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Abstract

In the numerical integration of nonlinear autonomous ini-
tial value problems, the computational process depends
on the step size scaled vector field hf as a distinct
entity. This paper considers a parameterized transformation

hf 7→ hf ◦ (I − γhf)−1,

and its role in the finite step size stability of singly diagonally implicit
Runge—Kutta (SDIRK) methods. For a suitably chosen γ > 0, the
transformed map is Lipschitz continuous with a reasonably small con-
stant, whenever hf is negative monotone. With this transformation, an
SDIRK method is equivalent to an explicit Runge–Kutta (ERK) method
applied to the transformed vector field. Through this mapping, SDIRK
methods’ A-stability, and linear order conditions are investigated. The
latter are closely related to approximations of the exponential function
ez, that are polynomial in z, when considering ERK methods, and poly-
nomial in terms of the transformed variable z(1 − γz)−1, in case of
SDIRK methods. Considering the second family of methods, and expand-
ing the exponential function in terms of this transformed variable, the
coefficients can be expressed in terms of Laguerre polynomials. Lastly,
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a family of methods is constructed using the transformed vector field,
and its order conditions, A-stability, and B-stability are investigated.

Keywords: Runge–Kutta method, SDIRK method, Möbius transformation,
Laguerre polynomial, Dissipative, Stiff
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1 Introduction

Devised by Dahlquist, the linear test equation ẋ = λx, with parameter λ ∈ C,
is the standard problem for analyzing numerical stability of time stepping
methods for initial value problems of ordinary differential equations (ODEs).
Although numerical stability depends both on the problem parameter λ and
the method’s step size h > 0, it only depends on their product z = hλ ∈ C.
Thus, it can be analyzed in terms of a single parameter, the scaled vector field
z. For example, integrating the test equation by a Runge–Kutta (RK) method,
we obtain a recursion

xn+1 = S(z)xn, (1)

where stability function S(z) is a polynomial P (z) if the method is explicit,
and a rational function R(z) if the method is implicit. The method’s stability
region consists of the set z ∈ C which is mapped by the stability function S
into the unit circle, i.e. |R(z)| ≤ 1 in the implicit case, and |P (z)| ≤ 1 in the
explicit case.

Since P (z) → ∞ when z → ∞, all explicit methods have bounded stability
regions. Thus, explicit methods will do as long as |z| ≪ 1, corresponding to
nonstiff problems, but only implicit methods can be stable for large vales of
z. To be useful for stiff differential equations, implicit methods are typically
designed so that the stability region {z ∈ C : |R(z)| ≤ 1} covers a large
portion, possibly all, of C−. This way numerical stability can be maintained
without severe step size restrictions.

Although simple, the linear test equation has strong implications. In a
broader context Re(z) < 0 corresponds to uniform negative monotonicity and
dissipation. Likewise, |z| ≫ 1 corresponds to problems with large scaled Lips-
chitz constants. The idea of this paper is to transform the scaled vector field
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into another vector field, which can be handled by an explicit method. We seek
a map M : C → C such that

Re(z) ≤ 0 =⇒ |M(z)| ⪅ 1.

The simplest choice is a Möbius transformation

z 7→ w =
z

1− γz
,

where γ > 0 is chosen so that the left half-plane Re(z) ≤ 0 is mapped into a
disk of moderate radius, ∣∣∣∣w +

1

2γ

∣∣∣∣ ≤ 1

2γ
.

Here the imaginary axis in the z-plane is mapped to the boundary of the disk,
and z = −1 to its inside (see Fig. 1).
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Fig. 1 Image of the Möbius map. Half-planes Re z < a < 0 are mapped by the transfor-
mation z 7→ w = z

1−γz
into circles centered at − 1

2γ
1−2aγ
1−aγ

with radius 1
2γ

4aγ−1
aγ−1

. Depicted

is the γ = 1 case, with color shades corresponding to different values of a. In particular, for
a = 0, the left half plane Re z ≤ 0 is mapped into a subset of the unit circle, |z + 1

2
| ≤ 1

2
.

The motivation is that a polynomial P (w) is then equivalent to a rational
function,

P (w) = P

(
z

1− γz

)
= R(z).

Thus, applying an explicit Runge–Kutta (ERK) method (with a bounded
stability region) to the modified vector field (which has a moderate scaled



Springer Nature 2021 LATEX template

4 Runge–Kutta–Möbius methods

Lipschitz constant) is equivalent to applying a particular kind of implicit RK
method with unbounded stability region to the original vector field, which is
only assumed to be dissipative.

We shall demonstrate that for a single parameter γ, this procedure is equiv-
alent to a singly diagonally implicit Runge–Kutta (SDIRK) method, while, if
several different parameters γ are chosen, it is equivalent to a DIRK method.
We then use this equivalence to explore the behaviour of SDIRK methods on
linear problems. This leads us to an expansion of the exponential function in
terms of modified Laguerre polynomials. We explore how a similar transfor-
mation may be used to define a family of RK methods with B-stability and
consistency that are easy to characterize.

A useful review of general purpose DIRK-type methods is given by [6],
where many examples are given of the different method properties, and what
aspects have to be considered in the choice of methods. A full treatment of
explicit and implicit RK methods is given in [2, 4, 5]. This also includes the
special topic of B-stability [1], and its relation to A-stability [3].

2 From test equation to systems of ODEs

The transformation applied to the linear test equation can be adapted to linear
and nonlinear systems of ordinary differential equations.

2.1 The linear case

The linear scalar test equation provides a sufficient model for diagonalizable
systems of ODEs. If A ∈ Rn×n represents the vector field and A = T−1ΛT is
its spectral decomposition, then, taking y(t) = Tx(t), the systems

ẋ(t) = Ax(t) and ẏ(t) = Λy(t)

are equivalent. The latter system is merely a collection of scalar equations,
whose solutions decrease monotonically if and only if the eigenvalues reside in
the left complex half plane, i.e.

α[A] = max
1≤j≤n

Reλj(A) ≤ 0,

where α[A] is the spectral abscissa of A.
Integrating this system with an RK method yields the recursion

xn+1 = S(hA)xn,

where S is the method’s stability function and h = tn+1 − tn is the time
step, with xn ≈ x(tn). This recursion is equivalent to yn+1 = S(hΛ)yn, with
yn ≈ y(tn).
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Therefore, the condition for stability is

|S(hλj(A))| ≤ 1.

In other words, if the stability function S maps the negative half-plane Re z ≤ 0
into the unit circle (the A-stability condition) the numerical solution is stable
whenever the differential equation is.

This result generalizes to systems of equations using the Euclidean loga-
rithmic norms and matrix norms to replace the real part and absolute value,
respectively. Thus, if S satisfies the A-stability condition above, any matrix
having a non-positive Euclidean logarithmic norm M2[hA] ≤ 0 will map to
a contraction, ∥S(hA)∥2 ≤ 1, and guarantee stability. Here, the logarithmic
norm is defined by

M2[A] = sup
u̸=0

u∗Au

u∗u
.

This pattern also generalizes to the nonlinear case, with certain restrictions
on A- and B-stability. Following [8], for a vector field f : Rn → Rn we define
its least upper bound (lub.) logarithmic Lipschitz constant

M2[f ] = sup
u̸=v

⟨u− v, f(u)− f(v)⟩
⟨u− v, u− v⟩

,

and its Lipschitz constant

L2[f ] = sup
u̸=v

⟨f(u)− f(v), f(u)− f(v)⟩
⟨u− v, u− v⟩

.

We remark that a greatest lower bound logarithmic Lipschitz constant can be
defined similarly, with inf in place of sup in the former equation. We will not use
this quantity directly, therefore we omit the lub. qualifier, i.e. by logarithmic
Lipschitz constant we will understand M2.

Given γ > 0, let us define Mγ : Rn×n → Rn×n a mapping between matrix
spaces such that

Mγ(hA) = hA(I − γhA)−1.

Theorem 1. Let h, γ > 0 and A ∈ Rn×n be a matrix. Then the implication
chain

M2[hA] ≤ 0 =⇒
∥∥∥∥ 1

2γ
I +Mγ(hA)

∥∥∥∥
2

≤ 1

2γ
=⇒ ∥Mγ(hA)∥2 ≤ 1

γ

holds.

In other words, the non-negative definiteness of hA implies a circle
condition on Mγ(hA) which leads to the h-independent bound on the latter.
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Instead of proving this theorem separately, we show how the same chain
of implications hold in a general, nonlinear setting, where a scaled uniformly
negative monotone vector field is transformed by the Möbius map to a vector
field with small scaled Lipschitz constant.

2.2 The nonlinear case

Let us fix a γ > 0 and introduce the function spaces

Lipγ(Rn) =
{
f ∈ Lip(Rn) : L2[f ] ≤ γ−1

}
,

Mon−(Rn) = {f : Rn → Rn : L2[f ] < ∞,M2[f ] ≤ 0} .

Using these we can extend the Möbius map to the nonlinear case as

Mγ : Mon−(Rn) → Lipγ(Rn)

hf 7→ hf ◦ (I − γhf)−1.

The domain and range in this definition are justified by the following theorem.

Theorem 2. Let f : Rn → Rn be a vector field. Then the implication chain

M2[hf ] ≤ 0 =⇒ L2

[
1

2γ
I + hf ◦ (I − γhf)−1

]
≤ 1

2γ
=⇒ L2

[
hf ◦ (I − γhf)−1

]
≤ 1

γ

holds.

Proof Let hg denote γhf ◦ (I − γhf)−1. Then our chain reads

M2[hf ] ≤ 0 =⇒ L2 [I + 2hg] ≤ 1 =⇒ L2 [hg] ≤ 1.

The second implication follows from a reverse triangle inequality. To show the first,
we start from the inequality defining M2[hf ]. We have that

⟨u− v, hf(u)− hf(v)⟩ ≤ M2[hf ] · ⟨u− v, u− v⟩

holds for all u, v in some suitably chosen domain. To further simplify notation, we
will use capital letters to refer to these differences: F = hf(u)− hf(v), G = hg(u)−
hg(v), J = u − v. Then this inequality (intended in the for all possible pairs of
n-vectors sense) becomes

⟨J, F ⟩ ≤ M2[hf ] · ⟨J, J⟩.
Our goal is to show that

⟨J, F ⟩ ≤ 0 =⇒ ⟨J + 2G, J + 2G⟩ − ⟨J, J⟩ ≤ 0.

Obviously ⟨J, γF ⟩ ≤ 0 follows from the inequality on the left, thus by the
polarization identity

⟨J + γF, J + γF ⟩ − ⟨J − γF, J − γF ⟩ ≤ 0.

Writing this as

⟨J − γF + 2γF, J − γF + 2γF ⟩ − ⟨J − γF, J − γF ⟩ ≤ 0,
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and momentarily regarding J, F,G as functions to compose them from the right by
(I−γhf)−1, or equivalently, making a change of variables of the form u−γhf(u) = x
we get

⟨J + 2G, J + 2G⟩ − ⟨J, J⟩ ≤ 0.

□

3 SDIRK ⇔ ERK + Mγ

Let us consider the Möbius transform of a step size scaled vector field hf

hg = Mγ(hf) = hf ◦ (I − γhf)−1.

Here, as we have seen, the modified vector field has an h-independently small
scaled Lipschitz constant, in the sense that even if hf has a large Lipschitz con-
stant, hg has a small scaled Lipschitz constant. Therefore it is possible to solve
the modified problem numerically using an explicit Runge–Kutta method.

This leads us to our main equivalence result, stated in the following
theorem.

Theorem 3. SDIRK methods are equivalent to ERK methods combined with
the Möbius transformation Mγ in the sense that taking a single numerical step
in the solution of the transformed equation using an explicit method yields the
same result as taking a single numerical step in the solution of the original
equation using an SDIRK method.

Proof Let us take a single step of step size h from x0 to x1 using a general s-stage
explicit Runge-Kutta method given by its Butcher-tableau (aij)

s
i,j=1, (bi)

s
i=1, applied

to the transformed vector field

hg = hf ◦ (I − γhf)−1.

A step with the explicit method takes the form of

Xi = x0 +

i−1∑
j=1

aijhg(Xj) (i = 1, . . . , s)

x1 = x0 +

s∑
i=1

bihg(Xi).

Introducing the variables Yi = (I − γhf)−1(Xi), these equations become

(I − γhf)(Yi) = x0 +

i−1∑
j=1

aijhf(Yj) (i = 1, . . . , s)

x1 = x0 +

s∑
i=1

bihf(Yi),

which is equivalent to

Yi = x0 +

i−1∑
j=1

aijhf(Yj) + γhf(Yi) (i = 1, . . . , s)
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x1 = x0 +

s∑
i=1

bihf(Yi).

Here we recognize the formula of a time step by an SDIRK method with Butcher-
tableau

γ
a21 γ
...

. . .

as1 as2 as,s−1 γ

b1 b2 . . . bs

applied to the original vector field. □

Let us remark that a similar argument works in the DIRK case, however
the transformation is more complicated. When we are at step n and time tn,
we may define hg such that

hg(tn + h

s∑
j=1

aij , x) =
(
hf ◦ (I − γihf)

−1
)
(x) (i = 1, . . . , s)

holds. Then the above argument can be repeated with the appropriate γi in
place of γ.

4 SDIRK methods through the Möbius
transformation

In this section we investigate the behaviour of SDIRK methods on linear
problems through the Möbius transformation.

The two fundamental topics of interest are stability and consistency. In the
linear case, both of these are studied through R̃, the stability function of the
method. The first is related to the magnitude of R̃, the second is to the ability
of R̃ to approximate the (complex) exponential map.

4.1 Stability

In Section 1 we have argued that if the ERK method’s stability function is R,
then the stability function of the method obtained by first transforming the
vector field, then applying this ERK method to it is

R̃(z) = R

(
z

1− γz

)
.

A-stability then becomes

z ∈ C− =⇒
∣∣∣R̃(z)

∣∣∣ ≤ 1.
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Therefore it is enough to require that image of the left half-plane by the Möbius
transformation is contained in the stability region of the explicit method. The
previous set is the disk centered at − 1

2γ with radius 1
2γ , thus A-stability may

be written as

|z| ≤ 1 =⇒
∣∣∣∣R(−1 + z

2γ

)∣∣∣∣ ≤ 1.

Letting P (z) = R
(

−1+z
2γ

)
, the condition becomes that P should map the unit

disk into itself.
Assuming that the coefficients of P are ck, we have that

ck =
1

k!
R(k)(−(2γ)−1)(2γ)−k.

Forming a vector c of these coefficients, we have the following. Due to Parseval’s
theorem, a necessary condition is that ∥c∥2 ≤ 1. On the other hand, one
sufficient condition is that ∥c∥1 ≤ 1, implying that ∥c∥2 ≤ 1√

degP+1
is enough.

4.2 Consistency

As we have already mentioned, the order of consistency depends on how well
the stability function approximates the exponential map. More precisely, the
SDIRK method satisfying the linear order conditions up to order p can be
expressed briefly as

R̃(z) = exp(z) +O(zp+1).

This implies that we are facing the approximation problem

R̃(z) = R

(
z

1− γz

)
≈ ez

for some polynomial R.

4.3 Möbius–Laguerre expansion of ez

Let us introduce the modified Laguerre polynomials

L̃n(γ) =

{
1 n = 0
1
n (−γ)n−1Ln−1(γ

−1) n ≥ 1,

where Ln is the nth Laguerre polynomial [7, with α = 1]. Then the following
theorem holds.

Theorem 4.
∞∑

n=0

L̃n(γ)

(
z

1− γz

)n

= ez
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Proof The generating function of Ln is
∞∑

n=0

Ln(x)t
n =

1

(1− t)2
exp

(
− tx

1− t

)
, |t| < 1.

Multiplying both sides by (1− t)2, this is equivalent to

L0(x)+(L1(x)−2L0(x))t+

∞∑
n=2

(Ln−2(x)−2Ln−1(x)+Ln(x))t
n = exp

(
tx

t− 1

)
, |t| < 1.

The recursion

Ln(x) =


1 n = 0

2− x n = 1(
2− x

n

)
Ln−1(x)− Ln−2(x) n ≥ 2

implies that this can be rewritten as

1− xt+

∞∑
n=2

(
−x

n
Ln−1(x)

)
tn = exp

(
tx

t− 1

)
, |t| < 1,

where the term −xt can be moved into the sum with n = 1. Substituting

t =
zγ

γz − 1
, x =

1

γ
,

and using that t(t− 1)−1 is an involution, we arrive at our result

1 +

∞∑
n=1

(
− 1

nγ
Ln−1(γ

−1)

)(
zγ

γz − 1

)n

= ez .

□

We remark that the relation between Laguerre polynomials and the stabil-
ity function of the SDIRK methods has been explored previously [5], but not
through the Möbius transformation perspective.

4.4 A remark on implementation

The mathematical equivalence outlined in this paper is well mirrored in code.
In a fairly standard imperative style implementation of an SDIRK method

one has three main layers - loops - of computation. First there are the time
steps. Inside each of these are the stage steps, which calculate the stage values
and derivatives. Inside each of these calculations one has to solve a typically
nonlinear equation of the form

ki = f

(
i−1∑
j=1

aijhkj + γhki

)
.

This is usually done using an iterative Newton-like method, which becomes our
last layer of computation, below this lie the majority of vector field evaluations.

If implemented in the Runge–Kutta–Möbius sense, the layers stay the same
with the distinction that the iterative solver is moved down to the layer of
vector field evaluations.
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The reason for this is twofold. Firstly, in an explicit method there is no
need for equation solving during the stage steps. Secondly, implementing an
inversion such as (I − γhf)−1(c) is in practice done by solving the equation
c = (I − γhf)(x).

Therefore the two viewpoints yields similar code. This brings similar
computational costs. However, when the evaluation of the map

hf ◦ (I − γhf)−1

is cheaper than the solution of the corresponding nonlinear equation, the
Möbius style dominates.

5 A family of Runge–Kutta–Möbius methods

In this section we are going to construct a family of Runge–Kutta methods.
We describe their B-stability and look at their order conditions.

5.1 Construction

Assume a fixed γ > 0. Let us introduce the elementary Runge–Kutta–Möbius
method N1(α) identified with its step function

N1(α) = (I − (γ − α)hf) ◦ (I − γhf)−1.

This is a single stage implicit Runge–Kutta method since

N1(α) = I + αhf ◦ (I − γhf)−1.

We define the s-stage elementary Runge–Kutta–Möbius (RKM) method as a
composition of these

Ns(b1, . . . , bs) =

◦∏
j=s→...1

N1(bj).

We will use the following remark in showing that these are Runge–Kutta
methods.

Corollary 1 The stage value functions Si(a1:i,1:i−1) of an SDIRK method satisfy the
recursion

Si(a1:i,1:i−1) = (I − γhf)−1

I +

i−1∑
j=1

aijSj(a1:j,1:j−1)

 1 ≤ i ≤ s.

The pre-stage value functions Pi(a1:i,1:i−1) of an SDIRKmethod satisfy the recursion

Pi(a1:i,1:i−1) = I +

i−1∑
j=1

aijhf(I − γhf)−1Pj(a1:j,1:j−1) 1 ≤ i ≤ s.
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SDIRK methods are themselves pre-stage value functions.

Proof This is the functional form of Theorem 3. □

Theorem 5. An s-stage SDIRK method satisfying the constant off-diagonal
columns condition

aij = bj for 1 ≤ j < i ≤ s

is an s-stage elementary RKM method

Ns(b1, . . . , bs) = Ns(b1:s).

Proof We proceed by induction. The one-stage case is clear. Let G = hf(I−γhf)−1,
then

Ns(b1:s) = I +

s∑
i=1

biGPi(a1:i,1:i−1)

= I +

s∑
i=1

biGPi(b1:i−1)

= I +

s−1∑
i=1

biGPi(b1:i−1) + bsGPs(b1:s−1)

= Ns−1(b1:s−1) + bsGNs−1(b1:s−1)

= (I + bsG)Ns−1(b1:s−1)

= N1(bs)Ns−1(b1:s−1).

□

5.2 Stability

The stability function of these methods takes the form of

det(I − zA+ z1⊗ bT )

det(I − zA)
=

1

(1− zγ)s

s∏
i=1

(1− zγ + zbi) =

s∏
i=1

1− (γ − bi)z

1− zγ
,

since I + z1⊗ bT − zA is upper triangular with diagonal elements 1− zγ+ zbi.
Clearly, since this is the product of the stability functions of the components.

Due to the construction, both A- and B-stability can be guaranteed by
requiring the components to be A- and B-stable, respectively.

Let us characterize the B-stability of the components.

Theorem 6. When 0 < γ, the statements
i) M2[F ] < 0 =⇒ L2[(I − αF )(I − γF )−1] ≤ 1,
ii) |α| ≤ γ
are equivalent.
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Proof The inequality of the first point is equivalent to

∥(I − αF )(I − γF )−1(x)− (I − αF )(I − γF )−1(y)∥22 ≤ ∥x− y∥22,

for all suitable x ̸= y in a suitable domain. We introduce u = (I − γF )−1(x) and
v = (I − γF )−1(y) to rewrite this as

∥(I − αF )(u)− (I − αF )(v)∥22 ≤ ∥(I − γF )(u)− (I − γF )(v)∥22.

Let J = u− v,H = F (u)− F (v), then this is just

∥J − αH∥22 − ∥J − γH∥22 ≤ 0.

Solving
J − αH = X + Y, J − γH = X − Y

we get

X = J − α+ γ

2
H, Y =

γ − α

2
H.

So we continue with the polarization identity,〈
J − α+ γ

2
H,

γ − α

2
H
〉
≤ 0,

which is equivalent to

γ − α

2
⟨J,H⟩ ≤ γ2 − α2

4
⟨H,H⟩.

From the assumptions we have that ⟨J,H⟩ ≤ 0 ≤ ⟨H,H⟩. Considering the signs of
γ − α and γ + α, there are four cases.

On the one hand, when γ ≥ α and γ ≥ −α, the inequality holds.
On the other hand, setting f = cI, and dividing both sides by ⟨J, J⟩ > 0, we get

γ − α

2
c ≤ γ2 − α2

4
c2.

Thus, picking c < 0 constants appropriately, we see that the case where γ ≥ α and
γ ≥ −α hold, is the only possible one. □

Corollary 2 The elementary RKM method N1(α) is B-stable if and only if

|γ − α| ≤ γ.

Proof Apply Theorem 6 to the elementary RKM method

N1(α) = (I − (γ − α)hf) ◦ (I − γhf)−1.

□

5.3 Consistency

In Theorem 5, we have seen that these are SDIRK methods. Therefore, the
Φs(t) weight of a t rooted tree can be expressed as a polynomial in γ, where
the coefficients do not depend on γ, and these coefficients can be expressed
in terms of tree weights of the underlying ERK method [2]. We are going to
concentrate on the latter.
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More precisely, we shall provide formulae for separating the last k of the bi
parameters from the rest in the order conditions. Firstly, one might separate
bs from the rest using the formula

Φs(t) = bs
∏

t′∈unroot(t)

Φs−1(t
′) + Φs−1(t),

where unroot maps a tree to a forest by removing its root node (and the
corresponding edges). We will use t′ ∈ t to denote the same thing.

We are going to need the elementary symmetric polynomials

ej(x1, . . . , xn) =
∑

1≤i1<i2<...<ij≤n

xi1xi2 . . . xij .

For example,

e0(x, y, z) = 1,

e1(x, y, z) = x+ y + z,

e2(x, y, z) = xy + xz + yz,

e3(x, y, z) = xyz.

These have the property that

ek+1(x1, . . . , xn+1) = ek(x1, . . . , xn)xn+1 + ek+1(x1, . . . , xn).

We introduce the formal expressions

Ej(x1, . . . , xn)Φ(t) =
∑

1≤i1<i2<...<ij≤n

xi1

∏
t′∈t

xi2

∏
t′′∈t′

· · ·xij

∏
t(j)∈t(j−1)

Φ(t(j)).

We will use the shorter notation and write this expression as

Ej(x1, . . . , xn) =
∑

1≤i1<i2<...<ij≤n

x1
Π′

x2
Π′′ · · · xj

Π(j).

For example,

E0(x, y, z) = 1,

E1(x, y, z) = xΠ
′ + yΠ

′ + zΠ
′,

E2(x, y, z) = xΠ
′
yΠ

′′ + xΠ
′
zΠ

′′ + yΠ
′
zΠ

′′,

E3(x, y, z) = xΠ
′
yΠ

′′
zΠ

′′′.

These satisfy the recursion

Ek+1(x1, . . . , xn+1) = Ek(x1, . . . , xn) xn+1
Π(k+1) + Ek+1(x1, . . . , xn).
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Theorem 7. Assume k ≤ s. Then

Φs(t) =

k∑
j=0

Ej (bs, . . . , bs−k+1) Φs−k(t).

Proof The k = 0 case is clear. We proceed by induction.

Φs(t) =

k∑
j=0

Ej (bs, . . . , bs−k+1)Φs−k(t)

=

k∑
j=0

Ej (bs, . . . , bs−k+1)
(
bs−k

Π(j+1) + 1
)
Φs−k−1(t)

=

 k∑
j=0

Ej (bs, . . . , bs−k+1) bs−k
Π(j+1) + Ej+1 (bs, . . . , bs−k+1)

Φs−k−1(t)

+

 k∑
j=0

Ej (bs, . . . , bs−k+1)− Ej+1 (bs, . . . , bs−k+1)

Φs−k−1(t)

=

k+1∑
j=1

Ej(bs, . . . , bs−k) + E0(bs, . . . , bs−k+1)− Ek+1(bs, . . . , bs−k+1)

Φs−k−1(t)

=

k+1∑
j=1

Ej(bs, . . . , bs−k) + 1− 0

Φs−k−1(t)

□

Corollary 3 Assume k ≤ s, then, for any lanky tree tl,

Φs(tl) =

k∑
j=0

ej (bs, . . . , bs−k+1)Φs−k(tl)

holds.

Proof Unrooting a lanky tree yields a forest that has a single member, a lanky tree
of size one less. Thus, Π(k) can be removed from the formula, and we are left with
the elementary symmetric polynomials. □

Corollary 4 Given γ and the first s−k of the bi coefficients, it is possible to construct
a polynomial such that choosing its roots as the last k of the bi coefficients, the
method satisfies the first k linear order conditions.
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Proof Apply the previous formula to the first k lanky trees one by one to recursively
get equations of the form

ej(bs, . . . , bs−k+1) = cj (j = 1, . . . , k).

These are Viète-formulae that provide the coefficients of the polynomial. □

6 Conclusion

In this paper we have considered a complex Möbius transformation

Mγ : C → C, z 7→ z

1− γz

for some γ > 0. This maps the left complex half plane to the inside of a circle
of radius γ−1.

Firstly, we have extended this transformation to linear systems. In Theorem
1, we have shown that this extension maps matrices with non-positive spectral
abscissa to matrices with 2-norm at most γ−1.

Secondly, we have extended this transformation to the nonlinear system
case via the formula

hf 7→ hf ◦ (I − γhf)−1.

In Theorem 2, we have shown that this extension maps uniformly negative
monotone, Lipschitz-continous vector fields to ones with a Lipschitz-constant
at most γ−1.

Thirdly, we have argued that a step size scaled vector field hf transformed
this way will therefore have an h-independent, small bound on its Lipschitz
constant. Therefore an ERK method may be applied to the transformed vector
field. In Theorem 3, we have show the equivalence

SDIRK ⇔ ERK+Mγ ,

which says that applying an ERK method and transforming the step size
scaled vector field with Mγ yields the same numerical solution as applying the
corresponding SDIRK method.

Fourthly, we have used the Möbius transformation to view the stabil-
ity function of SDIRK methods, and by consequence their linear order and
stability conditions in a new light. The transformation led us to prove a
Möbius–Laguerre expansion to the exponential function in Theorem 4,

∞∑
n=0

L̃n(γ)

(
z

1− γz

)n

= ez.

Then, we have remarked that the transformation viewpoint isolates the
equation solver, and speeds up calculation when hf(I − γhf)−1 has a known
closed form.

Lastly, we have used another Möbius transformation to define a new family
of RKM methods. We have shown that these are SDIRK methods. In Theorem
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6, we have extended the proof of Theorem 2 to characterize their B-stability,
and lastly, explored their order conditions.
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