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Abstract

The multiconfigurational dynamical symmetry (MUSY) is applied for
the unified description of the spectra of 20Ne, 28Si, 36Ar, and 44Ti nuclei.
They contain shell-like configurations in the ground-state region, core-plus-
alpha states above the alpha-separation energy, and exotic cluster states
from heavy-ion reactions. The excitation energy and the quadrupole defor-
mation cover large ranges. The gross features of the spectra are reasonably
well reproduced by a simple Hamiltonian, in some cases even parameter-
free predictions are obtained for high-lying cluster spectra from the low-
lying quartet bands in good agreement with experimental observation.
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1 Introduction
Our knowledge on nuclear spectrum is clusterized along the energy axis. The
most experimental details are available in the ground-state region, of course.
With increasing energy the spectrum is less well-established. Above the separa-
tion energy of the nucleons or alpha particles a rich set of data is obtained again
from the corresponding reactions. Due to the heavy-ion resonances a further re-
gion is available at even higher energy. These islands may or may not overlap
with each other, and can span as much as 50 MeV, or so.

The physical nature of the states can be very different. In the low-energy
region they are usually known to be single-particle or collective excitations,
while above the thresholds they can be e.g. core-plus-alpha, or more exotic
(12C, 16O,...) cluster states.

From the viewpoint of the deformation the situation is somewhat similar.
The well-studied ground-state region usually has a moderate deformation. With
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increasing deformation the band structure is less known. When, however, the
elongation is large enough, and the ratio of the major axes is near 2:1:1, i.e.
we reach the superdeformed shape, then again nice collective bands are seen
from multiple coincidence experiments. This region is also called as a second
minimum, referring to the next valley of the potential energy. Theoretical stud-
ies show a third minimum as well, corresponding to the hyperdeformed shape
(3:1:1), and experimental efforts are in line to observe them.

The unified theoretical understanding of these phenomena is a great chal-
lenge. Various models are applied for the description of the spectra, usually
addressing some definite section of the problem. Comprehensive discussion of
different configurations in different ranges of energy and deformation is hardly
available. Here we investigate the question, how the multiconfigurational dy-
namical symmetry (MUSY) is able to account for the gross features of the spec-
trum in a unified way, incorporating different configurations in a large range of
energy and deformation. MUSY is the common intersection of the shell, collec-
tive and cluster models for the multi-major-shell problem [1, 2].

In what follows first we recall (in Section 2) some basic features of MUSY,
then we apply it to four nuclei (in Section 3), each having spectra of different
configurations in a large range of excitation energy and quadrupole deformation.
Finally (in Section 4) a brief summary is given and some conclusions are drawn.

2 Multiconfigurational dynamical symmetry
MUSY provides us with a unified classification scheme of the shell, collective
and cluster models [1, 2]. It is defined by the algebra-chain

Us(3)⊗ Ue(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3). (1)

In addition to having a simple dynamical symmetry in each configuration,
a further symmetry connects the different configurations to each other [1, 2].
The transformations of the connecting symmetry act in the pseudo space of the
particle numbers.

A particularly simple Hamiltonian which is invariant with respect to the con-
necting transformations is obtained, when it is written in terms of the Casimir
operators of the algebras U(3) ⊃ SU(3) ⊃ SO(3). An example is presented in
detail in the next section.

MUSY bridges the shell and cluster models, as mentioned before. The shell
side of MUSY [3], applies a model space which is practically identical with
that of the symmetry-adapted no-core shell model (SA-NCSM) [4], apart from
the technical difference in the coupling scheme (proton-neutron versus spin-
isospin). Therefore, the relation of these two models are very simple. Due to
the dynamically symmetric Hamiltonian the shell model in the MUSY is a sim-
plification of the SA-NCSM. But it is not a contraction in the sense how e.g.
the contracted symplectic model [5] is obtained from the symplectic model [6].
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No bosonization, or any other simplification of the model space is taking place,
just the interactions have a (much) simpler form. (In some applications, like
here, a simplified version of the shell model is applied, which is called semimi-
croscopic algebraic quartet model (SAQM) [3], containing only Wigner-scalar
UST (4) representations [7]. This is, however, only a truncation governed by the
physical problem, not a model assumption.)

As for the relation to the symplectic [6], and contracted symplectic model
[5], the following can be said. By exploring the role of the many major-shell ex-
citations in the shell model description of the collective phenomena these models
(together with the cluster model) made possible to find the connecting symme-
try (MUSY). In particular in each of these approaches the Us(3)⊗Ue(3)⊃U(3)
basis gives the classification scheme. This algebraic structure is, however, not
connected exclusively to the symplectic algebra (see e.g. [8,9]). In MUSY U(3)
bases are applied (not symplectic one).

Due to the microscopic treatment of the model spaces, i.e. all the nucleon
degrees of freedom are taken into account, and the Pauli-principle is appreci-
ated, the different configurations may overlap with each other. An especially
interesting case is when this overlap is 100%. Such situations can easily be
realized once we construct the full no-core shell model space up to a certain ex-
citation number. The shell model basis is complete, therefore, any state vector
can be expanded in this basis, and the basis states belonging to different SU(3)
irreducible representations (irreps) are orthogonal to each other. Thus in case
the multiplicity of the shell model basis of a specific SU(3) irrep is 1, then all
the (different cluster) configurations are identical with it, having only a single
term in the shell-model expansion. I.e. antisymmetrization may wash out the
difference between various configurations.

We stress here, that this consideration is valid only for the basis states, i.e. for
the situation when one applies a dynamically symmetric Hamiltonian, in which
case the U(3) basis states are energy eigenstates. In reality the configuration mix-
ing is essential, of course, and the real nuclear states are linear combinations of
U(3) basis states. To the extent, however, U(3) is a good symmetry the relations
we discussed are valid. And several independent studies show that U(3) is a rela-
tively good approximation to many states in the ground-state region, or in shape
isomers. Therefore, the overlap mentioned here can play an important role. It is
worth emphasising, especially in light of the fact that this aspect is completely
neglected in many phenomenological approaches to clusterization, and the shell
and different cluster configurations are considered to be orthogonal.

A further interesting feature of the MUSY is that it shows a dual breaking of
symmetries. In this respect it is similar to the dynamical symmetry of the Elliott
model as well as to many other dynamical symmetries of the nuclear structure
models. [10]. In particular, the U(3) and SU(3) symmetries are dynamically
broken by the symmetry breaking interaction, represented by the invariant op-
erator of the SO(3) algebra. On the other hand the total Hamiltonian separates
into an intrinsic (U(3) and SU(3) dependent), and a collective (SO(3) dependent)
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parts. In other words, the fast and slow degrees of freedom are separated. Both
parts of the Hamiltonian are SO(3) invariant, but the ground state (and many
other states) of the intrinsic Hamiltonian are not rotationally invariant. Thus
the SO(3) symmetry is spontaneously broken in the eigenvalue problem of the
intrinsic Hamiltonian [11]. Furthermore, as pointed out in the previous para-
graph, the nonspherical shape of the intrinsic state can have seemingly different
configurations, but the differences might be washed out by the antisymmetriza-
tion. When the total Hamiltonian is considered, then the (rotational) symmetry
is recovered, as it is usual in the spontaneous breaking [11].

3 Description of spectra by MUSY
Here we show the application of the MUSY for the description of the spectra
of 20Ne, 28Si, 36Ar and 44Ti. First we present the way of calculation, then we
consider the nuclei one-by-one.

We have applied a simple MUSY Hamiltonian, which has an analytical so-
lution in the U(3)⊃SU(3)⊃SO(3) basis:

Ĥ = (~ω)n̂+ aĈ
(2)
SU(3) + bĈ

(3)
SU(3) + d

1

2θ
L̂2, (2)

The first term is the harmonic oscillator Hamiltonian (linear invariant of the
U(3)), with ~ω oscillator strength. The second order invariant of the SU(3)
Ĉ

(2)
SU(3) represents the quadrupole-quadrupole interaction, while the third order

Casimir-operator Ĉ(3)
SU(3) distinguishes between the prolate and oblate shapes. θ

is the moment of inertia calculated classically for the rigid shape determined by
the U(3) quantum numbers (for a rotor with axial symmetry) [12]. The ~ω, a, b
and d parameters were fitted to the experimental data (Table 1). ~ω, a, and b are
measured in MeV, while d is dimensionless.

20Ne 28Si 36Ar 44Ti
~ω 6.82481 6.00604 4.88295 5.14846
a -0.11953 -0.08404 -0.04370 -0.03822
b -0.00025 0.00061 0.00027 0.00074
d 0.79053 1.33197 1.02914 0.86885
α2 1.153 0.366 0.466 0.361

Table 1: The parameters of the Hamiltonian and the E2 transitions obtained from
a fitting procedure.

The in-band B(E2) value is given as

B(E2, Li → Lf ) = (3)

=
2Lf + 1

2Li + 1
α2|〈 (λµ) KLi, (11)2||(λµ)KLf 〉|2C2

SU(3).
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where 〈(λµ)KLi, (11)2||(λµ)KLf 〉 is a SU(3) ⊃ SO(3) Wigner coefficient
[13], and α2 (measured in W.u.) is a parameter (Table 1).

Now, let’s look at the resulting spectra compared to the experiments.
20Ne: This nucleus has a rich experimental spectrum [14,15], which includes

also highly-excited alpha-cluster states. The experimentally identified bands are
described by the lowest-lying model bands with the appropriate spin-parity con-
tent, i.e. the other model bands of the same character are all higher-lying. The
0+1 , 0−, 0+4 , 0+5 , and 0+6 bands are known to have core-plus-alpha character. In
the fitting procedure all bands had a unit weight (Figure 1).

Figure 1: The spectrum of the MUSY (upper part) in comparison with the ex-
perimental data of the 20Ne nucleus (lower part). The experimental bands are
labeled by the Kπ , and the model states by the n(λ, µ)Kπ quantum numbers. The
width of the arrow between the states is proportional to the strength of the E2
transition.

28Si: It has a well-established band-structure in the low-energy region, and
to several bands SU(3) quantum numbers could be associated as a joint con-
clusion of experimental and theoretical investigations [16]. In addition, more
recently a new candidate was proposed for the superdeformed (SD) band [17],
which is in line with the predictions of theoretical studies [18,19]. Finally, there
are two cluster configurations: 24Mg+4He and 16O+12C, belonging to reaction
channels in which fine-resolution measurements revealed a rich spectrum of res-
onances. In the fitting procedure all the low energy bands had a unit weight, the
resonances had weight of 0 (Figure 2).

36Ar: This is a special nucleus, because the GS and SD bands of the 36Ar
are known experimentally. [20–23] Furthermore, there is a promising candidate
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Figure 2: The spectrum of the MUSY in comparison with the experimental data
of the 28Si nucleus. The experimental bands are labeled by the available quan-
tum numbers and the other notations are the same as figure 1. The parame-
ters have been fitted to the low-energy part (lower-panel), and the cluster spec-
trum (upper panel) is obtained as a pure prediction, due to the unified multiplet-
stucture and identical physical operators.

for the HD band [24–27]. Besides, in the low-lying region [20–22] we arranged
some states into bands according to their energy-differences. In addition, these
states are observed as different configurations: shell, 32S+4He, 24Mg+12C, and
20Ne+16O. The U(3) quantum numbers of the GS, SD and HD states were de-
termined from a symmetry stability and self-consistency calculation [27]. The
other HD band (of negative parity) are associated with the band that was closest
to the positive band in deformation and had appropriate spin-parity content. Fi-
nally, we assigned the most deformed representations of 0 and 1 ~ω model space
to the three low-energy bands, that had appropriate spin-parity content. In the
fitting procedure the better-known GS and SD bands had a unit weight, the other
bands had weight of 0.01 (Figure 3).

We determined the shapes of some of the states as well (Figure 4). From
the shell model side the quadrupole shape is given by the U(3) quantum num-
bers. The 20Ne+16O, 24Mg+12C, 32S+4He cluster configurations can be ob-
tained from the Harvey prescription [28, 29] and from the U(3) selection rule
[30–32] which describes the structural aspect of the fusion (or fission) of a nu-
cleus in terms of the harmonic oscillator basis. Since the multiplicity of the
relevant U(3) representation is 1 in the shell basis, these shell and cluster con-



7

figurations turn out to be identical with each other, due to the effect of the anti-
symmetrization (Figure 4).

Figure 3: The spectrum of the MUSY in comparison with the experimental data
of the 36Ar nucleus. The notations are the same as Figure 1. The real strength of
the gray arrows (of the SD and HD bands) are 20 times of the illustrated ones.

44Ti: This nucleus has some well-established low-lying bands [33], and in
addition a reliable experimental evidence is available for core-plus-alpha states
forming four bands [34]. Furthermore, high-lying resonances are populated in
the 28Si+16O reactions [35]. The low-lying bands [33] are associated to those
of the leading SU(3) representations of the quartet model, which correspond to
the largest deformation. The alpha-cluster bands correspond to the lowest-lying
Pauli-allowed representations. Concerning the 28Si+16O cluster states, we as-
sociate their positive and negative parity bands with the leading representations
of the 4 and 5 ~ω excitations. Around this excitation a shape isomer of the 44Ti
nucleus is expected according to the calculations [36] of the self-consistency and
stability of the (quasidynamical) SU(3) symmetry (which is uniquely related to
the quadrupole deformation) In the fitting procedure the well-known states of
the low-lying bands had a unit weight, the states with uncertain spin parity (in
parentheses in compilation [33]) had weight of 0.5 (Figure 5).
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Figure 4: Shape of some states in 36Ar in increasing energy order. In [ ] paren-
thesis, the U(3) labels are indicated, while the first integer shows the major shell
excitation quanta. Note, that the multiplicity of these U(3) states in the shell
basis is 1, therefore, the indicated shell, and cluster configurations have wave-
functions with 100% overlap in each case, as a consequence of the antisym-
metrization.

Figure 5: The spectrum of the MUSY in comparison with the experimental data
of the 44Ti nucleus. In the experimental spectrum α indicates the alpha-cluster
states, while O means the 28Si+16O resonances. The other notations are the
same as Figure 1. The real strength of the gray arrows (16O bands) is five times
the strength of the illustrated ones.
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4 Summary and conclusions

In this paper we have applied the multiconfigurational dynamical symmetry for
the description of spectra of a large range of excitation energy and deformation,
and having various physical nature. We have considered self-conjugate (N = Z)
nuclei, and described their low-lying spectra with the semimicroscopic quartet
model [3], while highly excited states were treated as alpha or more exotic clus-
ter states. MUSY is able to give a unified spectra due to the fact that it is the
common intersection of the shell, collective and cluster models for the multi-
major-shell problem. In particular, it has an Us(3)⊗Ue(3) dynamical symmetry
in each configuration, and furthermore, another symmetry (in the particle-index
space) connects the different configurations to each other.

The Hamiltonians which are invariant with respect to the transformations
from one configuration to another are expressed in terms of operators that are
contracted in the particle index [1, 2]. A particularly simple form is when H is
obtained in terms of invariant operators, but even this condition allows a great
variety, and in our previous applications [1,3,37,38] we have tried some of them.
Here we used a single functional form for the calculation of the spectra of four
nuclei: 20Ne, 28Si, 36Ar, 44Ti. It has four terms, each with well-defined phys-
ical meaning: oscillator quantum, quadrupole interaction, deformation energy
(prolate or oblate), moment of inertia.

It turns out that a simple Hamiltonian with analytical solution is able to ac-
count for the gross features of the spectra of light nuclei in a wide range of
energy (sometimes up to 50 MeV), and deformation (normal, super- and hyper-
deformation) for states of different configurations (shell, collective, and various
clusters). In case of 28Si (where a rich and well-established band structure is
known) we could even extrapolate for the high-lying cluster spectra (16O+12C,
24Mg+4He) from of the low-lying quartet spectrum. It is especially remarkable
that this parameter-free prediction is in good agreement with the experimental
observation.

In addition to giving a unified description of the spectra MUSY also reveals
the interrelations of different configurations. A particularly interesting feature is
the total overlap of the wave functions of the shell and (different) cluster models.
An illustrative example for the 36Ar nucleus is presented in Figure 4.

The approach we presented here shows a considerable similarity to the symmetry-
adapted no-core shell model [4, 39, 40]. The model space of both frameworks
are microscopic and no-core, i.e. incorporates all nucleons. (The difference in
the coupling scheme: proton-neutron in the SA-NCSM, and spin-isospin in the
MUSY is only a technical one, and they can be transformed into each other [41].)

The SA-NCSM applies both model interactions and real nucleon-nucleon
forces, in the latter case it is a real ab initio method. The symmetry (SU(3)
and symplectic) as well as the collective and cluster states emerge from a first-
principle calculation. With MUSY we take a complementary approach, by ad-
dressing the question, how a simple dynamically symmetric Hamiltonian is able
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to describe the shell (or quartet), collective and cluster states in a unified frame-
work. These states are defined by shell (or quartet), collective and cluster mod-
els, which have a common multiplet structure within the MUSY.

In short: MUSY is a model symmetry (in the intersection of semimicro-
scopic models), which can not compete, of course, with real microscopic and
ab initio calculation, like SA-NCSM. This latter one reveals the existence of
symplectic and SU(3) as emergent symmetries from a first principle calculation.
(It is worth noting, however, that the shape isomers are given by the emerging
U(3) symmetry also in case of MUSY. In particular the stable and selfconsistent
SU(3) symmetry is obtained from a model-calculation with symmetry-breaking
terms [36].)

Due to the close similarities (comparable or identical model spaces, govern-
ing role of U(3) symmetry), however, MUSY seems to be a useful possibility for
the extension of the SA-NCSM to ranges of more exotic clusterizations, and to
extreme deformations etc, i.e. into the regions, which are beyond the limits of
the present day calculations for the fully microscopic treatment.
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