A Discrete Convex Min-Max Formula for Box-TDI Polyhedra

András Frank* and Kazuo Murota ${ }^{\dagger}$

July 2020 / August 2020 / January 2021

Abstract

A min-max formula is proved for the minimum of an integer-valued separable discrete convex function where the minimum is taken over the set of integral elements of a box total dual integral (box-TDI) polyhedron. One variant of the theorem uses the notion of conjugate function (a fundamental concept in non-linear optimization) but we also provide another version that avoids conjugates, and its spirit is conceptually closer to the standard form of classic min-max theorems in combinatorial optimization. The presented framework provides a unified background for separable convex minimization over the set of integral elements of the intersection of two integral base-polyhedra, submodular flows, L-convex sets, and polyhedra defined by totally unimodular (TU) matrices. As an unexpected application, we show how a wide class of inverse combinatorial optimization problems can be covered by this new framework.

Keywords: Min-max formula, Discrete convex function, Combinatorial inverse problem, Integral base-polyhedron, M-convex set, Total dual integrality.

Mathematics Subject Classification (2010): 90C27, 90C25, 90C10

[^0]
Contents

1 Introduction 3
1.1 Notions and notation 4
1.2 Starting points 5
2 Box-TDI systems and polyhedra 7
2.1 Properties and operations 8
2.2 The main tool 10
3 Min-max theorem for Φ 12
3.1 Preparation 12
3.2 Main results 13
3.3 Using discrete conjugate 16
4 Special box-TDI polyhedra 18
4.1 Polyhedra defined by TU-matrices 18
4.2 M-convex and M_{2}-convex sets 19
4.3 Direct proof for M-convex sets 20
5 Special discrete convex functions 21
5.1 Minimizing the square-sum 21
5.2 Flows and circulations 23
5.3 Minimizing the weighted square-sum 24
6 Inverse combinatorial optimization 25
6.1 A general framework for inverse problems 26
6.2 Preparation 27
6.3 Min-max theorem for the general inverse problem 28
7 Appendix: Calculating concrete discrete conjugates 29

1 Introduction

A central aspect of convex optimization is minimizing a convex function over a convex set. Discrete convex analysis [23, 24] considers discrete convex functions. It turned out that there are two strongly interrelated general classes, M-convex and L-convex functions, for which fundamental min-max theorems can be formulated. It is important to distinguish between the cases when we minimize over real or over integer vectors. For example, one may be interested in finding a minimum l_{2}-norm element of an integral base-polyhedron B (say) or a minimum l_{2}-norm integral element of B. These are pretty different problems as the continuous version has a unique solution [16], while the set of integral optima [15] concerning base-polyhedra has a rich structure. In the present work, we discuss the second type of minimization when the function to be minimized is an integer-valued separable discrete convex function. It was proved in [24] that these functions are exactly those which are both M^{\natural}-convex and L^{\natural}-convex. In this sense separable discrete convex functions are rather special but this speciality makes it possible that we can develop min-max theorems when we minimize over a discrete boxTDI set, a much wider class than M^{\natural}-convex or L^{\natural}-convex sets. Box-TDI linear systems and polyhedra (defined formally below) were introduced by Edmonds an Giles [11], studied in detail by Cook [4, 5], and recently by Chervet, Grappe, and Robert [3]. We shall call the set of integral elements of an integral box-TDI polyhedron a discrete box-TDI set, or just a box-TDI set.

Our main goal is to develop a general min-max formula for the minimum of an integervalued separable discrete convex function Φ over a discrete box-TDI set. Actually, we exhibit two equivalent forms. One of them makes use of the discrete version of Fenchel conjugate, a fundamental concept from non-linear (continuous) optimization (see [1, 19, 25]). But we also develop another form which does not rely on the concept of conjugate, and therefore this version is conceptually closer to classic min-max theorems of combinatorial optimization like the ones of Menger, Kőnig, Egerváry, Dilworth, Ford+Fulkerson, Tutte, Edmonds, Lucchesi+Younger, etc.

Our general framework includes as a special case the corresponding optimization problems for totally unimodular (TU) matrices, in particular, circulations and tensions (= potentialdifferences). The results can also be applied to submodular flows, in particular to the intersection of two base-polyhedra. As a special case, we derive a min-max theorem for the minimum square-sum of an integer-valued (!) feasible circulation or maximum flow.

It is our important goal to bring those readers closer to discrete convex optimization who are not particularly familiar with the notion of conjugate. The present work, apart from one exception, does not deal with algorithmic issues, but we hope that our min-max formulas pave the way to forthcoming researches for constructing strongly polynomial algorithms to compute the optima in question.

As an unexpected application, we shall show in Section6how a significant part of inverse combinatorial optimization problems can be modelled in this new framework. We provide a min-max theorem for the minimum total change (measured in l_{1}-norm) of a given costfunction w_{0} for which a specified element of a discrete box-TDI set (for example, a spanning tree of a graph) becomes a cheapest one with respect to the modified cost-function w. Even the more general inverse problem fits into our framework when each element from a specified list is expected to be a cheapest one with respect to the desired w.

In the present work, for the sake of technical simplicity, we concentrate on integer-valued functions. It should, however, be emphasized that all the results can be extended in a natural
way to real-valued separable discrete convex functions, as well.

1.1 Notions and notation

Let \mathbf{R}, \mathbf{Q}, and \mathbf{Z} denote the set of reals, rationals, and integers, respectively. When it does not make any confusion, we do not distinguish between row- and column-vectors. For example, if u and v are vectors from \mathbf{R}^{n}, then $u v=v u$ denotes their scalar product. For a vector w, we use the notation w^{2} for the scalar product $w w$, and will refer to w^{2} as the square-sum of w. If Q is an m-by- n matrix while $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$ are vectors, then x is considered a column-vector in the product $Q x$, while y is considered a row-vector in $y Q$.

Throughout we work with a ground-set S with n elements. The incidence or characteristic vector of a subset X of S is denoted by χ_{X}, and χ_{S} will be briefly denoted by $\underline{1}$. For elements $s, t \in S$, we call a subset $X \subset S$ an $s \bar{t}$-set if $s \in X \subset S-t$. For a function f on S, the set-function \widetilde{f} is defined by $\widetilde{f}(X):=\sum[f(s): s \in X](X \subseteq S)$.

For a polyhedron $R:=\{x: Q x \geq p\} \subseteq \mathbf{R}^{S}, R$ denotes the set of integral elements of R, that is,

$$
\begin{equation*}
\dddot{R}:=R \cap \mathbf{Z}^{S} . \tag{1.1}
\end{equation*}
$$

For a cost-function w on S, let $\mu_{R}(w)$ denote the minimum of $\{w x: x \in R\}$, while $\mu_{R}(w):=$ $\min \{w x: x \in \mathbb{R}\}$. We say that an element z^{*} of R is a w-minimizer if $w z^{*} \leq w x$ holds for every $x \in R$, that is, $w z^{*}=\mu_{R}(w)$.

The effective domain [24, 25] (or sometimes just domain [1, 19]) dom(φ) of an integervalued function $\varphi: \mathbf{Z} \rightarrow \mathbf{Z} \cup\{-\infty,+\infty\}$ is the set of integers where φ is finite. When we say that a function φ is integer-valued, we allow that some values of φ may be $-\infty$ or $+\infty$. A function $\varphi: \mathbf{Z} \rightarrow \mathbf{Z} \cup\{+\infty\}$ is called discrete convex if

$$
\begin{equation*}
\varphi(k-1)+\varphi(k+1) \geq 2 \varphi(k) \tag{1.2}
\end{equation*}
$$

for each $k \in \operatorname{dom}(\varphi)$. Let φ^{\prime} denote the function defined on \mathbf{Z} by

$$
\begin{equation*}
\varphi^{\prime}(k):=\varphi(k+1)-\varphi(k) \quad(k \in \mathbf{Z}) . \tag{1.3}
\end{equation*}
$$

The function φ^{\prime} may intuitively be considered the discrete right derivative of φ. Clearly, φ is discrete convex precisely if φ^{\prime} is monotone non-decreasing. The effective domain of a discrete convex function is the set of integers in a (possibly unbounded) interval.

When we are given a function φ_{s} for every $s \in S$, the functions $\Phi: \mathbf{Z}^{S} \rightarrow \mathbf{Z} \cup\{+\infty\}$ and $\Phi^{\prime}: \mathbf{Z}^{S} \rightarrow \mathbf{Z} \cup\{-\infty,+\infty\}$ are defined by:

$$
\begin{equation*}
\Phi(z):=\sum_{s \in S} \varphi_{s}(z(s)), \quad \Phi^{\prime}(z):=\sum_{s \in S} \varphi_{s}^{\prime}(z(s)) . \tag{1.4}
\end{equation*}
$$

When each φ_{s} is discrete convex, Φ is called a separable discrete convex function. The discrete conjugate function φ^{\bullet} of a function $\varphi: \mathbf{Z} \rightarrow \mathbf{Z} \cup\{+\infty\}$ is defined for any integer ℓ by

$$
\begin{equation*}
\varphi^{\bullet}(\ell):=\max \{k \ell-\varphi(k): k \in \mathbf{Z}\}, \tag{1.5}
\end{equation*}
$$

while the discrete conjugate Φ^{\bullet} of Φ is defined for $w \in \mathbf{Z}^{S}$ by

$$
\Phi^{\bullet}(w):=\sum_{s \in S} \varphi_{s}^{\bullet}(w(s))
$$

Note that $\Phi^{\bullet}(w)=\max \left\{w z-\Phi(z): z \in \mathbf{Z}^{S}\right\}$, and this latter expression is actually the definition of the discrete conjugate of an arbitrary integer-valued function Φ on \mathbf{Z}^{S}.

Note that $\varphi^{\bullet}(\ell)$ may be $+\infty$ (when $\{k \ell-\varphi(k): k \in \mathbf{Z}\}$ is not bounded from above) and hence using supremum would be formally a bit more precise but we keep the term maximum. It should be emphasized that in the original definition of Fenchel conjugate in continuous optimization [1], the maximum is taken over all real values k and not only on integer k 's.

Let $p: 2^{S} \rightarrow \mathbf{Z} \cup\{-\infty\}$ be an integer-valued (fully) supermodular function on a groundset S for which the value $p(S)$ is finite. When we say that a function p is supermodular, we always mean that the supermodular inequality $p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y)$ holds for every pair $\{X, Y\}$ of subsets of S. Since weaker supermodular functions (e.g., intersecting, crossing) are also important in applications, sometimes we (over-) emphasize by saying that p is 'fully' supermodular.

Let

$$
B:=B^{\prime}(p):=\{x: \widetilde{x}(Z) \geq p(Z) \text { for every } Z \subset S \text {, and } \widetilde{x}(S)=p(S)\}
$$

be the base-polyhedron defined by p. Since p is integer-valued, B is an integral polyhedron, which, in turn, determines p uniquely as $p(Z)=\min \{\widetilde{x}(Z): x \in B\}$. Note that the complementary function \bar{p}, defined by $\bar{p}(X):=p(S)-p(S-X)$, is submodular and $B^{\prime}(p)=B(\bar{p}):=\{x: \widetilde{x}(Z) \leq \bar{p}(Z)$ for every $Z \subset S$, and $\widetilde{x}(S)=\bar{p}(S)\}$. That is, a base polyhedron can be defined by a submodular function as well.

In discrete convex analysis [24], the set \overparen{B} of integral elements of B is called an M-convex set and the intersection of two M-convex sets an \mathbf{M}_{2}-convex set. A fundamental theorem of Edmonds [8] states that a set is M_{2}-convex precisely if it is the set of integral elements of the intersection of two integral base-polyhedra.

1.2 Starting points

A starting point of the present work is the problem of finding/characterizing an element of an M-convex set B for which an integer-valued separable discrete convex function $\Phi(z)$ in (1.4) is minimum. It is a basic property of integral base-polyhedra (see, e.g., [12]) that the intersection of an integral box with an integral base-polyhedron is itself an integral basepolyhedron. Since the effective domain of Φ is a box, it follows that we can replace B with this intersection, or in other words, we may assume that Φ is finite-valued on the whole M-convex set \overparen{B}.

A min-max theorem for separable discrete convex functions on an M-convex set can be obtained as a special case of the Fenchel-type discrete duality theorem [24] (Theorem 8.21) concerning discrete convex functions which are not necessarily separable. The formulation needs the well-known concept of linear (or Lovász) extension \hat{p} of p which is recalled in (4.1) in Section 4.2, We also hasten to recall a basic theorem of Edmonds [8, 9] asserting that $\hat{p}(w)=\min \{w z: z \in \overparen{B}\}(=\min \{w z: z \in B\})$. For an element $z \in \dddot{B}$, we call a subset $X \subseteq S$ z-tight if $\widetilde{z}(X)=p(X)$. For a vector $w \in \mathbf{Z}^{S}$, we call a non-empty set $X \subseteq S$ a strict w-top set if $w(s)>w(t)$ holds whenever $s \in X$ and $t \in S-X$. Note that the strict w-top sets form a chain.

Recall that an M-convex set B was defined as the set of integral elements of an integral base-polyhedron B, that is,

$$
\begin{equation*}
\dddot{B}:=B \cap \mathbf{Z}^{S} . \tag{1.6}
\end{equation*}
$$

Although the present work was highly motivated by the theory of discrete convex analysis
(DCA) [24], especially in formulating some of the theorems, we do not rely on any prerequisite from DCA, that is, each of our results and proofs are direct and self-contained. For DCA experts, however, as well as for readers who may want to get acquainted with DCA in the future, it may be beneficial if we point out some links to DCA. For example, the following three theorems were originally proved with tools from DCA. It will be one of our goals to derive them directly (in a more general form).
Theorem 1.1 ([14]). Suppose that an integer-valued separable discrete convex function Φ is finite-valued and bounded from below on an M-convex set \dddot{B} defined by an integer-valued (fully) supermodular function p (allowing $-\infty$ values). Then

$$
\begin{equation*}
\min \{\Phi(z): z \in \dddot{B}\}=\max \left\{\hat{p}(w)-\Phi^{\bullet}(w): w \in \mathbf{Z}^{S}\right\} \tag{1.7}
\end{equation*}
$$

where Φ^{\bullet} denotes the discrete conjugate of Φ and \hat{p} denotes the linear extension of p (and hence $\hat{p}(w)=\mu_{B}(w)$). Moreover, an element $z^{*} \in \overparen{B}$ is a Φ-minimizer if and only if there is an integer-valued function w^{*} on S meeting the following optimality criteria:

$$
\begin{align*}
& \text { each strict } w^{*} \text {-top set is } z^{*} \text {-tight, } \tag{1.8}\\
& \varphi_{s}^{\prime}\left(z^{*}(s)-1\right) \leq w^{*}(s) \leq \varphi_{s}^{\prime}\left(z^{*}(s)\right) \text { for each } s \in S \tag{1.9}
\end{align*}
$$

or writing (1.9) concisely:

$$
\begin{equation*}
\Phi^{\prime}\left(z^{*}-\underline{\mathbf{1}}\right) \leq w^{*} \leq \Phi^{\prime}\left(z^{*}\right) \tag{1.10}
\end{equation*}
$$

Actually, the general Fenchel-type min-max theorem in [24] also implies the following extension of Theorem 1.1 to M_{2}-convex sets.
Theorem 1.2 ([14]). Let $B_{1}:=B^{\prime}\left(p_{1}\right)$ and $B_{2}:=B^{\prime}\left(p_{2}\right)$ be base-polyhedra defined by integervalued supermodular functions p_{1} and p_{2} for which $B:=B_{1} \cap B_{2}$ is non-empty. Let Φ be a finite integer-valued separable discrete convex function on B which is bounded from below on B. Then one has:

$$
\begin{equation*}
\min \{\Phi(z): z \in \dddot{B}\}=\max \left\{\hat{p}_{1}\left(w_{1}\right)+\hat{p}_{2}\left(w_{2}\right)-\Phi^{\bullet}\left(w_{1}+w_{2}\right): w_{1}, w_{2} \in \mathbf{Z}^{S}\right\} . \tag{1.11}
\end{equation*}
$$

In Section 4, we shall derive these theorems from the new min-max formula concerning discrete box-TDI sets. It is worth mentioning already at this point that in important special cases the discrete conjugate of Φ can be explicitly given. For example, let $\Phi(z):=z^{2} \quad(=$ $\sum\left[z(s)^{2}: s \in S\right]$). For any real number $\alpha \in \mathbf{R}$, let $\lfloor\alpha\rfloor$ denote the largest integer not larger than α, and $\lceil\alpha\rceil$ the smallest integer not smaller than α. Then Theorems 1.1 and 1.2 can be specialized, as follows.
Theorem 1.3 ([14, [15]). Let $B=B^{\prime}(p)$ be an integral base-polyhedron. Then

$$
\begin{equation*}
\min \left\{z^{2}: z \in \dddot{B}\right\}=\max \left\{\hat{p}(w)-\sum_{s \in S}\left\lfloor\frac{w(s)}{2}\right\rfloor\left\lceil\frac{w(s)}{2}\right\rceil: w \in \mathbf{Z}^{S}\right\} . \tag{1.12}
\end{equation*}
$$

Let $B_{1}:=B^{\prime}\left(p_{1}\right)$ and $B_{2}:=B^{\prime}\left(p_{2}\right)$ be integral base-polyhedra for which $B:=B_{1} \cap B_{2}$ is non-empty. Then

$$
\begin{align*}
& \min \left\{z^{2}: z \in \dddot{B}\right\} \\
& =\max \left\{\hat{p}_{1}\left(w_{1}\right)+\hat{p}_{2}\left(w_{2}\right)-\sum_{s \in S}\left\lfloor\frac{w_{1}(s)+w_{2}(s)}{2}\right]\left\lceil\frac{w_{1}(s)+w_{2}(s)}{2}\right\rceil: w_{1}, w_{2} \in \mathbf{Z}^{S}\right\} . \tag{1.13}
\end{align*}
$$

These results were formulated first in [14] with a proof relying on the general discrete Fenchel-type duality theorem [24]. We shall directly derive not only Theorems 1.1 and 1.2 but a variant, as well, which does not use the concept of conjugate. Furthermore, we shall show that the role of the M -convex or M_{2}-convex set in these theorems is only that they are discrete box-TDI sets. Note that it is a basic property of base-polyhedra that they are box-TDI and a theorem of Edmonds and Giles [10] implies that the intersection of two base-polyhedra is also a box-TDI polyhedron. Therefore our main min-max theorem concerning discrete box-TDI sets will imply these special cases.

As mentioned above, the present work does not consider algorithmic aspects, apart from one exception. In Section 4.3, we shall provide an algorithmic approach to compute the dual optimum in Theorem 1.1, but even that algorithm can work only if a primal optimal solution is already available. But constructing a strongly polynomial algorithm for computing the primal optimum (that is, a Φ-minimizer element of an M-convex set) already in the special case of weighted square-sum (when $\Phi(z):=\sum\left[c(s) w(s)^{2}: s \in S\right]$, each $c(s)$ is positive) remains a major research problem. In the more general Theorem 1.2, the even more special case when $\Phi(w)=w^{2}$ is wide open from an algorithmic point of view.

2 Box-TDI systems and polyhedra

In what follows, Q is an integral matrix and p is an integral vector. Throughout we assume that there is a one-to-one correspondence between the columns of Q and the elements of ground-set S.

Edmonds and Giles [10, 11] called a (rational) linear system $Q x \geq p$ totally dual integral (TDI) if the maximum in the linear programming duality equation

$$
\begin{equation*}
\min \{c x: Q x \geq p\}=\max \{y p: y \geq 0, y Q=c\} \tag{2.1}
\end{equation*}
$$

has an integral optimal solution y for every integral vector $c \in \mathbf{Z}^{S}$ for which the maximum is finite. More generally (see, [27, Vol. A, p. 77]), a rational linear system [$Q_{1} x \geq p_{1}, Q_{2} x=p_{2}$] is defined to be TDI if the system $\left[Q_{1} x \geq p_{1}, Q_{2} x \geq p_{2},-Q_{2} x \geq-p_{2}\right]$ is TDI, which is equivalent to requiring that, for each integral vector $c \in \mathbf{Z}^{S}$, the dual of the primal linear program $\min \left\{c x: Q_{1} x \geq p_{1}, Q_{2} x=p_{2}\right\}$ has an integer-valued optimum solution, if it has a finite optimum.

Edmonds and Giles [11] called a system $Q x \geq p$ box-totally dual integral (box-TDI) if the system [$Q x \geq p, f \leq x \leq g$] is TDI for every choice of rational (finite-valued) bounding vectors $f \leq g$. This definition can be extended to linear systems including equations, as follows. A linear system [$\left.Q_{1} x \geq p_{1}, Q_{2} x=p_{2}\right]$ is called box-TDI if the linear system $\left[Q_{1} x \geq\right.$ $\left.p_{1}, Q_{2} x \geq p_{2},-Q_{2} x \geq-p_{2}\right]$ is box-TDI. It follows from these definitions that a linear system $\left[Q_{1} x \geq p_{1}, Q_{2} x=p_{2}\right]$ is box-TDI if and only if the system $\left[Q_{1} x \geq p_{1}, Q_{2} x=p_{2}, f \leq x \leq g\right]$ is TDI for every choice of rational (finite-valued) bounding functions $f \leq g$.

A polyhedron is called a box-TDI polyhedron if it can be described by a box-TDI system. Edmonds and Giles proved basic properties of box-TDI systems, while the paper of Cook [5] includes further important results on box-TDI polyhedra. For a rich overview of the topic, see the book of Schrijver [26] and the recent paper of Chervet, Grappe, and Robert [3]. The convex hull of four vectors $(1,1,1,0,0,0),(1,0,0,1,0,0),(0,1,0,0,1,0),(0,0,1,0,0,1)$ is a known example of a non-box-TDI (0,1)-polyhedron (a face of the stable set polytope of a graph known as S_{3}) [2, 3].

Our goal is to show that a result analogous to Theorem 1.1 holds for the set R of integral elements of a box-TDI polyhedron R, that is, for a discrete box-TDI set. An important special case is when Q is a TU (totally unimodular) matrix. This includes the special case of Lconvex or L^{\natural}-convex sets. It can be proved that L_{2}^{\natural}-convex (in particular, L_{2}-convex) sets are also discrete box-TDI sets. Another special case is the one of integral submodular flows, in particular, M_{2}-convex and $\mathrm{M}_{2}^{\natural}$-convex sets.

2.1 Properties and operations

In this section, we collect some basic properties of box-TDI systems and polyhedra, which shall serve as useful tools for our later investigations.

Proposition 2.1 ([26, Theorem 22.7]). A box-TDI system is TDI.
Proposition 2.2 ([5]). Any TDI linear system defining a box-TDI polyhedron is box-TDI.
Let $Q x \geq p$ be a box-TDI system and let $R:=\{x: Q x \geq p\}$. For technical simplicity, we formulate the next propositions only for this form but emphasize that each proposition below extends to the case when the system is given in the more general form [$\left.Q_{1} x \geq p_{1}, Q_{2} x=p_{2}\right]$, which, by definition, is box-TDI if and only if $\left[Q_{1} x \geq p_{1}, Q_{2} x \geq p_{2},-Q_{2} x \geq-p_{2}\right]$ is boxTDI.

Proposition 2.3 ([27, Theorem 5.34]). For a rational vector z^{*}, let $p_{0}:=p-Q z^{*}$. Then the system $Q x \geq p_{0}$ is box-TDI.

Proof. (A proof is given here for completeness, as it is omitted in [27].) Let f and g be any finite-valued rational bounding vectors with $f \leq g$. Let c be an integral vector for which the dual problem

$$
\begin{equation*}
\max \left\{y p_{0}+u f-v g: y Q+u-v=c,(y, u, v) \geq 0\right\} \tag{2.2}
\end{equation*}
$$

has a finite optimal value. By using the definition $p_{0}=p-Q z^{*}$ and the constraint $y Q=$ $c-u+v$, we can rewrite the objective function in (2.2) as

$$
\begin{aligned}
y p_{0}+u f-v g & =y\left(p-Q z^{*}\right)+u f-v g \\
& =y p-(c-u+v) z^{*}+u f-v g \\
& =y p+u\left(f+z^{*}\right)-v\left(g+z^{*}\right)-c z^{*},
\end{aligned}
$$

where the last term $c z^{*}$ is a constant independent of (y, u, v). Therefore, (y, u, v) is an optimal solution to (2.2) if and only if it is an optimal solution to

$$
\begin{equation*}
\max \left\{y p+u\left(f+z^{*}\right)-v\left(g+z^{*}\right): y Q+u-v=c,(y, u, v) \geq 0\right\} . \tag{2.3}
\end{equation*}
$$

Since the system [$\left.Q x \geq p, f+z^{*} \leq x \leq g+z^{*}\right]$ is TDI by the assumed box-TDI-ness of $Q x \geq p$, the problem (2.3) has an integral optimal solution (y, u, v). Therefore, the system $Q x \geq p_{0}$ is box-TDI.

Proposition 2.4. If Q^{\prime} is a matrix obtained from Q by negating some columns of Q, then the system $Q^{\prime} x^{\prime} \geq p$ is also box-TDI.

Proof. It suffices to prove the special case when we negate the first column of Q. Let Q^{\prime} denote the matrix arising in this way. Let $f^{\prime} \leq g^{\prime}$ be rational bounding vectors and c^{\prime} an integer cost-function. We have to show that the dual program

$$
\begin{equation*}
\max \left\{y p+f^{\prime} u-g^{\prime} v: y Q^{\prime}+u-v=c^{\prime},(y, u, v) \geq 0\right\} \tag{2.4}
\end{equation*}
$$

has an integral optimal solution $(y, u, v) \geq 0$. Let c denote the vector obtained from c^{\prime} by negating its first component. Let f denote the vector obtained from f^{\prime} by replacing its first component $f^{\prime}(1)$ to $-g^{\prime}(1)$, and let g denote the vector obtained from g^{\prime} by replacing its first component $g^{\prime}(1)$ to $-f^{\prime}(1)$. Then $y Q^{\prime}+u^{\prime}-v^{\prime}=c^{\prime}$ if and only if $y Q+u-v=c$, where (u^{\prime}, v^{\prime}) arises from (u, v) by interchanging their first components. Furthermore, $y p+f^{\prime} u^{\prime}-g^{\prime} v^{\prime}=$ $y p+f u-g v$. By the box-TDI-ness of the system $Q x \geq p$, there is an integer-valued optimal solution (y, u, v) to

$$
\begin{equation*}
\max \{y p+f u-g v: y Q+u-v=c,(y, u, v) \geq 0\} \tag{2.5}
\end{equation*}
$$

and hence $\left(y, u^{\prime}, v^{\prime}\right)$ is an integer-valued optimal solution to (2.4).
Proposition 2.5 ([26, p. 323]). The system obtained from a box-TDI system $Q x \geq p$ by deleting some columns of Q is box-TDI.

Proposition 2.6 ([11]). If Q^{\prime} is a matrix obtained from Q by duplicating some columns of Q, then the system $Q^{\prime} x^{\prime} \geq p$ is also box-TDI.

Proposition 2.7 ([26, p. 323]). The projection of a box-TDI polyhedron along a coordinate axis is box-TDI.

Proposition 2.8. Let $Q x \geq p$ be a (box-) TDI system defining the polyhedron $R:=\{x: Q x \geq$ $p\}$. Let $q x \geq \beta$ be an inequality which is superfluous in the sense that every member x of R satisfies $q x \geq \beta$. Then the system $[Q x \geq p, q x \geq \beta]$ is also (box-) TDI.

Proof. Let c be an integral cost-function and let y_{0} be an integral dual optimum ensured by the TDI-ness of $Q x \geq p$. Since by adding a superfluous inequality to a linear system does not change the primal optimum value, the dual optimum value does not change either. Therefore, by extending y_{0} by a new zero-valued dual component corresponding to the primal inequality $q x \geq \beta$, we obtain an integral dual solution $\left(y_{0}, 0\right)$ to the dual of the primal problem $\min \{c x: Q x \geq p, q x \geq \beta\}$.

The statement for box-TDI-ness follows from the first part since if $q x \leq \beta$ is superfluous with respect to the system $Q x \geq p$, then it is superfluous, as well, for the system $[Q x \geq$ $p, f \leq x \leq g]$ for any pair of bounding functions $f \leq g$.

Proposition 2.9. Let $Q x \geq p$ be a box-TDI system. Let $f^{\prime}: S \rightarrow \mathbf{Q} \cup\{-\infty\}$ and $g^{\prime}: S \rightarrow$ $\mathbf{Q} \cup\{+\infty\}$ be rational bounding vectors with $f^{\prime} \leq g^{\prime}$. Then $\left[Q x \geq p, f^{\prime} \leq x \leq g^{\prime}\right]$ is also box-TDI, and (hence) TDI.

Proof. We have to show for any choice $f: S \rightarrow \mathbf{Q}$ and $g: S \rightarrow \mathbf{Q}$ of finite-valued rational bounds that the system

$$
\begin{equation*}
\left[Q x \geq p, f^{\prime} \leq x \leq g^{\prime}, f \leq x \leq g\right] \tag{2.6}
\end{equation*}
$$

is TDI. Let f_{0} be the componentwise maximum of f and f^{\prime}, and let g_{0} be the componentwise minimum of g and g^{\prime}. Then f_{0} and g_{0} are finite-valued and hence the system

$$
\begin{equation*}
\left[Q x \geq p, f_{0} \leq x \leq g_{0}\right] \tag{2.7}
\end{equation*}
$$

is TDI since $Q x \geq p$ is box-TDI. Since the system in (2.6) arises from the system in (2.7) by adding superfluous inequalities, Proposition 2.8 implies that (2.6) is indeed TDI, as required.

Proposition 2.10. Let $Q x \geq p$ be a box-TDI system defining the box-TDI polyhedron $R:=$ $\{x: Q x \geq p\}$, let $z^{*} \in \dddot{R}$, and $p_{0}:=p-Q z^{*}$. Then the system

$$
\begin{equation*}
\left[\left(x_{1}, x_{2}\right) \geq 0, Q x_{2}-Q x_{1} \geq p_{0}\right] \tag{2.8}
\end{equation*}
$$

is box-TDI.
Proof. By Proposition 2.3, the system $Q x \geq p_{0}$ is box-TDI. By Proposition 2.6, $Q x_{2}+Q x_{1} \geq$ p_{0} is box-TDI. By applying Proposition 2.4to the matrix (Q, Q), we get that $Q x_{2}-Q x_{1} \geq p_{0}$ is box-TDI. And finally, by Proposition [2.9, the system $\left[\left(x_{1}, x_{2}\right) \geq 0, Q x_{2}-Q x_{1} \geq p_{0}\right]$ is box-TDI.

A polyhedron is called box-integer [3, 27] if its intersection with any integral box is integral. For a positive integer k the k-dilation $k R$ of a polyhedron $R=\{x: Q x \geq p\}$ is defined by $\{x: Q x \geq k p\}$. Any k-dilation is called an (integer) dilation of R.

Proposition 2.11 ([3]). An integer polyhedron R is box-TDI if and only if each of its integer dilation is box-integer.

Remark 2.1. In this section, we have indicated that some natural basic operations preserve (box-) total dual integrality. It should, however, be remarked that one has to be cautious in formulating such results since there are other "natural" operations that do not preserve (box-) TDI-ness. For example, a remark of Schrijver's book [26, p. 323] cites a counter-example of Cook [4] which demonstrates that the statement in Proposition 2.10 does not hold anymore if we replace box-TDI-ness by TDI-ness. Another negative result is that the TDI-ness of the system $\left[Q x \geq p_{1}, Q x \geq p_{2}\right]$ does not imply the TDI-ness of the system $Q x \geq p_{1}+p_{2}$. Also, R. Grappe pointed out that adding a unit vector $(1,0,0, \ldots, 0)$ as a column to the constraint matrix in a box-TDI system may destroy box-TDI-ness.

2.2 The main tool

The following result is the main tool in proving the min-max theorem in Section 3.
Theorem 2.12. Let Q be an integral matrix, p an integral vector, and suppose that the linear system $Q x \geq p$ is box-TDI. Let z^{*} be an integral element of the polyhedron $R:=\{x: Q x \geq$ $p\} \subseteq \mathbf{R}^{S}$, and let $\ell: S \rightarrow \mathbf{Z} \cup\{-\infty\}$ and $u: S \rightarrow \mathbf{Z} \cup\{+\infty\}$ be integer-valued bounding vectors on S for which $\ell \leq u$. There exists an integer-valued non-negative vector y^{*} such that $\ell \leq y^{*} Q \leq u$ and $y^{*}\left(Q z^{*}-p\right)=0$ if and only if

$$
\begin{equation*}
\widetilde{\ell}\left(S^{-}\right) \leq \widetilde{u}\left(S^{+}\right) \tag{2.9}
\end{equation*}
$$

holds for every pair $\left(S^{-}, S^{+}\right)$of disjoint subsets of S for which

$$
\begin{equation*}
z^{\prime}:=z^{*}+\chi_{S^{+}}-\chi_{s^{-}} \in R, \tag{2.10}
\end{equation*}
$$

where $\chi_{S^{+}}$and $\chi_{S^{-}}$denote the characteristic vectors of S^{+}and S^{-}, respectively.

Proof. Necessity of (2.9). Let y^{*} be a function meeting the requirements, $w^{*}:=y^{*} Q$, and let $\left(S^{-}, S^{+}\right)$be a pair meeting (2.10). Then, by complementary slackness of the pair of linear programs (2.1) for $c=w^{*}, y^{*}\left(Q z^{*}-p\right)=0$ implies that z^{*} is w^{*}-minimizer of R, and hence

$$
w^{*} z^{*} \leq w^{*} z^{\prime}=w^{*} z^{*}+\widetilde{w}^{*}\left(S^{+}\right)-\widetilde{w}^{*}\left(S^{-}\right) \leq w^{*} z^{*}+\widetilde{u}\left(S^{+}\right)-\widetilde{\ell}\left(S^{-}\right),
$$

from which (2.9) follows. (Note that $\widetilde{u}\left(S^{+}\right)=+\infty$ and $\widetilde{\ell}\left(S^{-}\right)=-\infty$ may occur.)
Sufficiency of (2.9). Let $p_{0}:=p-Q z^{*}$. By the linear programming duality theorem, we have

$$
\begin{align*}
& \min \left\{u x_{2}-\ell x_{1}:\left(x_{1}, x_{2}\right) \geq 0, Q x_{2}-Q x_{1} \geq p_{0}\right\} \tag{2.11}\\
& =\max \left\{y p_{0}: y \geq 0, y Q \leq u, y(-Q) \leq-\ell\right\} . \tag{2.12}
\end{align*}
$$

Formally, this is correct only if both u and ℓ are finite-valued. To get the right pair of dual programs for the general case, one must remove the columns of Q corresponding to elements s with $u(s)=+\infty$ and remove the columns of $-Q$ corresponding to elements s with $\ell(s)=-\infty$. But in order to avoid notational difficulties, with this remark in mind, we work with the dual linear programs (2.11) and (2.12).

By Proposition 2.10, the linear system in (2.11) is box-TDI. Let M denote the common optimum value of the primal and the dual programs. Since $y \geq 0$ and $p_{0} \leq 0$, we have $M \leq 0$.
Claim 2.13. $M=0$.
Proof. Suppose indirectly that $M<0$. Then there is a solution $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ to (2.11) for which $u x_{2}^{\prime}-\ell x_{1}^{\prime}=M<0$. By the definition of p_{0}, the primal constraint $Q x_{2}^{\prime}-Q x_{1}^{\prime} \geq p_{0}$ is equivalent to $z_{1}^{*}:=z^{*}+x_{2}^{\prime}-x_{1}^{\prime} \in R$. Since both z^{*} and z_{1}^{*} are in R, the line segment connecting z^{*} and z_{1}^{*} also lies in R, that is, for any ε with $0 \leq \varepsilon \leq 1$, the vector $z^{*}+\varepsilon\left(x_{2}^{\prime}-x_{1}^{\prime}\right)$ belongs to R, or equivalently $\varepsilon\left(Q x_{2}^{\prime}-Q x_{1}^{\prime}\right) \geq p_{0}$. We can choose ε in such a way that $0<\varepsilon \leq 1$,

$$
\begin{equation*}
x_{1}^{\prime \prime}(s):=\varepsilon x_{1}^{\prime}(s) \leq 1 \text { and } x_{2}^{\prime \prime}(s):=\varepsilon x_{2}^{\prime}(s) \leq 1 \text { for every } s \in S . \tag{2.13}
\end{equation*}
$$

Clearly, $Q x_{2}^{\prime \prime}-Q x_{1}^{\prime \prime} \geq p_{0}$ and

$$
\begin{equation*}
u x_{2}^{\prime \prime}-\ell x_{1}^{\prime \prime}=\varepsilon\left(u x_{2}^{\prime}-\ell x_{1}^{\prime}\right)=\varepsilon M<0 . \tag{2.14}
\end{equation*}
$$

These imply that the linear system $\left[\left(x_{1}, x_{2}\right) \geq 0, Q x_{2}-Q x_{1} \geq p_{0}\right]$ in (2.11) has a solution meeting (2.13) and (2.14). The box total dual integrality of the linear system in (2.11) implies that there is a $\{0,1\}$-valued solution $\left(x_{1}^{*}, x_{2}^{*}\right)$ for which $M^{*}:=u x_{2}^{*}-\ell x_{1}^{*}<0$.

Furthermore, we can also assume that no element $s \in S$ exists with $x_{1}^{*}(s)=1=x_{2}^{*}(s)$ since in this case we could reduce both values by 1 , and then $\ell(s) \leq u(s)$ would imply for the revised $\left(x_{1}^{*}, x_{2}^{*}\right)$ that $u x_{2}^{*}-\ell x_{1}^{*}=M^{*}-u(s)+\ell(s) \leq M^{*}<0$.

Let $S^{+}:=\left\{s \in S: x_{2}^{*}(s)>0\right\}$ and $S^{-}:=\left\{s \in S: x_{1}^{*}(s)>0\right\}$. Then S^{+}and S^{-}are disjoint for which $\widetilde{u}\left(S^{+}\right)=u x_{2}^{*}<\ell x_{1}^{*}=\widetilde{\ell}\left(S^{-}\right)$, contradicting (2.9).

As $M=0$, the box-TDI-ness of the linear system in (2.11) implies that the dual problem in (2.12) has an integer-valued solution y^{*} for which $y^{*} p_{0}=M=0$, that is, $y^{*}\left(Q z^{*}-p\right)=0$. Furthermore $\ell \leq w^{*} \leq u$ holds for $w^{*}:=y^{*} Q$, as required.
Corollary 2.14. Let Q, p, R, ℓ, u, and z^{*} be the same as in Theorem 2.12 There exists an integer-valued cost-function w^{*} on S for which $\ell \leq w^{*} \leq u$ and z^{*} is a w^{*}-minimizer of R if and only if (2.9) holds for every pair $\left(S^{-}, S^{+}\right)$of disjoint subsets of S meeting (2.10).
Proof. The corollary follows immediately from Theorem 2.12 once we make the standard observation from linear programming that a primal solution z^{*} is a w^{*}-minimizer of R if and only if there is a dual solution y^{*} meeting the optimality criteria, that is, $y^{*} \geq 0, y^{*} Q=w^{*}$, and $y^{*}\left(Q z^{*}-p\right)=0$.

3 Min-max theorem for Φ

3.1 Preparation

Let $\varphi: \mathbf{Z} \rightarrow \mathbf{Z} \cup\{+\infty\}$ be an arbitrary integer-valued function on \mathbf{Z} allowing the $+\infty$ value. We say that an ordered pair $\left(k^{*}, \ell^{*}\right)$ of integers is φ-fitting if

$$
\begin{equation*}
\varphi\left(k^{*}\right)-\varphi\left(k^{*}-1\right) \leq \ell^{*} \leq \varphi\left(k^{*}+1\right)-\varphi\left(k^{*}\right) \tag{3.1}
\end{equation*}
$$

or more concisely

$$
\begin{equation*}
\varphi^{\prime}\left(k^{*}-1\right) \leq \ell^{*} \leq \varphi^{\prime}\left(k^{*}\right) \tag{3.2}
\end{equation*}
$$

Let Φ be a separable function on \mathbf{Z}^{S} defined by univariate integer-valued functions φ_{s} $(s \in S)$. We say that an ordered pair $\left(z^{*}, w^{*}\right)$ of vectors from \mathbf{Z}^{S} is Φ-fitting if $\left(z^{*}(s), w^{*}(s)\right)$ is φ_{s}-fitting for each $s \in S$, that is,

$$
\begin{equation*}
\varphi_{s}\left(z^{*}(s)\right)-\varphi_{s}\left(z^{*}(s)-1\right) \leq w^{*}(s) \leq \varphi_{s}\left(z^{*}(s)+1\right)-\varphi_{s}\left(z^{*}(s)\right) \text { for every } s \in S \text {, } \tag{3.3}
\end{equation*}
$$

which can concisely be written as follows:

$$
\begin{equation*}
\Phi^{\prime}\left(z^{*}-\underline{\mathbf{1}}\right) \leq w^{*} \leq \Phi^{\prime}\left(z^{*}\right) . \tag{3.4}
\end{equation*}
$$

As a preparation, we need the following proposition.
Proposition 3.1. Let φ be an integer-valued discrete convex function and let $\left(k^{*}, \ell^{*}\right)$ be a φ-fitting pair of integers. Then

$$
\begin{equation*}
\ell^{*} k^{*}-\varphi\left(k^{*}\right) \geq \ell^{*} k-\varphi(k) \quad \text { for every integer } k \tag{3.5}
\end{equation*}
$$

(or equivalently $\varphi^{\bullet}\left(\ell^{*}\right)=\ell^{*} k^{*}-\varphi\left(k^{*}\right)$ where φ^{\bullet} denotes the discrete conjugate of φ).
Proof. Suppose indirectly that there is an integer k_{0} for which

$$
\begin{equation*}
\ell^{*} k^{*}-\varphi\left(k^{*}\right)<\ell^{*} k_{0}-\varphi\left(k_{0}\right) . \tag{3.6}
\end{equation*}
$$

If $k_{0}>k^{*}$, we may assume that k_{0} is minimal, and hence

$$
\begin{equation*}
\ell^{*} k^{*}-\varphi\left(k^{*}\right) \geq \ell^{*}\left(k_{0}-1\right)-\varphi\left(k_{0}-1\right) . \tag{3.7}
\end{equation*}
$$

By subtracting (3.7) from (3.6), we get $0<\ell^{*}-\left(\varphi\left(k_{0}\right)-\varphi\left(k_{0}-1\right)\right)$. This and the convexity of φ imply that $\ell^{*}>\varphi\left(k_{0}\right)-\varphi\left(k_{0}-1\right) \geq \varphi\left(k^{*}+1\right)-\varphi\left(k^{*}\right)$, in contradiction to the second inequality in (3.1).

Analogously, if $k_{0}<k^{*}$, we may assume that k_{0} is maximal, and hence

$$
\begin{equation*}
\ell^{*} k^{*}-\varphi\left(k^{*}\right) \geq \ell^{*}\left(k_{0}+1\right)-\varphi\left(k_{0}+1\right) . \tag{3.8}
\end{equation*}
$$

By subtracting (3.6) from (3.8), we get $0>\ell^{*}-\left(\varphi\left(k_{0}+1\right)-\varphi\left(k_{0}\right)\right)$. This and the convexity of φ imply that $\ell^{*}<\varphi\left(k_{0}+1\right)-\varphi\left(k_{0}\right) \leq \varphi\left(k^{*}\right)-\varphi\left(k^{*}-1\right)$, in contradiction to the first inequality in (3.1).

Remark 3.1. There is a standard concept and terminology in (discrete) convex analysis that is equivalent in the present case to φ-fitting. Namely, ℓ^{*} satisfying the condition (3.2) is called a subgradient of φ at k^{*}, and the set of these subgradients is called the subdifferential of φ at k^{*}, usually denoted by $\partial \varphi\left(k^{*}\right)$. Therefore, $\left(k^{*}, \ell^{*}\right)$ is φ-fitting if and only if $\ell^{*} \in \partial \varphi\left(k^{*}\right)$. Proposition 3.1 is a restatement of the well-known fact that $\varphi\left(k^{*}\right)+\varphi^{\bullet}\left(\ell^{*}\right)=k^{*} \ell^{*}$ holds if and only if $\ell^{*} \in \partial \varphi\left(k^{*}\right)$.

3.2 Main results

Let $R=\{x: Q x \geq p\} \subseteq \mathbf{R}^{S}$ be an arbitrary integral polyhedron and z^{*} an element of \dddot{R}. Let φ_{s} be an integer-valued discrete convex function on \mathbf{Z} for each $s \in S$ and let Φ denote the separable discrete convex function defined in (1.4) by the univariate functions $\varphi_{s}(s \in S)$.

Let y^{*} be a vector whose components correspond to the rows of Q. We say that the ordered pair $\left(z^{*}, y^{*}\right)$ of integral vectors is Φ-compatible with respect to Q (or, shortly Φ-compatible) if $\left(z^{*}, w^{*}\right)$ is Φ-fitting where $w^{*}:=y^{*} Q$, that is,

$$
\begin{equation*}
\Phi^{\prime}\left(z^{*}-\underline{\mathbf{1}}\right) \leq y^{*} Q \leq \Phi^{\prime}\left(z^{*}\right) . \tag{3.9}
\end{equation*}
$$

Remark 3.2. In the special case when Φ is a linear function, that is, $\Phi(z)=c z$ for a given vector $c \in \mathbf{Z}^{S}$, one has $\Phi^{\prime}(z)=c$ for every $z \in \mathbf{Z}^{S}$. Therefore, in this case, Φ-compatibility given in (3.9) is equivalent to $c \leq y^{*} Q \leq c$, that is, $c=y^{*} Q$.

Lemma 3.2. Let Φ be an integer-valued separable discrete convex function on \mathbf{Z}^{S}. Suppose for $z^{*} \in \dddot{R}$ and $y^{*} \geq 0$ that the pair $\left(z^{*}, y^{*}\right)$ is Φ-compatible. Then

$$
\begin{equation*}
\Phi(z) \geq \Phi\left(z^{*}\right)-y^{*}\left(Q z^{*}-p\right) \tag{3.10}
\end{equation*}
$$

holds for every $z \in \dddot{R}$.
Proof. Let $w^{*}:=y^{*} Q$. Since $\left(z^{*}, y^{*}\right)$ is Φ-compatible, $\left(z^{*}, w^{*}\right)$ is a Φ-fitting pair, and we can apply Proposition 3.1 to $\varphi:=\varphi_{s}, k^{*}:=z^{*}(s), \ell^{*}:=w^{*}(s)$, and $k:=z(s)$:

$$
w^{*}(s) z^{*}(s)-\varphi_{s}\left(z^{*}(s)\right) \geq w^{*}(s) z(s)-\varphi_{s}(z(s)),
$$

that is,

$$
\begin{equation*}
\varphi_{s}(z(s)) \geq w^{*}(s) z(s)-\left[w^{*}(s) z^{*}(s)-\varphi_{s}\left(z^{*}(s)\right)\right] . \tag{3.11}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\sum_{s \in S} w^{*}(s) z(s)=w^{*} z=\left(y^{*} Q\right) z=y^{*}(Q z) \geq y^{*} p \tag{3.12}
\end{equation*}
$$

since $z \in \dddot{R}$ and $y^{*} \geq 0$. It follows from (3.11) and (3.12) that

$$
\begin{align*}
\Phi(z) & =\sum_{s \in S} \varphi_{s}(z(s)) \\
& \geq \sum_{s \in S} w^{*}(s) z(s)-\left[\sum_{s \in S} w^{*}(s) z^{*}(s)-\sum_{s \in S} \varphi_{s}\left(z^{*}(s)\right)\right] \\
& \geq y^{*} p-\left[\sum_{s \in S} w^{*}(s) z^{*}(s)-\sum_{s \in S} \varphi_{s}\left(z^{*}(s)\right)\right] \\
& =y^{*} p-\left[\left(y^{*} Q\right) z^{*}-\Phi\left(z^{*}\right)\right]=\Phi\left(z^{*}\right)-y^{*}\left(Q z^{*}-p\right), \tag{3.13}
\end{align*}
$$

as required.
The new min-max theorem for the case when R is an integral box-TDI polyhedron is as follows.

Theorem 3.3. Let $\varphi_{s}: \mathbf{Z} \rightarrow \mathbf{Z} \cup\{+\infty\}$ be an integer-valued discrete convex function on \mathbf{Z} for each $s \in S$ and let Φ denote the separable discrete convex function defined by the univariate functions $\varphi_{s}(s \in S)$. Suppose for an integral matrix Q and an integral vector p that $Q x \geq p$ is a box-TDI system defining a non-empty integral (box-TDI) polyhedron $R:=\{x: Q x \geq p\} \subseteq \mathbf{R}^{S}$ such that Φ is finite-valued on R. Then Φ is bounded from below on \widetilde{R} if and only if there exists an element $z \in \dddot{R}$ and an integral vector $y \geq 0$ for which (z, y) is Φ-compatible with respect to Q. Moreover, if Φ is bounded from below on R, then the following min-max formula holds:

$$
\begin{align*}
& \min \{\Phi(z): z \in \dddot{R}\} \\
& =\max \{\Phi(z)-y(Q z-p): z \in \dddot{R}, y \geq 0 \text { integer-valued, }(z, y) \Phi \text {-compatible }\} . \tag{3.14}
\end{align*}
$$

In addition, an optimal vector y^{*} in (3.14) can be chosen in such a way that the number of its positive components is at most $2|S|$.

Proof. Suppose first that there is a Φ-compatible pair $\left(z^{*}, y^{*}\right)$ with $z^{*} \in \dddot{R}$ and $y^{*} \geq 0$. Then Lemma 3.2 implies that Φ is bounded from below and that $\min \geq \max$.

Suppose now that Φ is bounded from below on \dddot{R}. Since Φ is integer-valued, \dddot{R} has a Φ-minimizer element z^{*}. We are going to show that there is an integer-valued vector $y^{*} \geq 0$ for which the following optimality criteria hold:

$$
\begin{align*}
& y^{*}\left(Q z^{*}-p\right)=0, \tag{3.15}\\
& \Phi^{\prime}\left(z^{*}-\underline{\mathbf{1}}\right) \leq y^{*} Q \leq \Phi^{\prime}\left(z^{*}\right) . \tag{3.16}
\end{align*}
$$

This will imply that a Φ-compatible pair in question indeed exists which shows the equality in (3.14).

Define bounding vectors ℓ and u on S, as follows. For $s \in S$, let

$$
\ell(s):=\varphi_{s}^{\prime}\left(z^{*}(s)-1\right) \quad \text { and } \quad u(s):=\varphi_{s}^{\prime}\left(z^{*}(s)\right),
$$

where $\ell(s)$ may be $-\infty$ and $u(s)$ may be $+\infty$. The discrete convexity of φ_{s} implies that $\ell(s) \leq u(s)$. Note that $\left(z^{*}, y^{*}\right)$ is Φ-compatible precisely if $\ell \leq y^{*} Q \leq u$.
Claim 3.4. The inequality $\widetilde{\ell}\left(S^{-}\right) \leq \widetilde{u}\left(S^{+}\right)$in (2.9) holds for every pair $\left(S^{-}, S^{+}\right)$of disjoint subsets of S for which $z^{\prime}:=z^{*}+\chi_{S^{+}}-\chi_{S^{-}} \in R$.

Proof. As z^{*} is a Φ-minimizer, we have $\Phi\left(z^{*}\right) \leq \Phi\left(z^{\prime}\right)$. Furthermore

$$
\begin{aligned}
\Phi\left(z^{\prime}\right) & =\sum_{s \in S} \varphi_{s}\left(z^{\prime}(s)\right) \\
& =\sum_{s \in S-\left(S^{+} \cup S^{-}\right)} \varphi_{s}\left(z^{*}(s)\right)+\sum_{s \in S^{+}} \varphi_{s}\left(z^{*}(s)+1\right)+\sum_{s \in S^{-}} \varphi_{s}\left(z^{*}(s)-1\right) \\
& =\sum_{s \in S} \varphi_{s}\left(z^{*}(s)\right)+\sum_{s \in S^{+}}\left[\varphi_{s}\left(z^{*}(s)+1\right)-\varphi_{s}\left(z^{*}(s)\right)\right]-\sum_{s \in S^{-}}\left[\varphi_{s}\left(z^{*}(s)\right)-\varphi_{s}\left(z^{*}(s)-1\right)\right] \\
& =\Phi\left(z^{*}\right)+\sum_{s \in S^{+}} \varphi_{s}^{\prime}\left(z^{*}(s)\right)-\sum_{s \in S^{-}} \varphi_{s}^{\prime}\left(z^{*}(s)-1\right) \\
& =\Phi\left(z^{*}\right)+\widetilde{u}\left(S^{+}\right)-\widetilde{\ell}\left(S^{-}\right) \\
& \leq \Phi\left(z^{\prime}\right)+\widetilde{u}\left(S^{+}\right)-\widetilde{\ell}\left(S^{-}\right),
\end{aligned}
$$

from which $\widetilde{\ell}\left(S^{-}\right) \leq \widetilde{u}\left(S^{+}\right)$, as required.
Theorem 2.12 implies the existence of the requested y^{*} satisfying (3.15) and (3.16). Since a box-TDI linear system is totally dual integral by Proposition [2.1, the last statement about the number of positive components is a consequence of a theorem of Cook, Fonlupt, and Schrijver [6] (see also Theorem 5.30 in the book of Schrijver [27]).
Remark 3.3. Cook, Fonlupt, and Schrijver [6] actually proved a slightly better bound $2|S|-1$ for the number of non-zero variables, and this was later improved to $2|S|-2$ by Sebő [28]. The point in Theorem 3.3 (and its consequences below) is that there is a reasonably small bound.

Remark 3.4. Note that the dual objective function in (3.14) can be rewritten, as follows:

$$
\begin{equation*}
\Phi(z)-y(Q z-p)=y p-[(y Q) z-\Phi(z)] . \tag{3.17}
\end{equation*}
$$

Furthermore, the characterization of boundedness in Theorem 3.3 can be interpreted as a special case of the min-max formula when the minimum in (3.14) is $-\infty$ and the maximum in (3.14), when taken over the empty set, is defined to be $-\infty$. Therefore, in the variations and applications of Theorem 3.3 below, we shall not explicitly formulate the condition for the lower boundedness of Φ.

Remark 3.5. At first sight, this min-max theorem looks a bit strange in the sense that in the maximization part, not only the usual dual variable y appears but integral members z of the primal polyhedron R also show up. Still, this form may be viewed as a proper min-max theorem since the right-hand side is a straightforward lower bound for the minimum, and for given z^{*} and y^{*}, the validity of optimality criteria (3.15) and (3.16) is easily checkable. It is also noted that, apart from integrality, the min-max formula in (3.14) can be viewed as a variant of the Lagrangian duality as follows. Let

$$
L(x, y):= \begin{cases}\Phi(x)-y(Q x-p) & \text { if } y \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

which is the standard Lagrangian function for the minimization of $\Phi(x)$ subject to the constraint $Q x-p \geq 0$. Then the Lagrangian dual problem is to maximize $\Psi(y)=\min _{x} L(x, y)$ over all $y \geq 0$. When $\Phi(x)$ is convex, the minimum of $L(x, y)$ with respect to x is attained by x at which $y Q$ is a subgradient of Φ, that is, $y Q \in \partial \Phi(x)$. Thus the dual problem $\max \{\Psi(y): y \geq 0\}$ may be written as $\max \{\Phi(x)-y(Q x-p): y \geq 0, y Q \in \partial \Phi(x)\}$. The constraint $y Q \in \partial \Phi(x)$ here is equivalent to saying, in our present terminology, that (x, y) is Φ-compatible. Our dual problem in (3.14) is obtained by adding the constraint $x \in R$ to this Lagrangian dual problem.

Remark 3.6. In the special case when $\Phi(z)=c z$, the compatibility of z and y, as observed in Remark 3.2, is equivalent to $y Q=c$. Furthermore, the dual objective function in (3.14) is as follows:

$$
\Phi(z)-y(Q z-p)=y p-[(y Q) z-\Phi(z)]=y p-[c z-c z]=y p
$$

showing that in this case we are back at the integral version of the linear programming duality theorem formulated for box-TDI polyhedra.

It is useful to formulate separately the optimality criteria appearing in (3.15) and (3.16).
Corollary 3.5 (Optimality criteria). An element $z^{*} \in \dddot{R}$ is a Φ-minimizer if and only if there exists a non-negative integer-valued vector y^{*} meeting the optimality criteria in (3.15) and (3.16).

3.3 Using discrete conjugate

The min-max formula for the minimum of Φ can be described in a more concise way in term of discrete conjugates. To this end, we need some easy observations. In Proposition 3.1, we proved for a univariate discrete convex function φ that if $\left(k^{*}, \ell^{*}\right)$ is a φ-fitting pair of integers, then $\varphi^{\bullet}\left(\ell^{*}\right)=\ell^{*} k^{*}-\varphi\left(k^{*}\right)$. The reverse implication holds for an arbitrary integer-valued function φ on \mathbf{Z}.

Proposition 3.6. Let φ be an arbitrary integer-valued function on \mathbf{Z}, and k^{*}, ℓ^{*} integers for which $\varphi^{\bullet}\left(\ell^{*}\right)=\ell^{*} k^{*}-\varphi\left(k^{*}\right)$. Then the pair $\left(k^{*}, \ell^{*}\right)$ is φ-fitting.

Proof. The definition of φ^{\bullet} implies that

$$
\ell^{*} k^{*}-\varphi\left(k^{*}\right)=\varphi^{\bullet}\left(\ell^{*}\right) \geq \ell^{*}\left(k^{*}+1\right)-\varphi\left(k^{*}+1\right),
$$

from which $\varphi\left(k^{*}+1\right)-\varphi\left(k^{*}\right) \geq \ell^{*}$. Analogously, we have

$$
\ell^{*} k^{*}-\varphi\left(k^{*}\right)=\varphi^{\bullet}\left(\ell^{*}\right) \geq \ell^{*}\left(k^{*}-1\right)-\varphi\left(k^{*}-1\right),
$$

from which $\ell^{*} \geq \varphi\left(k^{*}\right)-\varphi\left(k^{*}-1\right)$.
Proposition 3.6results in the following estimation (that may be viewed as a discrete counterpart of a standard lower bound in continuous optimization).

Proposition 3.7. Let $R=\{x: Q x \geq p\} \subseteq \mathbf{R}^{S}$ be an integral polyhedron and φ_{s} an arbitrary integer-valued function on \mathbf{Z} for each $s \in S$. Let φ_{s}^{\bullet} denote the discrete conjugate of φ_{s}. For any element z of \dddot{R} and for any integer-valued vector $y \geq 0$ (whose components correspond to the rows of Q) one has:

$$
\begin{equation*}
\Phi(z) \geq y p-\Phi^{\bullet}(y Q) \tag{3.18}
\end{equation*}
$$

If equality holds for z^{*} and y^{*}, then z^{*} is a Φ-minimizer of \dddot{R} and the pair $\left(z^{*}, y^{*}\right)$ is Φ compatible.

Proof. Let $w:=y Q$. By the definition of discrete conjugate, we have $\varphi_{s}^{\bullet}(w(s))+\varphi_{s}(z(s)) \geq$ $w(s) z(s)$ from which

$$
\begin{equation*}
\Phi(z)=\sum_{s \in S} \varphi_{s}(z(s))=w z-\left[\sum_{s \in S} w(s) z(s)-\sum_{s \in S} \varphi_{s}(z(s))\right] \geq y p-\Phi^{\bullet}(y Q) . \tag{3.19}
\end{equation*}
$$

To see the second part, observe that (3.18) implies that $\Phi(z) \geq y^{*} p-\Phi^{\bullet}\left(y^{*} Q\right)=\Phi\left(z^{*}\right)$, showing that z^{*} is indeed a Φ-minimizer element of \vec{R}. Since we have equality in (3.19) for z^{*} and y^{*}, it follows for each $s \in S$ that $w^{*}(s) z^{*}(s)-\varphi_{s}\left(z^{*}(s)\right)=\varphi_{s}^{\bullet}\left(w^{*}(s)\right)$ where $w^{*}:=y^{*} Q$. By applying Proposition 3.6 to $\varphi:=\varphi_{s}, \ell^{*}:=w^{*}(s)$, and $k^{*}:=z^{*}(s)$, we obtain that

$$
\begin{equation*}
\varphi\left(k^{*}\right)-\varphi\left(k^{*}-1\right) \leq \ell^{*} \leq \varphi\left(k^{*}+1\right)-\varphi\left(k^{*}\right), \tag{3.20}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\varphi_{s}\left(z^{*}(s)\right)-\varphi_{s}\left(z^{*}(s)-1\right) \leq w^{*}(s) \leq \varphi_{s}\left(z^{*}(s)+1\right)-\varphi_{s}\left(z^{*}(s)\right), \tag{3.21}
\end{equation*}
$$

and hence the pair $\left(z^{*}, w^{*}\right)$ is Φ-fitting, showing that $\left(z^{*}, y^{*}\right)$ is Φ-compatible.

Theorem 3.8. Under the same assumptions as in Theorem 3.3 one has the following minmax formula:

$$
\begin{equation*}
\min \{\Phi(z): z \in \dddot{R}\}=\max \left\{y p-\Phi^{\bullet}(y Q): y \geq 0 \text { integer-valued }\right\} \tag{3.22}
\end{equation*}
$$

The optimal dual vector y can be chosen so as to have at most $2|S|$ positive components.
Proof. Let $z^{*} \in \dddot{R}$ be a minimizer element in (3.14). Let y^{*} be a non-negative integer-valued vector, guaranteed in Corollary 3.5, that meets the optimality criteria in (3.15) and (3.16). By (3.16), $\left(z^{*}, w^{*}\right)$ with $w^{*}:=y^{*} Q$ is a Φ-fitting pair. By (3.15) we have

$$
\begin{equation*}
\Phi\left(z^{*}\right)=y^{*} p-\left[\left(y^{*} Q\right) z^{*}-\Phi\left(z^{*}\right)\right] . \tag{3.23}
\end{equation*}
$$

For $s \in S$, consider φ_{s} and its discrete conjugate φ_{s}^{\bullet}. For $k^{*}:=z^{*}(s)$ and $\ell^{*}:=w^{*}(s)$, $\left(k^{*}, \ell^{*}\right)$ is a φ_{s}-fitting pair. Proposition 3.1, when applied to φ_{s} in place of φ, shows that

$$
\begin{equation*}
\ell^{*} k^{*}-\varphi_{s}\left(k^{*}\right)=\max \left\{\ell^{*} k-\varphi_{s}(k): k \in \mathbf{Z}\right\}=\varphi_{s}^{\bullet}\left(\ell^{*}\right), \tag{3.24}
\end{equation*}
$$

from which $\left(y^{*} Q\right) z^{*}-\Phi\left(z^{*}\right)=\Phi^{\bullet}\left(w^{*}\right)=\Phi^{\bullet}\left(y^{*} Q\right)$ follows. By substituting this into (3.23) we obtain (3.22).

Corollary 3.9. Let z^{*} be a Φ-minimizer element of \widetilde{R}. If $\left(y^{*}, z^{*}\right)$ is an optimal solution to (3.14), then y^{*} is an optimal solution to (3.22). If y^{*} is an optimal solution to (3.22), then the pair $\left(z^{*}, y^{*}\right)$ is Φ-compatible and $\left(y^{*}, z^{*}\right)$ is an optimal solution to (3.14).

Proof. The first part is an immediate consequence of the proof of Theorem 3.8. The second part follows from Theorem 3.8 and the second half of Proposition 3.7 .

Remark 3.7. In the special case when Φ is linear and defined by $\Phi(w)=c w$, one can easily observe that $\Phi^{\bullet}(w)=0$ when $w=c$ and $\Phi^{\bullet}(w)$ has a $+\infty$ summand when $w \neq c$. Therefore $\Phi^{\bullet}(y Q)$ in (3.22) is finite only if $y Q=c$ and in this case $\Phi^{\bullet}(y Q)=0$. This means that the maximum in (3.22) is equal to $\max \{y p: y Q=c, y \geq 0\}$, showing that Theorem 3.8 also specializes to the integral version of the linear programming duality theorem formulated for box-TDI polyhedra.

The results above can be extended to the case when R is defined by a box-TDI system [$\left.Q^{\prime} x \geq p^{\prime}, Q^{=} x=p^{=}\right]$because this means, by definition, that the system $\left[Q^{\prime} x \geq p^{\prime}, Q^{=} x \geq\right.$ $\left.p^{=},-Q^{=} x \geq-p^{=}\right]$is also box-TDI and defines the same polyhedron R. We call a dual vector $y=\left(y^{\prime}, y^{=}\right)$sign-feasible if $y^{\prime} \geq 0$. That is, we require non-negativity of those components that correspond to the rows of Q^{\prime}.

Theorem 3.10. Suppose that in Theorem 3.3 the box-TDI polyhedron is given in form $R=$ $\left\{x: Q^{\prime} x \geq p^{\prime}, Q^{=} x=p^{=}\right\}$, where each of $Q^{\prime}, Q^{=}, p^{\prime}, p^{=}$is integer-valued. Then

$$
\begin{align*}
& \min \{\Phi(z): z \in \dddot{R}\} \\
& =\max \{\Phi(z)-y(Q z-p): z \in \dddot{R}, y \text { sign-feasible and integer-valued, }(z, y) \Phi \text {-compatible }\} \\
& =\max \left\{y p-\Phi^{\bullet}(y Q): y \text { sign-feasible and integer-valued }\right\}, \tag{3.25}
\end{align*}
$$

where $Q=\binom{Q^{\prime}}{Q^{=}}$and $p=\binom{p^{\prime}}{p^{=}}$. An element $z^{*} \in \dddot{R}$ is a Φ-minimizer if and only if there exists a sign-feasible integer-valued vector y^{*} meeting the optimality criteria:

$$
\begin{align*}
& y^{*}\left(Q z^{*}-p\right)=0, \tag{3.26}\\
& \Phi^{\prime}\left(z^{*}-\underline{\mathbf{1}}\right) \leq y^{*} Q \leq \Phi^{\prime}\left(z^{*}\right) . \tag{3.27}
\end{align*}
$$

Moreover, y^{*} can be chosen in such a way that the number of its non-zero components is at most $2|S|$.

We formulate yet another variant for the maximum in the min-max theorem. This version is useful in cases when there is a simple formula for $\mu_{R}(w):=\min \{w x: x \in R\}$, see the next section on special box-TDI polyhedra.

Theorem 3.11. Let $R=\left\{x: Q^{\prime} x \geq p^{\prime}, Q^{=} x=p^{=}\right\}$be a box-TDI polyhedron, where each of $Q^{\prime}, Q^{=}, p^{\prime}, p^{=}$is integer-valued. Let Φ be an integer-valued separable discrete convex function which is bounded from below on R. Then

$$
\begin{equation*}
\min \{\Phi(z): z \in \dddot{R}\}=\max \left\{\mu_{R}(w)-\Phi^{\bullet}(w): w \in \mathbf{Z}^{S}\right\} . \tag{3.28}
\end{equation*}
$$

Proof. For $z \in \dddot{R}$ and $w \in \mathbf{Z}^{S}$, we have

$$
\begin{equation*}
\Phi(z)=w z-[w z-\Phi(z)] \geq \mu_{R}(w)-\Phi^{\bullet}(w), \tag{3.29}
\end{equation*}
$$

from which $\min \geq \max$ follows.
To see the reverse direction, we show that there is an element z^{*} of R and an integral vector w^{*} meeting (3.29) with equality. Let z^{*} be a Φ-minimizer of \dddot{R}, y^{*} a maximizer in (3.25), and let $w^{*}:=y^{*} Q$. Then $\Phi\left(z^{*}\right)=p y^{*}-\Phi^{\bullet}\left(y^{*} Q\right)$ holds by Theorem 3.10, and a straightforward estimation (the weak duality theorem of linear programming) shows that $\mu_{R}\left(w^{*}\right) \geq y^{*} p$. This and (3.29) (when applied to z^{*} and w^{*}) imply

$$
\begin{equation*}
\Phi\left(z^{*}\right) \geq \mu_{R}\left(w^{*}\right)-\Phi^{\bullet}\left(w^{*}\right) \geq y^{*} p-\Phi^{\bullet}\left(y^{*} Q\right)=\Phi\left(z^{*}\right), \tag{3.30}
\end{equation*}
$$

from which equality follows throughout, and hence (3.28) holds indeed.
Remark 3.8. Theorem 3.10 can be further extended to the formally more general framework where primal non-negativity constraints are written separately. In this case, the primal polyhedron R is defined by a box-TDI system as follows:

$$
R:=\left\{\left(x_{1}, x_{2}\right): Q^{\prime} x_{1}+A^{\prime} x_{2} \geq p^{\prime}, Q^{=} x_{1}+A^{=} x_{2}=p^{=}, x_{2} \geq 0\right\} .
$$

The min-max theorem for the minimum of Φ and the optimality criteria, though technically more complex, can also be described by applying Theorem 3.10 .

4 Special box-TDI polyhedra

In this section, we consider special box-TDI polyhedra.

4.1 Polyhedra defined by TU-matrices

It is known that if $Q=\binom{Q^{\prime}}{Q^{\prime}}$ is a totally unimodular (TU) matrix and $p=\binom{p^{\prime}}{p^{=}}$is an integral vector, then the linear system [$Q^{\prime} x \geq p^{\prime}, Q^{=} x=p^{=}$] (and the polyhedron $\left\{x: Q^{\prime} x \geq\right.$ $\left.p^{\prime}, Q^{=} x=p^{=}\right\}$) is box-TDI. But a TU-matrix Q may define box-TDI polyhedra in other ways, as well.

Proposition 4.1. Let Q be a totally unimodular matrix, and let $f \leq g$ be integer-valued bounding vectors (of appropriate dimension) where f may have $-\infty$ while g may have $+\infty$ components. Then the polyhedron

$$
R^{\prime}:=\{z: z=Q x \text { for some } x \text { meeting } f \leq x \leq g\}
$$

is box-TDI. Analogously, if $\ell \leq u$ are integer-valued bounding vectors (of appropriate dimension), then the polyhedron

$$
R^{\prime \prime}:=\{w: w=y Q \text { for some } y \text { meeting } \ell \leq y \leq u\}
$$

is box-TDI.
Proof. Since the operation of adding a unit vector $(1,0, \ldots, 0)$ to Q as a new row or a new column preserves total unimodularity, the system [$Q x-z=0, f \leq x \leq g$] is box-TDI. But then R^{\prime} is the projection of the polyhedron $\{(x, z): Q x-z=0, f \leq x \leq g\}$ along the coordinate axes of x (to the components of z), and since projection, by Proposition 2.7, preserves box-TDI-ness, R^{\prime} is indeed box-TDI. The second part follows from the first one since the transpose of a TU-matrix is also totally unimodular.

It follows that Theorem 3.11 (for example) can be applied to the box-TDI polyhedra occurring in Proposition4.1. A special case is the polyhedron of feasible flows defined on the edge-set of a digraph $D=(V, A)$ by $\left\{x \in \mathbf{R}^{A}: \varrho_{x}(v)-\delta_{x}(v)=m(v)\right.$ for each $\left.v \in V, f \leq x \leq g\right\}$, where $m: V \rightarrow \mathbf{Z}$ is a function on V with $\widetilde{m}(V)=0$ while $f: A \rightarrow \mathbf{Z} \cup\{-\infty\}$ and $g: A \rightarrow \mathbf{Z} \cup\{+\infty\}$ are bounding functions on A with $f \leq g$. Here $\varrho_{x}(v):=\sum[x(u v): u v \in A]$ and $\delta_{x}(v):=\sum[x(v u): v u \in A]$. The classic notions of feasible $s t$-flows with given flowamount as well as feasible circulations fit into this framework. Another special case of TUpolyhedra is the one of feasible potentials.

A network matrix Q is a more general TU-matrix which is defined by a digraph whose underlying undirected graph is connected. For a spanning tree T of D, the rows of Q correspond to the elements of T, the columns correspond to the edges in $A-T$, and the column corresponding to e is the signed characteristic vector of the fundamental circuit belonging to e.

4.2 M-convex and M_{2}-convex sets

Let $B:=B^{\prime}(p)=\{\widetilde{x}(Z) \geq p(Z)$ for $Z \subset S$ and $\widetilde{x}(S)=p(S)\}$ be the base-polyhedron defined by an integral supermodular function p for which $p(S)$ is finite. Recall that the set \ddot{B} of integral elements of B is called an M-convex set. A basic property of base-polyhedra is that they are box-TDI.

Recall that the linear extension (Lovász extension) \hat{p} of p is defined by

$$
\begin{equation*}
\hat{p}(w):=p\left(S_{n}\right) w\left(s_{n}\right)+\sum_{j=1}^{n-1} p\left(S_{j}\right)\left[w\left(s_{j}\right)-w\left(s_{j+1}\right)\right], \tag{4.1}
\end{equation*}
$$

where $n=|S|$, the elements of S are indexed in such a way that $w\left(s_{1}\right) \geq \cdots \geq w\left(s_{n}\right)$, and $S_{j}=$ $\left\{s_{1}, \ldots, s_{j}\right\}$ for $j=1, \ldots, n$. (Here $p\left(S_{j}\right)\left[w\left(s_{j}\right)-w\left(s_{j+1}\right)\right]$ is defined 0 when $w\left(s_{j}\right)-w\left(s_{j+1}\right)=0$ even if $p\left(S_{j}\right)$ is not finite.)

Recall the definitions of z-tight sets and strict w-top sets. For a supermodular function p, a theorem of Edmonds [8] is as follows.

Claim 4.2. Let $p: 2^{S} \rightarrow \mathbf{Z} \cup\{-\infty\}$ be a supermodular function for which $p(S)$ is finite. For an integral cost-function w on S, one has

$$
\hat{p}(w)=\mu_{B}(w)=\mu_{\bar{B}}(w),
$$

where $\mu_{B}(w):=\min \{w x: x \in B\}$ and $\mu_{B}(w):=\min \{w x: x \in B\}$. In particular, $\hat{p}(w)=-\infty$ if and only if $w z$ is unbounded from below over \dddot{B}. When $\hat{p}(w)>-\infty$, an element $z \in \vec{B}$ is a w-minimizer if and only if each strict w-top set is z-tight.

By combining Claim 4.2 with Theorem 3.11, we arrive at the starting min-max formula described in Theorem 1.1.

Theorem 1.2 can also be derived in an analogous way. Let $B_{1}:=B^{\prime}\left(p_{1}\right)$ and $B_{2}:=B^{\prime}\left(p_{2}\right)$ be base-polyhedra defined by integer-valued supermodular functions p_{1} and p_{2} for which $B:=B_{1} \cap B_{2}$ is non-empty. A fundamental theorem of Edmonds states that B is box-TDI. A version of the well-known weight-splitting theorem ([12], Theorem 16.1.8) states for an integral vector w that

$$
\mu_{B}(w)=\mu_{B}(w)=\max \left\{\hat{p}_{1}\left(w_{1}\right)+\hat{p}_{2}\left(w_{2}\right): w_{1}+w_{2}=w, w_{1}, w_{2} \text { integral }\right\} .
$$

Combining this formula with Theorem 3.11, we arrive at Theorem 1.2 ,
It should be noted that the intersection of two integral g-polymatroids is also box-TDI and so is a submodular flow polyhedron (by a theorem of Edmonds and Giles [10]). Therefore the general min-max formulas described in Theorem 3.8 can be specialized to these cases as well.

4.3 Direct proof for M-convex sets

The goal of this section is to provide a direct proof of the non-trivial part of Theorem 1.1, The proof is independent of the results in Section 3 and gives rise to a strongly polynomial algorithm to compute the optimal dual, provided that an optimal solution to the primal problem is available. Namely, we prove the following.

Theorem 4.3. Let Φ be an integer-valued separable discrete convex function. Let z^{*} be a Φ-minimizer element of an M-convex set \dddot{B} defined by a finite-valued supermodular function p. There exists an integer-valued vector $w^{*} \in \mathbf{Z}^{S}$ for which z^{*} and w^{*} meet the optimality criteria (1.8) and (1.9) (or (1.10)).

Proof. First recall that the z^{*}-tight sets form a ring-family (lattice) closed under intersection and union. For $s \in S$, let $T(s)$ denote the unique smallest z^{*}-tight set containing s.

Claim 4.4. For $a \Phi$-minimizer element z^{*},

$$
\begin{equation*}
\varphi_{s}^{\prime}\left(z^{*}(s)-1\right) \leq \varphi_{t}^{\prime}\left(z^{*}(t)\right) \tag{4.2}
\end{equation*}
$$

holds whenever $t \in T(s)$.
Proof. First we show that $z^{\prime}:=z^{*}-\chi_{s}+\chi_{t}$ belongs to \dddot{B}, which is equivalent to requiring that $\widetilde{z}^{\prime}(Z) \geq p(Z)$ for every subset $Z \subseteq S$. Indeed, if Z is not z^{*}-tight, then $\vec{Z}^{\prime}(Z) \geq \widetilde{z}^{*}(Z)-1 \geq p(Z)$; if Z is z^{*}-tight and $s \notin Z$, then $\widetilde{z}^{\prime}(Z) \geq \widetilde{z}^{*}(Z)=p(Z)$. Finally, if Z is z^{*}-tight and $s \in Z$, then $T(s) \subseteq Z$, and hence $s, t \in Z$, from which $\widetilde{z}^{\prime}(Z)=\widetilde{z}^{*}(Z)=p(Z)$.

As z^{\prime} belongs to \dddot{B}, we have $\Phi\left(z^{*}\right) \leq \Phi\left(z^{\prime}\right)$, from which

$$
\varphi_{s}\left(z^{*}(s)\right)+\varphi_{t}\left(z^{*}(t)\right) \leq \varphi_{s}\left(z^{*}(s)-1\right)+\varphi_{t}\left(z^{*}(t)+1\right),
$$

that is,

$$
\begin{equation*}
\varphi_{s}\left(z^{*}(s)\right)-\varphi_{s}\left(z^{*}(s)-1\right) \leq \varphi_{t}\left(z^{*}(t)+1\right)-\varphi_{t}\left(z^{*}(t)\right), \tag{4.3}
\end{equation*}
$$

which is exactly (4.2).
By the discrete convexity of φ_{s}, we have $\varphi_{s}\left(z^{*}(s)\right)-\varphi_{s}\left(z^{*}(s)-1\right) \leq \varphi_{s}\left(z^{*}(s)+1\right)-\varphi_{s}\left(z^{*}(s)\right)$, implying (4.3) (and hence (4.2)) for the case $s=t$.

Our goal is to find an integer-valued w^{*} meeting the optimality criteria in the theorem. Define w^{*} as follows:

$$
\begin{equation*}
w^{*}(s):=\min \left\{\varphi_{t}^{\prime}\left(z^{*}(t)\right): t \in T(s)\right\} . \tag{4.4}
\end{equation*}
$$

Claim 4.5. w^{*} and z^{*} meet the optimality criterion (1.9).
Proof. The definition of $w^{*}(s)$ in (4.4) and $s \in T(s)$ imply that $w^{*}(s)=\min \left\{\varphi_{t}^{\prime}\left(z^{*}(t)\right): t \in\right.$ $T(s)\} \leq \varphi_{s}^{\prime}\left(z^{*}(s)\right.$), from which $w^{*}(s) \leq \varphi_{s}^{\prime}\left(z^{*}(s)\right)$ follows. Furthermore, (4.4) and (4.2) imply that $w^{*}(s)=\min \left\{\varphi_{t}^{\prime}\left(z^{*}(t)\right): t \in T(s)\right\} \geq \varphi_{s}^{\prime}\left(z^{*}(s)-1\right)$. Hence (1.9) holds.

Claim 4.6. w^{*} and z^{*} meet the optimality criterion (1.8).
Proof. Let $\beta_{1}>\beta_{1}>\cdots>\beta_{\ell}$ denote the distinct values of the components of w^{*}, and let $C_{i}:=\left\{s: w^{*}(s) \geq \beta_{i}\right\}$ for $i=1, \ldots, \ell$. Let $S_{1}^{\prime}:=C_{1}$ and $S_{i}^{\prime}:=C_{i}-C_{i-1}$ for $i=2, \ldots, \ell$. Then $(\emptyset \neq) C_{1} \subset C_{2} \subset \cdots \subset C_{\ell}(=S)$ is a chain whose members are the strict w^{*}-top sets, while $\left\{S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right\}$ is a partition of S for which $w^{*}(s)=\beta_{i}$ holds for every $s \in S_{i}^{\prime}$.

For every $t \in T(s)$, we have $T(t) \subseteq T(s)$ and hence $w^{*}(t) \geq w^{*}(s)$, implying that $T(s) \subseteq C_{i}$ whenever $s \in S_{i}^{\prime}$. Therefore $C_{i}=\bigcup_{s \in S}\left\{T(s): w^{*}(s) \geq \beta_{i}\right\}$ and hence each C_{i} is z^{*}-tight, showing that the optimality criterion (1.8) holds.

As z^{*} and w^{*} meet the optimality criteria, the proof of the theorem is complete.
In order to compute w^{*}, we have to be able to determine the unique smallest z^{*}-tight set $T(s)$ containing an element $s \in S$. This is easy once we are able to decide for a given pair $\{s, t\}$ of elements of S whether there is a z^{*}-tight $s \bar{t}$-set. But this can be done by minimizing the submodular function $\widetilde{z}^{*}-p$ over the $s \bar{t}$-sets, which is doable in strongly polynomial time with the help of a general subroutine to minimize a submodular function [21].

Remark 4.1. We formulated and proved Theorem 4.3 for the special case when the defining supermodular function p is finite-valued. But the arguments above can easily be extended to the general case when p may have $-\infty$ values (but preserving the finiteness of $p(S)$), that is, $B^{\prime}(p)$ may be unbounded.

5 Special discrete convex functions

5.1 Minimizing the square-sum

Consider the special case when $\varphi_{s}(k):=\varphi(k):=k^{2}$ for each $s \in S(=\{1,2, \ldots, n\})$ and hence the separable discrete convex function Φ to be minimized is given by $\Phi(z):=z^{2}$, where $z^{2}=\sum\left[z(i)^{2}: i=1,2, \ldots, n\right]$. That is, we want to minimize the square-sum of the components of z. For this problem Theorem 3.10 is specialized as follows.

The discrete conjugate of $\varphi(k)=k^{2}$ is explicitly available, namely, for integer ℓ :

$$
\varphi^{\bullet}(\ell)=\left\lfloor\frac{\ell}{2}\right\rfloor\left\lceil\frac{\ell}{2}\right\rceil
$$

(the proof is immediate and is given explicitly in a more general case in Proposition 5.3 in Section [5.3). Then, for an integral vector $w \in \mathbf{Z}^{S}$, we obtain $\Phi^{\bullet}(w)=\lfloor w / 2\rfloor\lceil w / 2\rceil$, where, for a vector $x=(x(1), \ldots, x(n))$, we use notations $\lfloor x\rfloor:=(\lfloor x(1)\rfloor, \ldots,\lfloor x(n)\rfloor)$ and $\lceil x\rceil:=(\lceil x(1)\rceil, \ldots,\lceil x(n)\rceil)$. In addition, we observe for the condition (3.27) that $\varphi^{\prime}(k)=$ $(k+1)^{2}-k^{2}=2 k+1$ and $\varphi^{\prime}(k-1)=2 k-1$. Hence, for an integral vector $z \in \mathbf{Z}^{S}$, we have $\Phi^{\prime}(z)=2 z+\underline{\mathbf{1}}$ and $\Phi^{\prime}(z-\underline{\mathbf{1}})=2 z-\underline{\mathbf{1}}$, where $\underline{\mathbf{1}}=\chi_{S}$.

Theorem 5.1. Let $Q=\binom{Q^{\prime}}{Q^{-}}$be an integral matrix and $p=\binom{p^{\prime}}{p^{=}}$an integral vector, and suppose that the linear system $\left[Q^{\prime} x \geq p^{\prime}, Q^{=} x=p^{=}\right]$is box-TDI. Let $R:=\left\{x: Q^{\prime} x \geq\right.$ $\left.p^{\prime}, Q^{=} x=p^{=}\right\} \subseteq \mathbf{R}^{S}$ be the (box-TDI) polyhedron defined by this system. Then

$$
\begin{align*}
& \min \left\{z^{2}: z \in \mathbb{R}\right\} \tag{5.1}\\
& =\max \left\{y p-\left\lfloor\frac{y Q}{2}\right\rfloor\left\lceil\frac{y Q}{2}\right\rceil: y=\left(y^{\prime}, y^{=}\right) \text {sign-feasible and integer-valued }\right\}, \tag{5.2}
\end{align*}
$$

where the sign-feasibility of y means that $y^{\prime} \geq 0$. Moreover, an integral element $z^{*} \in \dddot{R}$ is a square-sum minimizer if and only if there exists a sign-feasible integral vector y^{*} for which the following optimality criteria hold:

$$
\begin{align*}
& y^{*}\left(Q z^{*}-p\right)=0, \tag{5.3}\\
& 2 z^{*}-\underline{\mathbf{1}} \leq y^{*} Q \leq 2 z^{*}+\underline{\mathbf{1}} . \tag{5.4}
\end{align*}
$$

The optimal (integral) dual solution y^{*} can be chosen in such a way that the number of its non-zero components is at most $2|S|$.

Remark 5.1. It is worth noting that (5.4) is equivalent to

$$
\begin{equation*}
\left\lfloor\frac{y^{*} Q}{2}\right\rfloor \leq z^{*} \leq\left\lceil\frac{y^{*} Q}{2}\right\rceil \tag{5.5}
\end{equation*}
$$

Remark 5.2. For a simple understanding, it is worth providing a direct proof of the trivial inequality $\min \geq \max$ that relies neither on Φ-compatibility nor on conjugacy. For real vectors w and z in \mathbf{R}^{n}, one has the obvious estimation $z(w-z) \leq(w / 2)(w / 2)$. For integral vectors w and z, the stronger inequality $z(w-z) \leq\lfloor w / 2\rfloor\lceil w / 2\rceil$ holds, with equality precisely if $\lfloor w / 2\rfloor \leq z \leq\lceil w / 2\rceil$, that is, $z(s) \in\{\lfloor w(s) / 2\rfloor,\lceil w(s) / 2\rceil\}$ for each $s \in S$. This implies for any $z \in \overparen{R}$ and for any integral vector $y=\left(y^{\prime}, y^{=}\right)$with $y^{\prime} \geq 0$ that

$$
\begin{equation*}
z^{2}=(y Q) z-\left((y Q) z-z^{2}\right)=y(Q z)-(y Q-z) z \geq y p-\left\lfloor\frac{y Q}{2}\right\rfloor\left\lceil\frac{y Q}{2}\right\rceil \text {, } \tag{5.6}
\end{equation*}
$$

from which $\min \geq \max$ follows. Moreover, equality holds in (5.6) for z^{*} and y^{*} in place of z and y precisely if the optimality criteria (5.3) and (5.5) hold.

Remark 5.3. Minimizing the square-sum over an affine subspace $R=\{x: Q x=p\}$ is a standard problem of linear algebra. If R is an integral box-TDI affine subspace (that is, Q^{\prime} is empty in Theorem 5.1), then we get the following min-max formula:

$$
\begin{equation*}
\min \left\{z^{2}: z \in \dddot{R}\right\}=\max \left\{y p-\left\lfloor\frac{y Q}{2}\right\rfloor\left\lceil\frac{y Q}{2}\right\rceil: y \text { integer-valued }\right\} . \tag{5.7}
\end{equation*}
$$

For the case when Q is totally unimodular, McCormick et al. [22] described a polynomial algorithm for computing the minimum.

Remark 5.4. Theorem 5.1 can easily be extended to the slightly more general case when the goal is to minimize the sum of squares over a given subset S^{\prime} of coordinates. In this case (5.1) turns to

$$
\min \left\{\sum_{s \in S^{\prime}} z(s)^{2}: z \in \dddot{R}\right\} .
$$

Let $Q^{\prime \prime}$ denote a matrix consisting of the columns of $Q=\binom{Q^{\prime}}{Q^{=}}$corresponding to the elements of $S-S^{\prime}$. Then (5.2) transforms to the following:

$$
\begin{equation*}
\max \left\{y p-\left\lfloor\frac{y Q}{2}\right\rfloor\left\lceil\frac{y Q}{2}\right\rceil: y \text { sign-feasible and integer-valued, } y Q^{\prime \prime}=0\right\} . \tag{5.8}
\end{equation*}
$$

5.2 Flows and circulations

In this section, we specialize Theorem5.1]to network flows. Let $D=(V, A)$ be a digraph and let m be an integral function on V for which $\widetilde{m}(V)=0$. A function x on A is called an m-flow if

$$
\begin{equation*}
\varrho_{x}(v)-\delta_{x}(v)=m(v) \text { for every } v \in V \text {. } \tag{5.9}
\end{equation*}
$$

Note that this is equivalent to $Q_{D} x=m$ where Q_{D} denotes the signed incidence matrix of D. The columns of Q_{D} correspond to the edges of D while the rows correspond to the nodes. An entry of Q_{D}, corresponding to edge a and node v, is +1 or -1 according as a enters or leaves v, and 0 otherwise. By the assumption $\widetilde{m}(V)=0,(5.9)$ is equivalent to

$$
\begin{equation*}
\varrho_{x}(v)-\delta_{x}(v) \geq m(v) \text { for every } v \in V \text {, } \tag{5.10}
\end{equation*}
$$

or concisely $Q_{D} x \geq m$.
By Hoffman's circulation theorem, there is a non-negative integral m-flow if and only if $\widetilde{m}(X) \geq 0$ holds for every subset $X \subseteq V$ for which $\delta_{D}(X)=0$. We assume that there is a non-negative integral m-flow z and we want to characterize those minimizing the square-sum $z^{2}=\sum\left[z(a)^{2}: a \in A\right]$. We are going to specialize Theorem[5.1. In this case, y is a $(|V|+|A|)-$ dimensional vector but in order to have a better fit to the standard notation in network flow theory, we replace y by a vector (π, h) where π (a 'potential') is defined on V while h is defined on A.

Theorem 5.2. The minimum square-sum of a non-negative integral m-flow is equal to

$$
\begin{equation*}
\max \left\{m \pi-\left\lfloor\frac{\max \left(\Delta_{\pi}, 0\right)}{2}\right\rfloor\left\lceil\frac{\max \left(\Delta_{\pi}, 0\right)}{2}\right\rceil: \pi: V \rightarrow \mathbf{Z}_{+}\right\} \tag{5.11}
\end{equation*}
$$

where Δ_{π} denotes the tension ($=$ potential-difference) defined by π, that is, $\Delta_{\pi}(u v)=\pi(v)-\pi(u)$ for every edge $u v \in A$, or concisely, $\Delta_{\pi}=\pi Q_{D}$. The minimum square-sum of an integral mflow is equal to

$$
\begin{equation*}
\left.\max \left\{\left.m \pi-\left\lfloor\frac{\Delta_{\pi}}{2}\right\rfloor \right\rvert\, \frac{\Delta_{\pi}}{2}\right\rceil: \pi: V \rightarrow \mathbf{Z}_{+}\right\} . \tag{5.12}
\end{equation*}
$$

Proof. Apply Theorem5.1 to the special case when the system is $Q^{\prime} x \geq p^{\prime}$ (and $Q^{=}$is empty) where $Q^{\prime}=\binom{Q_{D}}{I}$ and p^{\prime} is defined by $p^{\prime}(v):=m(v)$ for $v \in V$ and $p^{\prime}(a):=0$ when $a \in A$. (Here I denotes the $|A|$ by $|A|$ unit-matrix). The optimal dual vector $y=y^{\prime}$ in Theorem 5.1 can be written in the form $y=(\pi, h)$, where π corresponds to the sub-vector of y whose components are assigned to the rows of Q_{D} (that is, to the nodes of D) while the components of h are assigned to the rows of I (that is, to the edges of D). Then the expression (5.2) in Theorem 5.1 takes the following form

$$
\begin{equation*}
\max \left\{m \pi-\left\lfloor\frac{\Delta_{\pi}+h}{2}\right\rfloor\left\lceil\frac{\Delta_{\pi}+h}{2}\right\rceil: \pi: V \rightarrow \mathbf{Z}_{+}, h: A \rightarrow \mathbf{Z}_{+}\right\} . \tag{5.13}
\end{equation*}
$$

To see that this is equal to (5.11), it suffices to observe that in an optimal solution (π, h) to (5.13), if $\Delta_{\pi}(a)$ is negative for an edge a of D, then $h(a)$ may be chosen to be $\left|\Delta_{\pi}(a)\right|$, while if $\Delta_{\pi}(a)$ is non-negative, then $h(a)$ may be chosen to be zero, and hence $\Delta_{\pi}+h=\max \left\{\Delta_{\pi}, 0\right\}$. The expression (5.12) follows analogously from (5.7) in Remark 5.3 ,

Remark 5.5. Theorem 5.2 can also be derived from the network duality in discrete convex analysis (Section 9.6 of [24]), see Proposition 7.14 in [14]. Analogously to Remark 5.4 on a slight extension of Theorem [5.1, Theorem [5.2 can also be easily extended to the case when A^{\prime} is a specified subset of edges of D, and we are interested in a non-negative integer-valued m-flow z for which $\sum\left[z(a)^{2}: a \in A^{\prime}\right]$ is minimum.

Remark 5.6. We worked out the details of min-max formulas concerning the minimum square-sum of a non-negative m-flow. It is only a technical matter to derive analogous minmax theorems for the minimum square-sum of a feasible $(=(f, g)$-bounded) integral m-flow, in particular, a circulation or a maximum $s t$-flow. Our general framework also permits the derivation of a min-max formula for the minimum square-sum of feasible integral tension (= potential-difference), even in the case when not only the potential-difference but the potential itself is required to meet upper and lower bounds.

5.3 Minimizing the weighted square-sum

Technically slightly more complicated, but the same approach works for the weighted squaresum problem. Let a be a positive integer and consider the discrete convex function

$$
\begin{equation*}
\varphi(k):=a k^{2} \quad(k \in \mathbf{Z}) \tag{5.14}
\end{equation*}
$$

Proposition 5.3 ([14]). The discrete conjugate function φ^{\bullet} of φ defined in (5.14) is given for integers ℓ by the following:

$$
\begin{equation*}
\varphi^{\bullet}(\ell)=\left\lfloor\frac{\ell+a}{2 a}\right\rfloor\left(\ell-a\left\lfloor\frac{\ell+a}{2 a}\right\rfloor\right) . \tag{5.15}
\end{equation*}
$$

Proof. The right derivative φ^{\prime} of φ is given by $\varphi^{\prime}(k):=\varphi(k+1)-\varphi(k)=a(k+1)^{2}-a k^{2}=$ $a(2 k+1)$. The maximum of $k \ell-\varphi(k)$ is attained by k such that $\varphi^{\prime}(k-1) \leq \ell \leq \varphi^{\prime}(k)$, that is, $a(2 k-1) \leq \ell \leq a(2 k+1)$. Since this is equivalent to $(\ell-a) /(2 a) \leq k \leq(\ell+a) /(2 a)$, we may take $k^{*}=\lfloor(\ell+a) /(2 a)\rfloor$. Then $\varphi^{\bullet}(\ell)=k^{*} \ell-\varphi\left(k^{*}\right)$, which is equal to the right-hand side of (5.15).

Theorem 3.8 can be written in the following more specific form.
Theorem 5.4. Let $R:=\{x: Q x \geq p\} \subseteq \mathbf{R}^{S}$ be a box-TDI polyhedron where Q is an integral matrix and p is an integral vector. Let c be a positive integral vector in \mathbf{Z}^{S}. Then

$$
\begin{align*}
& \min \left\{\sum_{s \in S} c(s) z(s)^{2}: z \in \dddot{R}\right\} \\
& =\max \left\{y p-\sum_{s \in S}\left\lfloor\frac{w(s)+c(s)}{2 c(s)}\right\rfloor\left(w(s)-c(s)\left\lfloor\frac{w(s)+c(s)}{2 c(s)}\right\rfloor\right), w=y Q: y \geq 0 \text { integral }\right\} . \tag{5.16}
\end{align*}
$$

Moreover, an integral element $z^{*} \in \dddot{R}$ is a minimizer of (5.16) if and only if there exists a non-negative integral vector y^{*} (whose components correspond to the rows of Q) for which the following optimality criteria hold:

$$
\begin{gather*}
y^{*}\left(Q z^{*}-p\right)=0, \tag{5.17}\\
2 c(s) z^{*}(s)-1 \leq w^{*}(s) \leq 2 c(s) z^{*}(s)+1 \quad \text { for each } s \in S, \tag{5.18}
\end{gather*}
$$

where $w^{*}:=y^{*} Q$. The optimal (integral) dual solution y^{*} can be chosen in such a way that the number of its positive components is at most $2|S|$.

In Theorems 5.1, 5.2, and 5.4, we derived min-max formulas concerning the minimum (weighted) square-sum, and these formulas may be considered more 'standard' from a combinatorial optimization point of view in the sense that they use neither the notion of discrete conjugate nor the concept of Φ-compatibility: they look like classic combinatorial min-max theorems such as the ones of Egerváry or Tutte-Berge formula. That was made possible by a general min-max formula relying on the concept of discrete conjugate and by the fact that in the special case of square-sum we could write up the explicit form of the discrete conjugate. This approach shows that the general min-max formula (Theorem 3.10) can be transformed into a 'standard' one whenever one is able to write up explicitly the discrete conjugate of the separable discrete convex function in question. Such a min-max theorem is interesting not only from an aesthetic point of view but it is a promising starting point to develop (purely combinatorial) strongly polynomial algorithms.

This is the reason why it is important to develop a kind of calculus for concrete discrete conjugates. For example, what would Theorem 5.1 (say) look like if we were interested in the minimum of the function Φ given by $\Phi(z):=c_{1} z+z^{2}$, or more generally, $\Phi(z):=$ $c_{1} z+\sum\left[c_{2}(s) z(s)^{2}: s \in S\right]$ (to extend Theorem[5.4), where c_{1} and $c_{2} \geq 0$ are integral vectors? Or, what is the conjugate of a function Φ defined by $\Phi(z):=\left(z-z_{0}\right)^{2}$ where z_{0} is a given integral vector? In Appendix, we have collected some results of this type.

6 Inverse combinatorial optimization

Given a linear weight- or cost-function w_{0}, find a cheapest $s t$-path, a spanning tree, spanning arborescence, perfect matching, common basis of two matroids, etc. These are standard and
well-solved combinatorial optimization problems. In an inverse combinatorial optimization problem, beside w_{0}, we are given an input object z_{0} (path, tree, matching) and the objective is to modify w_{0} as little as possible so that the input object z_{0} becomes a cheapest one with respect to the new cost-function w. If w_{0} is integer-valued, one may require that the modified w should also be integer-valued, and in this section we concentrate exclusively on this case. There may be various ways to measure the deviation of w from w_{0}. For example, in l_{1} norm the deviation is defined by $\sum\left[\left|w(s)-w_{0}(s)\right|: s \in S\right]$. One may consider weighted versions as well, when, for example, the deviation is defined by $\sum\left[c_{1}(s)\left(w_{0}(s)-w(s)\right)\right.$: $\left.w_{0}(s)>w(s)\right]+\sum\left[c_{2}(s)\left(w(s)-w_{0}(s)\right): w(s)>w_{0}(s)\right]$, where $c_{1}(s)$ and $c_{2}(s)$ are nonnegative integers. The l_{2}-norm, possibly weighted, is also a natural choice for measuring the deviation. Even more, imposing lower and upper bounds for the desired w is also a natural requirement, or, instead of a single input z_{0}, we may have an input set $\left\{z_{1}, \ldots, z_{k}\right\}$ of solutions and want to find w in such a way that each z_{i} is a w-minimizer and the deviation of w from w_{0} is minimum. Several further versions of inverse combinatorial optimization problems have been investigated. A relatively early survey paper [18] is due to Heuberger, while the work of Demange and Monnot [7] includes recent developments. Note that Corollary 2.14] may be viewed as a solution to a feasibility-type inverse optimization problem.

In this section, we show that the framework in previous sections for minimizing separable discrete convex functions over a discrete box-TDI set covers and even extends an essential part of inverse combinatorial optimization problems. Here we concentrate exclusively on the theoretical background and establish a min-max theorem for the minimum deviation, where the deviation is measured by an arbitrary separable discrete convex function. Our hope is that this theoretical background will provide a good service in developing efficient algorithms to compute the desired optimal modification of the input cost-function w_{0}. We remark that in a recent paper by Frank and Hajdu [13] (independently of the present work), a min-max formula and a simple algorithm have been developed for the inverse arborescence problem.

6.1 A general framework for inverse problems

Let $Q x \geq p$ be a box-TDI system and $R=\{x: Q x \geq p\}$ an integral polyhedron. As before, the columns of Q are associated with the elements of ground-set S. Let $z_{0} \in R$ be a specified element.

Let $\Phi(w)$ be a separable discrete convex function on cost-vectors w defined as $\Phi(w)=$ $\sum_{s \in S} \varphi_{s}(w(s))$ with integer-valued discrete convex functions φ_{s} for $s \in S$. Let $\ell: S \rightarrow$ $\mathbf{Z} \cup\{-\infty\}$ and $u: S \rightarrow \mathbf{Z} \cup\{+\infty\}$ be integral vectors on S with $\ell \leq u$, which represent an interval of admissible cost-vector w.

The inverse separable discrete convex problem seeks for an integer-valued cost-vector (objective function) w on S for which z_{0} is a w-minimizer of R (that is, $w z_{0} \leq w x$ for every $x \in R), \ell \leq w \leq u$ and $\Phi(w)$ is minimum. In Corollary 2.14, we provided a necessary and sufficient condition for the existence of a cost-function w on S for which $\ell \leq w \leq u$ and z_{0} is a w-minimizer of \dddot{R}. Observe that the bounding vectors ℓ and u can easily be built into Φ by changing $\varphi_{s}(k)$ to $+\infty$ whenever $k>u(s)$ or $k<\ell(s)(s \in S)$, and hence we do not have to work explicitly with the bounding vectors ℓ and u.

Our main goal is to characterize those (linear) cost-functions w for which the input z_{0} is a w-minimizer over R and $\Phi(w)$ is minimum. We emphasize that Φ is integer-valued (along with the bounds ℓ and u that can be built into Φ) and require that the desired optimal costfunction w is also integer-valued.

In the standard inverse combinatorial optimization problem, as indicated above, the goal is to modify a starting cost-function w_{0} as little as possible in l_{1}-norm so that the input $z_{0} \in R$ is a w-minimizer, where w is the new cost-function. For $s \in S$, let $\varphi_{s}(k):=\left|w_{0}(s)-k\right|$. Then a solution to the general inverse problem (which minimizes Φ) will provide the desired solution w for the standard problem. With an analogous approach, the general inverse problems can also be built into our framework of minimizing Φ over a discrete box-TDI set. As a result, the deviation of w from the starting w_{0} may be measured in other norms. Moreover, instead of a single initial cost-function w_{0}, we may specify an interval $\left[\ell_{0}(s), u_{0}(s)\right]$ for each $s \in S$ and strive to minimize the total deviation of the desired w from the box defined by these intervals.

6.2 Preparation

In order to embed the general inverse problem into the framework of discrete box-TDI sets and apply then the min-max results of Section 3, we overview some further properties of box-TDI systems and polyhedra. Let $C:=\{x: K x \geq 0\}$, which is a cone described by an inequality system $K x \geq 0$, and let C^{*} denote the dual cone of C, that is, $C^{*}:=\{w: w=$ $y K, y \geq 0\}$. The polar cone of C is $-C^{*}$.

Proposition 6.1 (Chervet, Grappe, Robert [3], Lemma 6). A cone is box-TDI if and only if its dual cone is box-TDI.

Proposition 6.2 ([3], Lemma 6). An integer cone is box-TDI if and only if it is box-integer.
By specializing Theorem 3.10 to the case of box-TDI cones and using Proposition 6.2, we obtain the following.

Theorem 6.3. Let C be a box-integer cone and let C^{*} denote its dual cone. Let Φ be an integer-valued separable discrete convex function on \mathbf{Z}^{S}. Then

$$
\begin{align*}
& \min \{\Phi(z): z \in \dddot{C}\} \\
& =\max \left\{\Phi(z)-w z: z \in \dddot{C}, w \in \dddot{C}^{*},(z, w) \Phi \text {-fitting }\right\} \\
& =\max \left\{-\Phi^{\bullet}(w): w \in \dddot{C^{*}}\right\} . \tag{6.1}
\end{align*}
$$

An element $z^{*} \in \dddot{C}$ is a Φ-minimizer if and only if there exists a $w^{*} \in \dddot{C}^{*}$ for which $w^{*} z^{*}=0$ and

$$
\begin{equation*}
\Phi^{\prime}\left(z^{*}-\underline{1}\right) \leq w^{*} \leq \Phi^{\prime}\left(z^{*}\right) \tag{6.2}
\end{equation*}
$$

Note that we defined cone C in terms of its polyhedral description but in the present formulation we did not make use of this description of C. Therefore, by relying on Proposition6.1. Theorem 6.3 can be applied to the dual cone C^{*} of C.

Theorem 6.4. Let C be a box-integer cone and let C^{*} denote its dual cone. Let Φ be an integer-valued separable discrete convex function on \mathbf{Z}^{S}. Then

$$
\begin{align*}
& \min \left\{\Phi(w): w \in \widetilde{C}^{*}\right\} \\
& =\max \left\{\Phi(w)-z w: w \in \widetilde{C}^{*}, z \in \widetilde{C},(w, z) \Phi \text {-fitting }\right\} \\
& =\max \left\{-\Phi^{\bullet}(z): z \in \dddot{C}\right\} . \tag{6.3}
\end{align*}
$$

An element $w^{*} \in C^{*}$ is a Φ-minimizer if and only if there exists a $z^{*} \in C$ for which $w^{*} z^{*}=0$ and

$$
\begin{equation*}
\Phi^{\prime}\left(w^{*}-\underline{1}\right) \leq z^{*} \leq \Phi^{\prime}\left(w^{*}\right) . \tag{6.4}
\end{equation*}
$$

The following facts will be used in Section 6.3.
Proposition 6.5 ([3]). Let x_{1} be a solution to a box-TDI system $Q x \geq p$. Let $Q_{1} x \geq p_{1}$ denote the subsystem of $Q x \geq p$ consisting of those inequalities which are met by x_{1} with equality. Then the system $Q_{1} x \geq p_{1}$ is box-TDI.

Remark 6.1. The polyhedron $C_{1}:=\left\{x: Q_{1} x \geq p_{1}\right\}$ is called in [3] a "tangent cone" of R. Since C_{1} is actually not a cone (in the standard meaning of a cone) but the translation of cone $C:=\left\{x: Q_{1} x \geq 0\right\}$ by vector x_{1}, we use in this remark the term "tangent-cone." Now Proposition 6.5 is equivalent to stating that C_{1} is box-TDI, which was formulated in Lemma 5 of [3] for minimal "tangent-cones" of R. But the proof of Lemma 5 in [3] works word for word for arbitrary "tangent-cones" of R.

Proposition 6.6. Let Q, p, p_{1}, x_{1} be the same as in Proposition 6.5 Then the cone $C=\{x$: $\left.Q_{1} x \geq 0\right\}$ is box-TDI.

Proof. As mentioned in Remark 6.1, C is a translation of $C_{1}=\left\{x: Q_{1} x \geq p_{1}\right\}$. By Proposition 6.5, C_{1} is box-TDI and hence Proposition 2.3 implies that C is also box-TDI.

6.3 Min-max theorem for the general inverse problem

Recall that an ordered pair (w, z) of vectors from \mathbf{Z}^{S} is called Φ-fitting if $\Phi^{\prime}(w-\underline{1}) \leq z \leq$ $\Phi^{\prime}(w)$. Note that we introduced this notion in Section 3 for (z, w) but we use it here for (w, z). The following result provides a min-max formula for the minimum in the inverse separable discrete convex optimization problem in which we want to determine the minimum of $\Phi(w)$ over those integer-valued linear objective functions w for which the input vector $z_{0} \in \dddot{R}$ minimizes $w x$ over R, that is, $w z_{0} \leq w x$ for each $x \in R$. Note that the total dual integrality of the system $Q x \geq p$ implies that $z_{0} \in R$ minimizes $w x$ over R if and only if z_{0} minimizes $w x$ over \dddot{R}. We also remark that the duality theorem of linear programming implies that z_{0} minimizes $w x$ over R if and only if w belongs to the cone C_{0}^{*} generated by those rows ${ }_{i} q$ of Q for which ${ }_{i} q z_{0}=p(i)$.

Theorem 6.7. Let $Q x \geq p$ be a box-TDI system defining the integral box-TDI polyhedron $R=\{x: Q x \geq p\}$, and let Φ be an integer-valued separable discrete convex function on \mathbf{Z}^{S}. Let $z_{0} \in R$ and let $Q_{0} x \geq p_{0}$ be the subsystem of $Q x \geq p$ consisting of those inequalities which are met by z_{0} with equalities. Let $C_{0}:=\left\{x: Q_{0} x \geq 0\right\}$ and let $C_{0}^{*}:=\left\{w: w=y_{0} Q_{0}, y_{0} \geq 0\right\}$ be the dual cone of C_{0}. Then

$$
\begin{align*}
& \min \left\{\Phi(w): z_{0} \text { is a } w \text {-minimizer of } \dddot{R}, w \text { integer-valued }\right\} \\
& =\max \left\{\Phi(w)-z w: w \in \widetilde{C}_{0}^{*}, z \in \dddot{C}_{0}, \quad(w, z) \Phi \text {-fitting }\right\} \\
& =\max \left\{-\Phi^{\bullet}(z): z \in \dddot{C}_{0}\right\} . \tag{6.5}
\end{align*}
$$

An integral cost-function w^{*} for which z_{0} is a w^{*}-minimizer over R is a Φ-minimizer if and only if there exists a $z^{*} \in \dddot{C}_{0}$ for which $w^{*} z^{*}=0$ and the ordered pair $\left(w^{*}, z^{*}\right)$ is Φ-fitting.

Proof. As we mentioned before the theorem, z_{0} is a w^{*}-minimizer element of R precisely if $w^{*} \in C_{0}^{*}$. By applying Proposition 6.6 to C_{0} in place of C, we obtain that C_{0} is box-TDI and hence Theorem 6.4 implies the theorem.

Remark 6.2. The proof of Theorem6.7 shows that the role of the assumed box-TDI-ness of R is only to ensure that C_{0} is box-TDI (equivalently, box-integer). If z_{0} is specified and fixed, we can weaken the assumption to box-TDI-ness of the tangent cone of R at z_{0}.

Remark 6.3. Theorem 6.7 can easily be extended for the case when the box-TDI system defining R is given in the form of [$Q^{\prime} x \geq p^{\prime}, Q^{=} x=p^{=}$]. In this case, let $Q_{0}^{\prime} x \geq p_{0}^{\prime}$ be the subsystem of $Q^{\prime} x \geq p^{\prime}$ consisting of those inequalities which are met by z_{0} with equalities. Then (6.5) holds for $C_{0}:=\left\{x: Q_{0}^{\prime} x \geq 0, Q^{=} x=0\right\}$ and its dual cone $C_{0}^{*}:=\{w: w=$ $\left.y_{0}^{\prime} Q_{0}^{\prime}+y_{0}^{=} Q^{=}, y_{0}^{\prime} \geq 0\right\}$.

Remark 6.4. A natural extension of the problem is when, instead of a single element z_{0}, we have a subset $Z_{0}:=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ of elements of \dddot{R}, and the goal is to characterize those integer-valued weight-functions w for which each $z_{i} \in Z_{0}$ is a w-minimizer element of \dddot{R} and $\Phi(w)$ is minimum. (It is allowed that R may have other w-minimizer elements.) To treat this case let $R_{k}:=k R$ denote the k-dilation of R. By Proposition 2.11, R_{k} is also a box-TDI polyhedron containing $z_{0}:=z_{1}+\cdots+z_{k}$. It is a straightforward observation for a cost-function w that z_{0} is a w-minimizer element of R_{k} precisely if each z_{i} is a w-minimizer of R. Therefore we can apply Theorem6.7 to k-dilation R_{k} of R and to $z_{0}:=z_{1}+\cdots+z_{k}$.

Remark 6.5. In Appendix we overview some special separable discrete convex functions related to (weighted) l_{1}-norm, and calculate their explicit discrete conjugates, analogously to the way how the conjugate of the (weighted) square-sum was calculated in Section 5 , By applying Theorem6.7 to these concrete conjugates, one can obtain min-max formulas of standard combinatorial optimization type (that is, without using conjugate) for a great number of inverse problems. One example is the inverse matroid intersection problem when there is a specified upper and lower bound for the desired cost-function w. In another version, we want to minimize the deviation of the desired cost-function from a specified box, rather than from a single point w_{0}. With this framework, one can derive min-max theorems even for minimum cost versions of the inverse problems where a linear cost-function is specified for the deviation of w from w_{0}. Beyond theoretical advantage, our hope is that this kind of minmax formulas shall facilitate the development of strongly polynomial algorithms for these cases.

7 Appendix: Calculating concrete discrete conjugates

Recall that a function $\varphi: \mathbf{Z} \rightarrow \mathbf{Z} \cup\{+\infty\}$ is called discrete convex if $\varphi(k-1)+\varphi(k+$ $1) \geq 2 \varphi(k)$ for each $k \in \operatorname{dom}(\varphi)$. Below we list the discrete conjugate of some concrete univariate functions and for some elementary operations. We emphasize that every function is assumed to be integer-valued. Naturally, these formulas immediately extend to separable discrete convex functions. The proof of these claims are not difficult and left to the reader.

Claim 7.1 ([23, 24]). The discrete conjugate of a discrete convex function φ is discrete convex. Furthermore,

$$
\begin{equation*}
\left(\varphi^{\bullet}\right)^{\bullet}=\varphi . \tag{7.1}
\end{equation*}
$$

Claim 7.2 ([23, 24]). The $\operatorname{sum} \varphi=\varphi_{1}+\varphi_{2}$ of two discrete convex functions is discrete convex and its discrete conjugate φ^{\bullet} is given by

$$
\begin{equation*}
\varphi^{\bullet}(\ell)=\min \left\{\varphi_{1}^{\bullet}\left(\ell_{1}\right)+\varphi_{2}^{\bullet}\left(\ell_{2}\right): \ell_{1}+\ell_{2}=\ell, \ell_{i} \in \mathbf{Z}\right\} . \tag{7.2}
\end{equation*}
$$

In the special case when φ_{2} is a linear function defined by $\varphi_{2}(k):=c k$, where c is an integer, one has

$$
\begin{equation*}
\varphi^{\bullet}(\ell)=\varphi_{1}^{\bullet}(\ell-c) . \tag{7.3}
\end{equation*}
$$

Claim 7.3. For an integer k_{0}, the discrete conjugate of a discrete convex function φ_{0} defined by $\varphi_{0}(k):=\varphi\left(k-k_{0}\right)$ is given by

$$
\begin{equation*}
\varphi_{0}^{\bullet}(\ell)=\varphi^{\bullet}(\ell)+k_{0} \ell . \tag{7.4}
\end{equation*}
$$

The next claim is useful in situations when we want to build specified lower and upper bounds imposed on the variables into the function φ to be minimized, by making φ to be $+\infty$ outside the bounds.

Claim 7.4. Let $A \leq B$ be integers, where A may be $-\infty$ and B may be $+\infty$, and let $I:=[A, B]_{\mathbf{Z}}$ be the set of integers k with $A \leq k \leq B$. Let φ_{I} denote the function obtained from a discrete convex function φ by restricting it to I in the following sense:

$$
\varphi_{I}(k)= \begin{cases}\varphi(k) & \text { if } \quad A \leq k \leq B \tag{7.5}\\ +\infty & \text { otherwise }\end{cases}
$$

Then φ_{I} is discrete convex and its discrete conjugate is as follows:

$$
\begin{equation*}
\varphi_{I}^{\bullet}(\ell)=\min \left\{\varphi\left(\ell_{1}\right)+\max \left\{A \ell_{2}, B \ell_{2}\right\}: \ell_{1}+\ell_{2}=\ell, \ell_{i} \text { integer }\right\} . \tag{7.6}
\end{equation*}
$$

Claim 7.5. Let $c_{-} \leq c_{+}$be integers, and let $A \leq k_{0} \leq B$ be integers, where A may be $-\infty$ and B may be $+\infty$. Let φ be defined by

$$
\varphi(k):= \begin{cases}c_{-}\left(k-k_{0}\right) & \text { if } \quad A \leq k \leq k_{0}, \tag{7.7}\\ c_{+}\left(k-k_{0}\right) & \text { if } k_{0} \leq k \leq B, \\ +\infty & \text { otherwise }\end{cases}
$$

Then the discrete conjugate of φ is as follows:

$$
\varphi^{\bullet}(\ell)=\left\{\begin{array}{lll}
A \ell-c_{-}\left(A-k_{0}\right) & \text { if } \quad \ell<c_{-}, \tag{7.8}\\
k_{0} \ell & \text { if } \quad c_{-} \leq \ell \leq c_{+}, \\
B \ell-c_{+}\left(B-k_{0}\right) & \text { if } \quad \ell>c_{+} .
\end{array}\right.
$$

When $A=-\infty$, for case $\ell<c_{-}$one has $\varphi^{\bullet}(\ell)=A \ell-c_{-}\left(A-k_{0}\right)=A\left(\ell-c_{-}\right)+c_{-} k_{0}=+\infty$, and, analogously, when $B=+\infty$, for case $\ell>c_{+}$one has $\varphi^{\bullet}(\ell)=+\infty$.

Claim 7.6. Let $c_{-} \leq 0 \leq c_{+}$be integers. Let $A \leq a<b \leq B$ be integers where A, a may be $-\infty$ and B, b may be $+\infty$. Let φ be defined by:

$$
\varphi(k):= \begin{cases}0 & \text { if } \quad a \leq k \leq b, \tag{7.9}\\ c_{-}(k-a) & \text { if } \quad A \leq k<a, \\ c_{+}(k-b) & \text { if } \quad b<k \leq B, \\ +\infty & \text { otherwise } .\end{cases}
$$

Then the discrete conjugate of φ is as follows:

$$
\varphi^{\bullet}(\ell)= \begin{cases}A \ell-c_{-}(A-a) & \text { if } \quad \ell<c_{-}, \tag{7.10}\\ a \ell & \text { if } \quad c_{-} \leq \ell<0 \\ 0 & \text { if } \ell=0 \\ b \ell & \text { if } \quad 0<\ell \leq c_{+} \\ B \ell-c_{+}(B-b) & \text { if } \quad \ell>c_{+}\end{cases}
$$

When $A=-\infty$, for case $\ell<c_{-}$one has $\varphi^{\bullet}(\ell)=A \ell-c_{-}(A-a)=A\left(\ell-c_{-}\right)+c_{-} a=+\infty$, and, analogously, when $B=+\infty$, for case $\ell>c_{+}$one has $\varphi^{\bullet}(\ell)=+\infty$.

Acknowledgement The authors are grateful to R. Grappe for his indispensable and profound help concerning fundamental properties of box-TDI polyhedra. The detailed comments from the referees were helpful to improve the paper. The research was partially supported by the National Research, Development and Innovation Fund of Hungary (FK-18)- No. NKFI128673, and by JSPS KAKENHI Grant Number JP20K11697.

References

[1] J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization, Theory and Examples, (Second Edition) 2005, Canadian Mathematical Society. CMS Books in Mathematics.
[2] K. Cameron, A min-max relation for the partial q-colourings of a graph, Part II: Box perfection, Discrete Mathematics, 74 (1989), 15-27.
[3] P. Chervet, R. Grappe, L.-H. Robert, Box-total dual integrality, box-integrality, and equimodular matrices, Mathematical Programming, Ser. A, published online: 20 May 2020. https://doi.org/10.1007/s10107-020-01514-0
[4] W.J. Cook, Operations that preserve total dual integrality, Operations Research Letters, 2 (1983) 31-35.
[5] W. Cook, On box totally dual integral polyhedra, Mathematical Programming, 34 (1986) 48-61.
[6] W.J. Cook, J. Fonlupt, and A. Schrijver, An integer analogue of Carathéodory's theorem, J. Combinatorial Theory, Ser B. 40 (1986) 63-70.
[7] M. Demange and J. Monnot, An introduction to inverse combinatorial problems, Chapter 17 in: Paradigms of Combinatorial Optimization: Problems and New Approaches, second edition (V.Th. Paschos, ed.), ISTE LTd and John Wiley and Sons, 2014. pp. 547-586.
[8] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: Combinatorial Structures and their Applications (R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds.), Gordon and Breach, New York (1970) pp. 69-87.
[9] J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming, 1 (1971) 127-136.
[10] J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Annals of Discrete Mathematics, 1 (1977), 185-204.
[11] J. Edmonds and R. Giles, Total dual integrality of linear inequality systems, in: Progress in Combinatorial Optimization (ed. W. R. Pulleyblank) Academic Press (1984) 117-129.
[12] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, 2011 (ISBN 978-0-19-920527-1), Oxford Lecture Series in Mathematics and its Applications, 38.
[13] A. Frank and G. Hajdu, A simple algorithm and min-max formula for the inverse arborescence problem, to appear in Discrete Applied Mathematics.
[14] A. Frank and K. Murota, Discrete decreasing minimization, Part II: Views from discrete convex analysis, arXiv: 1808.08477v4 30, June 2020.
[15] A. Frank and K. Murota, Decreasing minimization on M-convex sets, arXiv: 2007.09616, July 2020.
[16] S. Fujishige, Lexicographically optimal base of a polymatroid with respect to a weight vector, Mathematics of Operations Research, 5 (1980) 186-196.
[17] H. Groenevelt, Two algorithms for maximizing a separable concave function over a polymatroidfeasible region, European J. of Operational Research, 54 (1991) 227-236.
[18] C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods, and results, Journal of Combinatorial Optimization, 8 (2004) 329-361.
[19] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer, Berlin, 2001.
[20] V. Kaibel, S. Onn, P. Sarrabezolles, The unimodular intersection problem, Operations Research Letters, 43 (2015), 502-504.
[21] S. T. McCormick, Submodular function minimization, in: K. Aardal, G. Nemhauser, and R. Weismantel (Eds.), Handbook on Discrete Optimization, Elsevier Science Publishers, Berlin, 2006, Chapter 7, pp.321-391.
[22] S.T. McCormick, B. Peis, R. Scheidweiler, and F. Valentin, A polynomial time algorithm for solving the closest vector problem in zonotopal lattices, arXiv: 2004.07574v1 April 2020.
[23] K. Murota, Discrete convex analysis, Mathematical Programming, 83 (1998) 313-371.
[24] K. Murota, Discrete Convex Analysis, SIAM, Philadelphia, 2003.
[25] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[26] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986.
[27] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Heidelberg, 2003.
[28] A. Sebő, Hilbert bases, Caratheodory's theorem and combinatorial optimization, in: R. Kannan, W.R. Pulleyblank (Eds.), Integer Programming and Combinatorial Optimization, University of Waterloo Press, Waterloo, Canada, 1990, pp.431-455.

[^0]: *MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary, H-1117. e-mail: frank@cs. elte.hu. ORCID: 0000-0001-6161-4848.
 ${ }^{\dagger}$ Department of Economics and Business Administration, Tokyo Metropolitan University, Tokyo 192-0397, Japan, e-mail: murota@tmu.ac.jp. ORCID: 0000-0003-1518-9152.

