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Abstract
We address the following rainbow Ramsey problem: For posets P,Q what is the smallest
number n such that any coloring of the elements of the Boolean lattice Bn either admits
a monochromatic copy of P or a rainbow copy of Q. We consider both weak and strong
(non-induced and induced) versions of this problem.
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1 Introduction

In this paper we consider rainbow Ramsey-type problems for posets. Given posets P and Q,
we say that X ⊆ Q is a weak copy of P , if there is a bijection α : P → X such that p ≤P p′
implies α(p) ≤Q α(p′). If α has the stronger property that p ≤P p′ holds if and only if
α(p) ≤Q α(p′), then X is a strong or induced copy of P . A copy X of P is monochromatic
with respect to a coloring φ : Q → Z

+, if φ(q) = φ(q ′) for all q, q ′ ∈ X and rainbow if
φ(q) �= φ(q ′) for all q �= q ′ ∈ X. We will be looking for monochromatic and/or rainbow
copies of some posets in the Boolean lattice Bn, the subsets of an n-element set ordered by
inclusion. The set of elements of Bn corresponding to sets of the same size is called a level
of Bn.

Definition 1.1 The weak Ramsey number R(P1, P2, . . . , Pk) is the smallest number n

such that for any coloring of the elements of Bn with k colors, say 1, 2, . . . , k there is a
monochromatic copy of the poset Pi in color i for some 1 ≤ i ≤ k. We simply write Rk(P )

for R(P1, P2, . . . , Pk), if P1 = . . . = Pk = P . We define the strong Ramsey number
R∗(P1, P2, . . . , Pk) and R∗

k (P ) for strong copies of posets analogously.

Ramsey theory of posets is an old and well investigated topic, see e.g., [11, 15]. How-
ever, the study of Ramsey problems in the Boolean lattice was initiated only recently: weak
Ramsey numbers were studied by Cox and Stolee [3] and strong Ramsey numbers were
investigated by Axenovich and Walzer [1]. In addition, some results in the latter one were
improved by Lu and Thompson [12].

In this article, we study rainbow Ramsey numbers for the Boolean lattice.

Definition 1.2 For two posets P, Q the weak (or not necessarily induced) rainbow Ramsey
number RR(P,Q) is the minimum number n such that any coloring (using an arbitrary
number of colors) of Bn admits either a monochromatic weak copy of P or a rainbow weak
copy of Q. The strong (or induced) rainbow Ramsey number can be defined analogously
and is denoted by RR∗(P,Q).

Rainbow Ramsey numbers for graphs have been intensively studied (they are sometimes
called constrained Ramsey numbers or Gallai–Ramsey numbers), for a recent survey see
[4]. The results on the rainbow Ramsey number for Boolean posets are sporadic [2, 10].
Nevertheless, the following easy observation connects (usual) Ramsey numbers to rainbow
Ramsey numbers.

Proposition 1.3 For any pair P and Q of posets we have
(i) RR(P,Q) ≥ R|Q|−1(P ), and
(ii) RR∗(P,Q) ≥ R∗|Q|−1(P ).

Proof To see (i) observe that if a coloring φ uses at most |Q|−1 colors, then clearly it cannot
contain a rainbow weak copy of Q. Therefore any such coloring showing R|Q|−1(P ) > n

also shows RR(P,Q) > n. An identical proof with strong copies implies (ii).

In this paper, we show many examples of posets P,Q for which the inequality in (i) of
Proposition 1.3 holds with equality, while in Section 3, we show another example of posets
P, Q for which (ii) of Proposition 1.3 holds with strict inequality. Unfortunately, we do not
know whether there exist posets P,Q for which (i) holds with strict inequality.
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Many of the tools used in [1, 3] come from the related Turán-type problem, the so-called
forbidden subposet problem. Let us introduce some terminology. For a poset P , a family
F ⊆ Bn of sets is called (induced) P -free if F does not contain a weak (strong) copy
of P . The size of the largest (induced) P -free family in Bn is denoted by La(n, P ) (resp.
La∗(n, P )). For a poset P , we denote by e(P ) the maximum number m such that for any
n the union of any consecutive m levels of Bn is P -free. The analogous strong parameter is
denoted by e∗(P ). The most widely believed conjecture [5] in the area of forbidden subposet
problems states that for any poset P we have

lim
n→∞

La(n, P )
(

n
�n/2�

) = e(P ) and lim
n→∞

La∗(n, P )
(

n
�n/2�

) = e∗(P ).

It is worth noting that this conjecture is already wide open for a very simple poset called
the diamond poset D2 (defined on four elements a, b, c, and d with relations a < b, c and
b, c < d). See [9] for the best known bounds in this direction.

For a family F ⊆ Bn of sets, its Lubell-mass is λn(F) = ∑
F∈F 1

( n
|F |)

. For a poset P ,

we define λn(P ) to be the maximum value of λn(F) over all P -free families F ⊆ Bn and
λmax(P ) is defined to be supn λn(P ). Its finiteness follows from the fact that every poset
P is a weak subposet of C|P | (where Cl denotes the l-chain, the totally ordered set of size
l) and the k-LYM-inequality stating that λn(F) ≤ k for any Ck+1-free family F ⊆ Bn.
Analogously, λ∗

n(P ) is the maximum value of λn(F) over all induced P -free families F ⊆
Bn and λ∗

max(P ) is defined to be supn λ∗
n(P ). It was proved to be finite by Méroueh [13].

Observe that, by definition of e(P ) and e∗(P ), we have e(P ) ≤ λn(P ) and e∗(P ) ≤
λ∗

n(P ) for every poset P and integer n ≥ e(P ) or n ≥ e∗(P ). We say that a poset is
uniformly Lubell-bounded if e(P ) ≥ λn(P ) holds for all positive integers n. Similarly, a
poset is uniformly induced Lubell-bounded if e∗(P ) ≥ λ∗

n(P ) holds for all positive integers
n. An instance of posets eqipped with this property is the class of chain posets Cl . For
k ≥ 2 the generalized diamond poset Dk consists of k+2 elements a, b1, b2, . . . , bk, c with
relations a < bi < c for 1 ≤ i ≤ k. Griggs, Li and Lu [6] proved that infinitely many of the
Dk’s are uniformly Lubell-bounded and Patkós [14] proved that an overlapping but distinct
and infinite subset of the Dk’s is uniformly induced Lubell-bounded. For more uniformly
Lubell-bounded posets, see [8].

In [1] and [3], it was observed that if P is uniformly Lubell-bounded or uniformly
induced Lubell-bounded, then Rk(P ) = k · e(P ) or R∗

k (P ) = k · e∗(P ) holds, respectively.
Our main result concerning weak rainbow Ramsey numbers extends the above observa-

tion.

Theorem 1.4 Let P be a uniformly Lubell-bounded poset and F ⊆ Bn be a family of
sets with λn(F) > e(P )(k − 1). Then any coloring of φ : F → Z

+ admits either a
monochromatic weak copy of P or a rainbow copy of Ck .

Corollary 1.5 If P is uniformly Lubell-bounded, then RR(P,Q) = e(P )(|Q| − 1) holds
for any poset Q.

Proof As λn(Bn) = n + 1, the inequality RR(P,Q) ≤ e(P )(|Q| − 1) is a direct
consequence of Theorem 1.4 as any poset Q is a weak subposet of C|Q|.

Let n = (|Q| − 1)e(P ) − 1. The lower bound RR(P, Q) > n follows from coloring Bn

so that the color classes form a partition of the levels of Bn into |Q| − 1 intervals, each of
size e(P ). As we use only |Q| − 1 colors, we avoid rainbow copies of Q and by definition
of e(P ) we avoid monochromatic copies of P .
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For strong copies of posets, the coloring from the proof of Corollary 1.5 yields the same
lower bound RR∗(P,Q) ≥ e∗(P )(|Q| − 1), but one can easily observe that in most cases
this trivial lower bound can be improved by slightly modifying the above coloring: IfQ does
not have a unique smallest element, then one can color ∅ with an otherwise unused color i.
Since no other sets are colored i, it does not help to create a strong monochromatic copy of
P , and since Q does not have a unique smallest element, it does not help to create a strong
rainbow copy of Q. Therefore one can introduce the following function. For any poset Q,
let f (Q) = 0, if Q has both a unique largest and a unique smallest element, let f (Q) = 2,
if Q has neither largest nor smallest element, and define f (Q) = 1 otherwise. One obtains
RR∗(P,Q) ≥ e∗(P )(|Q| − 1) + f (Q) for all posets P and Q. For this lower bound, the
strong version of Corollary 1.5 would be expected for P being uniformly induced Lubell-
bounded. Nonetheless, we will show the above inequality is strict when P = C2, the chain
of two elements, and Q = Ak , the antichain of size k in Section 3. So we ask the following
question.

Question 1.6 For which uniformly induced Lubell-bounded posets P , does one have

RR∗(P,Q) = e∗(P )(|Q| − 1) + f (Q) (1)

for every poset Q?

Despite the above counterexample to Eq. 1, we prove that it holds for most uniformly
induced Lubell-bounded posets P and Q = A3. Indeed, we have a general upper bound for
RR∗(P,Ak) for any poset P and k ≥ 2.

Theorem 1.7 Given an integer k ≥ 2, let mk = min{m : (
m

�m/2�
) ≥ k}. For any poset P we

have
RR∗(P,Ak) ≤ �(k − 1)λ∗

max(P )� + mk .

Moreover, if P is not C1 or C2, then we have

RR∗(P,A3) ≤ �2λ∗
max(P )� + 2.

Since λ∗
max(P ) = e∗(P ) for every uniformly induced Lubell-bounded poset P , we have

the next corollary immediately from the latter part of Theorem 1.7.

Corollary 1.8 For every uniformly induced Lubell-bounded poset P other than C1 or C2
we have

RR∗(P,A3) = 2 + 2e∗(P ).

Structure of the paper The remainder of the paper is organized as follows: Theorem 1.4
and other results on weak copies are proved in Section 2. Section 3 contains the proofs of
the counterexample to Eq. 1 and Theorem 1.7.

Notation For n ∈ Z
+ we denote by [n] the set {1, 2, . . . , n}. For a set F , we write UF =

Un,F = {G ⊆ [n] : F ⊆ G},DF = Dn,F = {G ⊆ [n] : G ⊆ F }, and IF = In,F = Un,F ∪
Dn,F . For sets F ⊆ H , we write BF,H = {G : F ⊆ G ⊆ H }. For integers 0 ≤ a ≤ b ≤ n,
we write λn(Ba,b) = λn(BF,H ) for some F ⊆ H ⊆ [n] with |F | = a, |H | = b. Let B−

n

and B−
F,H denote the truncated Boolean lattices obtained by removing the smallest and the

largest element of the cubes Bn and BF,H , respectively. For a coloring φ : Bn → Z
+, let

‖φ‖ denote the number of colors used by φ. For a coloring φ : Bn → Z
+ and a positive
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integer i, let Hi = Hφ,i = {F ⊆ [n] : φ(F ) = i}. We use
(

n
≤k

)
to denote

∑k
j=0

(
n
j

)
. All

logarithms are of base 2 in this paper.

2 Weak Copies

In this section, we prove Theorem 1.4 and some other results on weak Ramsey and weak
rainbow Ramsey numbers. We start with a couple of definitions.

We denote by Cn the set of all maximal chains in Bn. For a family F ⊆ Bn and set
F ∈ F , we define Cn,F = Cn,F,F to be the set of those maximal chains C ∈ Cn for which
the largest set of F ∩ C is F . Then the max-partition of Cn consists of the blocks Cn,F for
each F ∈ F and Cn,− which contains all maximal chains C with F ∩ C = ∅.

The Lubell mass λn(F) = ∑
F∈F 1

( n
|F |)

is the average number of sets of F in a maximal

chain C chosen uniformly at random from Cn. As observed by Griggs and Li [7], if we
condition on the largest set F in F ∩ C, then we obtain

λn(F) =
∑

F∈F

|Cn,F |
n! λ|F |(DF ∩ F).

Proof of Theorem 1.4 We proceed by induction on k. The base case k = 1 is trivial as any
colored set forms a “rainbow” copy of C1. Let k ≥ 2 and suppose the statement is proven
for k − 1 and let F ⊆ Bn be a family of sets with λn(F) > e(P )(k − 1). Fix a coloring
φ : F → Z

+ and consider the max-partition {Cn,F : F ∈ F} ∪ {Cn,−}. Using

λn(F) =
∑

F∈F

|Cn,F |
n! λ|F |(DF ∩ F),

we obtain a set F ∈ F with λ|F |(DF ∩ F) > e(P )(k − 1). Let F1 = {G ∈ DF :
φ(G) = φ(F )}. If F1 contains a weak copy of P , then we are done as, by definition, F1 is
monochromatic. Otherwise, as P is uniformly Lubell-bounded, we have λ|F |(F1) ≤ e(P )

and thus

λ|F |((DF ∩ F) \ F1) > e(P )(k − 1) − e(P ) = e(P )(k − 2).

Applying our inductive hypothesis to (DF ∩F)\F1 we either obtain a monochromatic weak
copy of P or a rainbow copy of Ck−1. As all sets in (DF ∩ F) \ F1 are colored differently
than F , we can extend the rainbow copy of Ck−1 to a rainbow copy of Ck by adding F .

Remark Note that a simple modification of the above proof shows that if P is a uniformly
induced Lubell-bounded poset and F ⊆ Bn is a family of sets with λn(F) > e∗(P )(k − 1),
then any coloring of φ : F → Z

+ admits either a monochromatic strong copy of P or a
rainbow copy of Ck , and therefore RR∗(P, Ck) = e∗(P )(k − 1) holds.

The equality in Proposition 1.3 (i) holds for uniformly Lubell-bounded posets P and
any posets Q. To find posets P and Q with RR(P,Q) > R|Q|−1(P ), we have to choose
a non-uniformly Lubell-bounded poset as P . However, regardless of P , Proposition 1.3 (i)
still holds with equality if Q is one of the following posets: for r ≥ 2 the r-fork poset Vr

consists of a minimum element and r other elements that form an antichain. Similarly, for
s ≥ 2 the s-broom poset �s consists of a maximum element and s other elements that form
an antichain.
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Proposition 2.1 For any poset P , we have
(i) RR(P, Vr) = Rr(P ), and
(ii) RR(P,�s) = Rs(P ).

Proof By Proposition 1.3, RR(P, Vr) ≥ Rr(P ). Let n = Rr(P ). Any coloring φ : Bn →
Z

+ with ‖φ‖ ≥ r + 1 contains a rainbow weak copy of Vr : the empty set and one
representative from each of any other r color classes.

The proof of (ii) is similar by taking the universal set [n] and one representative from
each of any s other color classes if ‖φ‖ ≥ s + 1.

If P and Q are both fork posets, then we have RR(Vr, Vk) = Rk(Vr) for any r, k ≥ 1.
In our next result, we manage to determine this value asymptotically for fixed k. We write
fk(r) = Rk(Vr) for simplicity. A simple way to define a k-coloring of Bn is to color sets
of the same size with the same color such that color classes consist of consecutive levels.
Formally, let i1, i2, . . . , ik be positive integers with

∑k
j=1 ij = n + 1 and consider the

coloring φ(F ) = h if and only if
∑h−1

j=1 ij ≤ |F | <
∑h

j=1 ij . (The empty sum equals
0, so φ(F ) = 1 if and only if |F | < i1 holds.) We call such a coloring φ a consecutive
level k-coloring and define gk(r) to be the smallest integer n such that any consecutive
level k-coloring of Bn admits a monochromatic weak copy of Vr . By definition, we have
gk(r) ≤ fk(r).

For c ∈ (0, 1) let h(c) = −c log c − (1− c) log(1− c), the binary entropy function. Note
that for c ∈ (0, 1) and n large enough we have

1√
n
2nh(c) ≤

(
n

�cn�
)

≤ 2nh(c).

We will use the fact that for 0 < ε ≤ 1/2 and k ≤ (1/2 − ε)n we have
( n
k−1)
(n
k)

= k
n−k

≤
1/2−ε
1/2+ε

=: c. It implies

(
n

≤ k

)
=

k∑

i=0

(
n

i

)
≤

(
n

k

) k∑

i=0

ck−i ≤ 1

1 − c

(
n

k

)
. (2)

In the proof we omit floor and ceiling signs for simplicity.

Theorem 2.2 For any positive integer k there exists a constant ck such that

lim
r→∞

gk(r)

log r
= lim

r→∞
fk(r)

log r
= ck .

Moreover, c1 = 1 and the sequence {ck}∞k=1 satisfies the equality ck+1h
(

ck+1−ck

ck+1

)
= 1 for

any k ≥ 1.

Proof The proof is based on the recursive inequalities contained in the following claim. In
part (i) of Claim 2.3, the term min{a : (

a+fk(2r−1)
≤a

)
> r} ensures that in Bfk(2r−1)+a the

levels 0, 1, . . . , a contain together more than r sets. Similarly, in part (ii) of Claim 2.3 the
term max{a : (

a+gk(r)≤a

) ≤ r} ensures that in Bgk(r)+a the levels 0, 1, . . . , a contain together
at most r sets.

Claim 2.3 For any k ≥ 1 and r ≥ 1 we have
(i) fk+1(r) ≤ fk(2r − 1) + min{a : (

a+fk(2r−1)
≤a

)
> r},
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(ii) gk+1(r) ≥ gk(r) + max{a : (
a+gk(r)≤a

) ≤ r} + 1.

Proof of the claim Let N = fk(2r − 1) + min{a : (
a+fk(2r−1)

≤a

)
> r} and let us consider a

coloring φ : BN → [k+1]. Without loss of generality we may assume φ(∅) = k+1 for the
empty set ∅. Assume first that there exists a set F ∈ BN with |F | ≤ min{a : (

a+fk(2r−1)
≤a

)
>

r} and φ(F ) �= k + 1. Then consider the k-coloring φ′ : BF,[N] → [k] defined by φ′(G) =
φ(G), if φ(G) ∈ [k] and φ′(G) = φ(F ) otherwise. As N − |F | ≥ fk(2r − 1), φ′ admits a
monochromatic weak copy C of V2r−1 in BF,[N]. If its color is not φ(F ), then its elements
have the same color in φ, thus C is a monochromatic weak copy of V2r−1 with respect to
φ. If the color of C is φ(F ) and C contains at least r sets that were colored k + 1 in the
coloring φ, then together with the empty set, they form a monochromatic weak copy of Vr

with respect to φ. Otherwise C contains at least r + 1 sets, including F , that were colored
φ(F ). Then F together with r other such sets form a monochromatic weak copy of Vr with
respect to φ.

Assume next that all sets of size at most min{a : (
a+fk(2r−1)

≤a

)
> r} are colored k + 1.

Then the empty set and r other such sets form a monochromatic weak copy of Vr . This
proves (i).

To prove (ii), let us consider a consecutive level k-coloring ψ : Bgk(r)−1 → [k] defined
by the positive integers i1, i2, . . . , ik such that ψ does not admit a monochromatic weak
copy of Vr . We “add max{a : (

a+gk(r)≤a

) ≤ r} + 1 extra levels”, i.e., we let j1 := max{a :
(
a+gk(r)≤a

) ≤ r} + 1, and jh+1 := ih for all 1 ≤ h ≤ k and set N ′ :=
(∑k+1

h=1 jh

)
− 1.

We claim that the corresponding consecutive level (k + 1)-coloring ψ ′ does not admit a
monochromatic weak copy of Vr , which proves (ii). Indeed, by definition the union of the
first j1 layers does not contain r + 1 sets, so no monochromatic Vr exists in this color. To
see the Vr -free property of the other color classes, observe that for any set F of size j1, the
cube BF,[N ′] has dimension gk(r) − 1, and the consecutive level k-coloring that we obtain
by restricting ψ ′ to BF,[N ′] is isomorphic to ψ . If G is the set corresponding to the bottom
element of a copy C of Vr , then for a j1-subset F of G, the copy C belongs to BF,[N ′], so it
cannot be monochromatic.

To prove the theorem we proceed by induction on k. If one can use only one color, then
all colorings are consecutive level 1-colorings and BN does not admit a monochromatic Vr

if and only if 2N ≤ r , so g1(r) = f1(r) = �log r� + 1 and c1 = 1.
Assume now that the statement of the theorem is proved for some k ≥ 1 and let us fix

ε > 0. Observe that using Claim 2.3 (ii) and the inductive hypothesis we obtain that for r

large enough we have

gk+1(r) ≥ gk(r) + max

{
a :

(
a + gk(r)

≤ a

)
≤ r

}
+ 1, (3)

and (ck − ε) log r ≤ gk(r) ≤ (ck + ε) log r . We claim that if dk is the constant that satisfies

(dk + ck)h
(

dk

dk+ck

)
= 1, then the maximum a in Inequality Eq. 3 is at least (dk − ε) log r .

Indeed, there exist positive constants c0 and δ such that

(
(dk − ε) log r + gk(r)

≤ (dk − ε) log r

)
≤

(
(dk + ck) log r

≤ (dk − ε) log r

)
≤ c0

(
(dk + ck) log r

(dk − ε) log r

)

≤ c02
h
(

dk−ε

dk+ck

)
(dk+ck) log r = c0r

h
(

dk−ε

dk+ck

)
(dk+ck) ≤ c0r

1−δ < r
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holds, where for the second inequality we used dk < ck and Inequality Eq. 2 and for the
penultimate inequality we used that the entropy function is strictly increasing in (0, 1/2).
Therefore, we have gk+1(r) ≥ (ck + dk − 2ε) log r .

On the other hand, according to Claim 2.3 (i), we have

fk+1(r) ≤ fk(2r − 1) + min

{
a :

(
a + fk(2r − 1)

≤ a

)
> r

}
. (4)

By the inductive hypothesis, for sufficiently large r we have

(ck − ε) log r ≤ fk(r) ≤ fk(2r − 1) ≤ (ck + ε) log(2r − 1) ≤ (ck + 2ε) log r .

We claim that the minimum a in Inequality Eq. 4 is at most (dk + ε) log r . Indeed, for some
positive δ′ and large enough r we have

(
(dk + ε) log r + fk(2r − 1)

≤ (dk + ε) log r

)
≥

(
(dk + ck) log r

(dk + ε) log r

)
≥ 1

√
log r

2
h
(

dk+ε

dk+ck

)
(dk+ck) log r

= 1
√
log r

r
h
(

dk+ε

dk+ck

)
(dk+ck) ≥ r1+δ′

√
log r

> r .

Therefore, we have fk+1(r) ≤ (ck + dk + 3ε) log r and consequently

(ck + dk − 2ε) log r ≤ gk+1(r) ≤ fk+1(r) ≤ (ck + dk + 3ε) log r,

showing ck+1 = ck + dk . Plugging back to the defining equation (dk + ck)h
(

dk

dk+ck

)
= 1

we obtain ck+1h
(

ck+1−ck

ck+1

)
= 1 as claimed.

Note that Cox and Steele [3] obtained general but not tight upper bounds on the Ramsey
number R(Vr1 , . . . , Vrs , �rs+1 , . . . , �rt ). Theorem 2.2 is an improvement on their result in
case all target posets are the same.

3 Strong Copies

The lower bounds in most of our theorems are obtained via trivial colorings where sets of
the same size receive the same color. We introduce the following parameters: let m(P ) =
max{m : Bm does not contain a weak copy of P } and m∗(P ) = max{m : Bm does not
contain a strong copy of P }. We say that Q ⊂ Bn is thin if Q contains at most one set
from each level. Also, let r∗(P ) = max{r : Br does not contain a thin, strong copy of P }.
Note that the corresponding weak parameter r(P ) = max{r : Br does not contain a thin,
weak copy of P } trivially equals |P | − 2 as B|P |−1 contains a chain of length |P | and thus
a weak copy of P . Also, it is not hard to see that r∗(P ) ≤ 2|P | − 2. This is certainly true
for all one and two-element posets. Then we proceed by induction on |P |. Fix a maximal
element p ∈ P . By induction, there exists a thin, strong copy of P \ {p} in BN with
N = 2|P | − 4. Denote the embeddig by φ. Set A := ∪p′<pφ(p′) and partition P \ {p} into
R1 = {p′ : |φ(p′)| ≤ |A|} and R2 = {p′ : |φ(p′)| > |A|}. Then it is easy to check that the
embedding φ′ defined as φ′(p′) = φ(p′) if p′ ∈ R1, φ′(p′) = φ(p′) ∪ {N + 2} if p′ ∈ R2
and φ′(p) = A ∪ {N + 1} creates a thin, strong copy of P into BN+2.

In the next proposition, we prove some lower bounds using non-trivial colorings. A poset
P is said to be connected if for any pair p, q ∈ P there exists a sequence r1, r2, . . . , rk such
that r1 = p, rk = q and ri , ri+1 are comparable for any i = 1, 2, . . . , k − 1.
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Proposition 3.1 If P is a connected poset with |P | ≥ 2 and Q is an arbitrary poset, then
we have

(i) RR(P,Q) > m(P ) + |Q| − 2,
(ii) RR∗(P,Q) > m∗(P ) + |Q| − 2,
(iii) RR∗(P,Q) > r∗(Q).

Proof Set N = m(P ) + |Q| − 2, N∗ = m∗(P ) + |Q| − 2 and R = [|Q| − 2]. Consider
the colorings φ : BN → {1, . . . , |Q| − 1} and φ∗ : BN∗ → {1, . . . , |Q| − 1} defined by
φ(F ) = |F ∩ R| + 1 and φ∗(G) = |G ∩ R| + 1. Observe that φ and φ∗ do not admit a
rainbow copy of Q as only |Q| − 1 colors are used.

By definition of m(P ), for any set T ⊆ R the family FT = {F ⊆ [N ] : F ∩ R = T }
cannot contain a weak copy of P . Thus a monochromatic weak copy of P (admitted by φ)
must contain two sets F,F ′ with F ∈ FT and F ′ ∈ FT ′ such that |T | = |T ′| and T �= T ′.
As P is connected, we can choose F,F ′ to be comparable. However, since each F ∈ FT is
incomparable to each F ′ ∈ FT ′ as T is incomparable to T ′, this is a contradiction. So the
coloring φ does not admit a monochromatic weak copy of P . This proves (i), and one can
prove (ii) in a similar way.

To see (iii) let us consider the trivial coloring φ : Br∗(Q) → {1, . . . , r∗(Q) + 1} defined
by φ(F ) = |F | + 1. As P is connected with |P | ≥ 2, φ does not admit a monochromatic
copy of P and by definition of r∗(Q), φ does not admit a rainbow strong copy of Q.

Proposition 3.2 If n ≥ 4, then r∗(An) = n + 1 holds.

Proof Let F ⊂ Bn be a thin antichain. Then we claim |F | ≤ n − 2 holds, which shows
r∗(An) ≥ n + 1. Indeed, if ∅ ∈ F or [n] ∈ F , then F = {∅} or F = {[n]}. Also, if both a
1-element and an (n − 1)-element sets are in F , they have to be complements, and then no
other sets can be in F .

For the upper bound we prove the stronger statement that Bn contains a thin antichain of
size n − 2 with set sizes 1, 2, . . . , n − 2. We proceed by induction on n. The statement is
trivial for n = 4 and n = 5. Assume the statement holds for some n ≥ 4, and we prove it
for n + 2. Hence we can find a thin antichain F in Bn that has cardinality n − 2 with set
sizes 1, 2, . . . , n − 2. Then let F ′ = {F ∪ {n + 1} : F ∈ F} ∪ {[n], {n + 2}}. It is easy to
see that F ′ ⊂ Bn+2 is a thin antichain of size n with set sizes 1, 2, . . . , n.

Propositions 3.1 and 3.2 together yield RR∗(C2, Ak) ≥ k + 2, which is larger than both
e∗(C2)(|Ak|−1)+f (Ak) = k+1 and R∗

k−1(C2) = k−1, showing that C2 does not possess
the property of Question 1.6 and that there exists a pair of posets for which Proposition 1.3
(ii) holds with a strict inequality.

Definition 3.3 We say that the families F1,F2, . . . ,Fl are mutually comparable if for any
Fi ∈ Fi and Fj ∈ Fj with 1 ≤ i < j ≤ l we have Fi ⊆ Fj or Fj ⊆ Fi , and they are
mutually incomparable if for any Fi ∈ Fi and Fj ∈ Fj with 1 ≤ i < j ≤ l we have
Fi �⊆ Fj and Fj �⊆ Fi .

Proof of Theorem 1.7 Set N = �λ∗
max(P )(k − 1)� + mk and consider a coloring φ : BN →

Z
+. Observe that if φ does not admit a monochromatic induced copy of P , then for any set

S ⊆ [mk], φ must admit at least k colors on the family QS = {S ∪ T : T ⊆ [N ]\[mk]}.
Indeed, if there are at most k − 1 colors on some QS , then consider the corresponding
coloring φ′ of BN−mk

such that φ′({i1, i2, . . . , i	}) = φ(S ∪ {i1 + mk, i2 + mk, . . . , i	 +
mk}) for every set {i1, i2, . . . , i	} ∈ B[N−mk]. Then φ′ is a (k − 1)-coloring of BN−mk

,
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and one of the color classes has Lubell-mass strictly larger than λ∗
max(P ). So φ′ admits a

monochromatic induced copy of P in BN−mk
. This implies that φ admits a monochromatic

induced copy of P inQS .
By the definition of mk , we can pick k subsets S1, S2, . . . , Sk of [mk] of size �mk/2�. As

the Si’s form an antichain, the families QS1 ,QS2 , . . . ,QSk
are mutually incomparable. By

the above paragraph, on each of these families φ admits at least k colors otherwise we find
a monochromatic induced copy of P . But then we can pick a rainbow antichain from the
QSi

’s greedily: a set F1 fromQS1 , then F2 fromQS2 and so on with φ(Fi) �= φ(Fj ) for all
i < j . This completes the proof of the first part of Theorem 1.7.

Now we prove the second part. For any P other than C1 or C2, F = {∅, [n]} ⊂ Bn is
induced P -free for all n ≥ 2. Hence λ∗

max(P ) = sup λ∗
n(P ) ≥ 2. Let N = �2λ∗

max(P )� + 2.
For any coloring ψ of B−

N , we show that it admits either a monochromatic induced copy of
P or a rainbow copy of A3. If ‖ψ‖ ≤ 2, then λ∗

N(B−
N ) = N − 1 hence one of the color

classes has Lubell-mass strictly larger than λ∗
max(P ), so by the definition of λ∗

max , ψ admits
a monochromatic induced copy of P .

Therefore, we can assume that ‖ψ‖ ≥ 3. LetQi = {{i}∪T : T ⊆ [N ]\[2]} for i = 1, 2.
Note that Q1 and Q2 are mutually incomparable. By the same reasoning as in the previous
case, if ψ admits only 2 colors on some Qi , then we can find a corresponding 2-coloring
ψ ′ of BN−2 and a monochromatic copy of P in BN−2 with respect to ψ ′. As before, this
implies that there is a monochromatic copy of P inQi with respect toψ . Hence we consider
the case that ψ admits at least three colors on each Qi . If there are two sets F1, F2 ∈ Q1
of the same size with distinct colors, then a set of third color in Q2 together with F1 and
F2 form a rainbow A3. So we may assume that all subsets of the same size in Q1 have the
same color. Now if all sets in Q1 \ {{1}, ([N ] \ [2]) ∪ {1}} are of the same color, then the
corresponding coloring ψ ′ admits only one color on B−

N−2. Since λ∗
max(P ) ≥ 2, we have

λ∗
N−2(B

−
N−2) = N − 3 = �2λ∗

max(P )� − 1 > λ∗
max(P ). Thus, ψ ′ admits a monochromatic

P in BN−2 and then ψ admits a monochromatic P in Q1 as well. If there are at least two
colors on Q1 \ {{1}, ([N ] \ [2]) ∪ {1}} and sets of the same size have the same color, then
we can easily find two incomparable sets from two levels of distinct colors. The two sets
together with a set of third color inQ2 form a rainbow A3. This completes the proof.

Funding Open access funding provided by ELKH Alfréd Rényi Institute of Mathematics. Research sup-
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