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Abstract: This article presents a new, alternative method of gesture recognition 

using the cognitive properties of intelligent decision-making systems to support the 

rehabilitation process of people with disabilities: the Asynchronous Prediction-

Based Movement Recognition (APBMR) algorithm. The algorithm “predicts” the 

next movement of the user by evaluating the previous three with the goal to maintain 

motivation. Based on the prediction, it creates acceptance domains and decides 

whether the next user-input gesture can be considered the same movement. For this, 

the APBMR algorithm uses six mean techniques: the Arithmetic, Geometric, 

Harmonic, Contrahamonic, Quadratic and the Cubic ones. The purpose of this 

article besides presenting this new method is to evaluate which mean technique to 

use with the three different acceptance domains. The authors evaluated the 

algorithm in real-time using a general and an advanced computer, as well as they 

tested it by predicting from a file and also compared the algorithm to one of their 

earlier works. The tests were done by four groups of users, respectively, each group 

doing four gestures. After analyzing the results, the authors concluded that the 

Contraharmonic mean technique gives the best average gesture acceptance rates 

in the ±0.05 m and ±0.1 m acceptance domains, while the Arithmetic mean 

technique provides the best average gesture acceptance rate in the ±0.15 m 

acceptance domain when using the APBMR algorithm. 

Keywords: cognitive infocommunications; human-computer interaction; Kinect; mean 

techniques; motivation; prediction-based gesture recognition; real-time gesture recognition; 

rehabilitation 
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1 Introduction 

Stroke is one of the most frequent diseases of the modern day. As shown in [1, 2], 

48% of people who survived brain-to-asthma disease suffer from half-side 

paralysis. Not only that, in more than 60% of cases, cognitive decline is detectable. 

Up to 12-18% of people with this disease are aphasic. 24-53% of stroke patients are 

partially or completely dependent on other people. Due to this, modern technology 

should be involved. 

The development of stroke rehabilitation methods that do not place additional 

burdens on the overburdened healthcare systems was stimulated by the increasing 

number of stroke patients in need of post-stroke rehabilitation [3]. Researchers are 

working on new rehabilitation methods as virtual reality can be used in 

neurorehabilitation. There are many initiatives in healthcare, primarily in the field 

of movement rehabilitation, where some form of gameplay is used. “Serious games” 

(in other words, games that develop something) that can complement physiotherapy 

as motion elements are used that are controlled by the motion therapist [4]. Even 

virtual reality-based games and video games are new, well-used technologies that 

can be effectively combined with the traditional rehabilitation of an upper limb 

injury following a stroke.  

In these mentioned software, the movement of the patient is monitored through an 

optical device to indicate if they are practicing properly. There are some 

applications where the user is placed in a virtual environment and, for example, they 

handle a phobia or reduce the frustration associated with the rehabilitation 

procedure [5]. 

There are many neurorehabilitation techniques based on virtual reality technology 

that are promising on solving this problem [6-14], however they did not spread 

across the field of healthcare. These techniques are well-developed judging from an 

IT perspective, but the users in the healthcare field found them difficult to use and 

to customize, thereby the patient lost motivation [15, 16]. In some cases, even the 

sensors should be customized [17].  

Telemedicine can also be an important factor [18, 19]. It is more important 

nowadays than previously, as the hospitals are overcrowded and rehabilitation at 

the home of the patients is much more convenient for both the patient and the 

therapist. Therefore, the authors want to present an alternative method besides the 

existing ones, thus the workers in the field of healthcare could have one more 

method to choose from. 

Fortunately, the area of Cognitive InfoCommunications (CogInfoCom) [20] is 

ready to highlight new capabilities of ICT in human-machine interactions [21-23]. 

This provides an opportunity to examine a number of human factors using modern 

cognitive IT methods [24-26]. 
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In an earlier article in the CogInfoCom environment [27], the authors came to the 

conclusion that the acceptance domain-based gesture classification can be used in 

real-time with the Kinect. This could adapt to the current capabilities of the patients, 

while maintained their motivation in the rehabilitation process. However, it was not 

always accurate. Therefore, the authors propose the Asynchronous Prediction-

Based Movement Recognition (APBMR) algorithm that can even be used at the 

home of patients if they have a low-cost sensor such as the Kinect. This algorithm 

is presented and evaluated in this article. 

The APBMR algorithm “predicts” the next movement of the user by evaluating the 

previous three and decides whether the next user-input gesture can be considered 

the same movement with the goal to maintain motivation. It also follows the 

position of the user and matches their speed, to make the decision of accepted 

gestures easier. 

This article is structured as the following: section 2 deals with the materials and 

methods. Section 3 presents the results, containing both real-time and file-based 

evaluations, section 4 discusses them and in Section 5, conclusions are made. 

2 Materials and methods 

The authors divided this section into three subsections: subsection 2.1 presents the 

idea which led to the development of the APBMR algorithm, while subsection 2.2 

defines it in detail and subsection 2.3 presents the collected data. 

2.1 The idea of the APBMR algorithm 

The authors frequently use the Kinect v1 and v2 for research regarding motion 

analysis with the main goal to develop new methods to help the physical 

rehabilitation of people with disabilities. While these devices can be used in the 

medical field by substituting more expensive sensors [28], with [29] or without data 

filtering [30], there are two problems with both Kinects regarding gesture 

recognition: the first is that when the user stands at a different distance from the 

sensor than before, it returns new x, y, z coordinates. Therefore, when repeating the 

same gestures at a different position, it may not be recognized. Another problem is 

the speed: when doing the same gestures at a different speed, the gestures may not 

be recognized as well. 

Thus, the authors devised and developed the APBMR algorithm in 2019 using C#, 

which follows the position of the users and also, tracks the speed of the movement. 

This algorithm is similar to two of the previous algorithms of the authors, namely 

the Reference Distance Based Synchronous / Asynchronous Movement 

Recognition (RDSMR/RDAMR) algorithms [27]. They are similar as they use the 
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same gesture acceptation domain principle, but they will be compared and 

elaborated in subsection 3.3 and section 4, respectively.  

Therefore, the following is hypothesized: The average of accepted gestures is larger 

when the APBMR algorithm is used than in the case of the previous algorithm it 

was based upon and it can also be used for telerehabilitation. 

It should also be mentioned, that even though the APBMR is developed for the 

Kinects; in principle, it can be used with any sensor that sends movement descriptor 

data in real-time and evaluates gestures by using coordinates. 

2.2 Presenting the APBMR algorithm 

In this subsection, the APBMR algorithm is presented. Before defining the steps of 

the algorithm, two pieces of crucial information should be noted. The first is that 

the algorithm only evaluates one axis at a time. After it completes the evaluation on 

one axis, it starts the evaluation on another. When all three axes are evaluated, the 

gestures are either accepted or rejected. The other piece of information is that the 

algorithm looks for repeating gestures in the movement descriptors by searching for 

the farthest and the closest coordinates from the starting point on the currently 

evaluated axis. This can be seen in Figure 1. 

Imagine that the starting coordinate of a gesture is the leftmost X in the figure. First, 

the algorithm determines whether the starting coordinate is at the bottom or at the 

top of a “slope”. Then, the algorithm searches for the coordinate that is the farthest 

from the starting coordinate (illustrated with the second X): in the figure the starting 

coordinate is at 0.5220696 and the farthest is at 0.1476125. Since the starting 

coordinate was at a top of a “slope” in the case of this example, then it looks for the 

farthest coordinate at the bottom. Reaching this coordinate means that the gesture 

is about halfway done. Afterward, the algorithm searches for the coordinate that is 

the closest to the starting coordinate (illustrated with the third X). In this case, it is 

at 0.5437541. As can be suspected, it is not closest numerically, because searching 

for this coordinate has a few criteria: If the starting coordinate is at the top of a 

slope, then the closest coordinate also has to be at the top. Naturally, if the starting 

coordinate is at the bottom, then the closest coordinate has to be at the bottom as 

well. Also, the closest coordinate must be after the previous farthest coordinate. If 

this closest coordinate is reached, then the algorithm can conclude that this 

coordinate is the end of the first gesture. Afterward, the coordinate symbolized by 

the third X in the figure becomes the new starting coordinate for the next gesture 

and the algorithm repeats these steps. 
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Figure 1 

Illustration of how algorithm calculates the number of gestures and the length of the gestures. 

After defining how the algorithm finds the gestures, let us look at how it works, 

step-by-step: 

1. Scans the number of done gestures by searching for the closest and farthest 

coordinate points (referred to as “clofarpoint” later on) to the starting 

coordinate point in the movement descriptors. 

2. Calculates the average length of the scanned gestures. 

3. Predicts the possible next movement on the x axis and its acceptance 

domains based on the last three done gestures using mean techniques. This 

step has multiple substeps: 

a. While 𝑖 < 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑛𝑢𝑚𝑏𝑒𝑟 − 6, it calculates the length of 

the previous three movements based on the following rules: 

𝑥1 = 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖+2  − 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖 (1) 

𝑥2 = 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖+4 − 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖+2 (2) 

𝑥3 = 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖+6 − 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖+4 (3) 

, where 𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑛𝑢𝑚𝑏𝑒𝑟 is the number of all “clofar” in the gesture 

descriptors. Variable i is incremented by 2 in each cycle. 

b. It creates an average of these lengths using a mean technique 

(mtk). This can be selected by the user (𝑘 ∈ [1,6]). The used 

mean techniques were the Arithmetic average (4), Geometric 

average (5), the special case of Harmonic average for three 

numbers (6), Contraharmonic average (7), Quadratic average (8) 
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and the Cubic average (9). The special case of Harmonic average 

was required as the regular Harmonic average equation gave “Not 

a Number” (NaN) results during measurements. 

𝑚𝑡1 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  (4) 

𝑚𝑡2 = √∏ 𝑥𝑖
𝑛
𝑖=1

𝑛
 (5) 

𝑚𝑡3 =
3𝑥1𝑥2𝑥3

𝑥1𝑥2+𝑥1𝑥3+𝑥2𝑥3
 (6) 

𝑚𝑡4 =
𝑥1
2+𝑥2

2+⋯+𝑥𝑛
2

𝑥1+𝑥2+⋯+𝑥𝑛
 (7) 
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𝑛
∑ 𝑥𝑖
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𝑚𝑡6 = √
1

𝑛
∑ 𝑥𝑖

3𝑛
𝑖=1

3
 (9) 

, where, similarly, as in equations (1-3), xi is the length of the ith gesture. Also, since 

the algorithm uses the previous three gestures, n = 3 in all mtk equations.  

c. Generates a new coordinate called 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐𝑗  at frame j, while 

𝑗 < 𝑚𝑡𝑘 and 𝑚𝑖𝑛𝑚𝑎𝑥𝑖+4 + 𝑗 + 1 < 𝑥𝑖 by using one of the 

mentioned mean techniques and the following rules: 

𝑦1 = {
𝑐𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖+ 𝑗 ,
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 (10) 
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𝑐𝑐𝑙𝑜𝑓𝑎𝑟𝑝𝑜𝑖𝑛𝑡𝑖+4+𝑗
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, where c is the coordinate of the previous gestures. 

d. Creates three ADs for each 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑗 coordinate. It creates a 

very strict acceptance domain (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐𝑗 ± 0.05 𝑚), a 

medium strict one (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐𝑗 ± 0.10 𝑚) and the least strict 

one (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐𝑗 ± 0.15 𝑚). 

e. The algorithm does the previous steps for the remaining two axes 

(y and z). 

f. Calculates the percentage of the coordinates inside all three 

acceptance domains on all axes and evaluates whether the gesture 

is accepted. 

g. Waits until the user does a following gesture, then the algorithm 

pulls the earliest movement descriptor from the stack and starts 

over again with the remaining ones. 

h. The algorithm runs until the user turns it off. 

By doing these steps, a possible next gesture of the user and its acceptance domains 

are created. As substep 3/e stated, the algorithm generated not only the possible 

movement descriptor of the user but their acceptance domains as well.  See Figure 

2 for the sequence diagram of the APBMR algorithm. 

 

Figure 2 

Sequence diagram of the APBMR algorithm. 
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In Figure 3, the previously mentioned acceptance domains are represented with six 

thin blue lines, while the original gesture is drawn with a black line and the predicted 

movement with an orange line. The acceptance domains are generated around the 

predicted movement descriptors.  

 

Figure 3 

Graphical representation of the APBMR algorithm on the x axis. 

If the reader looks at Figure 3, it could be observed that the acceptance domains and 

the predicted movement descriptors share the same shape on the x axis. The goal 

for the original movement is to stay inside these acceptance domains in each frame. 

Since all frames are evaluated, the gesture is accepted if it is inside these acceptance 

domains. This means at least 50% of the number of frames of a movement. If a 

gesture is accepted inside the strictest acceptance domain, that means that the 

APMBR algorithm can very accurately predict and classify the gesture of the user 

based on the previous three movements. Figure 3 tells us that for the strictest 

acceptance domain, 70% of the gestures are inside. For the medium strict one, 

98.65% are inside, and for the least strict, 100% are inside. 

Keep in mind, that the algorithm predicts gestures on one axis at a time, therefore 

before deciding on an accepted gesture, the algorithm has to be run on all three axes. 

Fortunately, the algorithm is very fast and this does not result in a problem – even 

in real-time. 

The strength of this algorithm is that it can accept gestures when done in another 

position than the previous gestures. By default, this a problem with the Kinect, as it 

has a built-in 3D coordinate system and it only accepts those gestures that are done 

in the same position as the previous gestures. Since the APBMR algorithm follows 

the movement of the user, it predicts the position where the following gesture will 

be made. See Figure 4. 
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Figure 4 

Graphical representation of the changing position of the right hand on the Kinect’s y axis. 

Another strength of this algorithm is that it is asynchronous, meaning that when the 

movements are done with a different speed (thus, having fewer frames), they are 

accepted as well. See Figure 5 for graphical representation. In the figure, the first 

three gestures are done with “normal” speed, while the next six are done faster and 

the last few are slower. Only the strictest acceptance domain is shown in the figure. 

 

Figure 5 

Graphical representation of the changing movement speed. 

2.3 Data collection 

Data collection was done in the second half of 2019 at the University of Pannonia. 

Four groups of people tested the algorithm. Out of these four groups, two groups 

measured in real-time, while the data of the other two was logged in a file. This 
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algorithm was evaluated using two different computers. The authors will refer to 

these computers as General or Advanced. Their specifications are the following: 

• General: Intel Core i7-720QM 1.60GHz, 6GB DDR3 1333MHz, ATI 

Mobility Radeon HD 5850 1GB. 

• Advanced: Intel Core i9-9900K 3.60GHz, HyperX 32GB Predator DDR4 

3200MHz, ASUS ROG Strix GeForce RTX 2080 8GB GDDR6 SUPER. 

Also, the speed of the algorithm when predicting from a file was also assessed. As 

the APBMR algorithm uses a similar principle to one of the earlier algorithms of 

the authors, they were compared as well. Table 1 presents the data-gathering phase. 

Table 1 

Data collection. 

Computer  People Gestures Repetition Evaluation Algorithm 

Advanced 16 4 10 File APBMR 

Advanced 32 4 10 Real-time APBMR 

General 32 4 10 Real-time APBMR 

Advanced 32 4 10 File 
APBMR and 

RDSMR/RDAMR 

As can be seen, there are 16*4*10+32*4*10+32*4*10+32*4*10=4480 cases to 

evaluate the accuracy and speed of the APBMR algorithm. However, there are six 

different mean techniques and each was measured, therefore total number of cases 

is 4480*6=26880. This means that 32*4*10*2*6=15360 cases were evaluated in 

real-time and 16*4*10*6+32*4*10*6=11520 cases were evaluated from a file. 

It should be noted that in the second and the third row, the users who tested the 

algorithm were the same. Also, the measured gestures were the same in each row: 

A circular movement, a waving movement, a diagonal movement forwards and a 

diagonal movement upwards. Lastly, in the fourth row of Table 1, it can be seen 

that both algorithms were assessed. Here, the testers recorded gesture descriptors 

and the data were saved in a file, since it was critical to assess the same coordinates 

of the gestures. Therefore, in the case of the last row, both algorithms loaded the 

data from the mentioned file and evaluated it. 

3 Results 

This section is broken into four subsections. Subsection 3.1 presents the real-time 

results of both computers when evaluating the algorithm. Subsection 3.2 deals with 

the results when predicting movement descriptors from a file. Next, subsection 3.3 

compares the APBMR algorithm to the old algorithm of the authors. Lastly, 

subsection 3.4 evaluates all results of the APBMR algorithm, by taking every 

previous data into account. 
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Also, from the next subsection onwards, abbreviations are used instead of the 

frequently occurring words or phrases. These are the following: 

• Average Gesture Acceptance Rate (AGAR) 

• Acceptance Domain (AD) 

• Arithmetic Mean Technique (AMT) 

• Geometric Mean Technique (GMT) 

• Harmonic Mean Technique (HMT) 

• Contraharmonic Mean Technique (CHMT) 

• Quadratic Mean Technique (QMT) 

• Cubic Mean Technique (CMT) 

3.1 Real-time results 

First, the results received with the general computer were investigated (Figure 6). 

In the case of circular gestures, the CHMT gives the best AGAR for the strictest 

AD (26.95%), the HMT gives the best AGAR for the medium strict AD (64%) and 

the Arithmetic mean gives the best AGAR for the least strict AD (87.1%). In the 

case of waving gestures, the HMT gives the best AGAR for both the strictest and 

medium strict ADs: 76.1% and 95.7%, respectively. For the least strict one, the 

CHMT gives the optimal results with an AGAR of 97.265%. In case of the forward-

diagonal gestures, the CHMT gives the best AGAR for both the strictest and the 

medium strict ADs, which are 84.765% and 99.218% respectively. For the least 

strict AD, the HMT gives the best AGAR of 100%. This means that the HMT 

accepted every forward-diagonal gesture done by the users. Lastly, in case of the 

upward-diagonal gesture, the CHMT gives the best AGAR of 19.921% for the 

strictest AD. In the medium strict and the least strict ADs, the AMT gives the best 

AGARs of 52.343% and 75.39%, respectively. 

 

Figure 6 

Results received with the general computer (real-time). 
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Secondly, the results received with the advanced computer were investigated 

(Figure 7). When circular gestures are assessed, the CHMT provides the best 

average acceptation rate of the strictest AD with 23.437%. For the medium strict 

and the least strict AD, the QMT provides the best average acceptation rates: 

73.046% and 98.437%, respectively. After evaluating the waving gesture using the 

advanced computer, the results show that the CHMT provides the best AGAR of 

the strictest AD with 79.296%. Meanwhile, the AMT has the best AGAR of 

96.875% medium strict AD. For the least strict AD, the HMT gives the best AGAR 

with 99.609%. In case of the forward-diagonal gestures, the CHMT provides the 

best AGAR using the strictest (65.625%) and the medium strict (92.187%) ADs. 

The AMT yields the best AGAR for the least strict AD with 96.093%. Lastly, in 

case of upward-diagonal gestures, the CHMT gives the best AGAR for all ADs: 

48.828% for the strictest AD, 89.843% for the medium strict and 94.921% for the 

least strict one. It should be noted that for the least strict AD, the HMT has the same 

AGAR as the CHMT. 

 

Figure 7 

Results received with the advanced computer (real-time). 

Lastly, their speed was compared and that can be seen in Table 2. In the table, “1” 

refers to the circular movements, “2” to the waving gestures, “3” to the forward-

diagonal movements and “4” to the upward-diagonal gestures. Also, “G” refers to 

the general, while “A” to the advanced computer. 

Table 2 

Comparisons between the averages of time (ms). 

Mean  

Technique 
G1 G2 G3 G4 A1 A2 A3 A4 

AMT 3.047 3.048 1.466 1.770 0.603 0.549 0.485 0.451 

GMT 1.672 1.964 0.918 1.023 0.383 0.339 0.304 0.271 

HMT 1.193 1.878 0.825 0.896 0.355 0.323 0.265 0.245 

CHMT 1.574 3.528 0.924 1.221 0.453 0.432 0.325 0.305 

QMT 1.525 2.983 0.900 1.164 0.410 0.392 0.308 0.297 

CMT 0.985 3.199 0.955 1.323 0.272 0.413 0.333 0.314 
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Naturally, the advanced computer performs the task faster. However, it can also be 

seen that the APBMR algorithm on the general computer is not slow either. This is 

good as this fact adds to the possibility of using this algorithm in a home 

environment. 

3.2 File-based results 

In this subsection the file-based results are evaluated (Figure 8). Only the advanced 

computer was used in this regard. The first gesture to be evaluated was the circular 

movement: the CHMT gave the best average accepted ratio in the strictest AD with 

37.5%, while the AMT gave the best average accepted ratio in the medium strict 

AD with 64.322%. The QMT gave the best average accepted ratio in the least strict 

AD with 84.895%. The following gesture to be evaluated was the waving gesture: 

the HMT gives the best AGAR in the strictest AD with 62.934% and the CHMT 

gives the best AGARs in all other ADs: 91.545% and 97.118%, respectively. It 

should be noted that the HMT and CMT returns the same results as the CHMT in 

the least strict AD. Next, the forward-diagonal gesture was investigated: in this case 

the CHMT gives the best AGAR in the strictest AD with 72.135%. Similarly, in the 

medium strict AD, also the CHMT gives the best AGAR with 88.281%. For the 

least strict AD, the AMT gives the best AGAR of 94.791%. Finally, the upward-

diagonal gesture was examined: the CHMT gives the best AGARs in the strictest 

and medium strict ADs with 45.520% and 76.562%, respectively. In contrast, the 

HMT gives the best AGAR in the least strict AD with 86.718%. 

 

Figure 8 

Results received with the advanced computer (file-based). 

3.3 Comparison to the RDSMR/RDAMR algorithms 

This subsubsection shows the comparison between the APBMR and the 

RDSMR/RDAMR algorithms. However, the authors omitted the RDSMR from the 

comparison. With it, the elapsed time between two movement descriptors can 
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influence the results, in contrast to the RDAMR where it does not: By definition, 

the RDAMR can provide a better average of accepted movements than its 

synchronous counterpart. 

The RDAMR works similarly to the APBMR: it creates the same ADs as the 

APBMR, but it only uses the first three gestures for their creation. Therefore, the 

ADs do not change during the gesture recognition. While the RDAMR works and 

can be used, the not-changing ADs could be a problem later on, since the algorithm 

does not follow the speed and the position of the user. If one of these factor changes, 

the algorithm would not accept the gesture, even if its shape is the same. Another 

difference between the algorithms is that the RDAMR evaluates whether the gesture 

is accepted during the time the user does the movements, while the APBMR 

evaluates it immediately after one is finished. 

When comparing these two algorithms, the authors analyzed the AGARs of each 

mean technique (APBMR) and the RDAMR algorithm. Also, the authors only 

tested the APBMR in three ADs (±0.05 m, ±0.10 m and ±0.15 m). It quickly became 

apparent that the APBMR returned improved results than the RDAMR. Therefore, 

the authors increased the ADs when using the RDAMR algorithm until it gave 

similar AGARs as the APBMR. It should be noted that their execution times could 

not be compared, as the APBMR evaluates after the gesture is done, while the 

RDAMR evaluates during the movement in each frame. The results of the 

comparison can be seen in Figure 9. 

 

Figure 9 

Comparing the mean techniques of the APBMR to the RDAMR algorithm. 

Similarly, to before, the circular gesture was the first to be compared. Better AGARs 

are provided by all MTs of the APBMR than the by the use of the RDAMR 

algorithm. The difference between the AGARs of the two algorithms is very high 
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in the cases of the AMT, HMT and CHMT. The AGARs when the GMT, QMT and 

the CMT are used are quite similar. Therefore, the APBMR is superior to the 

RDAMR in case of the circular gestures. Although, the results are more interesting 

in the case of the waving gesture: the difference of the AGARs of the RDAMR 

between the ±0.05 m and ±0.10 m ADs is quite large. Also, the AGAR of the 

RDAMR in the ±0.10 m AD (66.0%) is similar to the AGARs of the APBMR 

algorithm in the ±0.05 m AD (61.7% - 67.5%, depending on the used mean 

technique). Contrarily, in the case of the circular gesture, the ADs of the RDAMR 

are needed to be increased to ±0.15 m to have the same AGARs as the APBMR in 

the ±0.05 m AD. In the case of the forward-diagonal gesture, worse AGARs are 

returned by the RDAMR than in the case of the waving gesture. An AGAR of 88.7% 

is provided by APBMR with the use of the CHMT in the ±0.05 m AD which is the 

optimal mean technique to be used in this case. Meanwhile, a similar AGAR is 

provided by the RDAMR with 87.5% in the ±0.20 m AD, which is quite a large 

AD. Similarly to the forward-diagonal movement, the results regarding the upward-

diagonal gesture are alike to it. In the ±0.20 m AD, an AGAR of 68.4% can be 

reached with the RDAMR algorithm which is slightly better than the ones in the 

±0.05 m AD using the APBMR algorithm. The AGARs of the latter are between 

58.6%-62.8% depending on the mean technique used. 

Although, as can be suspected during the comparison, superior AGARs are 

provided by the APBMR. In the ±0.05 m AD, the increase of AGARs is between 

358.2%-535.3% depending on the mean technique used, while in the ±0.10 m and 

±0.15 m ADs it is 87.8%-125.4% and 22.7%-47.3%, respectively. 

5 Discussion 

According to the presented results, the APBMR algorithm also works well in real-

time, and different mean techniques give the best AGARs in case of each gesture 

and ADs: in the ±0.05 m AD, the CHMT presents the best AGARs in three out of 

four gestures, while the remaining one gives the best AGAR with the HMT. In the 

±0.1 m AD, the CHMT presents the best AGARs in two out of four gestures, while 

one of the remaining two gives the best AGAR with the AMT and the other with 

the HMT. In the ±0.15 m AD, the HMT presents the best AGARs in two out of four 

gestures, while the other two movements give the best AGARs with the AMT. 

However, the GMT gives the worst average acceptance rates in case of each gesture: 

for the circular movements, the AGARs of the GMT are the following: 11.272%, 

28.013% and 39.397%, which are quite bad compared to the other mean techniques. 

For the waving gestures, the AGARs are: 34.709%, 55.133% and 59.486%. For the 

forward-diagonal gestures, the AGARs are the following: 21.316%, 39.397% and 

43.415%. Last, but not least, for the upward-diagonal gesture, the AGARs are: 

28.995%, 51.339% and 60.825%. 
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Based on the results, the GMT, QMT and CMT should not be used for predictive-

based gesture recognition as the AMT, HMT and CHMT provide better results. 

From the strictest AD to the least strict, the former has AGARs of 24.073%, 

43.470% and 50.781%, while the middle has AGARs of 29.334%, 56.848% and 

70.896%; and the latter has AGARs of 26.317%, 47.990% and 57.435%. 

It can also be concluded that when using the APBMR algorithm for prediction-

based motion analysis, the CHMT presents the optimal AGARs in both the ±0.05 

m and ±0.1 m ADs with 53.392% and 79.562%, respectively. For the ±0.15 m AD, 

the use of the AMT results in the optimal AGAR of 89.620%.  

Different numerical differences exist between the AGARs in case of each gesture: 

With the circular movements, the numerical differences are between 0.28125 - 

0.58371. In the case of the waving gestures, the numerical differences are between 

0.22686 - 0.32187. With the forward-diagonal gesture, the numerical differences 

are between 0.21652 - 0.35714, while the numerical differences are between 0.3183 

- 0.46897 with the upward-diagonal gesture.  

As was mentioned previously, the APBMR evaluates each axis. However, during 

these evaluations, it can be observed that numerical differences exist between the 

AGARs on each axis: on the x axis, the numerical differences are between 0.17383 

- 0.20117, while the numerical differences are between 0.19076 - 0.34147 and 

0.06803 - 0.07129 on the y and z axes, respectively. 

Lastly, when comparing the AMPBR to the RDAMR, the following can be 

concluded: in the ±0.05 m AD, the APBMR algorithm has an AGARs between 

45.195%-62.656% depending on the used mean technique, while the RDAMR 

algorithm only has an AGAR of 9.863%. In the ±0.1 m AD, the APBMR algorithm 

provides AGARs between 70.410%-84.524% depending on the used mean 

technique, while the RDAMR algorithm only provides an AGAR of 37.5%. In the 

±0.15 m AD, the use of the APBMR algorithm produces AGARs between 76.660%-

92.571% depending on the used mean technique, while the RDAMR algorithm only 

produces an AGAR of 62.5%. Meanwhile, in the ±0.25 m AD, the AGAR of the 

RDMAR algorithm reaches a percentage that is similar to the AGAR of the APBMR 

in the ±0.15 m AD. 

Conclusions 

The authors of this article proposed a new method, called the Asynchronous 

Prediction-Based Movement Recognition algorithm for physical rehabilitation 

using sensors. While this algorithm was developed for and tested with the Kinects 

at the laboratory, it can be used with any sensor that returns coordinates in real-

time.  

The APBMR algorithm predicts the next gesture of the users from the previous three 

by using six different mean techniques and decides whether the next user-input 

movement is accepted. By doing so, it can follow the speed and the position of the 

user, making the decision to accept the next gesture easier. 
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Eight research questions and eight hypotheses were made at the beginning of the 

research. After a thorough analysis, eight theses were formed. The most important 

is to get the optimal AGARs, the mean technique to use differs from gesture to 

gesture as well as from AD to AD, while the mean techniques not to use are the 

same in each case. According to these results, the AMT, HMT and CHMT should 

be used for prediction-based gesture recognition, but these mean techniques should 

be changed depending on the gesture and the AD. See Table 3 which shows which 

mean technique to use in case of different gestures and ADs when evaluating on all 

three axes. 

Table 3 

Which mean technique to use in case of different gestures and ADs when evaluating on all three axes? 

AD Circular Waving 
Forward-

diagonal 

Upward-

diagonal 

±0.05 m CHMT (0.304) HMT (0.711) CHMT (0.738) CHMT (0.391) 

±0.1 m AMT (0.619) HMT (0.941)  CHMT (0.925) CHMT (0.723) 

±0.15 m AMT (0.837) HMT (0.977) AMT (0.964) HMT (0.833) 

When evaluating the gestures on all three axes, it can be concluded that when doing 

a simpler gesture where most of the time only one axis is necessary, such as the 

waving movement, the HMT provides the best AGARs. In all other cases, where 

the gestures move on more axes, the best AGARs are with the CHMT and the AMT 

in most cases. 

However, when taking the authors’ whole database of gestures into consideration, 

the CHMT gives the optimal average of accepted gestures out of all six mean 

techniques in the ±0.05m and ±0.1m ADs with 53.392% and 79.562%, respectively. 

Meanwhile, in the ±0.15m AD, the AMT provides the optimal average of accepted 

gestures with 89.620%. 

Keep in mind, that the measurements were done with the Kinect which has its own 

coordinate system with positive and negative values. Due to the possible negative 

values, the GMT, QMT and CMT gave worse results. It is possible that with other 

sensors – that do not return negative coordinate values – or with some shift in the 

returned coordinates of the Kinect, they may provide better results. 

In conclusion, the prediction-based gesture recognition method is more accurate 

than the older (RDAMR) algorithm of the authors. The APBMR algorithm can 

adapt to the current capabilities of the user, which is a criterion for maintaining 

motivation in the patients and for successful physical rehabilitation. Since the older 

RDAMR algorithm could be used at home, the APBMR algorithm can be as well, 

making the rehabilitation process easier for both the therapist and the patient.  
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