic analysis with reliability assessment

Stochastic numerical analysis is executed for trapezoidally corru-
gated web girders. Numerous Monte Carlo simulations are executed,
and the lower 5% quantile value of the FEM-based lateral–torsional
buckling resistance is determined in relation with the relative slen-
derness. In stochastic numerical analysis, three different girders are
investigated: (i) the basic case when the girder has 140-14 mm flanges
and corrugation angle of 𝛼 = 45◦, (ii) a different cross-section (160-
14 mm flange, 𝛼 = 45◦) and (iii) a different corrugation angle (160-
14 mm flange, 𝛼 = 30◦). The other parameters of corrugation profile
do not change: 𝑎1 = 𝑎2 = 98 mm, 𝑎3 = 𝑎4 = 69 mm. The steel grade
of S355 is applied in each simulation. Six different relative slenderness
cases of each girder geometries are performed and in overall 3 × 6 × 30
= 540 independent Monte Carlo simulations are carried out.
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Table 7
Properties of the probabilistic variables.

Variable Distribution type Mean value CoV

Yield strength 𝑓y Lognormal Nominal/0.8892 0.07
Web height ℎw Normal Nominal 0.005
Web thickness 𝑡w Normal Nominal 0.05
Flange width 𝑏f Normal Nominal 0.005
Flange thickness 𝑡f Normal Nominal 0.05

7.1. Variables of the probabilistic analysis

In the stochastic analysis five parameters are treated as probabilistic
variable with a certain distribution type, mean value and coefficient of
variation summarized in Table 7. Normal distribution is defined for the
geometrical parameters according to the recommendation of JCSS [41].
Based on this recommendation the coefficient of variation (CoV) is set
equal to 𝑉t = 0.05 for each thickness and 𝜈b = 0.005 for each plate width.
The mean value is assumed to be equal by the nominal value for the
geometrical parameters. According to JCSS [41] the distribution of the
yield strength has lognormal distribution with a coefficient of variation
of 𝑉fy = 0.07. According to EN 1993-1-1 [2] the nominal value of a steel
grade should be treated as the characteristic value of the yield strength.
According to EN 1990 [3] the characteristic value should be defined as
the 5% quantile value. In case of lognormal distribution and 𝑉fy = 0.07
the 5% quantile equals to 0.8892 (1–1.583 × 0.07) times the mean
value. Therefore, the mean value is calculated from the nominal value
of the steel grade according to Eq. (23). In the stochastic numerical
analysis, the geometrical imperfection magnitude is not a probabilistic
variable, it is always set to L/1000; it is also valid for the residual stress
pattern.

𝑓𝑦,𝑚 =
𝑓𝑦,𝑛𝑜𝑚
0.8892

(23)

.2. Details of the stochastic numerical analysis

In the stochastic analysis the Latin Hypercube Sampling (LHS) is
sed which has the special feature of selecting values at the limits of
he distribution with low probability. This is of great importance in this
ase, since the objective is to determine the characteristic resistance to
13
urning out for which the lower 5% quantile must be determined. It
s also advantageous that the LHS avoids clustering of selected values
uring random generation whereas in the conventional Monte Carlo
ethod it is often the case for small samples that points are clustered

lose together in some ranges while other ranges remain empty.
The number of samples (n) required for a Monte Carlo simulation

epends on the probability sought. For the evaluation of low probabil-
ty ranges if P is the probability sought, a minimum sample size of n
rom 30/P to 100/P is needed for a reliable result. For the characteristic
esistance (P = 5%) n ≈ 600–2000 specimens should be tested. It is
dvisable to reduce the number of samples. This is possible with the
esponse surface method where a response surface is fitted to the Monte
arlo simulation results using different regression models. The runs
se a quadratic (second order) regression model according to Eq. (24)
here x is the vector of the variables, A is the quadratic coefficient
atrix, k is the linear coefficient matrix and m is a constant.

𝑒𝑠𝑝𝑆𝑢𝑟𝑓 = 𝑥 ⋅ 𝐴 ⋅ 𝑥𝑇 + 𝑘 ⋅ 𝑥𝑇 + 𝑚 (24)

The number of probability variables determines how many samples
are needed in the Monte Carlo simulation to fit the response surface
correctly. In the stochastic analysis five probability variables are used
in which there are 21 coefficients in the second-degree polynomial, and
a minimum of 27 samples (points) are needed to produce [28].

When running a new Monte Carlo simulation on the matched re-
sponse surface, the load capacities are not determined by new runs, but
by using the approximation function created for the response surfaces
which made the calculation of the results much faster. Thus, in the first
step 𝑛1 = 27 (or more) and in the second step 𝑛2 = 100000 buckling
resistances are obtained, giving the sample number needed for the
evaluation.

7.3. Results of the stochastic nonlinear analysis

From the executed 540 independent Monte Carlo simulations one
is chosen to present the applied evaluation method and the obtained
results in a detailed manner. Fig. 22 shows how the average of the
load capacities varies during the execution of 𝑛1 = 30 experiments.
It is clear from the graph that the 27 samples required are sufficient
for further calculations, as the curve flattens out and the average is
practically unchanged for the last 10 experiments.
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Fig. 23. Histogram of the resulting lateral–torsional buckling resistance.

In Fig. 23 the histogram of the load capacities determined in the
onte Carlo simulation shows that the final results follow an approxi-
ately normal distribution.

Fig. 24 shows the results of the first 30 Monte Carlo simulations
nd the 100 000 values obtain by the response surface method as a
unction of the yield strength. A linear trend line can be fitted to the
esulting load capacities and the two figures illustrate the effectiveness
f the response surface method. The same diagrams for each probability
ariable are retrieved in the program.

This calculation has been performed for several slenderness, and for
ach of them the average value of the load capacities and the char-
cteristic value have been determined. Fig. 25 shows the results with
he flexural and lateral–torsional buckling curves of the standard for
omparison. It can be seen that the curve obtained for the characteristic
alues is consistently above the flexural buckling curve b and the curve
or the mean values is significantly above the flexural buckling curve
.

In the statistical evaluation the results are compared with the b
lexural buckling curve of EN1993-1-1 which fits the best. The partial
afety factor (𝛾M1) is determined as previously presented in the case
f the deterministic analysis according to Eqs. (11)–(22). There are
wo ways to determine 𝛾M1 partial safety factor. First, if the ratio of
ean value of lower 5% quantile value and the standard deviation

s determined for each slenderness, and then average coefficient of
ariation is calculated; by this 𝛾M1 is obtained to 0.981. Second, if
he 𝛾M1 is determined for each slenderness and then the average 𝛾M1
s determined; by this 𝛾 is obtained to 0.963. It can be seen that
M1

14
the flexural buckling curve b of EN1993-1-1 can be used safely using
𝛾M1 = 1.0 with imperfections given in Section 3.

8. Conclusions

In the present paper a numerical parametric study is performed by
deterministic and stochastic nonlinear imperfect analyses to determine
the required equivalent geometrical imperfection and the required
buckling curve of EN1993-1-1 for the design of trapezoidally corru-
gated web girders for lateral torsional buckling. Based on the numerical
study the following conclusions are drawn:

• Global eigenmode shape is applied as artificial geometric im-
perfections. The required equivalent geometric imperfection is
determined in such a way to have the same impact on the
FEM based resistance as the initial geometric imperfection with
magnitude of L/1000 combined with the residual stresses have. A
simplified lower bound value of L/350 for equivalent geometric
imperfection magnitude is proposed.

• The required equivalent geometric imperfection magnitude is
determined for four buckling curves in relation with relative
slenderness.

• The corrugated web layout has practically no effect on the elas-
tic critical moment and lateral–torsional buckling resistance for
corrugation angles larger than 30◦.

• Three different boundary conditions are studied according to the
warping and transverse rotation capabilities of the end cross-
sections. It is revealed that the proposal of Lindner and Lopes
et al. fit well for the elastic critical moment. In addition, the
boundary condition has no effect on the buckling resistance.

• Pure normal-strength (NSS), pure high-strength steels (HSS) and
hybrid girders are studied. The results show that the flanges
govern the LTB resistance of the girders. The use of HSS is
advantages for short, unbraced spans while for longer spans the
extra material strength vanishes since the buckling governs the
failure. In addition, in the inelastic range of the buckling curve
the HSS flanges result in slightly greater reduction factors than
the NSS flanges having the same relative slenderness.

• The deterministic analysis combined with reliability assessment
results show that the flexural buckling curve b could be applicable
with partial safety factor 𝛾M1 = 1.0.

• The stochastic analysis combined with reliability assessment re-
sults confirmed the results obtained from the deterministic anal-
ysis.
Fig. 24. Yield strength–lateral–torsional buckling resistance diagram from the 30 Monte Carlo simulation (left) and from the response surface method (right).
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Fig. 25. Comparison of the stochastic analysis results with the buckling curves of EN1993-1-1.
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