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Revealing the topological phase diagram of ZrTes using the
complex strain fields of microbubbles
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Topological materials host robust properties, unaffected by microscopic perturbations, owing to the global topological properties of
the bulk electron system. Materials in which the topological invariant can be changed by easily tuning external parameters are
especially sought after. Zirconium pentatelluride (ZrTes) is one of a few experimentally available materials that reside close to the
boundary of a topological phase transition, allowing the switching of its invariant by mechanical strain. Here, we unambiguously
identify a topological insulator-metal transition as a function of strain, by a combination of ab initio calculations and direct
measurements of the local charge density. Our model quantitatively describes the response to complex strain patterns found in
bubbles of few layer ZrTes without fitting parameters, reproducing the mechanical deformation-dependent closing of the band gap
observed using scanning tunneling microscopy. We calculate the topological phase diagram of ZrTes and identify the phase at
equilibrium, enabling the design of device architectures, which exploit the topological switching characteristics of the system.

npj Computational Materials (2022)8:177 ; https://doi.org/10.1038/s41524-022-00854-z

INTRODUCTION

The paradigm of topological phases has permeated much of
contemporary condensed matter physics'™. This fundamentally
new way of classifying systems according to global topological
properties rather than a local order parameter yielded a deeper
understanding of a host of peculiarly robust phenomena®. At the
heart of these phenomena lies the bulk-boundary correspon-
dence, which guarantees robust states localized at the perimeter
of the topological materials. These boundary states, in turn, might
be used as tools for measuring fundamental constants®, as
components in thermoelectrics” or in spintronics devices®.

Time reversal symmetric band insulators can be characterized
by a Z, index and can be classified into three phases in three
dimensions. A normal, or trivial insulating phase, a weak
topological insulating (WTI) and strong topological insulating
(STI) phase®. These phases are separated by a metallic Dirac or
Weyl semimetal phase'®. In order to change the 7, it is necessary
to close and reopen the band gap through one of these metallic
phases®. The transition-metal pentatelluride ZrTes is an excellent
material to investigate topological phase transitions because it
lies close to the boundary between a STI and WTI'". Additionally,
the material has been widely studied due to its numerous exotic
properties. In the monolayer limit it is predicted to be large band
gap quantum spin Hall insulator'?, it has high-mobility Dirac
carriers’>'%, it shows the chiral magnetic effect'>'® and the 3D
quantum Hall effect'”, as well as multiple superconducting
phases have been discovered under high pressure'®. Recently,
the role of spin-dependent Berry phase of the bands had been
traced under mechanical strain'®.

The topological nature of the bulk ZrTes has not been
unambiguously identified, with some experiments pointing
to a STl and others to a WTI or a semimetal phase, as reviewed
by Monserrat et al.?°. For example, angle resolved photoemis-
sion studies show evidence of a STl phase?', as well as the

WTI case???3. These experiments are supported by first-
principles calculations that also show the very same pattern
of contrasting results.

In our contribution, we start from ab initio calculations of ZrTes
and calculate the complete elastic response of the crystal by
obtaining the elastic tensor elements, using a new approach
compared to the literature?*. We validate our ab initio method by
reproducing the closing of the band gap at the perimeter of
bubbles formed by few layer ZrTes on Au(111). Measuring the
surface charge density of bubbles provides an almost ideal
experimental platform to validate our calculations, because
bubbles of few layer van der Waals materials provide a varied
deformation landscape?>~28, This deformation landscape leads to
a local perturbation of the charge density that can be directly
mapped, using a scanning tunneling microscope (STM). As STM
directly measures the surface charge density, it does not need
fitting or modeling for interpretation. Our calculations reproduce
the measured closing of the band gap at the bubble perimeter,
without the necessity of fitting phenomenological model para-
meters. Thus, we provide a robust ab initio method to describe
ZrTes, which is validated by STM measurements. Furthermore, the
calculated equilibrium lattice parameters are also in agreement
with values measured by X-ray diffraction of our sample. This
allows us to establish the electronic ground state of the system
and map the topological phase diagram of ZrTes, revealing an STI
phase at equilibrium. Extended data of our calculations and an
interactive way to browse them are available online at tajkov.ek-
cer.hu/zrte5phasediagram/.

RESULTS

The bulk zirconium pentatelluride (ZrTes) crystallizes in the
layered orthorhombic crystal structure with space group Cmcm
(D)]). Crossed trigonal prismatic ZrTes chains run along the
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Fig. 1 Geometry of ZrTes. a The considered unit cell of the crystal. The wavelike Te-Te chains run parallel to the crystallographic ¢ direction
and to the z-axis in the corresponding Cartesian coordinate system. b Atomic resolution STM image of ZrTe; surface. The crystal structure,
from the (110) point of view, in the x—z plane is superimposed in a fading manner. The STM image calculated by DFT is overlaid on the crystal
structure (right side). It highlights the Te atoms on the sample surface, which dominate the atomic resolution STM topography. STM image

measured at 800 pA tunneling current, 400 mV sample bias, temperature 9K.

Table 1.  Unit cell dimensions and positional parameters in fractional coordinates for ZrTes as derived from the analysis of X-ray diffraction data at
300K (calculated standard deviation in parentheses) and from relaxed DFT calculations.

a [A] b [A] c [A] Yzr Ve, Ve, ZTe, YTes ZTes
Experimental 1.994 (0.002) 7.265 (0.005) 13.724 (0.005) 0.3135 0.6725 0.9196 0.1497 0.2138 0.4341
DFT 2.002 7.204 13.876 0.3136 0.6567 0.9293 0.1472 0.2059 0.4343

crystallographic a direction and they are linked along the c-axis
via parallel zig-zag chains of Te atoms, as it can be seen on Fig. 1,
panel (a). The chains form two-dimensional sheets, stacked along
the y-axis, forming a layered structure in the x—z plane. The
corresponding unit cell consists of 2 Zr atoms and 10 Te atoms.
This is presented on Fig. 1 panel (b), where the atomic resolution
STM image is matched with the computer generated image of
the crystal in the x—z plane. Each ZrTes layer is nominally charge
neutral, and the coupling between the layers is of van der
Waals type'?,

The initial geometry was fully relaxed by ab initio calcula-
tions (see section Methods for more details). The starting point
of the relaxation was the lattice constants provided by our
X-ray diffraction measurements of the bulk sample. The
experimental and relaxed theoretical geometry parameters
can be found in Table 1.

As ZrTes decomposes under ambient conditions, we exfoliate
the bulk crystals onto a Au(111) surface inside an inert glovebox
environment, using the scotch tape method. The samples are
transferred by a vacuum suitcase to the ultra-high vacuum (UHV)
chamber of our STM, allowing the sample surface to remain
pristine, as shown by the atomic resolution image in Fig. 1b.
Bubbles form during exfoliation of van der Waals materials onto
substrates and are predicted to contain inert hydrocarbon
contamination?®. The (a) and (b) panels of Fig. 2 show the STM
topography image of two such bubbles. They have an ellipsoid
form and their geometry can be parameterized by the two semi-
axes (R; and R,), as well as the height (h) (see Table 2). Next to the
topography images in panel (c) and (d), we present the
corresponding measurements of the d//dV signal within the band
gap, which is proportional to the local density of states (LDOS).
The middle of the gap is identified as the minimum of the di/dV
signal, as shown in Fig. 2f (for more details see Supplementary
Notes 3). Focusing on Bubble; in panel (c), a halo can be observed
at the perimeter of the bubble, which is more intense
perpendicular to the x direction (point A;) and absent across
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the z direction (;). This indicates an area with increased density
of states within the gap, relative to the unstrained areas outside
the bubble. The anisotropy of the ring is a consequence of the
highly anisotropic nature of the material, as we show below.
The increase in the density of states is only observed at energies
within the gap. This is illustrated by the fact that no halo is
observed when mapping the d//dV signal at -0.5 V, away from the
band gap well within the valence band (see Fig. 2e). For Bubble,
hosted by a thicker flake, shown in panels (b) and (d), the d//dV
map displays no gap closing (point A, in Fig. 2g), because the
deformation values are much smaller in the thicker flake.

It is worth noting that the reduced LDOS within the bubble,
stems from the lack of direct contact with the substrate. The
density of states of Au is orders of magnitude larger than that of
the semimetallic ZrTes and increases the LDOS measured in areas
where the two materials are in close contact®>3'. This increase in
LDOS is also present when measuring within the valence band
(Fig. 2e) but for thicker flakes it becomes much reduced (Fig. 2d).

We calculated the strain pattern of the bubbles surfaces, using a
unique technique that combines finite element calculations and
density functional theory. After we obtain the deformation of the
bubbles, we can calculate the local electronic structure and the
size of the gap along the path that is depicted in Fig. 2 panel (c)
and (d) of the distorted crystal, using density functional theory.
Throughout the rest of this article, unless otherwise stated, gap is
taken to mean global gap, especially since this is what is reflected
in the STM measurements. As it can be seen in panel Fig. 2g, DFT
predicts a gap closure at the edge of Bubble,, but only at the A,
point and not at /31. The absence of the band gap means that the
density of states must be higher in the area around the point, in
agreement with the measurements. Tracing the same path along
the surface of Bubble, no gap closure can be seen, in good
agreement with the measurement.

In order to avoid computationally intensive simulations for the
bubbles containing a large number of atoms, we combined
density functional theory and finite element calculations. In this
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Fig.2 Strain induced topological phase transition in ZrTe; bubbles. a STM topography image of Bubble; and b of Bubble,. ¢ Map of the dI/
dV signal in the same area as in a), measured within the gap. Bright dots on the d//dV image are point defects. d Map of the di//dV signal in the
same area as in b of Bubble,. e Map of the di/dV signal in the same area as in panel ¢ but at -500 mV sample bias, deep in the valence band.
f dI/dV spectrum measured on the sample surface far away from Bubble;. Colored arrows highlight the sample bias used to measure the di/dV
image in panel c and e. The minimum of the di/dV signal corresponds to the gap and has a value of 78 pS. g Band gap of ZrTes resulting from
ab initio calculations, along the path depicted in ¢ and d. The gap, and as a consequence the LDOS, is modulated by the locally varying strain
within the bubbles (see Fig. 3). STM measurement parameters: 300 K, 500 pA, sample bias for a-d -100 mV and -500 mV for panel e.

Table 2. Geometric parameters of Bubble ,.

d [A] Ry [A] R, [A] h [A]
Bubble, 55 1015 813 49
Bubble, 178 6000 4560 90

Parameter d denotes the thickness of the few layer ZrTes, R, and R, are the
major and minor semi-axis and h is the height of the bubble. All
parameters are in the units of A.

Table 3. Stiffness tensor obtained by DFT in Voigt notation and in the
units of GPa.
Cin G Gss Ga Gs Gs G GCss Ces

11.35 2.82 30.182 11593

87.443 43.156 79.928 9.899 25.027

method, the mechanical stress field of the bubbles was
determined using the finite element method, with the bubbles
being considered as continuous elastic materials. The obtained
stress values were then used to perform DFT electronic structure
calculations in bulk samples, with mechanical distortions corre-
sponding to the local stress values. To apply this methodology,
first, we must establish a proper description of the elasticity tensor
of the material. For this we calculated the stiffness tensor by fitting
the free energy of the distorted crystal via DFT. For more details
see Methods section. The corresponding tensor elements are
depicted in Table 3 in Voigt notation32. This stiffness tensor can
then be used to describe the strain pattern of the bubbles, using
finite element calculations. We simulated the bubbles as a
continuous anisotropic material, which can be characterized by
the calculated stiffness tensor. We matched the thickness of the
sample to the experiments and applied hydrostatic pressure®® to
the bottom of the system until we reached the measured
height and reproduce the experimentally measured height profile.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

For more information about the procedure see Supplementary
Notes 2. The calculated strain patterns can be seen in Fig. 3. In
panel (a), we show a schematic representation of a bubble from a
side view and denote the most important geometrical and strain
parameters. The yellow, diagonally dashed region denotes the
substrate. The solid black line in the middle of the bubble shows
the neutral plain. The different trapezoid quadrilaterals indicate
the different strain patterns. In Fig. 3 panel (b), we show the strain
pattern for the two bubbles, plotting all relevant strain tensor
elements on the surface of the bubble. We have only omitted the
presentation of the g, component as it is practically zero
everywhere in the sample. We show the exact numerical results
in the supplementary material. The first row corresponds to
Bubble;. It can be observed that the strain patterns in the two
bubbles show the same qualitative tendency, but the magnitudes
are almost 5 times larger in the first bubble, due to the larger
aspect ratio?>.

As a final step using the strain field we obtained from the finite
element method, we can calculate the band structure of the
system under the influence of the strain patterns by using DFT. In
panel (c), we present the effect of four different strain components
on the band gap of the crystal. In the left side of subfigure c, we
show the elements that are responsible for the in-plane shear. It is
clear that both decrease the band gap, but the &,, component has
a smaller contribution compared to g,,. Furthermore, it can be
clearly observed that the magnitude required to close the gap is
as high as 7.5%, which is too large to explain the effect observed
on Bubble;. We can find the explanation to the LDOS halo
observed in the meauseremnts by looking at the curves in the
adjacent panel. The solid blue line denotes the effect of the g,
component on the band gap. Positive strain values close the gap
at around 1.5%, but the negative values first widen the gap and
after 2% start closing it, eventually closing at around 4%. We
found that ¢,, and ¢,, behave identically for positive values, only
showing a drastic difference for compression, namely that &,
closes the gap for much reduced strain values.

This allows us to explain the increase in LDOS at the Bubble,
perimeter as a closing of the gap. We consider the calculated gap

npj Computational Materials (2022) 177
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Fig. 3 Numerical results. a A simplified view of the strain patterns in a bubble. The yellow, black dashed region indicates the gold substrate.
The middle black solid line depicts the neutral plane, which shares the same geometrical parameters as the unstrained crystal. The different
trapezoid quadrilaterals indicate the different strain patterns. We have also indicated the geometric parameters. b Strain pattern on the top
surface of the bubbles obtained by finite element calculations (COMSOL). This is the surface measured by STM. The top row corresponds to
Bubble;, the bottom row to Bubble,. The different panels show different strain tensor components. Negative values correspond to
compression. ¢ The influence of different strain components on the electronic properties. The magnitude of the gap as the function of the

strain components, calculated by DFT.

values along the path in Fig. 2 panel (g). Starting from the
equilibrium O, point along the x-axis and moving towards the A4,
point, the &, strain element becomes a large enough negative
number to close the gap. This magnitude then goes to zero,
elevates again, becomes a relatively smaller positive value, but
never reaches the magnitude that closes the gap again. After we
reach the center of the bubble (point C) and turn upwards along
the z-axis the &, becomes smaller, reaches zero, and then
becomes a large negative value. However, as ¢,, has a different
role in the manipulation of the electronic structure of the crystal it
slightly widens the gap in the B; points compared to the O,
points, where it reaches equilibrium again. As for the second
bubble, the explanation is much simpler, the magnitude of the
strain components never reaches a sufficiently high value to have
an observable influence on the gap. In the supplementary material
we present the exact values for every element of the strain tensor
along the whole path (see Supplementary Notes 3).

Since our ab inito calculation reproduces the effect of the
complex strain pattern on the ZrTes band gap, we can take one
step further and map the phase diagram of the system. The first
panel in Fig. 4 shows the contour map of the band gap size (Eg)
under different mechanical strains. The horizontal axis indicates
the in-plane (the lattice vectors a and b were distorted
isotropically) strain from -1.2% to 3.1% in 20 steps, while the
vertical axis corresponds to the van der Waals direction (y-axis)
from -5% to 10% in 20 steps. At every point a sign has been
assigned to the gap as the Z, invariants were calculated, positive
(negative) sign indicates WTI (STI). The phase diagram shows three
main domains. Around the equilibrium the system is a STI (1) and
it can be tuned to the WTI (3) phase through a conducting
phase (2). The black line in the conducting phase shows where the
Dirac cones in the I' point touch each other.

npj Computational Materials (2022) 177

The conclusion that the equilibrium state is a STI, is supported
by our dI/dV measurements. For a STI, the LDOS within the gap
should not go down to zero because of the presence of the
topological surface state®. Taking into account the noise level in
our instrument, a value of zero LDOS would correspond to a
tunneling conductance value lower than 1 pS. Compared to this,
the conductivity at 300 K inside the gap is 78 pS (see Fig. 2f) and at
9K is 74 pS (see Supplementary Notes 3.).

Figure 4b shows three typical band structures at points 1, 2 and
3 marked in panel (a), and total density of states in 1/eV units. The
first band structure shows a strong topological insulating phase,
the red opaque band highlights the 22 meV band gap. As we go
towards point (2) we reach the gray area where the band gap is
closed but there is no touching of the bands. At point (2) the
bands corresponding to the massive Dirac fermions touch each
other around I'. As we go further towards point (3) the Dirac cones
open up and the band between the high-symmetry points A; and
T lift up from the Fermi level. This opens a gap in the weak
topological insulating phase.

The phase diagram, as defined above and presented in Fig. 4a,
allows us to explain the different, sometimes contradictory,
numerical results on the electrical properties of the material®°. It
may happen that calculations that respect the symmetry of the
material give different results for the ground state geometry and
therefore, for example, predict a weak topological insulating
state®*. We repeated our calculations using another commonly
used DFT code, VASP, that resulted in a similar phase diagram to
the one presented in Fig. 4. Besides the similarities, there are also
differences that are instructive and bear information. A detailed
discussion of these calculations and their implications can be
found in section Supplementary Notes 4.
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Fig. 4 Topological phase diagram of ZrTes. a The phase diagram of the electronic structure of the crystal under mechanical strain. At every
point the size of the gap was calculated and a sign has been assigned to it according to the topological flavor of the gap. The negative gap
corresponds to the strong topological insulating phase, while the positive gap to the weak topological phase. The black solid tentative line
indicates the boundary where the Dirac cones in the T point touch each other. The green dots assigned with a number denote the
corresponding band structure in the b subfigure. The inset shows the corresponding Brillouin zone indicating the high-symmetry points.
b The calculated band structure along the path of the high-symmetry points. The opaque band shows the size of the gap and color indicates

the topological flavor.

DISCUSSION

ZrTes is a unique material, with electronic properties that are
extremely sensitive to its lattice parameters. This over-sensitivity
has led to controversies in the crystal’s literature in recent years.
On the other hand, the sensitivity makes it a perfect candidate
for strain engineering the material across a topological phase
transition. In this contribution we have combined density
functional theory and finite element calculations with direct
measurements of the charge density, allowing us to identify
the mechanical deformation needed to induce topological
phase transitions in the material. We showed that shear in the
plane perpendicular to the van der Waals direction could also
lead to a phase transition. Our results pave the way for a robust
understanding of the band structure and topological properties
of ZrTes, enabling future investigations into the physics of
topological phase transitions as well as applying these in
electronic devices.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

METHODS
Density functional theory

The optimized geometry and electronic properties of the crystal were
obtained by the SIESTA implementation of density functional theory
(DFT)**738, SIESTA employs norm-conserving pseudopotentials to account
for the core electrons and linear combination of atomic orbitals to
construct the valence states. The generalized gradient approximation of
the exchange and the correlation functional was used with Perdew-Burke-
Ernzerhof parametrisation® and the pseudopotentials optimized by Rivero
et al.*® with a double-C polarized basis set and a realspace grid defined
with an equivalent energy cutoff of 350 Ry for the relaxation phase and
900 Ry for the single-point calculations. The Brillouin zone integration was
sampled by a 30 x 30 x 18 Monkhorst-Pack k-grid for both the relaxation
and the single-point calculations*'. The geometry optimizations were
performed until the forces were smaller than 0.1 eV nm~". The choice of
pseudopotentials optimized by Rivero et al. ensures that both the obtained
geometrical structures and the electronic band properties are reliable.
After the successful self consistent cycles the necessary information was
obtained by the sisl tool*2. The spin orbit coupling was taken into account
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npj



npj

Z. Tajkov et al.

6

in the single-point calculations. In every case we have calculated the Z,
invariant using a home made tool based on the numerical method
developed by Fukui and Hatsugai***4,

The simulated STM image was obtained for a three layers thick sample,
that we cut from the original bulk crystal in the (110) orientation. We used
Monkhorst-Pack resolution 20 X 12 x 1 in the geometry relaxation this case,
where the samples were separated with a 40 A thick vacuum in the
perpendicular direction. The simulated STM image was obtained by the
tools developed by the SIESTA developers, where the position of the tip
was 2.5 A away from the position of the topmost Te atom.

Stiffness tensor

We obtained the stiffness tensor elements by fitting the free energy
change of the crystal under mechanical deformations. The change in the
free energy of the crystal is a quadratic function of the strain tensor*®. The
procedure presented here is the most recent way to precisely determine
the elements of the stiffness tensor using DFT?°,

The general form of a deformed crystal is the following®:

1
F= E/\klmnuklumm m

where Ay, is the elastic modulus tensor, uj; is the strain tensor. The
general expression for the free energy in the orthorhombic system is

_1 2 .1 2 .1 2
F =3 Aol + 3 Ay Uy + 3 Azzzzlizy + Moy Uy + )

2 2 2
FhozzUnlzz + AyyzzUyy Uzz 4 2A5xy Uy, + 2axz Ui, + 2Az2y uy,.

It contains nine moduli of elasticity*>. By applying mechanical strain
to the relaxed geometry in the ab initio calculations using the free
energy obtained by SIESTA software we can fit Eq. (2) to get the
different moduli.

Finite element method

The corresponding strain patterns were calculated by numerically solving
the three-dimensional equation of motion by the finite element method
(FEM). The FEM calculation was performed by the MEMS Module of the
COMSOL  Multiphysics®” 5.6 software package. The bubbles were
simulated by a 20,000 x 20,000 A2 block. The thickness of the block was
matched to the sample size in the STM measurements. The sides and the
bottom of the block were fixed and we applied hydrostatic pressure on
the bottom of the block on an ellipse shaped part of the bottom to match
the shape of the bubbles in the STM measurements. The pressure was
chosen to match the height of the bubbles.

Sample preparation and STM measurements

The ZrTes crystals were purchased from hqggraphene.com and exfoliated
onto gold substrates*?, inside an inert glovebox environment. The samples
were transferred to the chamber of the UHV STM, via a vacuum shuttle.
Atomic resolution images show that the ZrTes crystal surface remains
pristine after transfer into the STM chamber (see Fig. 1).

STM measurements were performed using an RHK PanScan Freedom
microscope at 300K and 9K temperatures in UHV, at a base pressure of
5% 107" Torr. STM tips were prepared by mechanically cutting Pt/Ir (90%/
10%) wire. We have used a large working distance optical microscope to
place the STM in the vicinity of selected ZrTes crystals. dI/dV spectra were
measured using a Lock-In amplifier, with a reference frequency of
1.372kHz and a bias modulation of 5mV at 9K and 30 mV at 300 K.

X-ray diffraction

X-ray diffractometry measurements were performed in the parallel
geometry using a Bruker AXS D8 Discover diffractometer equipped with
Gobel-mirror and a scintillation detector with Cu Ka radiation. The X-ray
beam dimensions were 1 x5 mm, the 2 step size was 0.02°, scan speed 6 s/
step. We used the Diffrac.EVA program and the ICDD PDF database for
phase identification.

DATA AVAILABILITY

Extended data of our calculations and an interactive way to browse them are
available online at tajkov.ek-cer.hu/zrte5phasediagram/. Any further data are
available from the corresponding author upon reasonable request.
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CODE AVAILABILITY

We have calculated the Z, invariant using a home made tool, that is available on
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