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Objectives: This study aimed to evaluate the performance of machine learning and regression methods in the prediction of 3-
level version of EQ-5D (EQ-5D-3L) index scores from a large diverse data set.

Methods: A total of 30 studies from 3 countries were combined. Predictions were performed via eXtreme Gradient Boosting
classification (XGBC), eXtreme Gradient Boosting regression (XGBR) and ordinary least squares (OLS) regression using 10-fold
cross-validation and 80%/20% partition for training and testing. We evaluated 6 prediction scenarios using 3 samples (general
population, patients, total) and 2 predictor sets: demographic and disease-related variables with/without patient-reported
outcomes. Model performance was evaluated by mean absolute error and percent of predictions within clinically
irrelevant error range and within correct health severity group (EQ-5D-3L index ,0.45, 0.45-0.926, .0.926).

Results: The data set involved 26318 individuals (clinical settings n = 6214, general population n = 20104) and 26 predictor
variables plus diagnoses. Using all predictors and the total sample, mean absolute error values were 0.153, 0.126, and 0.131,
percent of predictions within clinically irrelevant error range were 47.6%, 39.5%, and 37.4%, and within the correct health
severity group were 56.3%, 64.9%, and 63.3% by XGBC, XGBR, and OLS, respectively. The performance of models depended on
the applied evaluation criteria, the target population, the included predictors, and the EQ-5D-3L index score range.

Conclusions: Regression models (XGBR and OLS) outperformed XGBC, yet prediction errors were outside the clinically
irrelevant error range for most respondents. Our results highlight the importance of systematic patient-reported outcome
(EQ-5D) data collection. Dialogs between artificial intelligence and outcomes research experts are encouraged to enhance
the value of accumulating data in health systems.
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Introduction

Patient-reported outcomes (PROs) reflect disease burden or
treatment effectiveness from the patients’ perspective. The value
of PROs in improving health system performance and individual
health outcomes has been demonstrated in multiple settings.1

Preference-based health measures such as the EQ-5D are widely
used in health economic evaluations.2-5

Although the monitoring of PROs has become a priority in
many health systems, their organized collection at national level is
still in its infancy.1 With the gradual implementation of electronic
health records and harmonized statistical data collections (eg,
European Health Survey), a large amount of administrative health
data is being collected.6-8 Smart devices, big data, and advanced
analytic techniques are contributing to the personalization of
healthcare.9-13 Nevertheless, because of varying rules of data
15/Copyright ª 2022, International Society for Pharmacoeconomics and Ou
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sharing, standards of interoperability, available infrastructure or
level of stakeholder collaboration, and data sets, which are usually
collected at different time points for different purposes with
different methods in the health data ecosystem, are difficult to
connect.14 For example, the Minimum European Health Module is
a PRO measure collected regularly in Eurostat population surveys
while hardly used in clinical trials. The EQ-5D questionnaire has
been increasingly used in clinical trials, health surveys, and reg-
istries,15,16 but infrequently in general clinical practice or admin-
istrative health surveys.17,18 The accumulating big data are
typically unstructured, heterogenous, and incomplete, which may
hamper the analysis using standard regression methods, whereas
novel machine learning (ML) approaches may offer advantages in
such data sets.

For calculating quality-adjusted life-years in health economic
analyses, EQ-5D values are often missing and have to be estimated
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from other health measures.19-21 Therefore, the question arises
whether EQ-5D index scores can be predicted from a large diverse
data set combined from multiple sources and whether novel
analytical methods offer advantages over conventional regression
techniques.

Over the past 15 years, we collected EQ-5D-3L data in 30
studies from 26318 individuals in a variety of settings and de-
signs.22-52 As a model of the heterogenous sociodemographic and
disease-related variables that can be yielded from real-world
electronic health records, a combined anonymous data set was
created by applying uniform data-management rules for standard
sociodemographic and healthcare-related variables.

This study aimed to evaluate the performance of ML and or-
dinary least squares (OLS) regression in the prediction of
individual-level EQ-5D-3L index scores from variables routinely
collected in observational studies in various patient populations
and the general population.
Methods

EQ-5D-3L

The EQ-5D-3L questionnaire consists of 2 parts. The descriptive
system assesses self-reported health in 5 dimensions: mobility,
self-care, usual activities, pain/discomfort, and anxiety/depres-
sion. In each dimension, respondents can describe their current
health with one of the following 3 categories: no problems, some
problems, and severe problems. The descriptive system defines
243 (35) distinct health states.5 The EQ-5D-3L index scores (utili-
ties) attached to each health state are measured in valuation
studies and reflect societal preferences. In this study, we applied
the UK EQ-5D-3L index value set (range 20.594 to 1.000).49 The
EQ-5D-3L index score of 1 represents perfect health, 0 represents
death, and negative values represent “worse than death” health
states. The second part of the instrument is a 20-cm vertical
EuroQol visual analog scale (EQ-VAS) for the measurement of
current health ranging from 0 (worst imaginable health) to 100
(best imaginable health).

Study Population

Data were collected in Hungary, Poland, and Slovenia. These
countries have EQ-5D-3L value sets39,44,50 and population
norms.40,45,50,53 Between 2000 and 2015, nearly three-quarters of
EQ-5D-related studies in Central and Eastern Europe originated
from these 3 countries.17 From Hungary, we involved 2421 out-
patients with 18 chronic conditions including psoriatic arthritis
(n = 177),22 plaque psoriasis (PP, n = 192),23 peripheric arterial
occlusive disease (n = 103),24 age-related macular degeneration
(n = 122),41 rheumatoid arthritis (n = 249),25 systemic sclerosis
(SSC, n = 80),26 dementia (n = 86),27 diabetes mellitus (n = 264),28

endometriosis (n = 79),29 osteoporosis (n = 207),30 adult attention
deficit-hyperactivity disorder (n = 75),31 urinary bladder cancer
(n = 148),32 benign prostatic hyperplasia (BPH, n = 237),33 epilepsy
(n = 96),34 overactive bladder (n = 61),35 Parkinson’s disease (n =
99),36 chronic schizophrenia (n = 78),37 and multiple sclerosis (n =
68).38 Furthermore, we included 14 442 individuals from general
population studies including a large representative health survey
(HHU, n = 2019),52 the Hungarian EQ-5D-3L/5-level version of EQ-
5D (EQ-5D-5L) valuation study (VHU, n = 1000)39), a survey about
health expectations among visitors of the largest online news
portal (EXP, n = 9142),42 and a representative survey aiming to
measure the monetary value of a quality-adjusted life-year in
Europe (n = 2281).40,43 From Poland, we included 504 patients
from cohort studies involving measurements before, during, or
after hospitalization because of stroke (cerebrovascular accident,
n = 397)46 and osteoporotic hip fracture (n = 107)47 and 4704
patients from the general population including students (STU, n =
443),48 respondents from the Polish EQ-5D-3L valuation study
(VPL, n = 320),44 and respondents from the Polish EQ-5D-3L
population norms study (n = 3941.45 From Slovenia, 3290 pa-
tients were included from a cohort study comparing the outcomes
of various health programs across hospitals including conditions
such as gonarthrosis, coxarthrosis, intervertebral disc disease,
urinary incontinence, carpal tunnel syndrome, inguinal hernia,
varicose veins, osteosynthesis removal, and shoulder lesions (PSI,
n = 3290),51 and 958 respondents from the general population,
including the Slovenian EQ-5D-3L VAS valuation study (n = 734)50

and the Slovenian EQ-5D-3L time trade-off valuation study (n =
224).49 Three studies involved multiple measurements of EQ-5D-
3L from the same patient (eg, before and after hospitaliza-
tion).46,47,51 The detailed description of the involved study
populations is provided in the reference publications. We involved
patients from the original databases without any other restrictions
if EQ-5D-3L values were available; therefore, the number of
eligible patients for our study may have differed slightly from the
reference publications.

Database and Variables

We partitioned the database into a general
population39,40,42,44,45,48-50,52 and patient population22-38,41,46,47,51

sample. The database structure is summarized by listing key
study characteristics and nonmissing values for patient-level
explanatory variables in Appendix Table 1 of Appendix 1 in Sup-
plemental Materials found at https://doi.org/10.1016/j.jval.2022.01.
024. The dependent variable was the EQ-5D-3L index score.54

Patient-level predictor variables were organized into 2 groups.

Demographic and disease-related variables
Predictors in this group included age, gender, education, place

of residence, family status, employment, relative income (net
personal income as a percent of the study year’s national average
net income), setting (outpatient, hospitalized, and postoperative
in the case of documented surgery within 3-6 months), number of
general practitioner visits, any general practitioner visit, number
of specialist visits, and any specialist visits or hospitalizations in
the past year. In the case of missing data, we assumed that
specialist visits happened for patients recruited in outpatient
specialist centers,23,24,41 and both specialist visits and hospitali-
zations happened at patients whose EQ-5D data were collected
during or after hospitalization.46,47,51 We recorded whether pa-
tients were informal care recipients, weight, height, and body
mass index. Physician-reported outcomes were transferred to a
standard scale, where 0 represents the worst and 1 the best
possible health status measurable with the given instrument. The
included physician-reported instruments (acronym; score of
worst health status—score of best health status) were the
clinician-reported VAS (0-100)55 in the SSC and BPH studies,26,33

the Mini-Mental State Examination (0-30)56 in the dementia
study,27 the Clinical Global Impression (7-0) in the overactive
bladder and schizophrenia studies,35,37 the Expanded Disability
Status Scale (10-0)57 in the multiple sclerosis study,38 and the
Psoriasis Area and Severity Index (72-0)58 in the PP study.23

Specific diseases were included as dummy variables indicating
the main diagnosis of clinical populations22-30,32-38,41,46,47,51,52,59 or
self-reported conditions in 3 surveys in the general population
(HHU,52 VHU,59 VPL44). An overall dummy variable indicated the
presence of any disease. Appendix Table 2 of Appendix 1 in Sup-
plemental Materials found at https://doi.org/10.1016/j.jval.2022.
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01.024 summarizes the number of patients in each study with
conditions categorized under the International Classification of
Diseases, Tenth Revision, codes and the International Classification
of Diseases, Tenth Revision, main chapters.60

PRO
The second predictor group comprised data obtained from

PROs such as EQ-VAS,61 happiness measured on an 11-point (0-10)
numeric scale,62 and items of the Minimum European Health
Module63,64: self-rated health and the limitations because of
health problems (Global Activity Limitation Indicator). Scores from
PRO instruments were transferred to a standard scale, with
0 representing the worst and 1 the best health status measurable
with the given instrument. The applied PRO instruments
(acronym; score of worst health status—score of best health sta-
tus) were the Health Assessment Questionnaire Disability Index
(3-0)65 in the psoriatic arthritis, rheumatoid arthritis, and SSC
studies22,25,26; the Dermatology Quality of Life Index (30-0)66 in
the PP study23; the Barthel Index (0-100)67 in the cerebrovascular
accident study46; the Functional Recovery Score (0%-100%)68 in
the hip fracture study47; the Bladder Cancer Index (0-100) in the
BC study69; and the International Prostate Symptom Score (35-
0)70 in the BPH study.33

Data Analysis

Missing data
Missing data were handled via the indicator method. We

imputed zeros for all missing values and generated a dummy in-
dicator for each predictor denoting missing values. The indicator
was set as missing in those general population studies, where self-
reported conditions were not inquired. In contrast, the disease
dummy was set as absent for those patients who were asked
about the presence of a disease and responded negatively.
Comorbidities were not recorded in patient populations; there-
fore, the disease dummy was set as missing except for the index
conditions.

Prediction models
EQ-5D-3L index scores were predicted by OLS regression,

eXtreme Gradient Boosting (XGBoost) classification (XGBC), and
XGBoost regression (XGBR). A regular winner of ML competitions,
XGBoost is a highly scalable and computationally efficient
implementation of gradient boosted trees. Boosted decision trees
are an ensemble of decision trees added sequentially. Each addi-
tional tree is trained to correct the errors of the ensemble of
previous trees until no further improvements can be made on a
validation data set. Gradient boosting grows the best trees by
optimizing a loss function that comprises prediction error and a
regularization term, which describes the complexity of the trees.
Depending on the loss function, XGBoost can run in classification
and regression mode, which predict EQ-5D scores in 243 cate-
gories or as a continuous value, respectively.71,72

Patients with multiple measurements were entered as unique
records. No weights were applied. In the OLS model, age was split
into 5-year categories, and a piecewise model was fit on EQ-VAS
scores with different slopes for the 0 to 34 and 35 to 100 value
ranges. We entered predictors without interactions but explored
an OLS model with interaction between disease dummies, gender
and age. For XGBoost, default settings were retained for most
parameters after initial exploration and monitoring of train and
test errors. The learning rate parameter was set to 0.1, number of
trees were set to 20 to improve speed of classification, and the L1
regularization term of regression was set to 0.9 to avoid
overfitting.
We performed predictions in 6 scenarios involving the general
population sample (“Pop”), the patient sample (“Pts”), and the
entire sample (“Total”), by using only demographic and disease
predictors (“Base”) and adding PRO predictors (“PRO”). Model
training and evaluation were performed via 10-fold cross-
validation, using a randomly selected 80% of the data set for
training and 20% for testing. OLS coefficient estimates, XGBoost
settings, and feature importance tables for the PRO scenarios are
presented in Appendix 2 in Supplemental Materials found at
https://doi.org/10.1016/j.jval.2022.01.024 (Appendix Tables 3-5 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
022.01.024).

Evaluation of Model Performance

Models were compared via the “mean absolute error” (MAE) of
prediction as an intuitive and stabile measure when comparing
scenarios with different sample sizes.73 Furthermore, assuming
that prediction errors smaller than 0.074, the minimum clinically
important difference (MCD) of EQ-5D-3L, are barely noticeable,74

yet greater errors in either direction are undesirable, we calcu-
lated the percent of predictions within the “clinically irrelevant
error range” (eg, predictions within true 6 MCD range). Third, we
assessed prediction bias via observing mean prediction errors.
Finally, we calculated the percent of predictions within the “cor-
rect health severity group.” For this, according to the trimodal
distribution of EQ-5D-3L, index values . 0.926 (eg, 1-MCD)
denoted “full health,” values between 0.926 and 0.45 denoted
“medium health,” and values , 0.45 denoted “low health.”75,76 (In
“full health,” true EQ-5D-3L index scores are equal to 1, whereas
predictions can take values . 0.926.)

To evaluate the reliability of predictions, from the 10 cross-
validation sets, we calculated 95% confidence intervals for the
evaluation metrics using the following formula:

95% CI¼CV ±1:96 � 1
ffiffiffi

k
p SD (1)

where CV is the mean and SD is the SD of the evaluation metric
(eg, MAE) of the k cross-validation sets.77

Given that algorithmic bias is of particular concern in health-
care applications,78 we evaluated whether individuals in different
health statuses may be affected adversely because of prediction
error. In addition to mean prediction error, we quantified the
percent of predictions within clinically irrelevant error range and
the percent of predictions within the correct health severity group
across the full range of the true EQ-5D index. (Lower values
denote greater risk of flawed predictions.) Second, assuming that
decisions would be based on predicted and not the unknown true
values, we evaluated bias and the probability of accurate pre-
dictions across the range of predicted EQ-5D-3L index values (eg,
positive predictive value).79
Results

Sample Characteristics

The database contained 28862 records of 26318 individuals.
Cross-sectional studies of the general population provided 20104
records, whereas 8758 records were from cross-sectional and
cohort studies involving 6214 patients (single measurement, n =
3753; 2 measurements, n = 2378; 3 measurements, n = 83). Most
data originated from Hungary (16 862 records; 58.4%), followed by
Slovenia (6507 records, 22.6%) and Poland (5493 records, 19.0%).
Counting the diagnosis related dummies as one variable, the 28
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Table 1. Summary of predictor variables and missing values.

Predictor group Variable Category Sample

General
population
(“Pop”)

Patients
(“Pts”)

Entire
sample
(“Total”)

“Base” Age Mean 41.1 55.6 45.4

SD 15.5 16.6 17.2

Missing (%) 0.0 4.2 1.3

Gender Male (%) 54.6 50.4 53.3

Female (%) 45.4 49.6 46.7

Missing (%) 0.0 2.8 0.9

Education Primary (%) 10.8 23.3 14.2

Secondary (%) 39.7 57.6 44.6

Tertiary (%) 49.5 19.1 41.2

Missing (%) 0.0 12.9 3.9

Place of residence Capital (%) 18.1 6.2 13.5

City (%) 51.5 45.2 49.0

Village (%) 30.4 48.6 37.5

Missing (%) 56.8 36.6 50.7

Family status Single (%) 36.2 35.0 36.1

Married (%) 63.8 65.0 63.9

Missing (%) 26.6 77.0 41.9

Employment Paid employment (%) 68.6 42.9 61.6

Student (%) 9.2 12.8 10.2

Pensioner (%) 15.0 33.7 20.1

Not working (%) 5.0 6.7 5.5

Other employment (%) 2.2 3.9 2.6

Missing (%) 0.0 13.4 4.1

Relative income (0-11.0) Mean 1.6 0.5 1.6

SD 1.5 0.3 1.5

Missing (%) 32.0 97.2 51.8

Setting General population (%) 100.0 - 69.7

Outpatient (%) - 30.1 9.1

Hospitalized (%) - 39.2 11.9

Postoperative (%) - 30.7 9.3

Number of GP visits at 12 months Mean - 4.0 4.0

SD - 6.1 6.1

Missing (%) 100.0 78.7 93.5

Any GP visit past year No (%) - 49.1 49.1

Yes (%) - 50.9 50.9

Missing (%) 100.0 78.7 93.5

Specialist visits past year Mean - 5.8 5.8

SD - 7.5 7.5

Missing (%) 100.0 80.9 94.2

Any specialist visits past year No (%) - 17.1 17.1

Yes (%) - 82.9 82.9

Missing (%) 100.0 80.9 94.2

Hospitalizations past year Mean 0.2 1.7 0.7

SD 0.6 3.8 2.2

Missing (%) 90.0 86.5 89.0

continued on next page
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Table 1. Continued

Predictor group Variable Category Sample

General
population
(“Pop”)

Patients
(“Pts”)

Entire
sample
(“Total”)

Any hospitalization at 12 months No (%) 90.4 41.9 72.5

Yes (%) 9.6 58.1 27.5

Missing (%) 90.0 86.5 89.0

Informal care recipient No (%) 92.2 70.9 82.4

Yes (%) 7.8 29.1 17.6

Missing (%) 90.0 80.3 87.1

Weight, kg Mean 76.1 75.2 75.6

SD 16.1 16.8 16.4

Missing (%) 88.9 72.8 84.0

Height, cm Mean 171.5 167.6 169.7

SD 9.4 9.7 9.8

Missing (%) 88.8 77.7 85.5

BMI Mean 25.8 26.8 26.3

SD 4.8 5.2 5.0

Missing (%) 88.9 77.8 85.5

DRO score* Mean - 0.7 0.7

SD - 0.2 0.2

Missing (%) 100.0 91.1 97.3

Chronic morbidity No (%) 68.5 0.0 68.5

Yes (%) 31.5 0.0 31.5

Missing (%) 90.0 100.0 93.0

Any disease No (%) 70.5 0.0 29.5

Yes (%) 29.5 100.0 70.5

Missing (%) 68.8 0.0 47.9

Specific diagnoses* Not included in the table

“PRO” Happiness Mean 7.6 - 7.6

SD 2.0 - 2.0

Missing (%) 90.0 100.0 93.0

Self-rated health Very good (%) 20.7 0.0 20.7

Good (%) 45.3 0.0 45.3

Fair (%) 26.9 0.0 26.9

Bad (%) 6.2 0.0 6.2

Very Bad (%) 0.9 0.0 0.9

Missing (%) 90.0 100.0 93.0

GALI Severely limited (%) 3.3 0.0 3.3

Limited, but not severely (%) 16.8 0.0 16.8

Not limited (%) 79.9 0.0 79.9

Missing (%) 90.0 100.0 93.0

PRO score* Mean - 0.7 0.7

SD - 0.3 0.3

Missing (%) 100.0 80.7 94.1

EQ-VAS (0-100) Mean 77.0 65.4 73.3

SD 18.9 22.3 20.7

Missing (%) 11.5 6.3 9.9

Note. Mean, SD, and percent (%) values refer to nonmissing data. The percent of missing data was calculated for the entire sample.
BMI indicates body mass index; DRO, physician-reported outcome; EQ-VAS indicates EuroQol visual analog scale; GALI, Global Activity Limitation Indicator; GP, general
practitioner; Pop, population; PRO, patient-reported outcome; Pts, patients.
*Details of PRO instruments and DRO instruments and disease dummies are omitted from the table.
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Figure 1. MAE of predictions by scenario.

CI indicates confidence interval; MAE, mean absolute error; MCD, minimum clinically important difference; OLS, ordinary least squares; Pop, population; PRO, patient-
reported outcome; Pts, patients; XGBC, eXtreme Gradient Boosting classification; XGBR, eXtreme Gradient Boosting regression.
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predictor variables contained 64.1% missing values. There were
214 missing data patterns across observations with a range of
missing variables from 7 to 23. There were no complete cases in
the data set. The predictor variables and missing values are
summarized in Table 1.

Mean (SD) EQ-5D-3L index scores were 0.847 (0.198), 0.665
(0.317), and 0.792 (0.254) in the general population, patients, and
the total sample, respectively. In the general population sample,
3.7%, 49.0%, and 47.3%; in the patient sample, 14.2%, 62.3%, and
23.1%; and in the total sample, 6.9%, 53.2%, and 39.9% had EQ-5D-
3L index scores in the low, medium, and full health categories,
respectively.

The Distribution of True and Predicted EQ-5D-3L Index
Scores

The distribution of XGBC predictions resembled the trimodal
distribution of true EQ-5D scores, yet predictions of full health
were more frequent. The distributions of XGBR and OLS were
unimodal with left skew and a peak below full health (Appendix
Fig. 1 of Appendix 2 in Supplemental Materials found at https://
doi.org/10.1016/j.jval.2022.01.024). The range of full health across
all scenarios was 23.1% to 47.2% for true EQ-5D-3L values, 43.4% to
93.9% for XGBC, 1.0% to 26.2% for XGBR, and 1.9% to 19.2% for OLS.
XGBR predictions exceeded the value of 1 less frequently than
those of OLS.

Accuracy of Predictions

In all scenarios, MAE was greatest for XGBC and lowest for
XGBR followed closely by OLS. In the PRO scenario, MAE was
0.126, 0.113, and 0.118 in the population sample; 0.200, 0.159, and
0.162 in the patient sample; and 0.153, 0.126, and 0.131 in the total
sample using XGBC, XGBR, and OLS, respectively. Adding PROs to
demographic and disease-related predictors decreased MAE on
average by 0.022 (Fig. 1).

On the contrary, the percent of predictions within the clinically
irrelevant error range (true 6 MCD) was highest for XGBC with
51.9%, 39.1%, and 47.6%, followed by XGBR with 41.7%, 34.2%, and
39.5% and OLS with 38.2%, 33.1%, and 37.4% in the PRO scenario for
the general population, patients, and the total sample, respec-
tively. Adding PROs to the base predictors increased the percent of
predictions within the clinically irrelevant error range on average
by 6.6% (Fig. 2). Although mean prediction error for XGBR and OLS
predictions was nearly zero in all scenarios, XGBC showed positive
bias with mean error exceeding the MCD all scenarios (range
0.086-0.097) (Appendix Fig. 2 of Appendix 3 in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2022.01.024).

In terms of the percent of predictions within the correct health
severity group, XGBR followed closely by OLS outperformed XGBC.
In the PRO scenario for the general population, patient, and total
samples, 57.2%, 58.1%, and 56.3% of predictions using XGBC; 63.2%,
68.5%, and 64.9% using XGBR; and 60.5%, 68.2%, and 63.1% using
OLS fell within the correct health severity group, respectively
(Fig. 3). The narrow 95% confidence interval ranges suggested that
the predictions of all 3 methods were reliable through the cross-
validation rounds. The performance of OLS models with or
without interaction terms was rather similar (Appendix Fig. 3 of
Appendix 3 in Supplemental Materials found at https://doi.org/1
0.1016/j.jval.2022.01.024).

Patterns of Prediction Error

XGBC often predicted full across the entire range of true EQ-
5D-3L index values. The scatterplots of predicted over true
values suggested that adding PROs to base predictors improved
prediction accuracy mainly in the low health region and in

https://doi.org/10.1016/j.jval.2022.01.024
https://doi.org/10.1016/j.jval.2022.01.024
https://doi.org/10.1016/j.jval.2022.01.024
https://doi.org/10.1016/j.jval.2022.01.024
https://doi.org/10.1016/j.jval.2022.01.024


Figure 2. Percentage of predictions within clinically irrelevant error range (true 6 MCD).

MCD indicates minimum clinically important difference; OLS, ordinary least squares; Pop, population; PRO, patient-reported outcome; Pts, patients; XGBC, eXtreme
Gradient Boosting classification; XGBR, eXtreme Gradient Boosting regression.

Figure 3. Percentage of predictions in the correct health severity group.

EQ-5D-3L indicates 3-level version of EQ-5D; OLS, ordinary least squares; Pop, population; PRO, patient-reported outcome; Pts, patients; XGBC, eXtreme Gradient
Boosting classification; XGBR, eXtreme Gradient Boosting regression.

1596 VALUE IN HEALTH SEPTEMBER 2022



Figure 4. Percentage of predictions within clinically irrelevant error range by scenario and true EQ-5D-3L index scores.

EQ-5D-3L indicates 3-level version of EQ-5D; MCD, minimum clinically important difference; OLS, ordinary least squares; Pop, population; PRO, patient-reported
outcome; Pts, patients; XGBC, eXtreme Gradient Boosting classification; XGBR, eXtreme Gradient Boosting regression.
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patients (Appendix Fig. 4 of Appendix 3 in Supplemental Materials
found at https://doi.org/10.1016/j.jval.2022.01.024). Regression to
the meanwas observed with all methods with positive bias (range
0.59-1.39) in low health and slight negative bias (range 20.01
to 20.23) in full health (Appendix Fig. 5 of Appendix 3 in Sup-
plemental Materials found at https://doi.org/10.1016/j.jval.2022.
01.024).

Accuracy of Predictions by True EQ-5D-3L Index Scores

Figure 4 illustrates the percent of predictions within clinically
irrelevant error range by true EQ-5D-3L index scores. XGBC
predictions were most accurate in the full health range, whereas
XGBR and OLS predictions were most accurate in medium health.
All methods were least accurate in the low health range, which
improved after adding PROs to the base predictors. The pro-
portions of predictions within the correct health severity cate-
gory are depicted in Appendix Figure 6 of Appendix 3 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
022.01.024.
Accuracy of Predictions by Predicted EQ-5D-3L Index
Scores

If full health was predicted by XGBR or OLS, those values were
mostly within, whereas full health predictions by XGBC were
mostly outside the clinically irrelevant error range (Fig. 5). If
medium health was predicted, the accuracy of the 3 methods was
similar, albeit moderate. Low health predictions were the least
accurate, which improved when PROs were added to base pre-
dictors, especially in patients. The pattern was similar for pre-
dictions in the correct health severity group. Although XGBC
predictions were most accurate in the medium health range, the
accuracy of XGBR and OLS improved from low health toward the
full health range (Appendix Fig. 7 of Appendix 3 in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2022.01.024).
Although mean prediction error of XGBR and OLS was approxi-
mately zero across the entire range, the bias of XGBC depended on
the predicted EQ-5D-3L index values (Appendix Fig. 8 of Appendix
3 in Supplemental Materials found at https://doi.org/10.1016/j.
jval.2022.01.024).
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Figure 5. Percentage of predictions within clinically irrelevant error range by scenario and predicted EQ-5D-3L index scores.

EQ-5D-3L indicates 3-level version of EQ-5D; MCD, minimum clinically important difference; OLS, ordinary least squares; Pop, population; PRO, patient-reported
outcome; Pts, patients; XGBC, eXtreme Gradient Boosting classification; XGBR, eXtreme Gradient Boosting regression.
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Discussion

We predicted EQ-5D-3L index scores via XGBC, XGBR, and OLS
regression in a large international database combining multiple
studies among patients and the general population with diverse
predictors and a large amount of missing data. Across scenarios
involving patients and the general population with and without
PRO predictors, the percent of predictions within the clinically
irrelevant error (true 6 MCD) range were highest for XGBC and
lowest for OLS with XGBR coming close. Nevertheless, MAE of
prediction was lowest for XGBR followed by OLS and XGBC. Pre-
dictions with XGBC were biased. The performance of the 3
methods depended on the evaluation criteria, the target popula-
tion, the predictor variables, and the EQ-5D-3L index range.
Adding PROs to the demographic and disease-related predictors
improved the accuracy of predictions.

Several studies have already used ML to predict EQ-5D values
as a binary threshold80,81 or as a continuous measure. Borchani
et al82 predicted EQ-5D-3L index scores from the 39-item Par-
kinson’s Disease Questionnaire using multidimensional Bayesian
network classifiers (MAE for OLS 0.350; MAE for multidimensional
Bayesian network classifier 0.174). Gutacker et al83 predicted
postoperative health gains via classification and regression tree
methodology (MAE # root mean square error 0.158-0.224). Gao
et al84 mapped heart disease-specific quality of life to EQ-5D-5L
index scores using econometric models and deep neural
network algorithm (MAE for OLS 0.090-0.129; MAE for deep
neural network 0.076-0.105). Recently, Mlynczak et al85 applied
random forest for assessing the construct validity of EQ-5D-5L
(MAE # root mean square error 0.121). In these studies, when
compared, ML usually outperformed traditional econometric
methods.80,82,84 Advanced econometric models were also used to
predict EQ-5D index values accommodating its multimodal dis-
tribution and upper limit at full health. In a rheumatoid arthritis
data set, MAE was 0.1505 with linear regression, 0.1508 with a
random effects Tobit model, 0.1508 with an adjusted limited
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variable model (treating EQ-5D index score predictions . 0.883 as
1), and 0.1438 with a random effects adjusted limited variable
mixture model.86

The strength of our study is that the analysis was performed on
a large and diverse data set of multiple studies resembling real-
world data connected in health data ecosystems.14 MAE was
comparable with previous studies using ML or regression
methods. We evaluated prediction accuracy via the percent of
predictions within the “clinically irrelevant error range” by split-
ting absolute error into “irrelevant” (#MCD) and “relevant”
(.MCD) values. We argue that there are no established criteria for
further classifying errors into “large” or “acceptable” ones.
Nevertheless, erroneous predictions in any direction of any
magnitude may negatively affect decisions. Therefore, by
conveying clinically relevant information about the shape of error
distribution, this metric has merit in the evaluation of predictive
models in healthcare.

Our study has limitations. Despite the full data matrices of
individual studies, the joint database had a large proportion of
missing data, which was handled via the missing indicator
method. Although this method has been criticized for its biased-
ness,87 it has recently been advocated in predictive or epidemio-
logical research.88,89 In our study, mean prediction error using
XGBR and OLS was close to zero in all scenarios, whereas XGBC
predictions were positively biased. Nevertheless, the performance
of XGBoost is usually not affected by the imputation of missing
data.90 We did not apply multiple imputation techniques to pre-
vent leakage of information and interference with the prediction
methods. Therefore, the information contained in the data set
probably could not be used to its full capacity. The potential effect
of missing data structures on the predictive performance of the
models deserves further exploration, along with the use of more
advanced data imputation techniques such as multiple imputa-
tion91 or LASSO regression.92

Although more advanced regression models are available to
accommodate the multimodal distribution and upper limit of EQ-
5D index scores at full health, simple OLS models are commonly
applied to predict individual utilities.86,93 Adding further interac-
tion terms did not affect the performance of our OLS model.
Nevertheless, variable selection via LASSO regression from many
interacted predictors has been shown to improve the performance
of OLS in predicting EQ-5D-5L index scores.94 In addition, pre-
dictions were performed on unweighted data, which, through the
nonrepresentative proportions of patients in the sample, may
have introduced bias to the prediction results. Therefore, the
external validity of our prediction models is probably limited and
the accuracy of predictions may be further improved. As a future
area of research, alternative prediction techniques, a combination
of methods based on their performance in various EQ-5D-3L
ranges, imputation of missing data, and weights reflecting the
structure of the average population and disease epidemiology
could be applied to improve the accuracy of predictions of indi-
vidual EQ-5D-3L index scores. Furthermore, the external validity
of the prediction models should be tested on multiple study
populations that were not included in the training phase.
Conclusions

In a large database of EQ-5D-3L studies, prediction errors of
EQ-5D-3L index scores using XGBC, XGBR, and OLS were greater
than the MCD for most respondents and depended on the applied
method, performance evaluation criteria, the target population,
applied predictors, and the EQ-5D-3L range. The performance of
XGBR slightly exceeded OLS in most evaluation measures.
Regression methods outperformed XGBC in terms of prediction
accuracy and bias.

Our results warn against overoptimistic expectations and
prompt for care when using ML for predicting individual patient-
reported health outcomes. We recommend the systematic and
widespread collection of real-world PRO data using standardized
PRO measures, including EQ-5D. In addition, we encourage dialogs
between artificial intelligence and outcomes research experts to
enhance the value of accumulating data in health systems.
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