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Abstract— Intelligent tires can be used for a wide array of
applications ranging from tire pressure monitoring to analyzing
tire/road interactions, wheel loading, and tread wear monitoring.
In this article, we develop a measurement system for intelligent
tires equipped with a 3-D piezoresistive force sensor. The output
of the sensor is segmented into tire revolution cycles, which
are then represented by a transformation relying on adaptive
Hermite functions. The underlying idea behind this step is to
extract relevant features which capture tire dynamics. Then
we evaluate the proposed measurement system in a potential
vehicle application, that is, abnormal road surface detection.
We deal with the corresponding binary classification problem
by developing both low-complexity analytical and data-driven
machine learning algorithms, which are tested on real-world
measurement data. Our experiments showed that the proposed
methods are able to detect abnormalities on the road surface
with a mean accuracy of over 97%.

Index Terms— Hermite functions, MEMS device, piezoresis-
tive force sensor, smart tires, surface abnormalities, variable
projection neural networks.

I. INTRODUCTION

VEHICULAR automation has been making considerable
progress in the past decade setting new requirements for
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sensing technologies. In this respect, environmental recogni-
tion is a key source of information to replace human control.
The driving conditions are observed by fusing the output
of various sensors mounted on the car, such as cameras,
radar, and LiDAR. The concept of smart tires is another step
toward more accurate environmental sensing. For instance,
tire pressure monitoring systems are already well-known and
infiltrated the mass market. In addition to tire pressure, modern
sensors provide information about tire–road interactions which
can be used in vehicle applications, such as structural health
monitoring of the tires, terrain classification, and optimization
of active safety systems (e.g., ABS, ESP).

The state-of-the-art technologies for intelligent tire systems
include optical sensors, accelerometers, strain sensors, acoustic
wave sensors, and polyvinylidene fluoride (PVDF) sensors [1],
[2]. Each of these approaches has advantages and disadvan-
tages in monitoring the deformation of the tire. For instance,
even though accelerometers are compact, energy-efficient, and
inexpensive sensors, they can track only one specific point
on the tire, and the measured signal is contaminated by the
noise generated from the road surface as well as rotational,
vibrational, and gravitational accelerations [3]. In contrast,
strain sensors are not affected by the rotational speed of the
tire, and they proved to be a better approach to estimate
wheel forces [4]. Wheel forces can also be estimated using
optical sensors [5], [6]. In this measurement setup, a proper
alignment between the detector and the light source is neces-
sary. Hence, the sensor system must be recalibrated after any
misalignment caused by abrupt driving control, such as severe
breaking [3].

In this study, we introduce a wireless lightweight measure-
ment system, which is compact in size (i.e., it does not influ-
ence the balance and stability of the tire) and robust against
abrupt tire deformations, vibrations caused by the engine, and
gravitational accelerations. The proposed force sensor is based
on the piezoresistive technology and estimates the direction
and magnitude of the mechanical forces acting on the tire by
measuring the subsequent changes in the electrical resistance
of silicone components. Although metal-based strain gauges,
as inexpensive and reliable sensors, are widely used to detect
local strain on rigid and flexible materials, their gauge factor
is about (g ≈ 1.5–2) [7] and are not sensitive to normal force
component. In contrast, our 3-D piezoresistive force sensor has
a significantly higher gauge factor (g ≈ 140) and is sensitive
to both lateral (Fx , Fy) and vertical (Fz) force components
providing more information on the local deformation.
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In piezoresistive 3-D force sensors, strain-sensitive resistors
are placed either on four suspended microbeams [8]–[13] or
on a full membrane [14], [15]. To transform the acting shear
force into membrane deformation, either a perpendicular stylus
is mounted on the Si chip [10], [13], [16] or a monolithic Si
microrod is fabricated by bulk micromachining [9], [14], [15].
The reported 3-D sensors have been used to solve engineering
problems across a wide array of fields including medical
[17]–[19], industrial [20]–[22] robotic, and various civil engi-
neering [23], [24] applications which rely heavily on the
information provided by such sensors. In this work, for the
first time, a 3-D force sensor is integrated into a car tire to
collect and analyze information from its cyclic deformation.
To enhance the mechanical robustness of the force sensor, the
double-side processed Si was anodically bonded to a glass
substrate and a novel flexible packaging technique was applied.

As a case study, the problem of road surface abnormality
detection is discussed, which is a well-studied and important
environmental recognition problem in vehicle control. The
benefits of accurate road surface abnormality detection are
twofold. First, combined with global position information,
detected abnormalities can be reported to a centralized data-
base greatly reducing maintenance costs and increasing the
efficiency of traffic control [25]–[28]. On the other hand, one
can estimate the overall road quality from the frequency of
detected abnormalities and apply changes to the dynamical
characteristics of the vehicle (e.g., speed, acceleration, sus-
pension) [29]. In the second part of the article, we show that
the proposed wheel sensor can be effectively used to detect
road surface abnormalities (e.g., potholes, bumps). To this end,
we develop analytical and data-driven models which rely on
the data obtained from the proposed wheel sensor.

The rest of this article is organized as follows. In Section II,
we describe the characteristics of the proposed force sensor,
the technical details on tire integration, and the interpretation
of the measurement data. Section III provides information on
our test vehicle and the installation of our measurement sys-
tem. In Section IV, we discuss the preprocessing steps applied
to the output of the sensor, followed by a low-dimensional
Hermite representation of the data in Section V. In Section VI,
we introduce analytic and data-driven indirect measurement
schemes [30] for road surface abnormality detection. Then,
we specify the classification methods along with their hyper-
parameter selection in Section VII. The discussion of the
experiments and the results can be found in Section VIII.
Finally, Section IX is a summary of conclusions and future
plans.

II. SENSOR DESCRIPTION

The 3-D force sensor (see Fig. 1) was fabricated using
conventional MEMS technology steps. A double-side pol-
ished, (100) Si-on-insulator (SOI) wafer, having a 50-μm-thick
n-type doped device layer, was processed on both sides and
bonded anodically to a boron glass wafer. On the device
side of the SOI wafer, eight Si resistors were formed by
boron implantation. Four of them were placed on the strained
membrane along the <110> crystallographic directions, while

Fig. 1. Silicon-based 3-D force sensor from (a) front and (b) back. The
anodically bonded glass substrate increases the mechanical stability of the
sensor, provides a cavity underneath the deforming membrane, and ensures
wire contacts required for assembly.

four further ones on bulk Si to provide references. The four
sets of static and sensing piezoresistors are then connected
into half Wheatstone bridges to provide maximum out-of-
balance voltages upon deformation of the membrane. After
that, by means of a two-step deep reactive ion etching (DRIE)
process, a circular Si membrane and a concentrically posi-
tioned cylindrical joystick were released from the base side of
the SOI wafer. The diameter of the emerging joystick and that
of the full membrane disk is 250 and 500 μm, respectively.
The role of the bonded glass substrate is threefold, it renders
mechanical stability for the chip, provides excess for the
wire bondings, and limits the maximal deformation for the
membrane by forming a cavity beneath it.

The relationship between the change in bridge voltages and
the force components is linear, which is described by the
following equations:

Fx = 1

v0αlsπ44

(
�Vright − �Vleft

)

Fy = 1

v0αlsπ44

(
�Vtop − �Vbottom

)

Fz = 1

v0αlnπ44

×
(

�Vright + �Vleft + �Vtop + �Vbottom

2

)
(1)

where Fx , Fy , and Fz are the tangential (X and Y ) and the
normal (Z ) force components, respectively, V0 and �Vpositions

denote the common and the measured voltages at each bridge,
π44 is the dominant piezoresistive coefficient, and αln and αls

are the linear normal and shear coefficients in the given geo-
metric arrangement, respectively. It is important to emphasize
that the forces in (1) refer to the loads acting on the sensor
itself, and the relationship between the forces acting on the
tires of the vehicle and the output signals of the embedded
sensor is more complex and interrelated.

As for measuring tire deformation, there are two crucial
issues, the position and the method of the embedding. To meet
these requirements, we have worked out a patented multistep
process [31] that can be followed in Fig. 2.

After mounting and wire-bonding the force sensor on a
flexible printed circuit board (PCB), a hemispherical polymer
protecting coverage was molted on the top of the sensor.
To prevent turning the PCB out from the seat while the vehicle
is running, a metal disk was glued to the back of the board.
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Fig. 2. Schematic of the embedding process. Due to the air gap, the sidewall
deformation of the tire can be transmitted to the joystick through the tire repair
ring and the flexible silicone coverage.

Fig. 3. Complete device integrated in a tire. Tire repair patches were also
used here to fix the readout electronics and the RF coil to the tire tread.
To avoid wire breaks due to the relative movement between the sensor and
the accessories, flexible PCB and spiral cables were applied.

The metal disk was fixed to the inner sidewall of the tire with
adhesive in the seat formed of a tire repair patch. Another tire
repair patch was glued to this rubber and to the silicone cover-
age of the sensor, leaving an air gap between the patches. This
air gap ensures that the sensor membrane deforms according to
the sidewall of the tire. To protect the sensor from the outer
harsh environment and obtain the highest response signals,
the inner sidewall was chosen as the embedding location.
Experience has shown that the greatest deformation within the
sidewall occurs near the tread; as a result, the sensor was glued
there (see Fig. 3).

III. VEHICLE INTEGRATION

To retrieve the data from the sensor built into the inner
sidewall of the tire, we developed a readout electronics capa-
ble of driving the voltage bridges with 2.5 V, conditioning
the signals, and transmitting the data wirelessly. The readout
electronics was powered by a LiPo battery that can be charged
from outside the tire with a commercially available RF charg-
ing coil. Both the electronics and the RF coil were fixed to
the tread as a less compliant area of the tire (see Fig. 3).

To carry out the real-world experiments, two test tires were
mounted on a Nissan Leaf provided by the Institute for Com-
puter Science and Control. The external receiver electronics
were placed in the engine bay of the car as close as possible
to the tires to ensure continuous signal transmission, while still
protecting the receiver from damage (see Fig. 4). The CAN
bus wiring was routed from the trunk to the front, between
the on-board computer and the receivers, with a power supply
connected near the computer in the trunk. The received signals

Fig. 4. Off-tire receiver and data conversion electronics. The PCBs were
placed in a 3-D-printed box to protect them from harsh environment. The red
arrows indicate the final position of the electronics.

were encoded according to our own CAN BUS protocol for
local processing and data recording. The CAN communication
ensures synchronization between the tire sensor signals and
other dynamics data, such as accelerations, speed, angular
momentum, and GPS coordinates. These signals are partly
collected from our own sensors installed on the vehicle, using
our own CAN network and partly from the stock vehicle
sensors that we can access.

For the final test, two different, well-separable road surfaces
were chosen in Budapest. One, the so-called “normal” surface,
was a newly paved, perfect asphalt pavement, while the other,
“abnormal” surface, was an old, poor quality concrete road
with potholes. We passed through both the pavements many
times and recorded the signals of the tire sensors along with
other dynamic data from both our own and vehicle CAN
buses. To comply with traffic safety regulations and to ensure
equipment and personnel safety, measurements were consid-
ered with vehicle speeds ranging from 4 to 56 km/h.

Our test tires had a circumference of 199 cm, and the
above-described equipment recorded data with a sampling
rate of 1000 Hz. In this setup, if we consider a constant
vehicle velocity of 50 km/h, a single tire revolution would be
represented by 143 data points. This is a sufficient amount of
data for modeling the sensor output using the representation
described in Section V. In fact, similar signal models were
used in [32] to represent the so-called QRS complexes of
ECG recordings. These signals consisted of 100 data points
and shared morphological similarities with wheel sensor mea-
surements.

IV. DATA PREPROCESSING

When the vehicle is in motion, the implanted force sen-
sor produces a quasi-periodic, quasi-compact signal for each
revolution of the tire. To use wheel sensor-based signals for
surface abnormality detection, we analyze the properties of
each full period (corresponding to a full rotation of the tire),
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Fig. 5. Preprocessed, tire implanted force sensor outputs, representing a
single revolution of the wheel. Top: A preprocessed signal segment labeled
“normal.” Bottom: A preprocessed signal segment labeled “abnormal.”

and thus we need to segment the measurements. To achieve
this, we adapted a discrete wavelet transform-based segmen-
tation algorithm [33] originally created for use with ECG
signals. We exploited the close spatial and behavioral resem-
blance between ECG signals and the output of the implanted
force sensor. We note that our test vehicle is currently being
equipped with accurate wheel-angle measuring sensors, and
therefore, algorithmic segmentation of the measurements may
not be necessary in the future. Each segmented measurement
was allocated a “normal” or an “abnormal” label using ground-
truth data. Our method of obtaining ground-truth information
is detailed in Section VIII.

To periodize the resulting signal segments, we removed the
baseline connecting the first and the last sample values from
each segment. Note that the number of data points which
make up a single rotation of the wheel changes with the
vehicle speed. Therefore, zero padding was also applied to
equalize the sampling points in each segmented period. The
maximal length of a period was identified as 500 data points,
and any periods longer than this (e.g., if the vehicle stood
still for sometime) were disregarded. Periods of fewer than
500 data points were zero-padded to match this length. Fig. 5
illustrates two example measurements, each representing a
single revolution of the tire.

V. MODELING SENSOR DATA USING ADAPTIVE

HERMITE FUNCTIONS

An intuitive assumption for wheel-sensor-based road abnor-
mality detection is that measurements corresponding to abnor-
mal road conditions will contain more noise than signals
measured on a normal surface. This is to be expected, since on
an abnormal, bumpy surface the tire of the vehicle is subjected
to quickly changing mechanical forces. As a consequence, the
noise level of the measurements can be a good feature to detect
road surface abnormalities. For this reason, we propose a
transformation to fit and remove the smooth part of the signal.
In Section VI-A, we demonstrate that measuring the noise
levels on the transformed residuals allows for more precise
surface abnormality detection methods. We now proceed to
describe adaptive Hermite functions as introduced in [34] and
provide insight into why transformations based on them are
especially useful when processing tire sensor output signals.

Hermite functions have a long history of successful appli-
cations in signal processing. The original Hermite function
system was first shown to be an effective tool for modeling the
so-called QRS complexes in ECG signals [35]. Since this first
application, subsequent generalizations of Hermite functions
have been used to design adaptive orthogonal transformations
for several biological signals [34], [36]–[39]. These trans-
formations formed the basis of many segmentation, illness
identification, and classification tasks [40], [41]. In Section IV,
we already alluded to the similarities between the force sen-
sor’s output and several types of biological signals such as
ECG measurements and action potentials. We now proceed
to further exploit these similarities and describe an adap-
tive Hermite-function-based orthogonal transformation which
forms the basis of our proposed road surface abnormality
detection algorithms.

Let us denote the n-th Hermite polynomial [42] by
hn (n ∈ N). These polynomials are orthogonal in the weighted
Lebesgue space L2

w(R), where w(x) := e−x2
. Using the

Hermite polynomials, we can define the so-called Hermite
functions as

�k(x) = hk(x) · e−x2/2/
√

π1/22kk!, (k ∈ N) (2)

which form an orthonormal and complete function system in
L2(R), with respect to the inner product and norm

� f, g� =
∫ ∞

−∞
f (x)g(x)dx, � f �2 = √� f, f �

where f, g ∈ L2(R).
It is well-known that the best approximation from the

subspace span{�k 0 ≤ k < n} ⊂ L2(R) to any function
f ∈ L2(R) can be computed by the Hermite–Fourier partial
sums

f ≈ f̂ =
n−1∑
k=0

� f,�k ��k (n ∈ N). (3)

Such smooth approximations of compact or quasi-compact
signals can be especially precise, because the modulus of the
functions �k(x) decays exponentially as |x | tends to infin-
ity. As mentioned above, many biological signal processing
applications choose Hermite functions for modeling purposes,
since their shapes resemble characteristic waveforms found
in ECG and EEG signals (such as QRS complexes). Prac-
tically, this means that a low number of Hermite functions
is enough to represent the smooth part of the signal, i.e., n
in (3) is expected to be small. The quasi-compact property
and the shape similarity with the first few Hermite functions
also hold for segmented force sensor measurements. However,
these are nonstationary signals caused by the dynamics of
the vehicle. Indeed, the speed changes affect the width and
the location of the main spike-like waveform in each rotation
cycle (see Fig. 6).

To model this phenomenon, we use the affine argument
transformation of the classical Hermite functions

�τ,λ
k (x) := √

λ�k(λ(x − τ )) (x, τ ∈ R, λ > 0) (4)
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Fig. 6. Width of the main waveform in a tire sensor segment and the relative
location of the peak on the time axis changes with the vehicle’s speed. The
two signals depicted above were sampled over equal length time intervals.
Left: Tire sensor output from a single revolution of the tire at low speeds.
Right: Tire sensor output from a single revolution of the tire at higher speeds.

Fig. 7. Top: First three adaptive Hermite functions for fixed dilation and
translation parameters. Bottom: Approximation of a wheel sensor output
segment (red) with a linear combination of adaptive Hermite functions (blue).

where �τ,λ
k ’s are referred to as adaptive Hermite func-

tions [34]. These systems also retain the complete and ortho-
normal properties in L2(R). In addition, this adaptive sys-
tem inherits the properties (quasi-compact behavior, shape
similarities) that make Hermite functions suitable for the
approximation of segmented force sensor signals. We note that
adaptive Hermite functions, their derivatives and partial deriv-
atives with respect to the λ dilation and τ translation para-
meters can be calculated using stable three-term recurrence
formulas. As described below, this will allow us to rely on
gradient-based methods to identify the optimal parameters of
the adaptive Hermite function system. Fig. 7 illustrates some
adaptive Hermite functions and the subsequent approximation
of a wheel sensor output segment.

In applications, we can represent a force sensor measure-
ment segment by y ∈ R

N , (N ∈ N). The components of y can
be thought of as values of the unknown function f ∈ L2(R)
describing the sensor output sampled at specific time instants.
Consider the matrix �λ,τ ∈ R

N×n , whose columns are made
up of discrete samplings of the first n adaptive Hermite func-
tions. Our goal is to find the best possible approximation of
y in the form

y ≈ �λ,τ c =
n−1∑
k=0

ck · ϕ
λ,τ
k (5)

where ϕ
λ,τ
k ∈ R

N stand for the discretized adaptive Hermite
functions, and ck denotes the kth coordinate of c ∈ R

n . For
any given λ and τ , the best linear least squares approximation
can be calculated by c = (�λ,τ )+ y, where (�λ,τ )+ denotes the
Moore–Penrose pseudoinverse of �λ,τ . Thus, finding a good
approximation to the sensor output results in the following
optimization problem:

min
λ>0,τ∈R

∥∥∥y − (
�λ,τ

)(
�λ,τ

)+
y
∥∥∥2

2
. (6)

Note that the transformed signal is the orthogonal projection
of y onto the column space of �λ,τ , hence the operator

P�λ,τ (y) = (
�λ,τ

)(
�λ,τ

)+
y (7)

is referred to as a variable projection operator. Since the partial
derivatives of the adaptive Hermite functions in (4) exist with
respect to λ and τ , (6) can be solved using the gradient-based
methods [43]. In addition to the orthogonal projections, one
can consider the orthogonal complement of P�λ,τ (y), referred
to as the residual signal

P⊥
�λ,τ (y) = y − P�λ,τ (y). (8)

This will be of particular interest to us, as in Section VI,
we develop surface abnormality detection schemes, which
depend on the residual signal of each segment. We sum up
the proposed adaptive orthogonal residual transformation with
the following steps.

1) Solve (6) to determine the optimal dilation λ∗ and trans-
lation τ ∗ parameters for the given signal segment y.
Note that this is different from Section VI-B, where
we discuss a data-driven approach to find λ∗ and τ ∗
by maximizing the abnormality detection accuracy for a
set of signal segments.

2) Approximate y with Pλ∗,τ ∗
� (y) given in (7).

3) Compute the residual P⊥
�λ,τ (y) given in (8).

VI. ROAD SURFACE ABNORMALITY RECOGNITION

We are going to pose the problem of surface abnormality
detection as a binary classification task. To specify and evalu-
ate our classification schemes, we need to define a set of force
sensor measurement segments F along with the corresponding
ground-truth class labels. In our case, a segment y ∈ F
can only be labeled as “normal” or “abnormal” depending
on whether it was recorded on a normal road surface. Then,
we can think of different classifiers (or classification models)
as functions which map measurement segments onto said
labels. To evaluate the proposed classifiers, we will use the
notion of model accuracy. We note that the model accuracy
for classifiers given as

Accuracy = TP + TN

P + N
(9)

is different from the accuracy notion usually considered in
instrumentation and measurement problems [30]. In (9), the
notations “TP” and “TN” refer to the number of times the clas-
sifier correctly identified a measurement segment as abnormal
(TP or true positive) or as normal (TN or true negative). The
notations “P” and “N” refer to the total number of abnormal
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Fig. 8. Top: Standard deviation scores of 100 randomly selected measure-
ment segments. Red points denote the standard deviation scores of abnormal
measurements, while blue points show the scores for measurements acquired
on a normal surface. The classes were shifted vertically for better visibil-
ity. Bottom: Standard deviation scores for the residual signals of the same
100 measurements.

and normal segments in the set to which the classifier was
applied, respectively. In this section, first we demonstrate the
utility of the Hermite-function-based adaptive residual trans-
formation (8) through an analytic classifier in VI-A. Then,
we extend this idea to a data-driven classifier in VI-B to further
improve model accuracy.

A. Analytic Approach

Our analytic classification approach is based on the assump-
tion that measurements corresponding to abnormal road con-
ditions will contain more noise than segments measured on a
normal surface. To empirically verify this hypothesis, we ran-
domly selected 100 force sensor output segments from each
class (normal and abnormal) and compared their noise levels.
Specifically, we analyzed the standard deviation of each mea-
surement. That is, for a signal segment y ∈ R

N , (see Fig. 5),
we calculated the corrected sample standard deviation estimate
using N = 500 signal samples as follows:

s =
√

1

N − 1

∑N

k=1
|yk − μ|2 (10)

where μ is the mean of y. In Fig. 8, we computed the standard
deviation for the raw signal segments and for the correspond-
ing residual signals given in (8). It is evident that the proposed
residual transformation increased the separability of the two
classes. This is also supported by Fig. 9, which illustrates
the distribution of standard deviation scores belonging to the
classes before and after the application of the proposed trans-
formation. Furthermore, let us consider Fisher’s discriminant
ratio

Fr = (μn − μa)
2

μ 2
n + μ 2

a

(11)

where μn and μa denote the means, while μn and μa denote the
variances of standard deviation scores acquired from normal
and abnormal signals, respectively. This ratio can be inter-
preted as a measure for the linear discriminating power of
standard deviation scores between the classes. To illustrate
this, consider the standard deviation score assigned to each
measurement as a projection of that measurement onto the real
line. Consider in addition, the means and variances of these

Fig. 9. Top: Distributions of standard deviation scores of the measured
signals. The vertical line indicates the optimal threshold. Bottom: Distributions
of standard deviation scores of the transformed signals. The area of overlap
is only ≈ 2.5% of the total area under the distribution curves, whereas it is
over 12% when the proposed transformation is not applied.

projections for each class. If the projected values discriminate
well between the classes, then the squared difference of the
means is expected to be large, while the within-class variance
has to remain small. Calculating (11) for the sensor outputs
gives 2.1483, while the same ratio evaluated over the standard
deviation scores acquired from the transformed signals yields
3.6299. This increase further highlights the effectiveness of the
proposed residual transformation in separating the two classes.

Even though the above experiment empirically verified our
assumption on the noise levels of the different classes, com-
paring the standard deviation of residuals does not lead to a
perfect classification performance as can be seen in Fig. 8.
In other words, the standard deviation of the residual sig-
nals may still be a suboptimal feature for indicating road
surface abnormalities. To this end, we further improve the
classification accuracy by considering data-driven classifica-
tion approaches.

B. Model-Based Data-Driven Approach

In this section, we describe the application of VP-NET to
the road abnormality detection problem. VP-NET is a spe-
cial neural network architecture introduced in [32] containing
so-called variable projection layers. These layers (henceforth
referred to as VP-layers) are capable of solving (6) and passing
the results to a conventional fully connected neural network
(FCNN).

The most important benefit of such an approach is that the
parameters of the proposed adaptive transformation are trained
together with the weights of the classifier. When applied to
road surface abnormality detection, VP-NET allows us to
simultaneously determine the optimal parameters of the cor-
responding Hermite function system and the parameters of
the classifier that distinguishes between normal and abnormal
measurements. VP-layers have several modes of operation.
The VP-layer can either pass the linear parameters c in (5) or
the approximations (7) and the residuals (8) of the input signal
to the subsequent layers. In Section VI-A, we have already
established the utility of the adaptive Hermite-function-based
residual transformation (8) to amplify the differences between
normal and abnormal measurement segments. Now, we embed
this residual transformation into the first layer of the VP-NET
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Fig. 10. VP-NET architecture. The first layer implements a variable pro-
jection operator (in our case an adaptive Hermite-function-based residual
transformation). The output of this layer is then passed to an FCNN. The
parameters of the transformation implemented by the variable projection layer
are thus trained together with the weights of the underlying classifier.

architecture via (8)

g(vp)(y) = P⊥
�λ,τ (y) (y ∈ F). (12)

The output of the first VP-layer g(vp)(y), i.e., the residual
signal, is forwarded to the subsequent fully connected layers of
the network, which are responsible for classification. A visual
representation of the VP-NET architecture used in this study
is given in Fig. 10.

Convolutional layers are also commonly used to learn rel-
evant representation of the data; however, as can be seen in
Section VIII, the application of VP-NET is more appropriate
for detecting road surface abnormalities. The reasons behind
this could be traced back to several important differences
between VP-NET and convolutional neural networks (CNNs).
Instead of learning the appropriate kernel weights (which
could be numerous), the VP-layer optimizes only a few non-
linear parameters of the underlying adaptive transformation.
In our case for example, the parameter vector to be learned
contains only two components: (λ, τ ) ∈ R

2, i.e., the dila-
tion and the translation parameters of the adaptive Hermite
functions. In contrast, the best performing CNN solving the
abnormal surface detection problem used a kernel size of
25 increasing the complexity of the network architecture, and
thus the computational cost of the training process. In addition,
the parameters of the VP-layer are interpretable representing
the location and the width of the spike-like waveforms in the
input [32], whereas the weights of the convolutional layers
have no such physical meaning.

VII. CLASSIFIER SPECIFICATIONS

In total, we compared the effectiveness of six classification
schemes. The examined methods included analytical (noise
thresholding of the raw and the transformed measurements)
approaches, as well as classical data-driven (SVM, neural
networks) and model-driven (VP-NET) machine learning algo-
rithms. When applicable, the hyperparameters of the classifier
(e.g., number of layers) were identified using an exhaustive
grid search of the parameter space.

In Section VI-A, we found that abnormal signal segments
are expected to have higher standard deviation score compared
with normal segments. Using this observation, we introduced
a classification approach based on simple thresholding. First,

we split the available measurements into the training and test
sets. Then, a standard deviation threshold was identified which
maximizes the classification accuracy on the training set. This
was done iteratively starting with the lowest standard deviation
score in the training set, which was increased using a small
step size until the optimal classification accuracy was achieved.
Once the threshold value is fixed, a single measurement can
be classified as “abnormal” if its standard deviation falls
above this optimized threshold. We used the same thresholding
algorithm for classifying the transformed measurements as
well. That is, we first applied the Hermite-based residual
transformation (8) to every available measurement segment
and then calculated an optimized noise threshold for the trans-
formed training set. Since the residual transformation removes
low-frequency components from the measurements while leav-
ing the noise levels intact, we expect the second approach
to provide significantly better accuracy scores. Even though
the discussed analytic methods proved to be somewhat less
accurate than their data-driven counterparts (see Section VII),
their appeal is in their simplicity. Once an optimal threshold
has been identified based on the training data (offline), one
can easily provide an implementation of this classification
scheme capable of running on the limited hardware resources
available in a commercial vehicle. Implementing the proposed
transformation and the thesholding-based abnormality detec-
tion scheme on microcontrollers or field-programmable gate
arrays (FPGAs) is conceivable.

Now, we specify the model-based data-driven classifier dis-
cussed in VI-B. As illustrated in Fig. 10, VP-NET is made up
of two parts: VP-layers are responsible for automatic feature
extraction, and fully connected layers are responsible for clas-
sification. After hyperparameter optimization via grid search,
we settled on using a VP-NET architecture consisting of a
single VP-layer followed by three fully connected layers. The
fully connected layers each contained 64 neurons with ReLu
activation. The VP-layer implemented the residual transforma-
tion (12), using n = 11 adaptive Hermite functions. Note that
the resulting VP-NET architecture is small enough to be used
with limited hardware resources, such as microcontrollers, for
future online road surface abnormality detection tests.

In addition to the proposed methods discussed above,
we also included some well-known data-driven classification
schemes in our experiments. This allowed us to compare the
effectiveness of the proposed approaches to classical machine
learning algorithms. The classifiers in question included a
support vector machine (SVM) with linear kernel, an FCNN,
and a CNN. The inputs of each algorithm were the pre-
processed force sensor measurement segments (as discussed
in Section IV), i.e., the residual transformation was excluded
from preprocessing pipeline. This way, the effectiveness of
the proposed VP-NET architecture can be compared with
those learning approaches which operate on the raw data and
extracts features automatically. To this end, we included a
CNN consisting of a single convolution layer with a single
filter and a kernel size of 25. The architecture resembles
the VP-NET in the sense that the CNN also provides an
automatic feature extraction step via the first layer followed by
fully connected layers which are responsible for classification.
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Fig. 11. Schematic representation of the proposed method. Measurements
were observed online, whereas abnormality detection was performed offline
on the previously measured signals.

For better comparability, the simple FCNN and the fully con-
nected part of the CNN were matched to the fully connected
part of the proposed VP-NET architecture, while the number
of filters and the corresponding kernel sizes of the CNN were
optimized in an exhaustive manner using a grid search of the
parameter space.

VIII. EXPERIMENTS

In this section, we evaluate the performance of the proposed
analytic and data-driven surface abnormality detection meth-
ods. A block diagram of the proposed measurement system
is provided in Fig. 11. The experiments for this study have
been conducted in two phases, offline and online manner.
First, we used our test vehicle setup described in Section III
to gather measurements in real-time. Then, the force sen-
sor output signals were saved for later processing. The sig-
nal processing part of our measurement system is respon-
sible for applying the proposed orthogonal transformations
to the sensor outputs (modeling) and for identifying abnor-
mal tire revolutions (classification). Regardless of whether we
choose the VP-Net approach described in Section VI-B or
the threshold-based method from Section VI-A, a parameter
optimization phase known as training is required for the signal
processing algorithms. Training involves finding the optimal
values of the model parameters, which maximize the precision
of the abnormality detection algorithms on a set of already
labeled measurements referred to as the training set. The
training process should be performed offline after a sufficient
amount of data has been collected. This phase is of utmost
importance, since the choice of the training set influences the
generalization power of the classifiers. For instance, training
with imbalanced datasets in which the “normal” tire revolu-
tions are overrepresented can reduce the ability of the classifier
to recognize “abnormal” signals. Once the parameters have
been optimized, the classifier can be used to detect abnormal
measurements which were not included in the training set.

Fig. 12. Left: Road abnormalities (in this case potholes) from our mea-
surement route. Image taken from Google maps (coordinates 47.52, 19.08).
Right: Wheel sensor output taken from the same measurement, classified as
abnormal.

This evaluation phase has also been done offline in our study,
but the simplicity of the proposed algorithms enables real-time
abnormality detection, which will be a part of our future work.
The training of our algorithms was carried out in a supervised
framework, which requires ground-truth data. In other words,
we have to label the gathered measurements as “normal” or
“abnormal” before the training and the testing procedures
take place. Since our measurements were taken on the public
roads of Budapest without the ability to pinpoint the exact
occurrence of road surface abnormalities, in this article we
relied on automatic labeling schemes.

Recently, many such algorithms have been proposed [25],
[26], [28], [44], which rely either solely on acceleration data
(along the X and Z axes) or on various sensor fusion strategies.
The former approach is often based on some variation in the
so-called Gaussian background model which we also used in
this study. Actually, the vertical acceleration data from the
accelerometer attached to the chassis of our test vehicle is used
for automatic ground truth generation according to [25]. For
the “abnormal” tests, our vehicle passed through poor quality
asphalt with potholes and manhole covers. In the following
results, “abnormal” data samples will refer to tire revolutions
where the vehicle encountered these obstructions. Fig. 12
illustrates an abnormal road surface on our test route and a
wheel sensor output segment from the same measurement.

In [25], the authors show that their proposed labeling
scheme is capable of detecting potholes and manhole covers,
making their approach suitable for the labeling of our measure-
ments. Our results thus should be viewed as proof of concept,
showing that the proposed measurement system does indeed
provide similar results to the state-of-the-art. As part of our
future work, we plan to record measurements, where the exact
locations of surface abnormalities are known in advance. This
would allow to implement more objective test scenarios. There
are reasons to be optimistic about such comparisons however,
as the proposed measurement system would be expected to be
more sensitive than said acceleration-based approaches. This
is because instead of measuring the changes in acceleration
at a single point of the vehicle, our approach relies on the
changes in the dynamics at each wheel, thus providing a finer
resolution of the surface.
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TABLE I

NUMBER OF SIGNAL SEGMENTS IN EACH CLASS

TABLE II

EXAMINED CLASSIFICATION SCHEMES AND THEIR ACCURACY

To ensure a fairly balanced dataset, the measurements used
for our experiments contained roughly the same amount of
normal and abnormal signal segments (see Table I). This
setup also makes classification accuracy (9) suitable for eval-
uating the performance of the proposed classifier models.
The algorithms specified in Section VII were evaluated using
5-fold cross validation. At each fold, the training set con-
tained 413 (80%) measurement segments, with the remaining
104 (20%) signals assigned to the test set. Note that our
training and test sets were disjoint, and no information was
shared between the training and testing phases. Table II shows
the average accuracy achieved on the test set across every fold,
as well as the lowest and highest accuracy scores for a single
fold. The classifiers “threshold” and “threshold Hermite” refer
to the standard deviation thresholding methods we proposed
in Section VI-A.

Our results provide a solid proof of concept for the effi-
ciency of the proposed measurement system in detecting road
surface abnormalities. Observe that the low-dimensional Her-
mite representation and the corresponding residual transforma-
tion significantly improved the detection rates. Indeed, when
considering analytic approaches, the increase in accuracy is
particularly high (≈7%). Actually, the simple “threshold Her-
mite” approach even outperforms the much more sophisticated
SVM method, where no residual transformation is applied. The
results are also promising for the examined data-driven classi-
fiers. Here, the algorithm incorporating the proposed residual
transformation (VP-NET) again provides the best accuracy
score. Although the performance increase this time is not as
high, the VP-NET architecture is significantly simpler than
the second best CNN architecture. In this particular case, the
training of the VP-layer involved the optimization of two para-
meters, while 25 kernel weights had to be optimized for the
CNN. Overall, we acquired promising results supporting our
claim that the wheel sensor and the proposed classifier models
can be efficiently used for surface abnormality detection.

IX. CONCLUSION AND FUTURE PLANS

In this article, we proposed a measurement system for
intelligent tires that is based on a 3-D piezoresistive force
sensor. To demonstrate its efficiency, the problem of road sur-
face abnormality detection was chosen. We developed analytic
model-based and data-driven machine learning approaches to
process and classify the output signals produced by the sensor.

The algorithms were evaluated in a real-world test scenario,
and we showed that both the classification approaches (analytic
and data-driven) produce reliable results (93%–97% detection
accuracy). It also turned out that relevant features can be
extracted via Hermite representation and residual transforma-
tion, which improves the accuracy of basic classifier models.

Considering the simplicity of the proposed classifiers,
especially the analytic approaches, running the pretrained
algorithms on microcontrollers or FPGAs should pose little
difficulty. This allows for online abnormality detection that
can be used in other autonomous vehicle applications, such as
road quality estimation, and autonomous speed control, which
will be part of our future work.
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