
RESEARCH ARTICLE

The role of p53 in the DNA damage-related

ubiquitylation of S2P RNAPII

Barbara N. Borsos, Vasiliki Pantazi, Zoltán G. Páhi, Hajnalka Majoros, Zsuzsanna Ujfaludi,
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Abstract

DNA double-strand breaks are one of the most deleterious lesions for the cells, therefore

understanding the macromolecular interactions of the DNA repair-related mechanisms is

essential. DNA damage triggers transcription silencing at the damage site, leading to the

removal of the elongating RNA polymerase II (S2P RNAPII) from this locus, which provides

accessibility for the repair factors to the lesion. We previously demonstrated that following

transcription block, p53 plays a pivotal role in transcription elongation by interacting with

S2P RNAPII. In the current study, we reveal that p53 is involved in the fine-tune regulation

of S2P RNAPII ubiquitylation. Furthermore, we emphasize the potential role of p53 in delay-

ing the premature ubiquitylation and the subsequent chromatin removal of S2P RNAPII as a

response to transcription block.

Introduction

DNA double-strand breaks (DSBs) are the most deleterious lesions, thus the fine-tuning of the

related repair processes is indispensable to preventing genome instability. Ataxia-telangiectasia

mutated (ATM) kinase and DNA-dependent protein kinase (DNA-PK) are principal regula-

tors in the precise coordination of the two main subpathways of DSB repair, homologous

recombination (HR) and non-homologous end joining (NHEJ), respectively [1–4]. Although

ATM and DNA-PK are responsible for the activation of different repair pathways, they have

common target proteins, such as H2A.X and p53 [5–9]. Following DNA damage, ATM and

DNA-PK phosphorylate p53 at Ser15, resulting in its activation and nuclear accumulation [6–

9].

p53 is a well-known tumor suppressor whose function during transcription was thought to

be restricted to the initiation phase. However, a novel role of p53 in transcription elongation

has been recently revealed in yeast and human models [10–14]. We demonstrated for the first

time in human cells that p53 binds to non-sequence specific gene regions, which is further

enhanced following Actinomycin D (ActD)-induced transcription block. Nonetheless, a signif-

icant decrease in RNA polymerase II (RNAPII) occupancy was detected upon ActD treatment,

and interaction was established between p53 and the elongating RNAPII (S2P RNAPII), sug-

gesting a possible role of p53 in the DNA damage-related dislodgement of RNAPII. The
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remission in the S2P RNAPII level was proved to be the consequence of its proteasomal-medi-

ated degradation. Moreover, p53 was found to co-localize with γH2A.X at the damage foci,

which suggested a potential role of p53 in transcription silencing to allow the recruitment of

DNA repair factors to the damage site [13].

Depending on the severity of DNA damage, the fate of the stalled RNAPII can vary [15–

17]. Cockayne syndrome group B (CSB) and Transcription factor II H (TFIIH) participate in

the forward (at minor lesions) and reverse (at bulky lesions) translocation of RNAPII, respec-

tively [18, 19]. However, upon severe DNA damage, the permanently stalled S2P RNAPII is

marked for polyubiquitylation-mediated proteasomal degradation to promote the efficient

repair mechanism [20, 21]. Following DNA damage, RNAPII remains phosphorylated at Ser2

of the C-terminal domain to prevent the initiation of a new transcription cycle and to allow its

ubiquitylation-related removal [22]. Several E3 ligase complexes are involved in the DNA

damage-related ubiquitylation of S2P RNAPII, such as Neural precursor cell expressed devel-

opmentally down-regulated protein 4 (NEDD4), Breast cancer 1 (BRCA1)–BRCA1-associated

RING domain protein 1 (BARD1), and ElonginA/B/C–Cullin-5–RING-box protein 2 (EloA/

B/C–CUL5–RBX2) [23–26]. WW domain-containing protein 2 (WWP2) has been identified

hitherto as an interaction partner of RNAPII, and as a key E3 ligase in the DSB-related polyu-

biquitylation of RNAPII [27, 28]. Moreover, DNA-PK has been shown to have an essential

role in transcription silencing by facilitating the WWP2-dependent ubiquitylation of S2P

RNAPII and the recruitment of the 26S proteasome to the break site [17, 27, 29].

Here, we shed light on the potential involvement of p53 in the polyubiquitylation of S2P

RNAPII following ActD-induced transcription block. Furthermore, we found that p53 nega-

tively affects the precocious removal of S2P RNAPII from actively transcribed gene regions to

ensure time for the proper repair process, suggesting an auxiliary role of p53 in transcription

elongation.

Materials and methods

Cell cultures

HCT116 p53+/+ and p53-/- (kindly provided by Prof. Bert Vogelstein, John Hopkins Univer-

sity, Baltimore, MD) isogenic colorectal carcinoma cell lines were used for the experiments

[30, 31]. HCT116 cells were grown in high glucose DMEM (Dulbecco’s Modified Eagle Media;

Lonza) supplemented with 8 mM glutamine (Sigma-Aldrich), 1x antibiotic–antimycotic solu-

tion (Sigma-Aldrich), and 10% fetal bovine serum (FBS; Lonza). U2OS cells were maintained

in low glucose DMEM (Dulbecco’s Modified Eagle Media; Lonza) supplemented with 4 mM

glutamine (Sigma-Aldrich), 1x antibiotic–antimycotic solution (Sigma-Aldrich), and 10% fetal

bovine serum (FBS; Lonza). Cells were maintained at 37˚C in humidified atmosphere with 5%

CO2. Our cell culture-related study had been approved to be performed in the University of

Szeged according to the TMF/43-18/2015 decision before the study began.

Actinomycin D treatment

200 nM (U2OS cells) or 400 nM (HCT116 cells) Actinomycin D (ActD) (Sigma-Aldrich) was

used to arrest transcription elongation at different time-points.

Chromatin immunoprecipitation (ChIP)

Cells were fixed with 1% formaldehyde (Sigma-Aldrich) for 10 min, then fixation was halted

with 125 mM glycine (Sigma-Aldrich). Cells were centrifuged at 2,000 rpm for 5 min at 4˚C,

then were resuspended in cell lysis buffer (5 mM PIPES pH 8.0, 85 mM KCl, 0.5% NP-40;
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Sigma-Aldrich) complemented with 1xPIC (Protease Inhibitor Cocktail; Roche), and incu-

bated on ice for 10 min. Pellets were depleted with 5 min centrifugation at 2,000 rpm, 4˚C,

resuspended in nuclear lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0, 0.8% SDS;

Sigma-Aldrich) supplemented with 1xPIC (Roche), and incubated on ice for 1 h. Chromatins

were sheared 4x 20 sec ON/ 1 min OFF with Bioruptor Pico sonicator (Diagenode), then

diluted four times with dilution buffer (10 mM Tris-HCl pH 8.0, 0.5 mM EGTA pH 8.0, 1%

Triton X-100, 140 mM NaCl; Sigma-Aldrich) complemented with 1xPIC (Roche). 30 μg chro-

matin samples were pre-cleared with 4 μl Sheep anti-Rabbit IgG Dynabeads (Novex) for 2 h

rotation at 4˚C. Pre-cleared chromatin samples were incubated with 2 μg anti-S2P RNAPII

(Abcam, ab5095) antibody overnight rotating at 4˚C. Chromatin–antibody complexes were

captured overnight rotating with 40 μl Sheep anti-Rabbit IgG Dynabeads (Novex). Subse-

quently to several washing steps, chromatin–antibody complexes were eluted and precipitated.

Pellets were resuspended in TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0; Sigma-

Aldrich) and reverse-crosslinked. The desired DNA fragments were purified with phenol–

chloroform extraction then precipitated with absolute ethanol. Pellets were dissolved in TE

buffer [32]. Occupancy of S2P RNAPII was monitored with qPCR (Thermo PikoReal 96 Real-

Time PCR system; Thermo Fisher Scientific). Sequences of primers used for qPCR are listed in

S1 Table.

qPCR quantification was performed by using a TIC (total input control) standard curve.

The precipitated amount of DNA in each sample was normalized to the amount of DNA in

the NAC (no antibody control).

Western blot

HCT116 p53+/+, HCT116 p53-/-, and U2OS cells were harvested in lysis buffer (150 mM

NaCl, 1% Triton X-100, 50 mM Tris-HCl pH 8.0; Sigma-Aldrich) supplemented with 1xPIC

(Roche), 20 μM PR-619 DUBi (Deubiquitylase Inhibitor; Calbiochem), and 1x PhosSTOP

(Roche) on ice for 10 min, then sonicated 10x 30 sec ON/ 30 sec OFF in Bioruptor Pico sonica-

tor (Diagenode). Protein concentration was measured with PierceTM BCA Protein Assay Kit

(Thermo Fisher Scientific), then 30 μg protein lysates were mixed with NuPAGETM LDS Sam-

ple Buffer (4x) (Thermo Fisher Scientific) and boiled for 10 min. Proteins were separated in

pre-casted BoltTM 4–12% Bis-Tris Plus gradient gels (Thermo Fisher Scientific). 1x NuPA-

GETM MOPS SDS Running Buffer (Thermo Fisher Scientific) and 1x NuPAGETM Transfer

Buffer (Thermo Fisher Scientific) were used for SDS-PAGE and transfer, respectively. Proteins

were transferred onto Amersham Hybond ECL-nitrocellulose membrane (GE Healthcare).

Unspecific binding sites of the membranes were blocked with 5% non-fat dry milk–TBST

(Tris-Buffered Saline complemented with Tween 20), then the membranes were incubated

with primary [S2P RNAPII ab5095 (Abcam) 1:4000, p53 MA5-12557 (Thermo Fisher Scien-

tific) 1:1000, GAPDH MAB374 (Merck–Millipore) 1:1000], and horseradish peroxidase

(HRP)-conjugated secondary antibodies [GAR-HRP IgG P0448 (Dako), RAM-HRP IgG

P0260 (Dako)]. Chemiluminescent detection was conducted using Immobilon Western

Chemiluminescent HRP substrate (Merck–Millipore) and G:BOX Chemi XRQ (Syngene)

system.

Tandem ubiquitin-binding entities (TUBEs) assay

TUBE2 (UM402; LifeSensors) agarose beads were used to capture polyubiquitin moieties from

HCT116 p53+/+, HCT116 p53-/-, and U2OS cell lysates. Cells were harvested in TENT buffer

(50 mM Tris-HCl pH 8.0, 2 mM EDTA pH 8.0, 150 mM NaCl, 1% Triton X-100; Sigma-

Aldrich) complemented with 1xPIC (Roche), 20 μM PR-619 DUBi (Calbiochem), and 1x
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PhosSTOP (Roche), incubated on ice for 10 min, then sonicated 12x 30 sec ON/ 30 sec OFF in

Bioruptor Pico sonicator (Diagenode). Afterwards, samples were centrifuged at 14,000 g for 10

min at 4˚C. Protein concentration of the supernatants was measured with PierceTM BCA Pro-

tein Assay Kit (Thermo Fisher Scientific). 20 μl TUBEs beads/ IP were washed twice with

TBST (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% Tween 20; Sigma-Aldrich) comple-

mented with 1xPIC (Roche), 20 μM PR-619 DUBi (Calbiochem), and 1x PhosSTOP (Roche).

Between each washing step, beads were centrifuged at 1,000 g for 1 min at 4˚C. 1.5 mg protein

was added to 20 μl TUBEs beads and exceeded with TENT + inhibitors up to 500 μl final vol-

ume, then samples were rotated for 2 h at 4˚C. Beads–polyubiquitin complexes were washed

three times with TBST + inhibitors, then eluted in 40 μl final volume of the mixture of TENT

+ inhibitors and NuPAGETM LDS Sample Buffer (4x) (Thermo Fisher Scientific) at 100˚C for

10 min.

siRNA silencing

Human p53 siRNA pool (L-003329-00-0005) was used for silencing p53 in U2OS cells. As a

negative control, we used non-targeting siRNA pool (D-001810-10-05). siRNA pools were

ordered from Dharmacon (Thermo Fisher Scientific) and transfected to the cells using

INTERFERin (Polyplus) transfection reagent and antibiotic-free DMEM medium following

the manufacturer’s recommendations.

Statistics

Statistical analyses were performed to show significant differences between ChIP datasets with

one-way ANOVA after checking the normal distribution of the data in IBM SPSS 28.0. West-

ern blots were quantified by using Fiji Image J.

Results

p53 delays the removal of S2P RNAPII from actively transcribed gene

regions as a response to transcription block

To study whether p53 plays a role in the chromatin dislodgement of the arrested elongating

RNA polymerase II (S2P RNAPII) following DNA double-strand break (DSB) induction, we

monitored the profile changes of the S2P RNAPII by chromatin immunoprecipitation (ChIP)

in HCT116 p53+/+ and p53-/- colorectal cancer cell lines. For this, we treated both cell lines

with the transcription elongation blocking agent ActD for 6 h and 24 h. The occupancy of S2P

RNAPII was tracked at a certain gene body region of three actively transcribed genes, ACTB,

CDK12, and BRAT1 (Fig 1A–1C, respectively). Based on our previously published results,

ACTB, CDK12, and BRAT1 can be classified into distinct clusters according to their transcrip-

tion profile and S2P RNAPII occupancy detected on these genes [13]. As a negative control,

we used primers for an intergenic region, where active transcription does not take place (Fig

1D).

Under physiological conditions, the level of S2P RNAPII at the gene body of ACTB,

CDK12, and BRAT1 is higher in HCT116 p53-/- cells compared to p53+/+, which supports the

restraining role of p53 in the normal transcription elongation process (Fig 1A–1C). In

HCT116 p53+/+ cells, the occupancy of S2P RNAPII is not altered at any of the examined

genes following 6 h ActD treatment, while a dramatic decrease is observed at 24 h ActD on

these transcribed regions. On the contrary, in HCT116 p53-/- cells, a significant attenuation is

detected on all three desired genes already upon 6 h ActD which is further reduced following

24 h ActD treatment (Fig 1A–1C). These data are supported by two independent ChIP
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experiments performed in HCT116 p53+/+ and p53-/- cells under the same conditions (Fig 1

and S1 Fig).

Conclusively, in HCT116 p53-/- cells, the S2P RNAPII occupancy is significantly reduced

already at 6 h, while in HCT116 p53+/+ cells, this attenuation is observed only after 24 h ActD

treatment. In HCT116 p53+/+ cells, the binding of S2P RNAPII still remains relatively high at

6 h, which denotes that in the presence of p53, the stalled S2P RNAPII cannot be removed

until this time-point (Fig 1A–1C). These results reveal that in colorectal carcinoma cells, p53

delays the removal of S2P RNAPII from actively transcribed regions as a response to transcrip-

tion elongation block-induced DNA damage.

p53 is involved in the regulation of S2P RNAPII ubiquitylation following

ActD-induced transcription block

Following severe DNA damage, the elongating form of RNAPII is assigned to ubiquitylation-

mediated proteasomal degradation to allow access for the recruitment of repair factors [17,

20]. Using HCT116 p53+/+ and p53-/- cell lysates, we pulled-down the ubiquitylated protein

pool by tandem ubiquitin-binding entities (TUBEs). Subsequently, with immunoblot, we

examined the ubiquitylated S2P RNAPII (ub-S2P RNAPII) pool in basal conditions as well as

following 8 h and 24 h ActD treatments. Ub-S2P RNAPII is detected mainly at 8 h ActD treat-

ment, while at 24 h the majority of the ub-S2P RNAPII pool has been presumably degraded

(Fig 2A and S2 Fig).

In HCT116 p53+/+ cells, the total protein level of S2P RNAPII is increased at 8 h ActD,

then it returns to basal level after 24 h (Fig 2B and S2 Fig). On the contrary, in HCT116 p53-/-

cells the S2P RNAPII still remains accumulated after 24 h ActD treatment (Fig 2B and S2 Fig).

Additionally, we investigated the changes in the protein level of p53 upon ActD (Fig 2B and

S2 Fig). We detected an increase in the protein level of the total p53 pool following transcrip-

tion elongation block (Fig 2B and S2 Fig).

To verify whether the p53-mediated ubiquitylation is specific for HCT116 cell line or it is a

general phenomenon, we performed TUBEs assay on U2OS cells (Fig 2C and S3 Fig). We

depleted the p53 with siRNA transfection and as a control, we used non-targeting siRNA

(referred to as sip53 and siSCR, respectively). Subsequently, 6 h and 24 h of ActD treatments

Fig 1. p53 affects the profile changes of elongating RNA polymerase II (S2P RNAPII) at transcriptionally active gene regions following Actinomycin D

(ActD)-induced transcription elongation block. (A–C) S2P RNAPII occupancy was monitored with ChIP–qPCR at ACTB, CDK12, and BRAT1 gene bodies

in the presence (light grey columns; HCT116 p53+/+ cell line) and in the absence (dark grey columns; HCT116 p53-/- cell line) of p53. The profile changes

were tracked under physiological conditions (NT) as well as following 6 h and 24 h ActD treatments. (D) Primers designed to an intergenic region were used as

the negative control of the ChIP. The figure shows the representative result of one out of two independent experimental replicates. qPCR reactions were

performed in duplicates. Asterisks represent statistical significance (�P� 0.05) between the mean values. Mean values of ActD-treated samples were compared

to the mean value of the corresponding non-treated sample by one-way ANOVA in case of each cell line.

https://doi.org/10.1371/journal.pone.0267615.g001
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were applied and the ubiquitylated protein pool was captured by TUBEs pull-down, then

changes in the level of ub-S2P RNAPII were detected by Western blot (Fig 2C and S3 Fig). In

siSCR-transfected U2OS cells, following 6 h ActD treatment, a relatively high amount of ub-

S2P RNAPII is observed, which is decreased 24 h after ActD treatment (Fig 2C and S3 Fig).

Similar kinetics, but less ub-S2P RNAPII is detected in sip53-transfected samples (Fig 2C and

S3 Fig). Furthermore, following 24 h ActD treatment, the total protein level of S2P RNAPII

remained accumulated in sip53-transfected cells, while in mock siRNA-transfected cells it was

diminished by that time point (Fig 2D and S3 Fig). The efficiency of p53 silencing was verified

by Western blot using p53-specific antibody (Fig 2D and S3 Fig). These results support our

previous TUBEs assay performed on HCT116 p53+/+ and p53-/- cells, advocating a ubiqui-

tous role of p53 in the ubiquitylation of S2P RNAPII as a response to transcription block.

These data suggest a pivotal role of p53 in the ubiquitylation of S2P RNAPII following tran-

scription elongation arrest. In the absence of p53, the chromatin removal of S2P RNAPII is

observed already at 6 h ActD (seen in Fig 1A and 1B), while at 6 h (in U2OS cells) or at 8 h (in

Fig 2. p53 involvement in the ubiquitylation of RNAPII following ActD treatment is a ubiquitous process. (A) Tandem ubiquitin-binding entities

(TUBEs) pull-down followed by Western blot detection was performed in HCT116 p53+/+ (left panel) and p53-/- (right panel) cells. TUBEs experiment

was accomplished under physiological conditions as well as 8 h and 24 h following ActD treatments. From the pulled-down ubiquitylated protein pool,

polyubiquitylated S2P RNAPII (ub-S2P RNAPII) was detected with anti-S2P RNAPII antibody. �: monoubiquitylated S2P RNAPII, ��: polyubiquitylated

S2P RNAPII (B) Western blot experiment on whole cell lysates of HCT116 p53+/+ (left panel) and p53-/- (right panel), which were used for TUBEs pull-

down assay. Total protein level changes of S2P RNAPII and p53 following 8 h and 24 h ActD treatments were immunodetected using specific antibodies.

Ponceau staining was applied to detect the equal loading of the input samples. (C) Tandem ubiquitin-binding entities (TUBEs) pull-down followed by

Western blot detection was performed in non-targeting and p53 silencing siRNA-transfected (referred to as siSCR and sip53, respectively) U2OS cells. In

U2OS cells, TUBEs assay was performed under physiological conditions, 6 h and 24 h following ActD treatments. From the pulled-down ubiquitylated

protein pool, polyubiquitylated S2P RNAPII (ub-S2P RNAPII) was detected with anti-S2P RNAPII antibody. (D) Western blot experiment on whole cell

lysates of U2OS cells which were used for TUBEs pull-down assay. Total protein level changes of S2P RNAPII and p53 as a response to 6 h and 24 h ActD

treatments were immunodetected using specific antibodies. GAPDH detection was applied to detect the equal loading of the input samples.

https://doi.org/10.1371/journal.pone.0267615.g002
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HCT116 cells) much less polyubiquitylated S2P RNAPII is detected (Fig 2A and S2 Fig; Fig 2C

and S3 Fig), which suggests its premature ubiquitylation at earlier time-points. In conclusion,

following transcription elongation block, p53 presumably fine-tune regulates the polyubiquity-

lation and the subsequent proteolysis of S2P RNAPII.

p53 hinders the premature ubiquitylation of S2P RNAPII following

transcription elongation arrest

To reveal whether p53 indeed modulates the premature ubiquitylation of S2P RNAPII, we also

included earlier time-points (1 h and 4 h) following ActD treatment at which we investigated

the amount of ub-S2P RNAPII. For this, we performed TUBEs assay in 1 h, 4 h, and 8 h ActD-

treated as well as in non-treated HCT116 p53+/+ and p53-/- cell lysates, and by a subsequent

immunoblot detection, we compared the level of polyubiquitylated S2P RNAPII among these

samples (Fig 3A and S4 Fig). In HCT116 p53+/+ cells, we detected elevated level of polyubiqui-

tylated S2P RNAPII following 8 h ActD treatment, while in p53-/- cells much less polyubiqui-

tylated S2P RNAPII is observed, supporting our previous results represented in Fig 2A and 2C

(Fig 3A and S4 Fig). Intriguingly, at 1 h and 4 h post-ActD treatments, only a limited amount

of polyubiquitylated S2P RNAPII can be seen in the presence of p53 (Fig 3A and S4 Fig). On

the contrary, in the absence of p53, as a response to 1 h ActD treatment, a relatively high

amount of polyubiquitylated S2P RNAPII is detected, which supports our hypothesis that p53

plays a potentially negative role in the premature ubiquitylation of S2P RNAPII (Fig 3A and S4

Fig). Therefore, we believe that p53 postpones the turnover of S2P RNAPII from the damaged

chromatin to ensure time for the proper DNA repair. Monoubiquitylated S2P RNAPII (lower

lane) is detected in each sample, including the basal conditions, as it is a crucial step even for

the normal transcription cycle, which does not necessarily result in proteasomal degradation.

Furthermore, monoubiquitylation is indispensable for the further polyubiquitylation of S2P

RNAPII, thus its level is relatively high under stress conditions represented in Fig 3A.

Additionally, we monitored the alterations in the protein level of S2P RNAPII and p53 in

the input samples of the TUBEs pull-down (Fig 3B and S4 Fig). In HCT116 p53+/+ cells, S2P

RNAPII protein level was increased following 1 h, 4 h, and 8 h ActD treatments (Fig 3B and

Fig 3. p53 is essential for preventing the premature ubiquitylation of RNAPII following ActD treatment. (A) Tandem ubiquitin-binding entities (TUBEs)

pull-down, followed by Western blot detection was performed in HCT116 p53+/+ and p53-/- cells. TUBEs experiment was accomplished under basal

conditions as well as 1 h, 4 h, and 8 h following ActD. From the pulled-down ubiquitylated protein pool, polyubiquitylated S2P RNAPII (ub-S2P RNAPII) was

detected with anti-S2P RNAPII antibody. �: monoubiquitylated S2P RNAPII, ��: polyubiquitylated S2P RNAPII. (B) Western blot experiment on whole cell

lysates of HCT116 p53+/+ and p53-/-, which were used for TUBEs pull-down assay. Total protein level changes of S2P RNAPII and p53 following 1 h, 4 h, and

8 h ActD treatments in HCT116 cells were immunodetected using specific antibodies. Ponceau staining was applied to detect the equal loading of the input

samples.

https://doi.org/10.1371/journal.pone.0267615.g003
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S4 Fig). In HCT116 p53-/- cells, a significant accrual is detected at 4 h (Fig 3B and S4 Fig). As

the polyubiquitylated S2P RNAPII has been already removed by that time-point, it cannot be

the ub-S2P RNAPII pool, but it rather refers to an increased rate of de novo transcription dur-

ing the repair process. In HCT116 p53+/+ cells, the level of p53 was getting increased in a

time-dependent manner following ActD treatment (Fig 3B and S4 Fig).

Accordingly, in colorectal carcinoma cells, we shed light on a hindering role of p53 in the

premature ubiquitylation of S2P RNAPII following transcription elongation block, therefore

protecting it from preliminary degradation to facilitate the proper DNA repair process.

Discussion

Here, we shed light on a yet to be characterized, emerging role of p53 in the ubiquitylation of

S2P RNAPII upon transcription arrest. Following transcription block, p53 delays the chroma-

tin removal of the stalled elongating RNA polymerase II (S2P RNAPII) by stimulating its poly-

ubiquitylation. It is an essential step for slowing down the process of subsequent proteolysis,

thereby presumably ensuring the proper DNA repair.

According to the type of DNA damage and the subsequent fate of RNAPII, various ubiqui-

tylation steps may take place [20]. We previously demonstrated in U2OS cells, that the reduc-

tion in S2P RNAPII level following ActD treatment is the consequence of its proteasomal

degradation, which requires its pre-ubiquitylation [13]. However, the exact proteins [including

E3 ligases, deubiquitylases (DUBs) and scaffold proteins] involved in the resolution of tran-

scription elongation block have yet to be identified in human. E3 ligases involved in the ubi-

quitylation of RNAPII act synergistically to ensure the most beneficial outcome, which

facilitates the recruitment of repair factors to the damage site [2]. Polyubiquitylation is a com-

plex process, in which the linkage type determines the destiny of RNAPII. Neural precursor

cell expressed developmentally down-regulated protein 4 (NEDD4) was shown to be one of

the key E3 ligases responsible for the monoubiquitylation of RNAPII, and also for its subse-

quent K63-linked polyubiquitin chain extension [33]. Afterwards, this chain can be trimmed

by Ubiquitin carboxyl-terminal hydrolase 2 (Ubp2) (shown in yeast), and eventually processed

to K48-linked polyubiquitylation catalyzed by ElonginA/B/C–Cullin-5–RING-box protein 2

(EloA/B/C–CUL5–RBX2) and Von Hippel-Lindau/ElonginB/C–Cullin-2–RING-box protein

1 (VHL/EloB/C–CUL2–RBX1) complexes [20, 33, 34]. K48-linked chains can also be cropped

by Ubiquitin carboxyl-terminal hydrolase 3 (Ubp3) (shown in yeast), hence rescuing RNAPII

from subsequent degradation [35]. WWP2 E3 ligase was previously identified as an interaction

partner of RNAPII, and shown to be involved in the K48-linked polyubiquitylation of RNAPII

as a response to DNA damage [27, 28]. DNA-PK was shown to be necessary for WWP2 and

the proteasome recruitment to the damage sites [27]. However, it still remains elusive how

DNA-PK can trigger WWP2 and the 26S proteasome to the damage site. A possible explana-

tion of this phenomenon is that a third, still unidentified protein may be involved in this pro-

cess, which is presumably phosphorylated by DNA-PK.

In this study, we demonstrate that the limited amount of ub-S2P RNAPII detected in the

absence of p53 following 8 h ActD treatment is not the consequence of failure in S2P RNAPII

ubiquitylation, but rather a negative regulatory role of p53 in the premature ubiquitylation-

related chromatin removal of S2P RNAPII. These data are supported by our chromatin immu-

noprecipitation (ChIP) results, in which we established that following ActD treatment p53

presence gives rise to a shift in the dwell time of the arrested S2P RNAPII at transcriptionally

active gene regions, which might contribute to a more precise DNA repair process. The result

of a faster removal of the stalled S2P RNAPII in the absence of p53 could lead to a precocious
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resolution of transcription block, which might not provide enough time for the precise DNA

repair process.

In conclusion, we emphasize the potential involvement of p53 in the ubiquitylation of S2P

RNAPII following transcription elongation arrest.

Supporting information

S1 Data.

(XLSX)

S1 Table. Primers used for ChIP–qPCR.

(TIF)

S1 Fig. Repetition of ChIP experiment represented in Fig 1.

(TIF)

S2 Fig. Relative density of Western blots represented in Fig 2.

(TIF)

S3 Fig. Relative density of Western blots represented in Fig 2.

(TIF)

S4 Fig. Relative density of Western blots represented in Fig 3.

(TIF)

S5 Fig.

(PDF)

Acknowledgments

We are grateful Prof. Dr. Bert Vogelstein for providing HCT116 p53-/- cell line. Additionally,

we appreciate Prof. Dr. Evanthia Soutoglou for supporting us with reagents.

Author Contributions

Conceptualization: Barbara N. Borsos, Vasiliki Pantazi, Tibor Pankotai.

Formal analysis: Barbara N. Borsos, Zoltán G. Páhi.
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