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a b s t r a c t

We prove discrete Helly-type theorems for pseudohalfplanes,
which extend recent results of Jensen, Joshi and Ray about half-
planes. Among others we show that given a family of pseudohalf-
planes H and a set of points P , if every triple of pseudohalfplanes
has a common point in P then there exists a set of at most two
points that hits every pseudohalfplane of H. We also prove that
if every triple of points of P is contained in a pseudohalfplane of
H then there are two pseudohalfplanes of H that cover all points
of P .

To prove our results we regard pseudohalfplane hypergraphs,
define their extremal vertices and show that these behave in
many ways as points on the boundary of the convex hull of a
set of points. Our methods are purely combinatorial.

In addition we determine the maximal possible chromatic
number of the regarded hypergraph families.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a (finite) point set P and a family of regions R (e.g., the family of all halfplanes) in
the plane (or in higher dimensions), let H be the hypergraph with vertex set P and for each
egion of R having a hyperedge containing exactly the same points of P as this region. There are
any interesting problems that can be phrased as a problem about hypergraphs defined this way,
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which are usually referred to as geometric hypergraphs. This topic has a wide literature, researchers
considered problems where R is a family of halfplanes, axis-parallel rectangles, translates or
homothets of disks, squares, convex polygons, pseudo-disks and so on. There are many results and
open problems about the maximum number of hyperedges of such a hypergraph, coloring questions
and other properties. For a survey of some of the most recent results see the introduction of the
paper of Ackerman, Keszegh and Pálvölgyi [2] and of the paper of Damásdi and Pálvölgyi [3], for an
up-to-date database of such results with references see the webpage [1].

One of the most basic families is the family of halfplanes, about which already many problems
are non-trivial. Among others one such problem was considered by Smorodinsky and Yuditsky [13]
where they prove that the vertices of every hypergraph defined by halfplanes on a set of points
(i.e., P is a finite set of points and R is the family of all halfplanes) can be k-colored such that
every hyperedge of size at least 2k + 1 contains all colors. Keszegh and Pálvölgyi [12] considered
generalizing this result by replacing halfplanes with the family of translates of an unbounded
convex region (e.g., an upwards parabola). It turned out that this is true even when halfplanes
are replaced by pseudohalfplanes. The main tool of proving this was an equivalent combinatorial
definition of so called pseudohalfplane hypergraphs, hypergraphs that can be defined on points with
respect to pseudohalfplanes.2 This formulation had the promise that many other statements about
halfplane hypergraphs can be generalized to pseudohalfplane hypergraphs in the future. While this
combinatorial formulation has the disadvantage of being less visual and thus somehow less intuitive
than the geometric setting, it has many advantages, among others covering a much wider range
of hypergraphs, also, being purely combinatorial might have algorithmic applications as well. One
recent application is a similar polychromatic coloring result of Damásdi and Pálvölgyi [3] about
disks all containing the origin where after observing that in every quadrant of the plane the disks
form a family of pseudohalfplanes they can apply the results from [12].

In [12] the equivalent of the convex hull vertices in the plane (more precisely, the points
on the boundary of the convex hull) was defined for pseudohalfplane hypergraphs and called
unskippable vertices and this made it possible to generalize the proof idea of [13] from halfplanes
to pseudohalfplane hypergraphs. To ease intuition, we call unskippable vertices as extremal vertices
from here on. Exact definitions of these notions are postponed.

Recently Jensen, Joshi and Ray [9] proved discrete Helly-type theorems which can be formulated
in terms of halfplane hypergraphs, their results are detailed in Section 1.2. In this paper we
generalize their results to pseudohalfplane hypergraphs, in addition we also prove one missing
variant for which even the halfplane counterpart was not considered yet. Again we make use of
extremal vertices defined in [12], but we need to prove many new properties of extremal vertices
which show that extremal vertices behave in many ways as convex hull vertices in the plane (more
precisely, as the points on the boundary of the convex hull). We believe that these properties
will be useful also for future research on pseudohalfplane hypergraphs. We also consider these
problems for pseudohemisphere hypergraphs, a natural hypergraph family containing the family of
pseudohalfplane hypergraphs.

We consider the following two types of problems: in a primal discrete Helly theorem of type k → l
let P be a set of n points (resp. vertex set) and F be a family of regions (resp. hypergraph). If every
k-tuple of regions (resp. hyperedges) in F intersects at a point (resp. vertex) in P , then there exists
a set of l points (resp. vertices) in P that intersects each F ∈ F . In a dual discrete Helly theorem
of type k → l let P be a finite set of n points (resp. vertices) and F be a family of regions (resp.
hypergraph). If every subset of k points in P belongs to some region (resp. hyperedge) F ∈ F then
there exist l regions (resp. hyperedges) in F whose union covers P .

In Table 1 we summarize our results. For all our results we show that they are optimal except
for the ones about pseudohemispheres.

In order to show that our primal and dual results about pseudohalfplanes could not be handled
together we show that the chromatic number differentiates the primal and dual setting. In order to
do that we prove that the maximal possible chromatic number of pseudohalfplane hypergraphs is
4 while the maximal possible chromatic number of duals of pseudohalfplane hypergraphs is 3.

2 The exact definitions of pseudohalfplanes and pseudohalfplane hypergraphs are postponed to Section 1.1.
2
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Table 1
Summary of the considered Helly-type results.
Halfplane ABA-free Pseudohalfplane Pseudohemisphere

Primal Dual Primal/dual Primal Dual Primal/dual

3 → 2 [9] 3 → 2 [9] 2 → 2 3 → 2 3 → 2 4 → 2
(Theorem 6) (Theorem 4) (Theorem 8, Corollary 9) (Theorem 11) (Theorem 12) (Theorem 16, Theorem 15)
2 → 3 2 → 3 [9] 2 → 3 2 → 3
(Theorem 10) (Theorem 5) (Theorem 10) (Theorem 13)

As mentioned, such discrete Helly-type problems were considered earlier by Jensen et al. [9] for
alfplanes. We are aware of only two further papers considering such problems. First, Halman [7]
mong others proved discrete Helly-type results about axis-parallel boxes. Second, while it is easy
o see that in general a discrete Helly-type theorem for convex sets is not true (see the example at
he beginning of Section 1.2), yet an old result of Doignon [4] states that given a finite family H of
onvex sets in Rd, if every 2d or fewer members of H have a common point with integer coordinates,
hen there is a point with integer coordinates common to all members of H.

The paper is structured as follows. First in Section 1.1 we define pseudohalfplane hypergraphs,
the objects we study. In Section 1.2 we give an account of the discrete Helly-type results of Jensen
et al. [9] which we generalize to pseudohalfplanes in Section 1.3, these results are proved in
Section 3 using properties of extremal vertices proved in Section 2. In Section 4 we discuss why and
how much our setting is more general than the usual geometric setting of halfplanes. In Section 5
we state and prove our results about proper coloring pseudohalfplane and dual pseudohalfplane
hypergraphs. Finally, in Section 6 we give some directions for further research.

1.1. Pseudohalfplanes and pseudohalfplane hypergraphs

Pseudohalfplane hypergraphs. The definition of pseudohalfplane hypergraphs introduced in [12]
is based on the definition of ABA-free hypergraphs and is as follows.

Definition 1. A hypergraph H with an ordered vertex set is called ABA-free if H does not contain
two hyperedges A and B for which there are three vertices x < y < z such that x, z ∈ A \ B and
y ∈ B \ A.3

Definition 2. A hypergraph H on an ordered set of vertices V is called a pseudohalfplane hypergraph
if there exists an ABA-free hypergraph F on V such that H ⊂ F ∪ F̄ .4

Pseudolines. A loose pseudoline arrangement is a finite collection of simple curves in the plane
such that each curve cuts the plane into two unbounded components (i.e., both endpoints of
each curve are at infinity) and any pair of curves is either disjoint or intersects once and in the
intersection point the two curves cross. A pseudoline arrangement is a loose pseudoline arrangement
in which no two curves are disjoint (and so they cross once).5 A (loose) arrangement of pseudolines
is simple if no three pseudolines meet at a point. Wlog. we can assume that the pseudolines are x-
monotone bi-infinite curves (see, e.g. [12]), such arrangements are sometimes called Euclidean or

3 We imagine the vertices on a horizontal line, and thus if x < y then we may say that x is to the left from y and so
on.
4 F̄ denotes the family of the complements of the hyperedges of F . It was shown in [12] that F̄ is also ABA-free if

F is ABA-free.
5 Pseudoline arragements are usually defined in the projective plane, as a collection of simple closed curves whose

removal does not disconnect the projective plane and for which every pair of the curves intersects no more than once
(hence they intersect exactly once where they cross). However, in the literature sometimes pseudoline arrangements are
defined as we now defined loose pseudoline arrangements. We differentiate between these two notions to avoid confusion

and also to make clear that most of our results apply to the more general case of loose pseudoline arrangements.

3
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graphic pseudoline arrangements. For an introduction into pseudoline arrangements see Chapter 5
of [6] by Felsner and Goodman.

Pseudohalfplanes. Given a pseudoline arrangement, a pseudohalfplane family is the subfamily of
the above defined components (one on each side of each pseudoline). A pseudohalfplane family
is simple (resp. loose) if the boundaries form a simple (resp. loose) pseudoline arrangement. A
pseudohalfplane family is upwards if we just take components that are above the respective
pseudoline (here we use that the pseudolines are assumed to be x-monotone).

In [12] it is shown that given a loose family F of pseudohalfplanes in the plane and a set of points
P then the hypergraph whose hyperedges are the subsets that we get by intersecting regions of F
ith P is a pseudohalfplane hypergraph, and conversely, every pseudohalfplane hypergraph can
e realized this way with a (simple and not loose) family of pseudohalfplanes.6 If F is a family
f upwards pseudohalfplanes then we get the ABA-free hypergraphs. Thus, all our results about
seudohalfplane hypergraphs implies the respective result about (loose and not loose) families of
seudohalfplanes where we replace vertices with points and hyperedges with pseudohalfplanes. For
he same reason, slightly abusing our notation, we may refer to the hyperedges of a pseudohalfplane
ypergraph as pseudohalfplanes.

.2. Helly-type theorems for halfplanes

Helly’s classic theorem in the plane [8] can be phrased as follows:

heorem 3 (Helly for Convex Sets). Let P be a set of n points and C be a finite family of convex sets in
the plane. If every subfamily of 3 convex sets from C intersects in a point of P then there exists a point
(not necessarily in P) which is in every convex set of C.

Halman and Jensen et al. [7,9] regarded discrete versions of Helly’s theorem, where they require
that the point one finds also comes from the set P . First, the following simple construction [7,9]
shows that we cannot require this for convex sets, even if we replace 3 by some larger value k and
we want to find only some bounded number of vertices that hit all sets: take a set P of n points
in convex position, then every subset of points in P can be separated from the rest of the points in
P by a convex set. Now for some fixed k let C be the family of such separating convex sets for the
subsets of points in P of size more than n− n/k. Then every subfamily of size k of C has a common
oint in P , on the other hand no subset of points in P of size less than n/k hits every set in C.
They show that replacing convex sets with halfplanes yields interesting problems and prove the

following results:

Theorem 4 (Dual Discrete Helly for Halfplanes, 3 → 2). [9] Let P be a set of n points and H be a family
of halfplanes. If every subset of 3 points in P belongs to some halfplane H ∈ H then there exist two
halfplanes in H whose union covers P.

They give an example that this is tight, that is, 3 cannot be replaced by 2. They also show the
following:

Theorem 5 (Dual Discrete Helly for Halfplanes, 2 → 3). [9] Let P be a set of n points and H be a family
of halfplanes. If every pair of points in P belongs to some halfplane H ∈ H then there exist 3 halfplanes
in H whose union covers P.

Theorem 6 (Primal Discrete Helly for Halfplanes, 3 → 2). [9] Let P be a set of n points and H be a
amily of halfplanes. If every triple of halfplanes in H intersects at a point in P, then there exists a set
f two points in P which intersects each H ∈ H.

The above two results are implied by their following result about convex pseudodisks:

6 In fact they prove that we can realize them with simple loose pseudoline arrangements but their argument can be
easily modified to have a realization with a simple and not loose pseudoline arrangement as well.
4
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Theorem 7 (Primal Discrete Helly for Convex Pseudodisks, 3 → 2). [9] Let P be a set of n points and
be a family of convex pseudodisks. If every triple of pseudodisks in D intersects at a point in P, then

here exists a set of two points in P which intersects each D ∈ D.

.3. Helly-type theorems for pseudohalfplanes

We aim to prove results about pseudohalfplanes similar to these about halfplanes from the
revious section. First we show discrete Helly-type results for ABA-free hypergraphs:

heorem 8 (Primal Discrete Helly for ABA-free Hypergraphs, 2 → 2). Given an ABA-free H such that
every pair of hyperedges has a common vertex, there exists a set of at most two vertices that hits every
hyperedge of H.

As the dual of an ABA-free hypergraph is also an ABA-free hypergraph [12], this implies (and is
in fact equivalent to):

Corollary 9 (Dual Discrete Helly for ABA-free Hypergraphs, 2 → 2). Given an ABA-free H on vertex set
V of size n ≥ 2 such that for every pair of vertices there is a hyperedge of H containing both of them,
here exist at most two hyperedges of H whose union covers V .

Applying this twice to the two ABA-free parts of a pseudohalfplane hypergraph implies easily
hat 2 → 4 is true for pseudohalfplanes but we can prove a better bound which is optimal (we note
hat this was not known earlier even in the special case of halfplanes):

heorem 10 (Primal Discrete Helly for Pseudohalfplanes, 2 → 3). Given a pseudohalfplane hypergraph
H such that every pair of hyperedges has a common vertex, there exists a set of at most 3 vertices that
its every hyperedge of H.

We can also prove the following:

heorem 11 (Primal Discrete Helly for Pseudohalfplanes, 3 → 2). Given a pseudohalfplane hypergraph
H such that every triple of hyperedges has a common vertex, there exists a set of at most 2 vertices that
its every hyperedge of H.

In the dual setting we have the following results about pseudohalfplanes:

heorem 12 (Dual Discrete Helly for Pseudohalfplanes, 3 → 2). Given a pseudohalfplane hypergraph
H on ordered vertex set V with n ≥ 3 vertices. If every subset of 3 vertices in V is contained by some
hyperedge H ∈ H then there exist at most two hyperedges in H whose union covers V .

Theorem 13 (Dual Discrete Helly for Pseudohalfplanes, 2 → 3). Given a pseudohalfplane hypergraph
H on ordered vertex set V with n ≥ 2 vertices. If every pair of vertices in V is contained by hyperedge
H ∈ H then there exist at most 3 hyperedges in H whose union covers V .

We can show a similar result about pseudohemisphere hypergraphs, which generalize both
pseudohalfplane hypergraphs and duals of pseudohalfplane hypergraphs.7

efinition 14 ([12]). A pseudohemisphere hypergraph is a hypergraph H on an ordered set of vertices
such that there exists a set X ⊂ V and an ABA-free hypergraph F on V such that the hyperedges
f H are some subset of {F∆X, F̄∆X | F ∈ F}.

Theorem 15 (Dual Discrete Helly for Pseudohemispheres, 2 → 4). Given a pseudohemisphere hyper-
raph H on ordered vertex set V with n ≥ 2 vertices. If every pair of vertices in V is contained by some
yperedge H ∈ H then there exist at most 4 hyperedges in H whose union covers V .

7 The dual of a hypergraph is the hypergraph we get by exchanging the roles of hyperedges and vertices while reversing
the containment relation.
5
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As the dual of a pseudohemisphere hypergraph is also a pseudohemisphere hypergraph [12], this
lso implies:

heorem 16 (Primal Discrete Helly for Pseudohemispheres, 2 → 4). Given a pseudohemisphere
ypergraph H such that every pair of hyperedges has a common vertex, there exists a set of at most

four vertices that hits every hyperedge of H.

. Properties of the extremal vertices

First we recall and prove some properties of ABA-free and pseudohalfplane hypergraphs.

efinition 17. In an ABA-free hypergraph F , a vertex a is skippable if there exists an A ∈ F such
hat min(A) < a < max(A) and a /∈ A. In this case we say that A skips a. A vertex a is unskippable if
here is no such A.

emma 18 ([12]). If F is ABA-free, then every A ∈ F contains an unskippable vertex.

Observe that by definition the leftmost (that is, first) and rightmost (that is, last) vertex is
nskippable. Thus for every skippable vertex v there exists a closest unskippable vertex after and
efore v.

emma 19. If F is an ABA-free hypergraph on vertex set V and v ∈ V is skippable, then every hyperedge
which contains v must contain at least one of the two unskippable vertices before and after v that

re closest to v.

roof. Assume on the contrary. Let l (resp. r) be the closest unskippable vertex to v left to v (resp.
ight to v). By Lemma 18 H contains some unskippable vertex w different from l and r . If w is left
o l (resp. right to r) then H skips l, contradicting that l (resp. r) is unskippable. Thus l < w < r in
he vertex order, contradicting that l and r were the closest unskippable vertices to v. □

emma 20. Given an ABA-free hypergraph F on vertex set V and a vertex w of F . Let F ′ be the
ubhypergraph of F induced by the vertex set V \ {w}.8 Let v be an unskippable vertex of F ′, then at
east one of v and w is unskippable in F .

roof. Wlog. suppose that v < w. Suppose that in F there is a hyperedge H that skips v and a H ′

yperedge that skips w. Thus H does not contain v and as v is unskippable in F ′, H must contain
and no other vertex bigger than v.
Also, H ′ contains a vertex q bigger than w. If H ′ would contain v then H and H ′ would form an

ABA occurrence on the vertices v, w, q. If H ′ would contain a vertex r between v and w then H
and H ′ would form an ABA occurrence on the vertices r, w, q (note that r ̸= w is not in H as it
is bigger than v). Thus H ′ does not contain v nor a vertex between v and w. If H ′ would contain
a vertex smaller than v then H ′ would skip v in F ′, contradicting our assumption. Altogether, we
have shown that H ′ cannot contain any vertex smaller than w contradicting that it skips w. □

Now we extend the definition of unskippable vertices to pseudohalfplane hypergraphs as in [12]
and call them extremal vertices:

Definition 21. Given a pseudohalfplane hypergraph H such that H ⊆ F ∪ F̄ for some ABA-free
hypergraph F . Call T = H∩F the topsets and B = H∩F̄ the bottomsets, observe that both T and B
are ABA-free. The unskippable vertices of F (resp. F̄) are called topvertices (resp. bottomvertices).9

8 Given a hypergraph F on vertex set V , the subhypergraph induced by a subset V ′
⊂ V is the hypergraph on vertex

et V ′ with hyperedge set {F ′
: F ′

⊆ V ′ and ∃F ∈ F s.t. F ′
= F ∩ V ′}.

9 Notice that the top and bottom vertices depend on F and not on H itself (and thus without fixing F we cannot
irectly talk about the extremal vertices of H). For a given H = T ∪B multiple F ’s can witness that it is a pseudohalfplane
ypergraph, the smallest valid family is T ∪ B̄. Although it is not assumed, yet when reading the paper it is convenient
o assume that H = F ∪ F̄ .
6
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The union of the topvertices and bottomvertices is called the set of extremal vertices of H and is
enoted by C(H).10

In the remainder of this section we are always given a pseudohalfplane hypergraph H on vertex
set V whose extremal vertices are denoted by C . First, the following observation provides an
equivalent definition of extremal vertices:

Claim 22. The topvertices are exactly those vertices v for which if we add the singleton hyperedge {v}

to F we still get a pseudohalfplane hypergraph. The bottomvertices are exactly those vertices v for which
if we add the singleton hyperedge {v} to F̄ (that is, we add V \ {v} to F) we still get a pseudohalfplane
hypergraph.

In other words, the extremal vertices are exactly those that can be separated from the rest of the
vertices by a (possibly additional) pseudohalfplane.11

Proof. This follows easily from the definition of unskippability. First, v being a topvertex is by
definition equivalent to having no hyperedge in F that contains a vertex before and after v but
does not contain v which is equivalent to that adding {v} to F does not introduce two hyperedges
in F that form an ABA occurrence.

The part about bottomvertices follows the same way. □

The following observation provides the intuition why we refer to C as the extremal vertices.

laim 23. If H is defined by halfplanes12 on a point set P then the set of extremal vertices C(H) of H
oincides with the set of points of P that lie on the boundary of the geometric convex hull of P.13

roof. In the rest we refer to points as vertices when we deal with the abstract extremal vertices.
y definition the topvertices of H are exactly those vertices which are unskippable in F . The points
n the geometric upper hull of P have this property, as if a point p is on the upper hull then any
pwards halfplane that contains a point both to the left and to the right from v must also contain
. On the other hand if a point q is not on the boundary of the geometric upper hull then there
s an edge of the hull that goes above q and then the upwards halfplane which contains only the
ertices on this convex hull edge skips q. Thus topvertices of H are exactly the points on the upper
ull of P .
Similarly, the bottomvertices of H are exactly the points on the lower hull of P , finishing the

roof. □

Now we prove several properties of the (abstract) extremal vertex set which are all generaliza-
ions of well-known properties of the set of points that lie on the boundary of the geometric convex
ull (we refer to these as the geometric extremal vertices). Most of these properties we will use
ater, but we also prove some which we do not use later but nevertheless think that they further
ur understanding of extremal vertices and may be useful in future research.

bservation 24. The leftmost and rightmost vertices are both topvertices and bottomvertices and so
hey are always extremal vertices.

laim 25. Every pseudohalfplane contains an extremal vertex.

10 C(H) is sometimes abbreviated to C when the underlying hypergraph is clear from the context.
11 Note that with halfplanes in the plane this wording would give the extreme vertices instead of the vertices that lie
n the boundary of the convex hull.
12 That is, H = F ∪ F̄ where F (resp. F̄) is the family of sets that we get by intersecting all the upwards (resp.
downwards) halfplanes with P . It is easy to see that this F is indeed ABA-free, we refer to [12] for further details.
13 Note that this is different from the set of extreme vertices which usually denotes the set of vertices of the convex hull
(which is a subset of the vertices that lie on the boundary of the convex hull). In case it is assumed that the points are
in general position, extremal vertices and extreme vertices coincide and then we can think about the extremal vertices
as the vertices of the convex hull, that is why we have chosen a very similar word. For more on this, see Section 2.1.
7
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Proof. If H is a topset then applying Lemma 18 to F we get that H contains an unskippable vertex
f F , which is a topvertex, and so is in C . If H is a bottomset then applying Lemma 18 to F̄ we get
hat H contains an unskippable vertex of F̄ , which is a bottomvertex, and so is in C . □

laim 26. If the vertex set has size n ≥ 3, then the extremal vertex set contains at least 3 vertices.

roof. We have seen that the leftmost and rightmost vertex is always in C . Now if we have n = 3
ertices altogether then it is easy to see that the middle vertex must be a top or bottom vertex or
oth. If we have n > 3 vertices then if we delete an arbitrary vertex w which is neither leftmost nor
ightmost then by induction in the subhypergraph induced by V \ {w} there is an extremal vertex v
hich is neither leftmost nor rightmost, wlog. it is a topvertex. Applying Lemma 20 we get that in
at least one of w and v is a topvertex, thus part of the extremal vertex set, and we are done. □

The next statements are easy consequences of the definition of unskippability:

bservation 27 (Topvertices in a Topset). If X is a topset and x, y ∈ X, then X contains all topvertices
hat are between x and y. The same holds with bottomvertices if X is a bottomset.

bservation 28 (Bottomvertex in a Topset). If X is a topset and x ∈ X is a bottomvertex, then X contains
ll vertices that are bigger or all vertices that are smaller than x. The same holds if X is a bottomset and
∈ X is a topvertex.

Let T = (t1 = v1, t2, . . . tk = vn) and B = (b1 = v1, b2, . . . bl = vn) be the sets of top and bottom
ertices ordered according to the ordering on P . Call T to be the upper hull and B the lower hull.
ote that a vertex may appear in both sets. Let us give the following circular order on C , the set of
xtremal vertices: C = (v1, t2, . . . , tk−1, vn, bl−1, . . . , b2).14

Lemma 29. Every pseudohalfplane intersects the extremal vertex set in an interval of the circular order
defined on the extremal vertex set.

Proof. By symmetry it is enough to prove the statement when the pseudohalfplane H is a topset.
If the pseudohalfplane hyperedge is empty then the claim trivially holds. Otherwise, by

Observation 28 H intersects B in an interval that has v1, vn or both as an endvertex. By
Observation 27 H intersects T in an interval. As v1 and vn are also endvertices of T , v1, vn or both
whichever was in H ∩B) must be an endpoint of H ∩ T . Together the two intervals H ∩B and H ∩ T
orm H ∩ C which is thus an interval. □

Lemma 30. If the pseudohalfplane H ∈ H is a topset (resp. bottomset) and contains two bottomvertices
(resp. topvertices) p < q that are consecutive in the circular order of the extremal vertices, then H
contains every vertex r with p < r < q.

Proof. Let H be a topset containing the consecutive bottomvertices p < q (the other case is
ymmetrical). Applying Observation 28 to H and p and to H and q we get that either all vertices
< r or all vertices r < q are contained in H and we are done or all vertices r for which r < p or
< r holds are contained in H . We show that in this case H actually contains every vertex. Suppose
n the contrary that some vertex v, p < v < q is not in H . Now H̄ is a non-empty set in F̄ that
ontains only vertices between p and q. Using Lemma 18 we get that H̄ contains an unskippable
ertex of F̄ , which by definition is a bottomvertex of H, and lies between p and q, a contradiction
as p and q were consecutive in the circular order of the extremal vertices). □

laim 31. If a topset (resp. bottomset) H ∈ H contains every bottomvertex (resp. topset) then it
ontains every vertex.
If the pseudohalfplane H ∈ H contains every extremal vertex then it contains every vertex.

14 This circular order corresponds to the clockwise order of points on the boundary of the convex hull in the geometric
ase defined by halfplanes. Also, T corresponds to the upper hull and B to the lower hull in the geometric case.
8
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p

Proof. Wlog. suppose H is a topset. The other cases follow from this. Applying Lemma 30 on every
air of consecutive bottomvertices (b1 = v1 and b2, b2 and b3, . . . , bl−1 and bl = vn) we get that all

vertices are in H . □

Lemma 32. Given two extremal vertices p and q, there are two intervals on the extremal vertex set’s
circular order that have these as endpoints. Suppose H1 ∈ H contains one of these intervals and H2 ∈ H
contains the other, then H1 ∪ H2 contains every vertex.

Proof. Wlog. p < q. We can suppose that one of H1 and H2 is a topset and the other is a bottomset.
Indeed, if they are of the same type, wlog. topsets, then we can apply Lemma 30 on every pair of
consecutive bottomvertices (b1 = v1 and b2, b2 and b3, . . . , bl − 1, bl = vn) with H1 or H2 to get
that all vertices are in H1 or H2.

Thus wlog. H1 is a topset and H2 is a bottomset.
First, for every vertex r with p < r < q, r must be in H1 or H2. Indeed, otherwise H1 and H̄2 are

two hyperedges of F forming an ABA-occurrence on p, q, r , contradicting that F is ABA-free.
Second, by the assumption of the lemma, for every vertex r < p which is not an extremal vertex,

either for H = H1 or H = H2 it is true that H contains the topvertices and bottomvertices right
before and after r in the order of the vertices (altogether at most 4 vertices). Depending on H (if it
is a topset or bottomset), we can apply 31 on two of these vertices (the two topvertices or the two
bottomvertices) to conclude that r is in H . Symmetrical argument shows that every vertex r > q is
also in H1 or H2, finishing the proof. □

Lemma 33. Given two non-consecutive extremal vertices (in the circular order) p and q, C \ {p, q} is
the union of two intervals of the circular order of C. Suppose H1 and H2 are pseudohalfplanes such that
H1 ∩ C is a subset of one of the intervals and H2 ∩ C is a subset of the other interval. Then H1 ∩H2 = ∅.

Proof. Notice that H̄1 and H̄2 are also in F ∪ F̄ and we can apply Lemma 32 on them with the same
p and q. This implies that H̄1 ∪ H̄2 covers every vertex, which in turn implies that H1 ∩ H2 = ∅. □

2.1. Extremal vertices versus convex hull vertices

One might find it surprising that extremal vertices generalize points on the boundary of the
convex hull and we do not have a definition that generalizes the notion of convex hull vertices.
We argue why this cannot be done in a useful way (or how it can be done if needs be). First, if we
could define the set of convex hull vertices of some pseudohalfplane hypergraph H on vertex set
S in some way (and denote it by CV ), then for this definition for being useful we would (arguably)
need the following properties to hold:

1. CV ⊆ C , that is, every convex hull vertex is an extremal vertex,
2. CV hits every hyperedge,
3. if H is defined on a point set by all halfplanes then CV should be equal to the set of the

geometric convex hull vertices,
4. if H ⊂ H′ then CV (H) ⊆ CV (H′), that is, if a vertex is in CV then it should remain in CV if

we add further hyperedges to H.

Our primary aim is to generalize the geometric notion, so the third property is natural. Also, the
first two properties are quite natural to assume as these are true in the geometric setting as well.
The fourth one is less evident but we think that it would be needed so that the definition is useful in
practice. Namely, we know that C hits every hyperedge and so we can take any minimal subset CV
of C which hits every hyperedge (this is a minimal hitting set) and it is easy to see that this has the
first three properties. On the other hand this is not well-defined. Indeed, take a halfplane hypergraph
defined on a set of points P in convex position and replace each vertex by a pair of vertices, we get
a pseudohalfplane hypergraph H0. Then any subset of vertices which has exactly one from each pair
of vertices has the first two properties and the third does not apply to H0. Which of these subsets
should we choose as CV? We could, e.g., choose the lexicographically smallest such set as CV and
9



B. Keszegh European Journal of Combinatorics 101 (2022) 103469

w
f

s
e
a
C
o
a
i

u

t
t
v
S
n

3

P
c
e
o
a
B
d

P
t

m
h
t
t
q

I

|

t

then it is well-defined but seems to be quite arbitrary, we do not think that any other choice would
be more natural. In particular the fourth property fails as for any deterministic choice of CV in H0
e can extend the hypergraph such that it is a halfplane hypergraph and exactly the other vertex

rom each pair becomes a convex hull vertex, thus we get a H ⊂ H′ such that CV (H)∩ CV (H′) = ∅.
However, there is one possible way to make the fourth property hold: if all minimal hitting

ubsets that are subsets of C are considered to be a possible set of convex hull vertices. Indeed,
ach member of the family CV of such minimal hitting sets has the first three properties and CV
lso has the fourth property in the following sense: if H ⊂ H′ then if CV ′

∈ CV(H′), then there exists
V ∈ CV(H) s.t. CV ⊆ CV ′. Indeed, CV ′ being a hitting set of H′ implies that CV ′ is also a hitting set
f H and so CV ′ contains a minimal hitting set CV of H. We also need that CV ⊆ C(H) which holds
s it is easy to see that by definition for the sets of extremal vertices we have C(H′) ⊆ C(H) which
mplies CV ⊆ CV ′

⊆ C(H′) ⊆ C(H).
Nevertheless, unlike extremal vertices, we did not find such a notion of convex hull vertices

seful for our purposes.
Finally, we remark that if we restrict our attention to maximal pseudohalfplane hypergraphs,

hat is, to hypergraphs to which no further hyperedge can be added without ruining the property
hat it is a pseudohalfplane hypergraph (with the given order of vertices), then for a maximal H on
ertex set S we know that its extremal vertices are exactly those vertices v for which {v} and also
\ {v} is a hyperedge of H and so the unique minimal hitting set inside C is C itself and so the two
otions (of extremal and extreme vertices) coincide.

. Proofs of discrete Helly-type theorems

roof of Theorem 8. We take a minimal hitting set R of unskippable vertices, that is, R is
ontainment minimal for the property that it intersects every hyperedge. This exists as by Lemma 18
very hyperedge contains an unskippable vertex. We show that R has at most two vertices. Assume
n the contrary that there exist a < b < c , all in R. As R is minimal, there exist A, B, C such that
∈ A, b ∈ B, c ∈ C are the only containments between these three vertices and three hyperedges.
y the assumption there exists a vertex s ∈ A ∩ C , wlog. s < b. Thus, C contains s and c while it
oes not contain b, that is, C skips b, contradicting that b is unskippable. □

roof of Theorem 10. Given a family of pseudohalfplanes s.t. every pair of them intersects we need
o find 3 vertices that hit every pseudohalfplane.

We take a minimal hitting set R of extremal vertices (i.e., vertices of C), that is, R is containment
inimal for the property that it intersects every pseudohalfplane. This exists as by Claim 25 every
yperedge contains an extremal vertex. We claim that it contains at most 3 vertices. Assume on
he contrary that it contains at least 4 different vertices, p, q, r, s, which appear in this order in
he circular order. Now by the minimality of S there exists a pseudohalfplane H1 s.t. p ∈ H1 yet
, r, s /∈ H1 and also a pseudohalfplane H2 s.t. r ∈ H2 yet p, q, s /∈ H2. We can apply Lemma 33 on

H1,H2, q, s to conclude that H1 ∩ H2 = ∅, contradicting our assumption. □

Proof of Theorem 12. Our proof follows the steps of the proof of Theorem 4 [9], however, the
geometric arguments used in [9] need to be replaced by abstract counterparts.

Consider a pseudohalfplane H1 ∈ H that contains the largest number of vertices from C , the set
of extremal vertices. If H1 contains all vertices of C then by Claim 31 H1 contains all vertices, we
are done.

Assume now that H1 does not contain all vertices of C . By Lemma 29 H1 intersects C in an interval
1 of the circular order defined on C . Let p and q be the two endvertices of this interval in the circular
order of the extremal vertices (p = q is possible). Let r be an arbitrary point of C \ H1. Using the
assumption of the theorem there exists a pseudohalfplane H2 that contains all of p, q, r (if p = q
then we apply the assumption to p, r and an arbitrary third vertex, which exists as n ≥ 3). As H2∩C
is an interval I2 containing p and q, I2 either contains I1 plus also r , contradicting the maximality of
H1 ∩ C |; or it contains p, q and the interval C \ I1. In this case by Lemma 32 we get that H1 and H2
ogether cover every vertex, finishing the proof. □
10
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We need the following statement, which is proved as part of the proof of Theorem 4.6 of [12]:

emma 34 ([12]). In a pseudohalfplane (resp. pseudohemisphere) hypergraph H either there are 3 (resp.
) hyperedges covering every vertex of H or H is the dual of a pseudohalfplane hypergraph.

roof of Theorem 13. Applying Lemma 34 to our H, in the former case we are done and in the
latter case, we can apply Theorem 10 to the dual H′ of H, which is a pseudohalfplane hypergraph,
to conclude that 3 vertices of H′ hit every hyperedge of H′, which is equivalent to saying that 3
hyperedges of H cover the vertices of H. □

Proof of Theorem 15. Applying Lemma 34 to our H, in the former case we are done and in the
latter case, we can apply Theorem 10 to the dual H′ of H, which is a pseudohalfplane hypergraph,
to conclude that already 3 vertices of H′ hit every hyperedge of H′, which is equivalent to saying
that 3 hyperedges of H cover the vertices of H. □

Proof of Theorem 11. The proof follows a similar argument about halfplanes present in [9]. Given a
pseudohalfplane hypergraph H such that every triple of hyperedges has a common vertex, we need
to prove that there exists a set of at most 2 vertices that hits every hyperedge of H. If n ≤ 2 then
we can take all vertices. Similarly, if we have at most two hyperedges then we can take a vertex
from each of them and we are done. Otherwise, take the complement of every hyperedge to get the
pseudohalfplane hypergraph H̄. Assume on the contrary that no two vertices hit every hyperedge in
H, then in H̄ for every pair of points there is a hyperedge that contains both of them. Thus we can
apply Theorem 13 to conclude that there are 3 hyperedges of H̄ that together cover all the vertices.
This means that there are 3 hyperedges of H that have no common vertex, contradicting our initial
assumption. □

To complement our upper bounds we show matching lower bound constructions.
First we give some trivial examples showing that Theorem 8 is optimal in every sense. We show

that for ABA-free hypergraphs primal (and due to self-duality also dual) discrete Helly is not true
with k → 1 nor with 1 → k for any k. For the first, take a base set of size l ≥ k+1 (with an arbitrary
ordering) and take all size l−1 sets as hyperedges, this is ABA-free, every subfamily of k hyperedges
intersects in a vertex, yet there is no vertex which hits every hyperedge. For the second, take k+ 1
disjoint hyperedges of arbitrary size after each other, this is ABA-free, every hyperedge can be hit
by a vertex (this property holds trivially for every hypergraph) yet no k vertices hit all hyperedges.

These two constructions also imply that 1 → k and k → 1 cannot hold for any k for both the
primal and dual case for pseudohalfplanes.

We have seen that primal discrete Helly holds with 2 → 3 and with 3 → 2. The following simple
construction is a modification of a construction for halfplanes from [9] and shows that it does not
hold with 2 → 2. Take 3k vertices [0, 3k−1] and for each i ∈ [0, 2] and j ∈ [0, k−1] we take the set
of size k+1 containing vertices (ik, ik+1, . . . , ik+k−1) plus the vertex (i+1)k+ j as a hyperedge
(indices are modulo 3k). This hypergraph H0 is easy to realize with halfplanes (see [9]) and thus it
is also a pseudohalfplane hypergraph. In this hypergraph every pair of hyperedges intersects yet no
two vertices hit all the hyperedges.

We have also seen that dual discrete Helly holds with 2 → 3 and with 3 → 2. The same
construction as in the primal case shows that with 2 → 2 it is not true. Indeed, in H0 every pair of
vertices is contained in some hyperedge yet no two hyperedges cover all vertices.

Thus for pseudohalfplanes we have covered all possible cases both in the primal and dual setting.
For pseudohemisphere hypergraphs (for which the primal and dual cases are equivalent) we

proved only that 4 → 2 which leaves open several problems, we omit to list them all.

4. Pseudohalfplanes versus halfplanes

Having spent this much effort to prove results about pseudohalfplane hypergraphs that are
mostly already known for halfplane hypergraphs, it is worthwhile to investigate by what extent
11
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is the former a larger family compared to the latter. It is known that there are (simple) pseudoline
arrangements that are non-stretchable already with 9 pseudolines (based on the Pappus config-
uration), that is, which cannot be realized with line arrangements, moreover, almost all of them
are such (see, e.g., Chapter 5 of [6] by Felsner and Goodman). This suggests that pseudohalfplane
hypergraphs are a much richer family than halfplane hypergraphs, but it might not be immediately
obvious if there is a direct connection as arrangements encode geometric realizations while hyper-
graphs are strictly combinatorial structures. The aim of this section is to prove that the implication
does hold.

One can regard a pseudoline arrangement as a plane graph: the vertices of an arrangement of
seudolines are the intersection points of the pseudolines, the edges are the maximal connected
arts of the pseudolines that do not contain a vertex and the faces are the maximal connected
arts of the plane which are disjoint from the edges and the vertices of the arrangement.15 We
ay that two pseudoline arrangements are (combinatorially) equivalent if there is a one-to-one
djacency-preserving correspondence between their pseudolines, vertices, edges and faces. We need
he following:

heorem 35. Given a simple pseudoline arrangement A, let P be a set of points which has exactly
ne point in each face of A. Let H be a pseudohalfplane hypergraph whose vertex set is P and for each

pseudoline of A it has a hyperedge which contains the points on one side of this pseudoline.16 Then in
every realization of H with pseudohalfplanes the arrangement of the boundary pseudolines is equivalent
to A.

Proof. We claim that in any realization of H by pseudohalfplanes, the arrangement of the boundary
pseudolines is equivalent to A. To see this, take the arrangement A′ of the boundary pseudolines of
any realization. In it we take the pseudolines in an arbitrary order: l′1, l

′

2, . . . , l
′
m. The pseudolines in

A that are the boundaries of the hyperedges in the same order are denoted by l1, l2, . . . , lm. Denote
Ai (resp. A′

i) the arrangement defined by the first i boundary pseudolines of A (resp. A′).
The sub-arrangement A′

1 of A′ defined by l′1 is unique (has two infinite faces with a bi-infinite
curve separating them), and trivially equivalent to A1. Assume now that for some i we already know
that A′

i−1 is equivalent to Ai−1 (and so we can identify their faces). We shall show that this holds
also for i instead of i − 1.

To see this we add l′i , the ith pseudoline to A′

i−1. The faces of the arrangement A′

i−1 partition
the vertex set. Clearly, l′i must cross those faces of A′

i−1 for which the corresponding part of the
partition is non-trivially intersected by the respective ith hyperedge (that is, the intersection of
that part with the ith hyperedge is neither empty nor equal to that part), call these faces active.
Note that li crosses in Ai−1 the active faces and no other face. Further, l′i must also cross the active
faces in A′

i−1, although l′i may intersect further faces (we will see that this cannot happen).
Let F be an active face of the arrangement A′

i−1. We claim that topologically it is unique how l′i
can cross F , and it is the same way as li crosses F in Ai. Notice that no two edges on the boundary of
F can be on the same pseudoline. Let F ′ be an active face neighboring F , i.e., it shares a common edge
e with F . We claim that l′i must cross e. Indeed, the (at most) two pseudolines which contain the
edges that are consecutive with e on the boundary of F (see the bold pseudolines in Fig. 1) separate
the plane into at most 4 parts. F and F ′ lie in the same part, thus a curve going from F to F ′ must
cross both of these pseudolines an even number of times. As l′i crosses these pseudolines at most
once, the only possibility is that a part of l′i connecting F and F ′ intersects both of these pseudolines
zero times. The only way for this is if l′i crosses the edge e, as we claimed. After crossing e, l′i cannot
cross again the pseudoline supporting e and thus it cannot return to F . The same argument holds
for li.

We call the li-order of the active faces the order in which li crosses them. If F is not the first nor
the last active face in the li-order then our arguments so far show that both li and l′i cross F once
and the same way.

15 The vertices of an arrangement should not be confused with the vertices of a hypergraph.
16 For each pseudoline we can choose the side arbitrarily. If for every pseudoline we choose the side above the
seudoline then H is also ABA-free.
12
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Fig. 1. Proof of Theorem 35.

About the first and last face we only know that l′i leaves them once the same way as li. We are
eft to prove that these must be the two faces where l′i goes into infinity, the same way as li. Indeed,
aving determined the crossings on the boundaries of all the other active faces, we have found a
rossing point for every pair of pseudolines (as in these faces l′i and li have the same crossings and
i has no other crossings) and thus it cannot cross any other pseudoline anymore. That is, the first
nd last face in the li-order is also the first and last one in the order in which l′i crosses the faces,
s claimed.
Thus A′

i is equivalent to Ai. Repeatedly applying this for i = 2, 3, . . .m we get that the final
rrangement A′ must be equivalent to A, finishing the proof. □

Note that in Theorem 35 we need that the arrangement of the pseudolines is not loose, i.e., every
air of pseudolines intersects exactly once.
Now we can take an arbitrary non-stretchable simple pseudoline arrangement A. By Theorem 35

e have an ABA-free hypergraph H such that in every realization of H with pseudohalfplanes
he boundary pseudolines form an arrangement equivalent to A. Thus, H cannot be realized with
alfplanes as such a realization with halfplanes would also give the arrangement A, contradicting
hat A was non-stretchable.

. Chromatic number of pseudohalfplane hypergraphs

One may notice that our primal and dual results about pseudohalfplane hypergraphs look the
ame. A reason for this could be that the duals of pseudohalfplane hypergraphs are the same as
seudohalfplane hypergraphs. However, this is not the case, as shown already by a small example.
his is a reason why we had to prove the primal and dual results separately. We note that the
ollowing claim is relevant already for the polychromatic coloring problems studied in [12], where
he primal case is solved while in the dual the answer may still be the same as in the primal, but
ur best bounds are weaker.

laim 36. The family of pseudohalfplane hypergraphs and dual pseudohalfplane hypergraphs is not
qual nor does contain one another.

roof. It is easy to see that K4 (the hypergraph on 4 vertices containing all 6 pairs as hyperedges)
an be realized as a pseudohalfplane hypergraph yet it cannot be realized as a dual pseudohalfplane
13
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hypergraph.17 Thus the dual of K4 can be realized as a dual pseudohalfplane hypergraph but not as
pseudohalfplane hypergraph, proving both containments. □

In [12] there was a systematic study of polychromatic problems but for some reason the
hromatic number of the respective hypergraphs was not considered. Here we do this job, as it
lso gives us another proof of why K4 (a 4-chromatic hypergraph) cannot be realized as a dual
seudohalfplane hypergraph:

heorem 37. The chromatic number of every ABA-free hypergraph is at most 3, the chromatic number
f every pseudohalfplane hypergraph is at most 4, the chromatic number of every dual pseudohalfplane
ypergraph is at most 3 and these bounds are best possible.

roof. The lower bounds are trivial as K3 can be realized easily as an ABA-free hypergraph
hich is also a dual pseudohalfplane hypergraph by definition, also K4 can be realized easily as
pseudohalfplane hypergraph as we can realize it already in the plane with 4 points whose convex
ull is a triangle and with appropriate 6 halfplanes.
We proceed with the upper bounds. For ABA-free hypergraphs we can alternately color the

nskippable vertices with 2 colors and use a third color for the skippable vertices. As every
yperedge intersects the unskippable vertices in an interval, it must be properly colored. In fact
n [2] it was proved that ABAB-free hypergraphs (the definition see in [2,12]) have chromatic
umber at most 3, which also implies proper 3-colorability of ABA-free hypergraphs as every
BA-free hypergraph is also ABAB-free.
For pseudohalfplane hypergraphs the upper bound follows from the more general result about

he 4-colorability of pseudo-disk wrt. pseudo-disk intersection hypergraphs [11]. However, in our
ase there is a much simpler proof. Just take the extremal vertices in the order of the vertices, and
or each of them if it is a topvertex (resp. bottomvertex) then we give a color different from the
revious topvertex (resp. bottomvertex). With 3 colors this can be done even when a vertex is both
top and a bottomvertex. Non-extremal vertices get the fourth color. Then by Lemma 29 every
yperedge with at least two vertices either contains both an extremal and a non-extremal vertex
r at least two vertices that are consecutive among the topvertices or bottomvertices, in every case
he hypergraph is non-monochromatic.

It remains to properly 3-color dual pseudohalfplane hypergraphs. This is the most complicated
art, the proof follows the idea of the respective earlier result of the author about 3-coloring dual
alfplane hypergraphs [10]. In [12] it is proved that a hypergraph H on an ordered set of vertices
is a dual pseudohalfplane-hypergraph (that is, there exists a pseudohalfplane hypergraph whose
ual is H) if and only if there exist a set X ⊂ S and an ABA-free hypergraph F on S such that
he hyperedges of H are the hyperedges F∆X for every F ∈ F (where ∆ denotes the symmetric
ifference of two sets). In the rest we assume this setup. First let F1 (resp. F2) be the subhypergraph
f F induced by S \ X (resp. X), note that the vertex set of F1 (resp. F2) is S \ X (resp. X). Every
yperedge H = F∆X with at least 2 vertices intersects S \ X or X in at least 2 vertices or both of

them in exactly one vertex.
We define a graph G on S. The vertex set of G is the set U of the unskippable vertices of F1 and

F2. First we connect two vertices v ∈ (S\X)∩U and w ∈ X∩U by an edge if there exists a hyperedge
H = {v, w} in H. We connect two vertices v, w ∈ (S \X)∩U if they are consecutive (in the order of
unskippable vertices) unskippable vertices of F1. Finally, we connect two vertices v, w ∈ X ∩ U if
they are consecutive unskippable vertices of F2. We claim that this graph is outerplanar and thus
3-colorable. The second and third set of edges form two paths that follow the order of the vertices.
It is enough to prove that in the first set of edges the connected vertices are in reversed order along
the paths, i.e., there are no two edges v1w1 and v2w2 with v1, v2 ∈ S \ X and w1, w2 ∈ X such that
v1 < v2 and w1 < w2. Showing this it follows that if we reverse one of the paths, the first set of
edges forms a caterpillar between the two paths, thus the three parts together obviously form an

17 While this can be and was checked directly by a computer program, it also follows from the forthcoming Theorem 37
nd thus we do not go into details about how such a program can be written.
14
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o

outerplanar graph. Thus assume on the contrary that there are such two edges. This implies that
there is a hyperedge F1 = {v1} ∪ X \ {w1} and F2 = {v2} ∪ X \ {w2} in F (these are the hyperedges
f F with {v1, w1} = F1∆X and {v2, w2} = F2∆X). If w1 < v1 then these two hyperedges form

an ABA-sequence on w1, v1, w2, a contradiction. Otherwise, if v1 < w1 then these two hyperedges
form an ABA-sequence on v1, w1, w2, again a contradiction.

Finally, we color the remaining vertices S \ U . By Lemma 19 for each skippable vertex v of F1
there are 2 unskippable vertices of F1 such that every hyperedge that contains v contains at least
one of these. Thus color v with a color different from the colors of these two unskippable vertices.
We color similarly the skippable vertices of F2.

We claim that the color we get is a proper 3-coloring of H. First, if H ∈ H contains a vertex
from S \ U then it is good by the last step of our coloring process. Otherwise, if H contains at
least two unksippable vertices of F1 or of F2 then we are done as then it contains two consecutive
unskippable vertices in one of them, which get different colors as they are consecutive on one of
the two paths we added to G. Finally, if H contains exactly one unskippable vertex of F1 and one
of F2 then these get different color as they were connected in G in the first set of edges we added
to G. □

Determining the maximal chromatic number of pseudohemisphere hypergraphs is an interesting
open problem we leave open.

6. Discussion

We generalized several discrete Helly-type theorems about points and halfplanes to points and
pseudohalfplanes, phrased equivalently as results about vertices and hyperedges of pseudohalfplane
hypergraphs. While we have proved all possible results about ABA-free hypergraphs and pseudo-
halfplane hypergraphs, for pseudohemisphere hypergraphs we have shown only a result of type
4 → 2, e.g., we do not know if a result of type 3 → l is true for some integer l.

Our discrete Helly-type results can be regarded as discrete variants of a Hadwiger Debrunner
(p, q)-problem (see, e.g., the survey by Eckhoff [5]) in the special case when p = q. It would be
interesting to consider also discrete Hadwiger Debrunner-type problems with p ̸= q.

Pseudohalfplane hypergraphs are based on ABA-free hypergraphs. Similar to them, in [12]
ABAB-free (and ABABA-free etc.) hypergraphs were defined and in [2] it was shown that they are
equivalent to hypergraphs defined on a point set by pseudodisks all containing the origin. Are there
discrete Helly theorems about ABAB-free hypergraphs, or equivalently, about pseudodisks all con-
taining the origin? This is especially interesting in the light of Theorem 7 about convex pseudodisks,
which was not possible to generalize within the context of pseudohalfplane hypergraphs. On one
hand, one important property of pseudohalfplane hypergraphs used in [12], that they always admit
shallow hitting sets (for definitions see [12]), does not always hold for ABAB-free hypergraphs. On
the other hand, some other related positive results were proved in [2].

Acknowledgments

The author is grateful to D. Pálvölgyi for the many discussions about these results and for the
anonymous reviewers for their insightful comments, in particular for bringing to our attention the
paper of Halman [7].

References

[1] Geometric hypergraph zoo. URL: http://coge.elte.hu/cogezoo.html.
[2] Eyal Ackerman, Balázs Keszegh, Dömötör Pálvölgyi, Coloring hypergraphs defined by stabbed pseudo-disks and

ABAB-free hypergraphs, SIAM J. Discrete Math. 34 (4) (2020) 2250–2269.
[3] Gábor Damásdi, Dömötör Pálvölgyi, Realizing an m-uniform four-chromatic hypergraph with disks, 2020, CoRR,

abs/2011.12187.
[4] Jean-Paul Doignon, Convexity in cristallographical lattices, J. Geom. 3 (1) (1973) 71–85.
[5] Jürgen Eckhoff, A survey of the Hadwiger-Debrunner (p, q)-problem, in: Boris Aronov, Saugata Basu, János Pach,

Micha Sharir (Eds.), Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2003, pp. 347–377.

15

http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://coge.elte.hu/cogezoo.html
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb2
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb2
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb2
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb3
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb3
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb3
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb4
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb5
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb5
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb5
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb5
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb5


B. Keszegh European Journal of Combinatorics 101 (2022) 103469
[6] Jacob E. Goodman, Joseph O’Rourke, Csaba D. Tóth (Eds.), Handbook of Discrete and Computational Geometry, CRC
Press, Inc., USA, 2017.

[7] Nir Halman, Discrete and lexicographic helly-type theorems, Discrete Comput. Geom. 39 (4) (2008) 690–719.
[8] Eduard Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkte, Jahresber. Dtsch. Math.-Ver. 32 (1923)

175–176.
[9] Frederik Brinck Jensen, Aadi Joshi, Saurabh Ray, Discrete helly type theorems, in: Proceedings of the 30th Annual

Canadian Conference on Computational Geometry, CCCG 2020, August 5–7, 2020, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada, 2020, pp. 332–335.

[10] Balázs Keszegh, Coloring half-planes and bottomless rectangles, Comput. Geom. 45 (9) (2012) 495–507.
[11] Balázs Keszegh, Coloring intersection hypergraphs of pseudo-disks, Discrete Comput. Geom. 64 (3) (2020) 942–964.
[12] Balázs Keszegh, Dömötör Pálvölgyi, An abstract approach to polychromatic coloring: shallow hitting sets in ABA-free

hypergraphs and pseudohalfplanes, J. Comput. Geom. 10 (2019) 1–26.
[13] Shakhar Smorodinsky, Yelena Yuditsky, Polychromatic coloring for half-planes, J. Combin. Theory Ser. A 119 (1)

(2012) 146–154.
16

http://refhub.elsevier.com/S0195-6698(21)00163-3/sb6
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb6
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb6
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb7
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb8
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb8
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb8
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb9
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb9
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb9
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb9
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb9
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb10
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb11
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb12
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb12
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb12
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb13
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb13
http://refhub.elsevier.com/S0195-6698(21)00163-3/sb13

	Discrete Helly-type theorems for pseudohalfplanes
	Introduction
	Pseudohalfplanes and pseudohalfplane hypergraphs
	Helly-type theorems for halfplanes
	Helly-type theorems for pseudohalfplanes

	Properties of the extremal vertices
	Extremal vertices versus convex hull vertices

	Proofs of discrete Helly-type theorems
	Pseudohalfplanes versus halfplanes
	Chromatic number of pseudohalfplane hypergraphs
	Discussion
	Acknowledgments
	References


