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Abstract: The Eurasian otter (Lutra lutra) is a piscivorous apex predator in aquatic habitats, and
a flagship species of conservation biology throughout Europe. Despite the wide distribution and
ecological relevance of the species, there is a considerable lack of knowledge regarding its virological
and veterinary health context, especially in Central Europe. Canine morbillivirus (Canine distemper
virus (CDV)) is a highly contagious viral agent of the family Paramyxoviridae with high epizootic
potential and veterinary health impact. CDV is present worldwide among a wide range of animals;
wild carnivores are at particular risk. As part of a retrospective study, lung-tissue samples (n = 339)
from Eurasian otters were collected between 2000 and 2021 throughout Hungary. The samples
were screened for CDV using a real-time RT-PCR method. Two specimens proved positive for CDV
RNA. In one sample, the complete viral genome was sequenced using a novel, pan-genotype CDV-
specific amplicon-based sequencing method with Oxford Nanopore sequencing technology. Both
viral sequences were grouped to a European lineage based on the hemagglutinin-gene phylogenetic
classification. In this article, we present the feasibility of road-killed animal samples for understanding
the long-term dynamics of CDV among wildlife and provide novel virological sequence data to better
understand CDV circulation and evolution.

Keywords: Mustelidae; NGS; third generation sequencing; conservation biology; MinION; enzootic

1. Introduction

The Eurasian otter (Lutra lutra) is a flagship species of nature conservation efforts
throughout Europe, and it is a widely distributed piscivorous carnivore in Eurasia and
portions of North Africa [1,2]. The otter is a characteristic apex predator in aquatic food
chains [2]. It inhabits a wide variety of natural habitats (e.g., rivers, small waterflows, lakes
and marshlands) and human-altered areas (fishponds, water reservoirs and recreational
lakes); it is mainly solitary, secretive, and nocturnal [1,2]. Currently, it is a near-threatened
species on the IUCN Red List [3], and it is listed as an animal species of European Commu-
nity importance (EEA, 2009). The reason for its priority protection is the vulnerability of its
population [1,2]. Recent decades have seen an increase in otter populations in some areas
of Europe [4,5], which implies that otters are more likely to encounter humans, domestic
dogs, and other carnivores. In Hungary, the otter is a widespread, strictly protected species
with stable, interconnected populations [6,7].

Canine morbillivirus (canine distemper virus (CDV)) is a single-stranded negative-sense
RNA virus that belongs to the Paramyxoviridae family in the Morbillivirus genus [8–10].
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Several distinct genotypes are known and classified according to different hosts and ge-
ographical areas, based on the nucleotide sequence analysis of the hemagglutinin (H)
gene [11,12]. Functionally, the hemagglutinin protein is responsible for virus’ attachment
and fusion to host cells. It is widely used to assess genetic relatedness among different
CDV strains [13–15]. Canine distemper virus is a significant viral pathogen, affecting
wildlife and domestic animals [16,17]. It has been reported among multiple species of wild
carnivores from the Mustelidae family, such as the stone marten (Martes foina), the pine
marten (Martes martes), the Eurasian badger (Meles meles) [17–22], and otter species [22–30].

CDV threatens a wide range of endangered animal populations. The disease’s pro-
gression is usually coupled with high mortality, virulence, and frequent cross-species
transmission events. Therefore, apart from a general veterinary health problem, it is also
a significant conservation threat to endangered species worldwide [16,31–33]. Infectious
diseases are critical limitation factors regarding the population size and dispersal of wildlife
species. Therefore, there has been a growing interest, during the last decades, in emerging
infectious diseases in wildlife [34,35]. In several situations, it was clearly shown that most
dispersed and small populations of endangered wild animals are more prone to extinction
due to stochastic events, such as disease outbreaks [36–38]. Clearly, disease monitoring is
deemed important in the conservation of rare species. However, the examination of wild
animals, especially carnivores, is often more difficult than that of domestic or zoo animals
due to ethical reasons and sampling or detection difficulties. Population-size determination,
morbidity, mortality estimation, and the early detection of disease outbreaks are highly
challenging, specifically, among wildlife species [39]. The results of post-mortem studies
may provide novel and relevant data for rare and hidden species, including the prevalence
and genetic characteristics of certain infectious diseases [26,40].

In addition to the detection of pathogens, next-generation sequencing (NGS) technolo-
gies are increasingly used in microbiology laboratories for the in-depth characterization of
pathogens [41]. NGS can be optimized for rapid sample preparation and real-time sequence
analysis, as well as the rapid identification of certain pathogens [42–47]. Amplicon-based
NGS sequencing is an increasingly preferred method in the rapid detection and genomic
characterization of specific pathogens, with high specificity and sensitivity [48–52].

In terms of virological examinations, the Eurasian otter is a neglected predator species;
it is crucial to understand the dynamics, risks, and evolution of the most common vi-
ral diseases regarding of this species. Understanding CDV’s long-term epidemiology in
the Eurasian otter is of utmost importance from a conservation perspective, and the pre-
sentation of novel sequence data is also highly relevant for better understanding CDV’s
evolution. In this paper, we present the results of a retrospective surveillance study span-
ning 21 years to detect CDV in road-killed Eurasian otter samples. The reliability of such
samples for virological studies using a highly specific NGS method for the rapid genomic
characterization of CDV-positive samples is presented.

2. Materials and Methods
2.1. Retrospective Collection of Eurasian Otter Samples

We collected Eurasian otter carcasses between 2000 and 2021 in Hungary. These
animals were primarily (90%) road-killed individuals, whilst the remaining animals were
found dead at their natural habitats. Animal collection localities cover two habitat types
(stagnant waters or watercourses) and highlight the distribution of these animals within
the country [6]. The animal carcasses were collected by the staff of the ten National Park
Directorates and stored at −20 ◦C until processing. The post-mortem examination was
carried out and tissue samples of different organs were stored at −20 ◦C by the Carnivore
Ecology Research Group, Kaposvár University [53–55], with permission from the competent
authorities. A total of 339 lung tissue samples were collected from the carcasses using
general dissection procedures.
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2.2. Nucleic Acid Extraction and PCR Reactions

Approximately five grams of lung tissues were homogenized in 500 µL of phosphate-
buffered saline (PBS), using the Bertin Minilys machine at maximum speed for 3 min,
supplemented with two glass beads per sample to facilitate tissue disruption. Following
brief centrifugation, 100 µL of the supernatant was used for RNA extraction using the
Monarch total RNA miniprep kit (NEB, Ipswich, MA, USA). The nucleic acid samples
were tested using a CDV-specific real-time PCR [10]. All PCRs were performed using
the OneTaq® One-Step RT-PCR Kit (NEB, Ipswich, MA, USA) in full compliance to the
manufacturer’s recommendations. RT-PCRs were performed immediately following RNA
extraction without freeze-thawing the nucleic acid to avoid possible RNA degradation
for improved output in complete genomic sequencing activities. The RT-PCR standard
curve was generated by serial 10-fold dilutions of a corresponding CDV amplicon with
a known copy number in a range of 1 × 1010 to 1 × 101. These dilutions were measured
in triplicate, and the measured results were used to construct the standard curve, which
was subsequently used to determine the copy number from threshold cycle values (Ct) of
the samples.

2.3. Sanger Sequencing and MinION Sequencing

In the cases in which the virus titer was too low for complete viral genome sequencing,
we applied a specific PCRs reaction, targeting only the hemagglutinin (H) gene of CDV with
previously published primer sets [56]. Sanger sequencing was performed by an external
service provider (Eurofins Genomics, Germany).

The complete genome sequencing was performed with MinION nanopore sequencing
technology (Oxford Nanopore Technologies, Oxford, UK). Previously, we developed and pub-
lished an amplicon-based sequencing method in reference to CDV genome sequencing [51].
MinION library preparation, sequencing, and data analysis were performed in an identical
manner. The detailed protocol is available at our laboratory protocols.io page [57].

2.4. Phylogenetic Analysis

Two datasets were used for phylogenetic tree analysis comprising 180 and 843 com-
plete genomic and complete hemagglutinin gene sequences, respectively. Sequences were
aligned in MAFFT webserver using default parameters. Subsequently, in IQ-TREE web-
server, both best substitution model selection and maximum-likelihood phylogenetic tree
reconstruction were performed with ultrafast bootstrapping. Phocine distemper virus
(PDV) was used as an outgroup for both phylogenies.

3. Results and Discussion
3.1. RT-PCR Screening

Eurasian otter samples were collected from all nineteen counties throughout Hungary.
From these, canine distemper virus RNA was identified by real-time RT-PCR screening in
2/339 samples. Both originated from western Hungary; one was collected in 2006 and the
other in 2010. The first infected animal was a young (4–5 months old) male in poor body
condition (K = 0.80; for condition index or K) [2] and was found to be deceased due to
natural infection, on the edge of a marshland (Kis-Balaton). The second was an adult male
in good body condition (K = 1.19), found as road-kill near a river (Rába) [6]. Consequently,
only 2 of the 339 samples were found to be CDV-positive, although this does not exclude
the possibility of the presence of CDV in the other samples, since we had no data on the
viral RNA degradation in these samples. However, the objective of this study was not the
assessment of viral prevalence, but to demonstrate the feasibility of such samples in viral
genomic surveillance.

Although the Eurasian otter is a well-studied “key species” of aquatic habitats in
ecological and zoological terms [2], there is a considerable lack of knowledge of the microbi-
ological context across its distribution range. Aleutian mink disease parvovirus, carnivore
protoparvovirus 1, feline panleukopenia virus, and canine adenovirus type 1 were pre-
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viously detected in the species [58–60]. Regarding the Morbillivirus virus family, Dolphin
Morbillivirus was detected in Eurasian otters [61]. Nevertheless, the presence of canine
distemper virus was only described based on the histology among European otters [25,29].
CDV infections were reported among the members of the family Mustelidae, and the virus
has been detected in several different otter species. Under zoo conditions in Belgium,
CDV was observed in littermates of the Asian small-clawed otter (Aonyx cinereus), based
on histopathology and direct immunofluorescence [28]. CDV was detected in a sea otter
(Enhydra lutris) population using immunohistochemistry, RT-PCR, genetic sequencing,
virus isolation, and serology in upstate Washington, USA [26]. North American river otters
(Lontra canadensis) were seropositive against canine distemper virus in the northern and
eastern regions of the USA, implying its circulation among these animals [27]. Seemingly,
CDV infections are present in a wide range of species within the Mustelidae family. Con-
sidering their relevance regarding their conservation biology, vaccination may provide a
solution for avoiding epizootic events within otter populations. The vaccination of otters is
not without precedent; it is reported and evaluated in multiple publications [62,63].

3.2. Sequencing Results

Based on the real-time RT-PCR results, the viral genomic copy numbers were calculated
as follows: ~1,021,000 copies/µL of the sample from 2006 and <10 copies/µL from the
sample from 2010. The complete genome nucleotide sequence was determined for the
sample from 2006 using Oxford Nanopore sequencing technology (Figure 1). To our
knowledge, these are the first two CDV genome sequences from the Eurasian otter. The
full-length hemagglutinin (H) nucleotide sequence of the other sample was obtained with
specific PCRs and Sanger sequencing. These sequence data were submitted to the GenBank
databases (accession numbers OM811640 and OM811639).

Figure 1. Visualization of sequencing coverage via the amplicon-based sequencing method for the
sample from 2006, with all primer sets (1000 and 2000 bp). The horizontal scale represents the
genomic position, while the vertical scale displays the coverage values of the sequencing reaction.

We emphasize the importance of providing novel sequence data in accordance with
recent studies, in which the complete genomic sequence data of CDV are increasingly
reported. This will greatly facilitate a better understanding of both the evolution of CDV
and epizootic patterns in the near future [47,64–67]. In our study, we used a recently
published pan-genotype CDV-specific amplicon-based sequencing method developed for
the Oxford Nanopore Technologies platform [51]. A key advantage regarding this method
is its ability to sequence the entire genome of CDV quickly and efficiently with multiplexed
amplicons, without the necessity for in vitro isolation procedures.
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3.3. Phylogenetic Analysis

Based on the phylogenetic analysis of the hemagglutinin gene sequences, the two
CDV sequences in our study belong to the European lineage. The complete-genomic-
sequence-based analysis confirmed this observation (Figure 2). Both sequences clustered
in a separate cluster among the other European sequences, separately from other clusters
described for the other species, such as foxes. More studies are needed to reveal the
presence and understand the risk of cross-species transmission events between otters and
other carnivores, if indeed there are any. Based on our data, we demonstrate the presence of
a separate strain, which was identified in two different years in the same region in Hungary.
Increased efforts and extended research are needed to better understand the background of
this genetic separation.

Figure 2. (A) Maximum-likelihood phylogenetic tree based on 180 CDV complete-genome nucleotide
sequences. (B) The European lineage of interest is highlighted in blue color. (C) Maximum-likelihood
phylogenetic tree based on 843 complete hemagglutinin (H) nucleotide sequences. (D) The European
lineage of interest is highlighted in blue. Phocine distemper virus (PDV) (GenBank accession number:
KY629928) was used as an outgroup to root both phylogenetic trees.

In Hungary, three different CDV genotypes were described, based on the H gene
nucleotide sequence to date. In the last two decades, European, Arctic-like, and European
wildlife lineage were detected among dogs. In addition to dogs, CDV infection was detected
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in wild carnivores, such as the fox (Vulpes vulpes), raccoon (Procyon lotor), and ferret (Mustela
putorius furo) [51,68–70].

The European lineage of CDV was detected in many wild-animal species originating
in various European countries. This lineage was frequently observed among red foxes and
badgers in several countries and across multiple years, such as Germany in 2008 [56] and
Italy between 2006 and 2009 [71,72]. Moreover, in Switzerland, numerous wild carnivores,
including red foxes, Eurasian badgers, stone and pine martens, Eurasian lynx (Lynx lynx),
and domestic dogs, were found with CDV lesions between 2009 and 2010 [19]. In Denmark,
a major outbreak of CDV was detected in American minks (Neovison vison) originating on
mink farms, as well as a high number of wild species, such as the red fox, raccoon dog (Nyc-
tereutes procyonoides), and European polecat (Mustela putorius) between 2012 and 2013 [73].
Recently, the European lineage of CDV was detected in Germany among raccoons (Procyon
lotor) from 2015, in red foxes from 2016 [74], and in Northern Italy in red foxes, badgers, and
stone martens between 2018 and 2019 [75]. In addition to these studies, numerous red foxes
were detected in Hungary in 2021, in association with a possible countrywide epizootic
event [51]. Apparently, CDV is a widespread and, at the same time, fairly investigated
pathogen among wild carnivores throughout Europe. We demonstrated the reliability
of road-killed animal samples for retrospective virological examination regarding CDV
genomic patterns, prevalence, and host range. The growing number of genomic data may
significantly aid in comprehending and predicting future epizootic events.

4. Conclusions

Large sample sizes and retrospective studies are suitable for molecular biological
examination and lead to a better understanding of CDV events occurring decades in the
past. The examination of road-killed animals facilitates disease observation and surveillance
among rare animal species, which includes the detection and genome sequencing of the
virus, as it demonstrated in this study. The presence of CDV in otters draws attention to
the potential threat to the population of this predatory species.
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