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ABSTRACT Tensor-based estimation has been of particular interest of the scientific community for several
years now. While showing promising results on system estimation and other tasks, one big downside is
the tremendous amount of computational power and memory required – especially during training – to
achieve satisfactory performance. We present a novel framework for different classes of nonlinear systems,
that allows to significantly reduce the complexity by introducing a least-mean-squares block before, after,
or between tensors to reduce the necessary dimensions and rank required to model a given system. Our
simulations show promising results that outperform traditional tensormodels, and achieve equal performance
to comparable algorithms for all problems considered while requiring significantly less operations per time
step than either of the state-of-the-art architectures.

INDEX TERMS Tensor decomposition, LMS, machine learning, low rank approximation.

I. INTRODUCTION
In recent years, machine learning (ML) gained in popularity
among the scientific and industrial as well as the signal
processing communities. Although ML is usually associ-
ated with deep learning (DL) and neural networks (NN) [1]
and is among the more broadly used techniques in signal
processing and other fields [2]–[6], this term covers many
other techniques such as random forests [7], [8], support
vector machines [9]–[11], kernel adaptive filters [12]–[14]
and tensor-based learning (see e.g. [15]). The latter is often
disregarded for the comparably big amount of memory and
computational power needed to approximate a nonlinear sys-
tem, although this approach can achieve on-par performance
with all other mentioned techniques [16], [17].

Despite of their high computational complexity, tensors
are becoming a more and more popular tool for the signal
processing society. Applications in this domain include sys-
tem identification [18]–[20], channel identification [21], [22],
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separation of speech signals [23], emitter localization for
radar, communication applications and passive sensing [24],
[25]. Of course, tensors are also used in more classical ML
tasks such as face recognition, mining musical scores and
detecting cliques in social networks [15], [26], [27].

However, a big downside for many in this domain is, that
tensors not only require a vast amount of memory in order
to yield an appropriate estimate, but the training of such an
estimator is usually also a rather complex task with current
approaches. One way to mitigate these problems are tensor
trains (TTs) [28], which aim to reduce the necessary size
of a tensor by splitting it into multiple – smaller – tensors
which are cascaded one after another, in an attempt to make
the overall system less complex and less memory intensive.
Further, [29], [30], developed an (extended) Kalman filter
which makes use of tensors in order to enhance performance
and keep the rank of the used tensor low. Recently, [31]
developed a combination of TTs and B-splines to, again,
keep the complexity of the tensors low while also leveraging
the advantages of B-splines for their system identification
task.
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A well known approach is to split systems up in their
linear and nonlinear parts (if model knowledge is available),
so called Wiener and Hammerstein model [32] or combi-
nations thereof. Scarpiniti et.al. [33] used this approach to
train spline adaptive filters (SAFs) to identify the system at
hand with rather high success. We introduce a similar concept
that uses a cascade of tensors and linear filters, which are
adapted using a least mean squares (LMS) type algorithm
to approximate an unknown system. In this paper, we derive
the necessary update equations for all subsystems and show
that systems that can be described by a combination of lin-
ear and nonlinear parts can be modeled effectively by our
methods. Besides surpassing a pure tensor-only approach in
all considered simulation examples, our approach reduces the
necessary rank and dimensionality of the involved tensors by
up to a percentile of the tensor-only approach. This results
in incredibly low-complex models with exceptional perfor-
mance as will be seen in the remainder of this paper. A further
advantage of the proposed method is, that the memory of lin-
ear parts of the system can be put into the linear estimator(s)
and therefore do not need to be included in the tensor part of
the estimator. This can greatly reduce the necessary size of the
tensor and therefore yields a lowmemory and low complexity
estimator.

This paper is structured as follows Section II reviews state-
of-the-art tensor algorithms and methods as well as out-
lines the overall problem. Section III introduces the novel
approaches, while in Section IV we make a stability analysis
via normalizing the proposed methods. Section V derives
the complexity of all considered algorithms. Section VI
shows simulation results for all considered algorithms, and
Section VII concludes this paper.

II. PROBLEM DESCRIPTION
A. PRELIMINARIES AND NOTATION
There are different meanings of the term tensor. In this paper,
we adhere to the widely adopted meaning as in [16], [17]
that a tensor may be represented as an M -dimensional array,
indexed by i1, i2, i3, . . . , iM .We denote a tensor byX .We use
the notation },~,� to refer to the outer (tensor) product,
Hadamard product and Khatri-Rao product, respectively.

A pure (also called rank-1) tensor Ẋ of orderM (also called
M -way tensor), is the outer product of a collection of M
vectors âm ∈ RIm×1, ∀m ∈ {1, . . . ,M}

Ẋ = â1 } · · ·} âM (1)

which can also be written as

Ẋ (i1, i2, . . . , iM ) = â1(i1) · · · âM (iM ) =
M∏
m=1

Am(im, 1) (2)

where âm(im) = Am(im, 1).
Any M -way tensor X with a higher rank than one can be

decomposed into a sum of rank-1 tensors

X =
R∑
r=1

Ẋ (r)
=

R∑
r=1

â(r)1 } · · ·} â(r)M ⇐⇒ (3)

FIGURE 1. An overview of the general problem of adaptive system
identification.

X (i1, i2, . . . , iM ) =
R∑
r=1

M∏
m=1

Am(im, r) (4)

where Am = [â(1)m , . . . , â
(R)
m ] and Am ∈ RIm×R. This notation

allows to rewrite the decomposition with M matrices Am
for 1 ≤ m ≤ M . If the number of rank-1 components is
minimal, then the decomposition is called canonical polyadic
decomposition (CPD) and the tensor rank is defined as this
number R. A CPD, also called a tensor rank decomposition,
can be considered as a generalization of the matrix singular
value decomposition.
We introduce some common notation as in [16], [17].

Let m′ be an arbitrary but fixed number m′ ∈ {1, . . . ,M}.
Initially, we introduce flattening the tensor into a matrix. This
reshaping is also called matricization or unfolding. A tensor
can be flattened along all the coordinates. We denote the
resulting matrix by Y(m′), where the index (m′) indicates
on how the tensor is flattened. For example, in the three-
dimensional case a cube can be cut horizontally, in front
slabs, or sideways. In general stacking the resulting matri-
ces leads to reshaping the tensor into a matrix Y(m′) ∈

RI1···Im′−1,Im′+1···IM×I
′
m . Moreover, we denote the Khatri-Rao

product over all matrices Am with m 6= m′ as

�m6=m′Am := AM � · · · � Am′+1 � Am′−1 � · · · � A1 (5)

and, equivalently, the Hadamard product as ~m6=m′Am.
We employ the short notation

Qm′ := �m6=m′Am. (6)

B. PROBLEM STATEMENT
The general setup is depicted in Figure 1, where the aim is
to approximate an unknown system with an adaptive filter
by utilizing the same input signal xn and only observing
the output yn. Naturally, the ideal output of the unknown
system dn is subject to noise ηn to yield the overall output
yn = dn + ηn. Besides updating the approximation of the
system with each observed sample (i.e. one optimization step
per time-step), the adaptive filter further assumes that the
unknown system itself may not remain static over time, hence
adaptation can never be turned off. Generally, the goal is to
drive the error en = yn − ŷn as close to zero as possible.
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However, due to the additive noise this, of course, can never
truly equal zero.

In the past, this task was mainly achieved by trying to
model the system as good as possible and adapting the param-
eters of the estimator accordingly, e.g. for a strictly linear
system, the LMS algorithm may yield good adaptive approx-
imations of the unknown system. However, if we assume
minimal model knowledge and that the system also contains
nonlinearities, traditional approaches quickly fall apart. One
solution to this issue are data-based algorithms, i.e. algo-
rithms that approximate a given system solely by observing
the input and output data. One of such algorithms is tensor
completion, which we expand and simplify in the remainder
of this paper.

C. EXISTING ALGORITHMS
State-of-the-art algorithms for learning a tensor decomposi-
tion to approximate a given system include stochastic gra-
dient descent (SGD) and alternating least squares (ALS),
among others. In this subsection, we describe these algo-
rithms.

1) ALTERNATING LEAST SQUARES ALGORITHM
Adopting a least squares criterion as in [16], [17], we get the
following problem formulation

Am′,n+1 = argmin
Am′

∥∥∥Y(m′) − (�m6=m′Am,n)AT
m′

∥∥∥2
F

(7)

where Y is a tensor containing the corresponding data points,
where Y(m′) is the m′ matricization of the tensor Y , where
n denotes the iteration index and where ‖·‖F denotes the
Frobenius norm. The minimization of the norm above leads
to

a(im′ )m′,n+1 =

(
QT
m′,nQm′,n

)−1
QT
m′,ny

(im′ )
m′

∀m′ ∈ {1, . . . ,M} (8)

where
(
a(im′ )m′,n+1

)T
is the im′ -th row of the matrix Am′,n+1

at iteration n + 1 and y(im′ )m′ = Y(m′)(:, im′ ). This algorithm
iteratively adapts the matrix Am′ ,∀m′ ∈ {1, . . . ,M}. The
update (8) is repeated until convergence.

2) STOCHASTIC GRADIENT DESCENT ALGORITHM
For the stochastic gradient descent algorithm [17], we inves-
tigate minimizing the following cost function

JSGD =

(
Y(i1, i2, . . . , iM )−

R∑
r=1

M∏
m=1

Am(im, r)

)2

=: e2.

(9)

In order to solve the minimization problem, we calculate
the derivative

∂JSGD
∂Am′ (im′ , :)

= −2e
(
~m6=m′Am(im, :)

)
. (10)

With this derivative, we get the following update
formulation

Am′,n+1(im′,n+1, :)

= Am′,n(im′,n, :)− µ
(

∂JSGD
∂Am′ (im′ , :)

)T

(11)

where µ is the step size. For this algorithm we randomly
picked a data point Y(i1, i2, . . . , iM ) from the available ones
and only take the gradient step for those model parameters
that have an effect on Y(i1, i2, . . . , iM ).

III. PROPOSED ALGORITHM
While some of the algorithms for tensor decomposition are
less complex than others, all of them have in common, that
they only train a single tensor with the goal to approximate
a given system model as good as possible with this setup.
Consequently, if this system depends on a lot of past samples
or has a high dimensional input, the resulting tensor requires
high dimensions as well. This, coupled with a high number
of discretization points and a high rank approximation of the
tensor by matrices, can yield to a very high memory footprint
of the resulting estimator. Furthermore, such an architecture
would require a significant amount of complexity for updat-
ing the estimator in case of a time-variant system. Another
alternative are TTs, which basically entail plugging several
tensors together in the hope of reducing complexity compared
to the tensor-only case. As we shall see, for certain cases
this approach can be computationally demanding. However,
if some knowledge about the system is available, one might
be able to significantly reduce the computational demands
compared to TTs and tensor only approaches.

In the following section, we incorporate such knowledge.
On the one hand we can reduce both rank and dimensionality
of the resulting tensors. On the other hand we can incorporate
some memory in the nonlinear part, whereas this does not
work reasonable for the splines, therefore, we can reach
more degrees of freedom. In this paper, we investigate four
major models, which are of great significance in the signal
processing community: the Hammerstein model, the Wiener
model and two Sandwich approaches. In Figure 2 the different
cases are shown, which represent the ’’Unknown System’’
box in Figure 1. The linearities are always treated with a
simple LMS while the nonlinearities are treated with the
tensors. We start by describing the discretization of the tensor
input.

A. DISCRETIZATION
Before describing the proposedmethod in detail, an important
part to consider is that either the input signal xn or the output
of the LMS zn serves as input to the tensor (depending on the
architecture used). Naturally, both signals are discrete as we
are considering digital signal processing. However, the pre-
cision of this discretization might be too high for the tensor
we would like to approximate. Therefore, either signal has to
pass a separate discretization step, that limits the values of
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FIGURE 2. Considered system models for (a) the Hammerstein case, (b) the Wiener case, (c) a nonlinearity between two linear filters, and (d) a linear
filter between two nonlinearities.

FIGURE 3. Discretization of the input signal of the tensor. The input signal
xn is mapped onto NBins equal intervals to yield the output signal
disc (xn). The red line shows discretization with an ideal, infinitely fine
grid, and 1x denotes the discretization interval size.

the signal to NBins values. This is done by dividing the range
between the expected maximum and minimum values of the
input values in even intervals (see Fig. 3). If the maximum
and/or minimum values are unknown, then a certain cut-off
point can be defined. Mathematically this discretization step
is given by the function disc(·)

disc(xn) =
⌊ xn
1x

⌋
+
NBins

2
(12)

if NBins is even and where 1x is the discretization interval.
This additional step allows to further reduce the size of the

resulting approximation matrices An by reducing the number
of discretization points as much as the required performance
allows.

B. TENSOR-LMS (TLMS)
In this section, we combine the tensor with the LMS algo-
rithm, as shown in Fig. 4a. The joint cost function consists of
the LMS cost function with the tensor output plugged in as
the LMS input

JTLMS =

yn − P∑
p=1

wn,pzn−p+1

2

=

yn − P∑
p=1

wn,p
R∑
r=1

M∏
m=1

Am,n−p+1(im,n−p+1, r)

2

=: e2n (13)

where

zn =

 zn
...

zn−P+1



=


∑R

r=1

∏M

m=1
Am,n(im,n, r)
...∑R

r=1

∏M

m=1
Am,n−P+1(im,n−P+1, r)

 (14)

and where yn is the desired LMS output. To derive an update
for the coefficients Am′ we approximate the gradient of the
cost function as

GTLMS,m′,n :=
∂JTLMS

∂zn

∂ z̃n
∂AT

m′
(15)

with

zn =
R∑
r=1

M∏
m=1

Am,n(im,n, r) (16)

≈

R∑
r=1

Am′ (im′,n, r)
M∏
m=1
m6=m′

Am,n(im,n, r) =: z̃n. (17)

Note it is important to rewrite an approximation z̃n of
zn, where in Am′,n the time is omitted, so one can take the
derivative with respect to Am′ , this approach can also be seen
in [34].
The first and second term of (15) individually coincidewith

the terms of standard least mean squares (LMS) updates and
SGD in (11) respectively. Taking the derivative of the total
cost function JTLMS with respect to one entire matrix Am′

is like described above taking the outer derivative multiplied
with the inner derivative

GTLMS,m′,n = −2 enSm′,n (18)

with

Sm′,n :=
P∑
p=1

wn,p

 0im′,n−p+1−1×R
~m6=m′Am,n−p+1(im,n−p+1, :)

0Im′−im′,n−p+1×R

 , (19)

where 0im′,n−p+1−1×R ∈ Rim′,n−p+1−1×R denotes a matrix with
all elements being zero. Therefore, the update for the tensor
is given by

Am′,n+1 = Am′,n + 2µ2 enSm′,n. (20)
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FIGURE 4. The proposed architecture for the (a) tensor-LMS case, and (b) LMS-tensor case, the sandwich approaches are a
suitable combination of both architectures. The TDL blocks denote a tapped delay line.

The tensor-LMS method described in this subsection is
summarized in Algorithm 1. Note that the m-th element of
a vector in is indicated by im,n. The function tdl(·) denotes the
tapped delay line (TDL) of the vector xn−1 and the sample xn

tdl(xn, xn−1) = [xn, xTn−1(1 : P−1)]
T, xn ∈ RP. (21)

C. LMS-TENSOR (LMST)
To model a linear term followed by a nonlinearity we also
propose an LMS-tensor architecture, see Fig. 4b, which is
derived in the following. While the update of the matrices
defining the tensor are the same as in (11), the update equation
for the LMS filter before the tensor becomes a little more
complex than in the previous tensor-LMS configuration.
To derive the update equation, we define the cost function

JLMST =

(
yn −

R∑
r=1

M∏
m=1

Am,n(im,n, r)

)2

=: e2n. (22)

By applying the chain rule we get (assuming the LMS
output to be denoted by z)

∂JLMST

∂wn
=

M∑
m′=1

∂JTen
∂Am′,n(im′,n, :)

∂Am′,n(im′,n, :)
∂im′,n

×
∂im′,n

∂zn−m′+1

∂zn−m′+1
∂wn

, (23)

where the sum over all m′ = 1, . . . ,M occurs because of the
product rule and im′,n is the m′-th entry in the TDL before the
tensor at time step n in Fig. 4b. The first and last terms of this

equation are straightforward to calculate and are given by

∂JLMST

∂Am′,n(im′,n, :)
= −2en

(
~m6=m′Am,n(im,n, :)

)︸ ︷︷ ︸
=:um′,n

(24)

and

∂zn−m′+1
∂wn

= xTn−m′+1, (25)

where xn is the input of the LMS. The second and third
terms in (23) require approximations. The derivative of the
index i with respect to z can be approximated by the slope
of the (ideal) discretization curve and is the same for all im′,n
(cf. Fig. 3) in the form of

∂im′,n
∂zn−m′+1

≈
NBins

zin,max − zin,min
=

1
1z
, (26)

where NBins is the number of discretization intervals, and
zin,max as well as zin,min correspond to the maximum and min-
imum value of the input signal, respectively. If the maximum
and minimum values are not known, a cut-off point can be
defined for either border. Finally, the second term in (23) can
be approximated using discrete calculus to yield

∂Am′,n(im′,n, :)
∂im′,n

≈ δAT
m′,n

:=


Am′,n(im′,n + 1, :)− Am′,n(im′,n, :) im′,n = 1
Am′,n(im′,n, :)− Am′,n(im′,n − 1, :) im′,n = Im
1
2

(
Am′,n(im′,n + 1, :)− Am′,n(im′,n − 1, :)

)
else.

(27)

139032 VOLUME 9, 2021



C. Auer et al.: Adaptive System Identification via Low-Rank Tensor Decomposition

Algorithm 1 The Tensor-LMS Algorithm
1: function TLMS(x1,...,N , y1,...,N )
2: Initialization w1 := 0, i0 := 0, z0 := 0,Am,1 := randn(Im,R)
3: for n = 1 : N do
4: in = tdl(disc(xn), in−1)
5: zn =

∑R
r=1

∏M
m=1Am,n(im,n, r)

6: zn = tdl(zn, zn−1)
7: ŷn = wT

n zn
8: en = yn − ŷn
9: wn+1 = wn + µ1 enzn

10: Sm′,n =
∑P

p=1 wn,p

 0im′,n−p+1−1×R
~m6=m′Am,n−p+1(im,n−p+1, :)

0Im′−im′,n−p+1×R

 ∀m′ ∈ {1, . . . ,M}

11: Am′,n+1 = Am′,n + 2µ2 enSm′,n
12: end for
13: return ŷ1,...,N
14: end function

Even though both terms are approximations, simulations
will show that these approximations are sufficient for the
LMS update and yield good performance. Lastly, it is worth
mentioning, that the approximation in (27) requires the
matrix A to be smooth as discrete calculus would not work
otherwise.

Therefore, the full update equation for the LMS part of this
configuration is given by

wn+1 = wn + 2µ1en
1
1z

M∑
m′=1

xn−m′+1δAT
m′,nu

T
m′,n. (28)

The LMS-tensor method described in this subsection is
summarized in Algorithm 2.

D. SANDWICH APPROACHES
Lastly, the two previous approaches can be combined to yield
either an estimator with a linearity between to nonlinearities
or the other way around. Of course, any combination thereof
is possible and the update equations just need to be put
together according to the simple versions derived above.

1) LMS-TENSOR-LMS (LMSTLMS)
In the case of two linearities enclosing a nonlinearity an
LMS-tensor-LMS (LMSTLMS) system can be used for the
estimation. Therefore, we define the cost function

JLMSTLMS =

yn − P(2)∑
p2=1

w(2)
n,p2z

(2)
n−p2+1

2

=: e2n. (29)

Furthermore, the output of the tensor becomes the input for
the LMS

z(2)n =
R∑
r=1

M∏
m=1

Am,n(im,n, r), (30)

and the discretization of the results of the LMS are the new
indices for the matrices

im,n = disc

 P(1)∑
p1=1

w(1)
n,p1xn−m+1−p1+1

 (31)

≈ disc

 P(1)∑
p1=1

w(1)
p1 xn−m+1−p1+1

 =: ĩm,n (32)

x denotes the input of the system and disc(·) denotes the
function discretizing the output of the LMS to become the
indices for the tensor. In this case the tensor and last LMS
are updated according to Section III-B and the gradient of the
first LMS filter is given by

∂JLMSTLMS

∂w(1) =
∂JLMSTLMS

∂ ŷn

P(2)∑
p2=1

∂ ŷn

∂z(2)n−p2+1

×

M∑
m′=1

∂z(2)n−p2+1
∂im′,n−p2+1

∂ ĩm′,n−p2+1
∂w(1) . (33)

Some of the terms can only be given by an approximation.
To derive an update for the coefficients w(1)

n we approximate
the gradient of the cost function as

1w(1)
n = −2en

P(2)∑
p2=1

w(2)
n,p2

×

M∑
m′=1

~m6=m′Am,n−p2+1(im,n−p2+1, :)δAm′,n−p2+1

×
1

1z(1)
xn−p2+1−m′+1, (34)

where δAm′,n−p2+1 corresponds to the discrete derivative in
(27) for the last tensor and 1

1z(1)
corresponds to the discrete
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Algorithm 2 The LMS-Tensor Algorithm
1: function LMST(x1,...,N , y1,...,N )
2: Initialization w1 := 0, x0 := 0, i0 := 0,Am,1 := randn(Im,R)
3: for n = 1 : N do
4: xn = tdl(xn, xn−1)
5: zn = wT

nxn
6: in = tdl(disc(zn), in−1)
7: ŷn =

∑R
r=1

∏M
m=1Am,n(im,n, r)

8: en = yn − ŷn
9: um′,n = ~m6=m′Am,n(im,n, :)

10: wn+1 = wn + 2µ1en 1
1z

∑M
m′=1 xn−m′+1δA

T
m′,nu

T
m′,n, δAm′,n see Eq. (27)

11: Am′,n+1 = Am′,n + 2µ2 enum′,n ∀m′ ∈ {1, . . . ,M}
12: end for
13: return ŷ1,...,N
14: end function

derivative in (26). Therefore, the update equation for the first
LMS is given by

w(1)
n+1 = w(1)

n − µ31w(1)
n . (35)

The LMS-tensor-LMS method is summarized in Algo-
rithm 3.

2) TENSOR-LMS-TENSOR (TLMST)
If the system encloses a linear element in between two non-
linearities, a tensor-LMS-tensor approach can be used for
the identification task. In this approach we define the cost
function by

JTLMST =

yn − R(2)∑
r2=1

M (2)∏
m2=1

A(2)
m2,n(i

(2)
m2,n, r2)

2

=: e2n. (36)

Furthermore, the discretization of the results of the LMS
are the new indices for the matrices

i(2)m2,n = disc

 P∑
p=1

wn−m2+1,pz
(2)
n−m2+1−p+1

 (37)

and ongoing the tensor output is the input for the LMS
algorithm

z(1)n =
R(1)∑
r1=1

M (1)∏
m1=1

A(1)
m1,n(i

(1)
m1,n, r1)

≈

R(1)∑
r1=1

A(1)
m′1
(im′1,n, r1)

M (1)∏
m1=1
m1 6=m′1

A(1)
m1,n(i

(1)
m1,n, r1) =: z̃

(1)
n .

(38)

In this case, the LMS and the last tensor get updated
according to Section III-C while the gradient of the cost
function JTLMST with respect to the coefficients of the first

tensor is approximated by

G(1)
TLMST,m′1,n

:=
∂JTLMST

∂ ŷn

M (2)∑
m′2=1

∂ ŷn

∂i(2)m′2,n

×

P∑
p=1

∂i(2)m′2,n

∂z(1)n−m′2+1−p+1

∂ z̃(1)n−m′2+1−p+1

∂(A(1)
m′1
)T

. (39)

Since some of the terms can only be given by
an approximation, to derive an update for the coeffi-
cients A(1)

m′,n we approximate the gradient of the cost
function as

G(1)
TLMST,m′1,n

= −2en
M (2)∑
m′2=1

(δA(2)
m′2,n

)T
[
~m2 6=m′2

A(2)
m2,n(i

(2)
m2,n, :)

]T 1
1z(2)

×

P∑
p=1

wp,n−m′2+1

×


0i(1)
m′1,n−m

′
2+1−p+1

−1×R(1)

~m1 6=m′1
A(1)
m1,n−m′2+1−p+1

(i(1)m1,n−m′2+1−p+1
, :)

0I (1)
m′1
−i(1)

m′1,n−m
′
2+1−p+1

×R(1)

, (40)

where δA(2)
m′2,n

corresponds to the discrete derivative in (27)

for the last tensor and 1
1z(2)

corresponds to discrete derivative
in (26). Therefore, the update equation for the first tensor
becomes

A(1)
m′1,n+1

= A(1)
m′1,n
− µ3G

(1)
TLMST,m′1,n

. (41)

The tensor-LMS-tensor method is summarized in
Algorithm 4.

IV. NORMALIZATION
In order to improve stability of the proposed methods,
we derive normalized update equations for the TLMS and
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Algorithm 3 The LMS-Tensor-LMS Algorithm
1: function LMSTLMS(x1,...,N , y1,...,N )
2: Initialization w(1,2)

1 := 0, i0 := 0, x0 := 0, z(2)0 := 0,Am,1 := randn(Im,R)
3: for n = 1 : N do
4: xn = tdl(xn, xn−1)

5: z(1)n =
(
w(1)
n

)T
xn

6: in = tdl(disc(z(1)n ), in−1)
7: z(2)n =

∑R
r=1

∏M
m=1Am,n(im,n, r)

8: ŷn =
∑P(2)

p2=1 w
(2)
n,p2z

(2)
n−p2+1

9: en = yn − ŷn
10: z(2)n = tdl(z(2)n , z

(2)
n−1)

11: w(2)
n+1 = w(2)

n + µ1enz
(2)
n

12: Sm′,n =
∑P(2)

p2=1 w
(2)
n,p2

 0im′,n−p2+1−1×R
~m6=m′Am,n−p2+1(im,n−p2+1, :)

0Im′−im′,n−p2+1×R

 ∀m′ ∈ {1, . . . ,M}

13: Am′,n+1 = Am′,n + 2µ2 enSm′,n
14: 1w(1)

n = −2en
∑P(2)

p2=1 w
(2)
n,p2

∑M
m′=1~m6=m′Am,n−p2+1(im,n−p2+1, :)δAm′,n−p2+1

1
1z(1)

xn−p2+1−m′+1
15: w(1)

n+1 = w(1)
n − µ31w(1)

n
16: end for
17: return ŷ1,...,N
18: end function

Algorithm 4 The Tensor-LMS-Tensor Algorithm
1: function TLMST(x1,...,N , y1,...,N )
2: Initialization w1 := 0, i(1,2)0 := 0,A(1,2)

m,1 := randn(Im,R)
3: for n = 1 : N do
4: i(1)n = tdl(disc(xn), i

(1)
n−1)

5: z(1)n =
∑R(1)

r1=1
∏M (1)

m1=1A
(1)
m1,n(i

(1)
m1,n, r1)

6: z(1)n = tdl(z(1)n , z
(1)
n−1)

7: z(2)n = wT
n z

(1)
n

8: i(2)n = tdl(disc(z(2)n ), i(2)n−1)

9: ŷn =
∑R(2)

r2=1
∏M (2)

m2=1A
(2)
m2,n(i

(2)
m2,n, r2)

10: en = yn − ŷn
11: um′2,n = ~m2 6=m′2

A(2)
m2,n(im2,n, :)

12: A(2)
m′2,n+1

= A(2)
m′2,n
+ 2µ2enum′2,n

13: wn+1 = wn + 2µ1en 1
1z(2)

∑M
m′2=1

xn−m′2+1δA
(2)
m′2,n

uTm′2,n
, δA(2)

m′2,n
see Eq. (27)

14: G(1)
TLMST,m′1,n

= −2en
∑M (2)

m′2=1
(δA(2)

m′2,n
)T
[
~m2 6=m′2

A(2)
m2,n(i

(2)
m2,n, :)

]T
1

1z(2)
∑P

p=1 wp,n−m′2+1
0i(1)
m′1,n−m

′
2+1−p+1

−1×R(1)

~m1 6=m′1
A(1)
m1,n−m′2+1−p+1

(i(1)m1,n−m′2+1−p+1
, :)

0I (1)
m′1
−i(1)

m′1,n−m
′
2+1−p+1

×R(1)

 ∀m′1 ∈ {1, . . . ,M
(1)
}

15: A(1)
m′1,n+1

= A(1)
m′1,n
− µ3G

(1)
TLMST,m′1,n

16: end for
17: return ŷ1,...,N
18: end function

LMST. To achieve this, we consider the a priori error en
with en+1 being approximated by the first order Taylor series
(see [35]).

A. TENSOR-LMS NORMALIZATION
We start investigating the normalization of the tensor-LMS
case. Therefore, we approximate the new error with the first
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order Taylor expansion

en+1 ≈ en +
R∑
r=1

∂ ẽn
∂Am′ (:, r)

1Am′ (:, r) (42)

with

ẽn = yn − wT
n z̃n. (43)

From equation (20) it follows that

1Am′ (:, r)

= 2µ2 en
P∑
p=1

wn,p

 0im′,n−p+1−1×1
~m6=m′Am,n−p+1(im,n−p+1, :)

0Im′−im′,n−p+1×1


= 2µ2 enSm′,n(:, r). (44)

With

∂ ẽn
∂Am′ (:, r)

= −

P∑
p=1

wn,p

 0im′,n−p+1−1×1
~m6=m′Am,n−p+1(im,n−p+1, :)

0Im′−im′,n−p+1×1

T

= STm′,n(:, r) (45)

and (44) from (42) it follows

en+1 ≈ en − 2µ2 en
R∑
r=1

STm′,n(:, r)Sm′,n(:, r)

= en − 2µ2 en
R∑
r=1

Im′∑
i=1

|Sm′,n(i, r)|2

= en − 2µ2 en
∥∥Sm′,n∥∥2F (46)

and therefore,

en+1 ≈
(
1− 2µ2

∥∥Sm′,n∥∥2F) en. (47)

In order to improve the convergence of the algorithm,
the norm of the error en+1 has to be smaller or equal than the
norm of the right side of equation (47). This can be reached
when ∣∣∣1− 2µ2

∥∥Sm′,n∥∥2F∣∣∣ < 1. (48)

Therefore, we get the following bound for the step size µ2

0 < µ2 <
1∥∥Sm′,n∥∥2F . (49)

In Algorithm 1 this bound can be implemented by intro-
ducing the time-dependent step size

µ2,n =
µ2

δ2 +
∥∥Sm′,n∥∥2F , 0 < µ2 < 1. (50)

The small regularization value δ2 > 0 limits the value of
µ2,n and thus helps to avoid numerical issues.

B. LMS-TENSOR NORMALIZATION
Similar to the previous approach, we develop the Taylor
expansion

en+1 ≈ en +
∂en
∂wn

1wT
n . (51)

Following the same reasoning as with deriving (28),
the derivative in the above equation is given by

∂en
∂wn
= −

M∑
m=1

um,nδAm,n
1
1x

xTn−m+1, (52)

and

1wT
n = µ1en

1
1x

M∑
m=1

xn−m+1δAT
m,nu

T
m,n. (53)

Then it follows that

en+1 ≈ en − µ1 en

=dTn︷ ︸︸ ︷(
M∑
m=1

um,nδAm,n
1
1x

xTn−m+1

)

×

(
1
1x

M∑
m=1

xn−m+1δAT
m,nu

T
m,n

)
︸ ︷︷ ︸

=dn

(54)

=

(
1− 2µ1 ‖dn‖22

)
en. (55)

Hence, in order to improve convergence of the LMS filter,
with the same reasoning as before, the step size µ1 has to be
bounded by

0 < µ1 <
1

‖dn‖22
. (56)

We normalize the step size in Algorithm 2 by introducing
the time-dependent variable

µ1,n =
µ1

δ1 + ‖dn‖22
, 0 < µ1 < 1, (57)

where δ1 is a small regularization value.

V. COMPLEXITY
Lastly, we are investigating the total complexity in terms
of additions, multiplications and divisions for all methods
covered in this paper.While it is well known that a normalized
LMS update requires 3P + 1 multiplications and 3P − 1
additions per time step, the forward and backward passes of
the tensors require a closer look to the equations derived in
Section II.
The forward, i.e. estimation, step for a given tensor accord-

ing to (4) requires RM multiplications and R − 1 addi-
tions. Further, a standard SGD update (backward pass), given
in (11) requiresR additions andMRmultiplications. Similarly
to the tensor-only case, the complexity for the proposed algo-
rithms can be derived by taking a look at the corresponding
update equations in Section III and are summarized in Table 1
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TABLE 1. Complexity in terms of multiplications, additions and divisions of the considered algorithms depending on the parameters of the methods for
both, estimation (forward) and update (backward) steps. In this table sandwich SAF 1 corresponds to the SAF with two linearities and sandwich SAF
2 denotes the SAF with two nonlinearities. The equations for all SAFs have been taken from [36], [37]. The parameters P , R, and M correspond to the
length of the linear filter, rank and dimensonality of the tensors, respectively.

in general form. It can clearly be seen that the rank R and
dimension M of the proposed architecture as well as of the
tensor-only approach directly affect the required number of
operations per sample. While for the tensor-only solution,
the complexity grows linearly with rank R and dimension
M , the complexity for the proposed architecture grows with
M2 and linearly with the rank R. The number of required
operations in the forward and backward passes of all SAF
architectures is given in [36], [37].

VI. SIMULATIONS
In order to compare the proposed concepts with a tensor-only
approach as well as SAFs, the same system models used
in [33] are used by utilizing the SAF toolbox [38]. Fur-
ther, all previously discussed architectures (TLMS, LMST,
LMSTLMS and TLMST) are evaluated for their perfor-
mance. The settings used for all six simulations are shown
in Table 2 and the performance curves are depicted in Fig. 5.
The simulation parameters (step-size, rank, etc.) have been
chosen empirically by trial and error so that all algorithms
perform the best. All experiments use a signal-to-noise ration
of 10 dB, meaning that the desired signal lies 10 dB above
the noise floor, as in [33]. As mentioned in Section II-B,
the overall goal of all considered algorithms is to minimize
the error en, which however, includes the noise signal ηn by
definition. Therefore the metric used for evaluation is the
mean-square-error (MSE) defined as

MSEdB = 10 log10

(
1
L

L∑
l=1

(
d (l)n − ŷ

(l)
n

)2)
, (58)

where d (l)n is the desired signal, ŷ(l)n is the estimate at time n
of the l-th run (i.e., l-th repetition) and L is the total number
of runs of a given experiment. Therefore, the noise ηn is
not included in the evaluation metric, and an ideal estimator

would yield a value of−∞ dB. Further, to show the adaptive
nature of the considered algorithms, the linear part of the
unknown system changes after half of the simulation time in
the first four experiments. This can, for example, be caused
by temperature drifts within the system or the need to switch
to other linear filters during operation. Lastly, as mentioned in
Algorithms 1 to 4, the weights and TDLs of all adaptive filters
(including SAF) are initialized with zeros while the tensors
are initialized with zero mean and unit variance elements
(including the tensor-only approach).

A. EXPERIMENT 1
The first system follows a Hammerstein model, i.e. the sys-
tem consists of a static nonlinearity followed by a linear part.
Therefore, the TLMS architecture is used for this experiment
and compared to the corresponding SAF architecture as well
as a classical tensor-only approximation.

This system can be described by a static nonlinearity in the
form of

ynln =
2xn

1+ |xn|2
, (59)

which imitates the saturation behavior of a power amplifier
in a satellite communications scenario [39] (like the second
experiment in [33]). Followed by an unknown linear finite
impulse response (FIR) filter w0 ∈ R7, which models a
part of the transmission path. The input signal follows the
relationship

xn = axn−1 +
√
1− a2νn, (60)

where νn represents standard noise and 0 ≤ a < 1
determines the level of correlation between adjacent sam-
ples [33]. The performance of all considered approaches can
be seen in Fig. 5a for the SAF, the TLMS approach with
rank one and dimensionality one as well as for a tensor-only
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TABLE 2. Simulation settings for all different algorithms used in the experiments, where len(·) denotes the length of a vector.

model with rank 50 and dimensionality equal to the length
of w0. As can be seen, the proposed solution significantly
outperforms the SAF. Nevertheless, both approaches react
quickly and as expected, to the changing linear subsystem.
While the tensor-only approach not only requires signifi-
cantly higher rank and dimensionality, but also performs
worse than the other approaches. This algorithm does not
adapt to the changed system appropriately and it performs
worse after the change.

B. EXPERIMENT 2
The next experiment follows a Wiener model, where the
general setup is the same as in the previous experiment with
the exception that the nonlinearity occurs after the linear
filter. Therefore, this simulation makes use of the LMST
architecture with rank R and dimensionality M of the tensor
set to one. The tensor-only approach, requires a rank of 50,
as experiments demonstrated, and a dimensionality equal
to the length of w0. The results of this simulation can be
seen in Fig. 5b where it can be observed that the proposed
solution again, achieves comparable performance to the SAF
architecture and the tensor-only approach slightly worse per-
formance. Furthermore, all three algorithms adapt to the
changed system as expected and yield similar performance
as before the change.

C. EXPERIMENT 3
In order to examine the performance of a combined Wiener-
Hammerstein model, this experiment uses a system model
where an FIR filter is placed between two nonlinearities. The
nonlinear elements again are described by (59). The TLMST
architecture is used in this simulation. The results in Fig. 5c
show that the proposed approach achieves slightly worse
performance than the SAF architecture (around 2 dB less)
while the tensor-only solution requires significantly higher
rank and dimensionality and again performs worse than the
other two approaches. Furthermore, the tensor-only approach
does not respond to the changed system like the other two
architectures. Interestingly, the proposed solution seems to
yield better performance after the linear part has changed and
comes closer to the performance of the SAF.

D. EXPERIMENT 4
This simulation covers the case of a nonlinearity placed
between two FIR filters. Again, the nonlinearity has the form
as in (59) and the linear parts are defined by w0 and w1.
Thismodel fully covers the satellite communications scenario

with two paths and one amplifier [33], [39]. Therefore, this
problem requires the LMSTLMS approach. The results of this
simulation can be seen in Fig. 5d where the dimensionality
is set to one and the rank of the tensor is set to ten for the
proposed solution. The proposed approach performs approx-
imately 1 dB worse than the SAF before the linearity changes
while yielding comparable performance after the change.
Again, the tensor-only approach requires higher dimension-
ality and rank as the proposed architecture and performs
significantly worse than the other two algorithms. However,
the tensor-only approach is unaffected by the changing sys-
tem, as it just continues converging to a solution.

E. EXPERIMENT 5
Having covered simple nonlinearities for both Wiener and
Hammerstein models, this simulation has the same setup as
experiment 2 with the exception that the nonlinearity has the
form

ynln = sin2 (xn)+ sin3 (xn−1)+ sin4 (xn−2) , (61)

i.e., the output of the nonlinearity at time n depends on the
current and last two input values of the system’s nonlinear
part. In other words, the nonlinear part has some memory.
This model shall show the performance on a system that has
not been modeled in a way that is ideal for SAFs. The input
signal xn is modeled according to (60). The linear filter of
the system remains the same as before. Experiments have
shown that a single SAF, like in experiments 1 and 2, cannot
handle a nonlinearity with memory, therefore the sandwich
approach from experiment three has been used in the eval-
uation. It can be seen, that all architectures achieve around
equal performance, and that the LMST requires significantly
less parameters than a tensor-only approach (cf. Table 2).

F. EXPERIMENT 6
The last experiment has the same setup as experiment 5, but
the location of linear and nonlinear parts has been swapped to
model the Hammerstein case. Again, a simple SAF with one
linearity and one nonlinearity cannot handle a nonlinearity
with memory, therefore, the evaluation shown in Fig. 5f uses
a sandwich SAF approach with two nonlinearities. Also, for
this case, it can be seen that the proposed method outper-
forms the SAF architecture significantly, while requiring less
complexity. The tensor-only approach yields comparable per-
formance to the proposed method, although the convergence
speed is significantly slower.
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FIGURE 5. MSE convergence for all considered algorithms for (a) the Hammerstein case, (b) the Wiener case, (c) a linear
filter between two nonlinearities, (d) a nonlinearity between two linear filters, (e) the Wiener case with a nonlinearity
depending on past samples, and (f) the Hammerstein case with a nonlinearity containing memory.
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TABLE 3. Complexity in terms of multiplications, additions and divisions
of the considered algorithms in all experiments conducted.

G. COMPARISON
Table 3 shows the required number of operations for the
specific cases considered in the experiments. It can be seen
that the tensor-only model requires the most operations in all
simulations while all proposed architectures are the cheapest
architecture to implement and the SAFs lie somewhere in
between. This comparison shows how drastically the required
number of operations can be reduced compared to a tensor-
only approach, with up to 18 times less multiplications and
13 times less additions.

In terms of convergence speed, our approaches either
outperform or yield similar convergence time than SAFs
and result in similar end-performance. Especially in cases
where the nonlinearity has memory, the advantage of using
tensor-based methods can be seen over SAFs. This results
from the latter not being able to cope with memory in the
nonlinearities. Futher, it has to be noted, that the systems in
experiments one through four have been chosen in a way to
be an ideal system do model via SAFs, while the last two
experiments make use of a more complex nonlinearity that
the SAFs are not specifically designed to cope with. Addi-
tionally, the slightly worse performance, compared to SAFs
could yield from the approximations made when deriving
the gradient through a tensor. If a system yields in relatively
smooth matricesAn, or if a smoothness constraint is enforced
(e.g. [17]), the derivative (27) could be more accurate and
yield better performance overall. However, this is subject of
future work.

Overall it can be said, that our proposed method is a
low-cost architecture that can achieve on-par performance
with state-of-the-art methods for all conducted experiments.

H. DISCUSSION: RANK AND DIMENSION
As mentioned before, the dimension M of the tensors (in the
proposed as well as the tensor-only architectures) directly
correlates with thememory length of the system and therefore

FIGURE 6. The influence of improperly chosen dimension M on the
performance of the tensor-only architecture in the scenario considered in
experiment 6.

FIGURE 7. The influence of improperly chosen rank R on the performance
of the tensor-only architecture in the scenario considered in experiment 6.

should always be chosen as such (if the memory length
is known). As can be seen in Figure 6, if the dimension
of the tensor is chosen poorly the performance drastically
decreases. Since the dimension of the tensor-only approach
is big enough to detect changes around the perfect value of 8
clearer, this simulation was carried out for this algorithm. The
results however directly transfer to the proposed methods.
Due to the overall size of the tensor, this approach compen-
sates for too low values M to some extent. Choosing it too
high rapidly leads to very high MSE values.

In comparison, the rank R of the tensors cannot be eas-
ily indicated by a parameter of the system and must be
found via trial and error. Therefore, it is considered as a
hyper-parameter of the model. This aspect can be seen nicely
in Figure 7. Therefore, the tensor-only approach was eval-
uated on the setup from experiment 6 with the rank taking
values from 10 to 500 in steps of 10. As can be seen, choosing
the parameter R too high or too low results in a bad perfor-
mance, and the goal is to find the right value. The tensor-only
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approachwas chosen for this analysis. Since the required rank
for a good performance in experiment 6 is quite high, namely
200, there is still space on both sides to perform a meaningful
sweep. However, our investigation showed, that this also
yields for our proposed methods. If the tensor is required to
be bigger in size (and rank) it is mentioned explicitly in the
considered scenarios.

VII. CONCLUSION
In this paper we reviewed state-of-the-art algorithms to learn
tensors the representation of a system and introduced a novel
concept to reduce both, the required rank and dimensionality
of the tensor. This approach not only greatly reduces the
complexity of the architecture, but also considerably out-
performs a tensor-only model in most considered test cases.
We further showed that the proposed architecture can either
surpass or approximately match the performance of SAF
in all considered constellations. Additionally, a complexity
analysis has been carried out for all considered architectures
and it has been shown that the proposed approaches require
significantly less operations per time step than all other
methods. Future interests include a hardware implementation
and further investigations on more complex signals and sys-
tems. Further, it shall be investigated if regularization and
smoothness constraints on the An matrices (like e.g. in [17])
could improve performance and complexity of the proposed
method.
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