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This paper places into context how the term model in machine learning (ML) contrasts with

traditional usages of scientific models for understanding and we show how direct analysis of an

estimator’s learned transformations (specifically, the hidden layers of a deep learning model) can

improve understanding of the target phenomenon and reveal how the model organizes relevant

information. Specifically, three modes of understanding will be identified, the difference between

implementation irrelevance and functionally approximate irrelevance will be disambiguated, and

how this distinction impacts potential understanding with these models will be explored.

Additionally, by distinguishing between empirical link failures from representational ones, an

ambiguity in the concept of link uncertainty will be addressed thus clarifying the role played by

scientific background knowledge in enabling understanding with ML.

1. Introduction

Advances in machine learning (ML) techniques, deep learning (DL) especially, are

drawing increased philosophical consideration. ML-trained algorithms are often called models,

encouraging questions about how such automated effective estimation techniques fit in with

existing accounts of scientific modeling and representation for understanding. In contrast to how

simple idealized models arguably enable understanding by reducing complexity (Bokulich 2008;

Khalifa 2017; Potochnik 2017; Strevens 2008), Sullivan (2022) rejects the possible claim that

ML models enable understanding by reducing complexity. In particular, Sullivan (2022, 110)
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claims that “model simplicity and transparency are not needed for understanding phenomena,”

arguing that DL models can provide understanding despite the ostensible opaqueness or

“blackbox” nature of how particular estimations are generated. Instead, she suggests that

understanding with a DL model depends on what she calls link uncertainty, or “the extent to

which the model fails to be empirically supported and adequately linked to the target

phenomena.”

In this paper, we place into context how the term model in ML contrasts with traditional

usages of scientific models for understanding, resolving core ambiguities involving

representational links to the target phenomenon. We explore standard techniques involving direct

analysis of an estimator’s learned transformations (viz., the hidden layers of a DL model). Next,

we show that such direct analysis can improve understanding of the target phenomenon and

reveal how the model organizes relevant information. In Section 2, we lay the groundwork for

contrasting non-ML scientific models with ML models, and set the stage for our interaction with

Sullivan’s take on understanding with ML models. Section 3 provides a brief overview of ML

and DL models and considers a candidate for framing the proper target of ML understanding

leveraged in later sections. Section 4 identifies three modes of understanding given the proposed

target of ML models. We then disambiguate what we describe as the difference between

implementation irrelevance and functionally approximate irrelevance, and explore how this

distinction impacts potential understanding with these models. Section 5 addresses an ambiguity

in the concept of link uncertainty, arguing that distinguishing empirical link failures from

representational ones clarifies the role played by scientific background knowledge in

enabling understanding with ML. In Section 6, we conclude with a brief summary.

2. C-schema Models and Sullivan on Understanding from ML Models

In one of her paradigm examples of non-ML models, Sullivan (2022) considers Thomas

Schelling’s model for explaining and understanding why human populations tend to be

segregated. Schelling wanted to investigate “some of the individual incentives and individual

perceptions of difference that can lead collectively to segregation” (Schelling 1971, 138). This
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means that segregation behavior among populations is the target phenomenon of interest, that is,

the object of study that we want to understand. He constructed a simple model: A checkerboard

represents spatial locations with two types of individual households, represented by dimes and

nickels. Each household, or “actor,” is stipulated to prefer that at least 30% of its neighbors be of

the same type (similarity preference parameter). If this condition is met, the actor remains in

place; if not, one moves the actor to the closest unoccupied space. It turns out that for most initial

configurations, the equilibrium state of the board results in segregation. Such results may suggest

that racial segregation can occur without an organized institutionally racist influence. But how do

models like Schelling’s afford understanding? Sullivan (2022, 3) adopts the view (found in, e.g.,

Khalifa 2017; Strevens 2008) that explanation aims at understanding whereby “explaining why

helps us understand why.” Schelling’s model succeeds in affording understanding of actual

segregation behavior found in some populations if it links faithfully with causal factors that

explain such segregation. Similarly, Schelling’s model fails at providing understanding and

explanations of actual populations when, for instance, the similarity preference parameter is

inaccurate.

It is helpful to view a paradigmatic non-ML model like Schelling’s model, along with the

explanations and understanding that it may provide, within a framework that we will call the

“C”-shaped modeling schema, or C-schema.
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There are many accounts of scientific modeling, representation, and inference that fit the

C-schema. For example, similarity accounts (e.g., Weisberg 2013), mapping isomorphism or

structuralist accounts (e.g., da Costa and French 2003), inferentialist accounts (e.g., Suárez

2004), and more recent views (e.g., Frigg and Nguyen 2016) can all be viewed within a

C-schema. Such models M are used or interpreted to explain, understand, or investigate some

target T, which is a phenomenon in the world, with specified audiences and goals in mind (e.g.,

epistemic or pragmatic). The horizontal top of the C-schema concerns the modeling or

representational relationship between M and T. For example, some accounts note that a scientist

must stipulate that M denotes T (e.g., Frigg and Nguyen’s (2016) DEKI account). On the vertical

side of the C-schema, one interacts with M directly to draw inferences, for example, by running

iterations of Schelling’s model and identifying specific relationships between similarity

preference parameters and state equilibria, or by performing mathematical calculations given

certain conditions. Last, on the horizontal bottom side, M is used to relevantly draw inferences

and answer questions about, or impute properties to, T.

Models that fit into the C-schema can range in kinds such as concrete models like the San

Francisco Bay-Delta model, mathematical models such as the Lotka-Volterra predator-prey

model, or simulation/computational models like Schelling’s model (Weisberg 2013, Ch. 2). Such

models tend to facilitate inferences about systems and phenomena of interest, limited to the
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scope of representation, and afford understanding in a number of ways. For instance, in a typical

map (or map-like) model, we can not only use M to draw inferences about T but we can also see

how such inferences are drawn, for example, because of relevant similarities or isomorphic

relations associated with M and T (say, a map and a city). There are many varied accounts as to

how the C-schema works and facilitates successful inference, such as those accounts mentioned

above. In one prominent family of C-schema accounts, to which we return, understanding is

powered by some relevant structural similarity or isomorphism between M and an abstraction of

features of T.

In what follows, we will focus on two of Sullivan’s main claims. The first is the claim

that opacity and complexity of ML models that can occur at various levels is not an in-principle

impediment to understanding target phenomena. Models do not have to be transparent for them

to be useful for understanding and explanation. For example, Sullivan notes how one can

compute factorials using an iterative process or a recursive process, but that such implementation

differences are irrelevant to understanding with, for example, a climate model that uses

factorials. Analogously, “one does not need to know whether Schelling’s model was

implemented using a functional, object-oriented, or actor-based language” and so

“implementation blackboxing in itself does not undermine our ability to explain or understand

phenomena” (Sullivan 2022, 114–115). We agree with Sullivan on this point—implementation

opacity does not matter anymore than drawing a map with red or blue ink matters—but we think

that there is an important overlooked distinction between this type of implementation irrelevance

and (what we call) functionally approximate irrelevance.

Second, Sullivan holds that a fundamental impediment to understanding in the context of

both ML and non-ML models concerns the link between model and target (horizontal sides of the

C-schema), what she calls “link uncertainty,” which “constitutes a lack of scientific and

empirical evidence supporting the link connecting the model to the target phenomenon”

(2022,124). For instance, in discussing Schelling’s model, she notes that without “empirical

evidence validating that the possible causes identified by Schelling’s model are actual causes,

there is no link connecting the model to the phenomenon” (2022,125). Sullivan (2022, 128) then

continues to argue for the same point in the context of ML models, holding that “lack of
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understanding is not due to implementation or model illegibility.” Instead, it is due to high “link

uncertainty (the amount,

kind, and quality of scientific and empirical evidence supporting the link connecting the model to

the target-phenomenon) that is present.” Generally, we are in agreement but we will highlight an

important contrast between empirical link uncertainty (e.g., found in Schelling’s model due to an

inaccurate similarity preference parameter, and other potential empirical questions concerning

actual populations) and what we describe as data-misrepresentation link uncertainty.

3. The Target of ML Models

ML classification is an algorithmic process for generating an estimator that,1

for given “input elements” in a data set, estimates a scoring function defined

over the set of “output elements” or y-targets . Typically, is parameterized by some2

set of parameters , establishing a family of estimators for the given estimation

procedure. Training an ML estimator can be distinguished from non-ML rule-based estimation

algorithms in that the parameter values determining the trained are optimized so as to best

“fit the data” according to a prescribed loss function. Namely, the parameters defining the

estimator are optimized by taking a set of sample pairs , called3

the training set, and, for a given loss function , finding the optimal

parameterization such that:

The process of finding the optimal for a given training set is called training the model.

3 In the context of sampling, 𝛀X and 𝛀Y can here be thought of as state spaces for (marginalized) random variables X
and Y respectively, which are described by some joint distribution corresponding to the data sampling process.

2 The scored “output elements” are commonly referred to as the target or target feature of an ML model, which in
our present contexts risks a misleading conflation of y-targets with the target phenomena of understanding of models
as in the C-schema. To disambiguate, we shall use ‘y-’ to prefix ‘y-targets’ whenever the former is intended.

1 In the context of classification, scoring functions pi are commonly probability distributions on the state space 𝛀Y.
In the special case where a single output is desired, pi may also be an indicator function returning 1 for a single
element ŷi ∊𝛀Y and 0 for other elements.
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DL is a family of ML techniques in which estimators are constructed through the

composition of multiple linear and nonlinear transformations, called a neural network. Neural

networks can consist of multiple (hidden) layers of learned parameterized transformations of the

data, where each hidden layer (parameterized transformation) is learned through ML

optimization. We argue below that while DL models do not necessarily provide understanding in

the same manner as (say) map representations, learned representation layers may be leveraged to

improve understanding by providing insight into how a DL model learns to organize raw input

data to optimally estimate y-targets.

As an example, consider an ML model trained to solve “complete the sentence” tasks on

text sampled from a given corpus. An might be ‘In the morning, I enjoy _____’ where the

answer for a particular data point is ‘coffee.’ An ML model is trained to best estimate how

to fill in this blank given the input. Other (similar) data points may have the same input for

but a different . Underlying how English tends to be written (for our samples) is some

distribution over the entire vocabulary; ‘coffee’ may be likely, but terms like ‘tea,’ ‘eggs,’

‘sunshine,’ etc., also get non-negligible probability mass, whereas other arbitrary terms like

‘economic,’ ‘about,’ or ‘transcendental’ do not. We can imagine there is some “true” distribution

underlying the conditional probability for the data generated by a

given sampling process. An ML algorithm learns from actually sampled examples in the training

set to best estimate this distribution. That is, the result of an ML training process is an estimator

for random variable given , such that the model can estimate conditional probabilities

induced by the scoring function for given values. If, for appropriate4

metrics, the induced matches the actually sampled values well on data not used for

training, called test data, we can start making judgments about how reliably it can relate such

data more generally, but, strictly speaking, we are still just talking about the model and its

(potential) data.

4 In practice, the standard construction for DL classifiers includes a final “softmax” (multinomial logistic) layer
estimating p(Y|X), by reducing cross-entropy between the estimated distribution of scores over all y values and the
actually sampled y-target in the data ensuring that p(Y|X) satisfies the formal constraints of probability distributions
and that (with enough data) learns to assign probability mass to non-peak values. The “hard” max of this learned
distribution is returned when a single ŷ value must be returned.
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We can view this within a generalized C-schema framework: Inferences about how well

the model can estimate y-targets given x-data, exploration of what particular features of x-data

tend to play important roles in (correct) estimations of y-targets, and the study of how network

parameters and hidden layer transformations organize and restructure x-data to effectively

estimate y-targets are all examples of “vertical” inferences in a C-schema. As Sullivan (2022)

observes, we need to “link” to the external phenomena intended to be understood. What is

missing are the horizontal links of a C-schema connecting facts about the model and the data

considered in isolation of a target phenomenon.

In order to horizontally link an ML model to a target of understanding (and hence

evaluate the links’ level of uncertainty which Sulivan correctly argues is vital), we must be

specific about the target. Our hypothesis is that the appropriate target of understanding with ML

models closely relates to how a learned distribution estimates the “actual” distribution

describing a phenomenon’s studied features. Specifically we propose the following:

(TML) Target of ML Hypothesis: The target phenomenon of understanding with ML

models is the relationship(s) of features represented by the data.

The target phenomenon is not a particular object or sampling instance, but relationships of the

properties or features found potentially in individual or multiple objects or object types. The5

target is the relationship patterns of these represented features. These relationship(s) are typically

those described (indirectly or directly) by some underlying actual distribution estimated

by the model. While the targeted relationships are described by such a , we emphasize

that it is the real world relationships between features implied by the description that

are the target phenomenon not itself. The concept of represented features intuitively can

be thought of as measurable properties associated with the phenomenon, but as we elaborate in6

Section 5 the specific features represented by data are intimately tied to measurement

6 Note that in practice data scientists and ML researchers refer to each of the dimensions represented by x-data as a
feature, and the y-target as the label, or the (y-)target feature, in the context of supervised learning. To be explicit,
for our usage here both x and y data represent features of a target phenomenon.

5 We use the phenomena/data distinction in a similar manner to Bogen and Woodward (1988).
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methodology and sampling practice. We argue that focusing on precisely what features sampled

data do and do not represent is paramount to evaluating ML model link uncertainty.

4. Implementation vs. Functionally Approximate Irrelevance

Relationships of features in the TML hypothesis play an important role for interpreting

the target of ML understanding. Assume that with proper methodology one rules out the sort of

link uncertainty (discussed in Section 5 below) associated with how data represents features of

the target phenomenon (horizontal top side in the C-schema). Assume further that an ML model

is well trained with appropriate metrics, data, and research practices for testing generalizability

to support the claim that reliably estimates similarly sampled data (vertical side in the

C-schema). In order to study trained ML models, especially complex DL models, for insight into

external targets, we must first clarify how a link from ML models to TML targets (horizontal

bottom side of a C-schema) may work.

To frame this challenge, let us contrast understanding from ML models and their targets

with examples of understanding from subway maps and their targets. In the latter case, relevant

facts about the target are abstracted and then represented typically as some graph-like

visualization, a map. The map can then be used to understand how to navigate the represented

subway system so long as these navigation insights are circumscribed by what is faithfully

supported through the captured facts. For instance, one can infer which paths are available from

point A to point B, but not (always) details about the decor or physical distance associated with

taking the paths. The map represents an abstraction of the right details, enabling judgments based

directly on the map’s topology to be linked back to things like understanding how to navigate the

represented subway system.

There are multiple details about the map that are also irrelevant to understanding

navigation. For instance, color choices, whether it is physical or digital, and so on, are irrelevant

details that fall under what Sullivan (2022) describes as “implementation” details. However,

topological facts depicted by a map are relevant and cannot be ruled out as mere

“implementation” details of the visualization, ostensibly because one must use those details

directly to generate judgments like “this path from A leads to B.” What about complex DL
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trained neural networks? After all, an ML model’s estimations of depend directly on

the parameter values and network architecture. Sullivan (2020, 7-8) argues that when the

“[d]etails regarding the implementation are unnecessary for explaining and understanding,”

opacity of these details (“implementation blackboxing”) are “not in principle problematic for

explaining or understanding phenomena.” Sullivan’s argument refutes that DL models cannot be

used for understanding merely due to some opacity, but the reliance on the implementation

irrelevance of certain details, particularly their irrelevance to the target of understanding, is

essential for this defense.

We have a dilemma: To understand feature relationships with an ML model despite detail

opacity with respect to learned parameter instantiations, said details ostensibly cannot be used for

insight into the relationship, but if estimations of directly depend on the instantiation

of these parameter values how can they be used to understand the relationship between and

without such details? Parameter instantiation details are not purely irrelevant implementation

details like coding language, color choices, material constitution, or even provably equivalent

algorithmic techniques. The dilemma resolves by disambiguating implementation irrelevance,

where the variations in question make no difference to the target of understanding, from a second

sort of functionally approximate irrelevance, active in the case of DL understanding. What

distinguishes functionally approximate irrelevance from implementation irrelevance is that in the

former varied details matter to the studied target, but they are varied only in ways that

approximately preserve the relevant aspects of the phenomenon to be understood.7

When the target is well specified by the TML hypothesis, we argue that by also

accounting for the role and degree of functionally approximate irrelevance, DL may help us

understand the following aspects and relationships of features represented by the data:8

IR (Informative Relationship): If and to what extent mutual information between the

features of a target phenomenon exists.

8 We make no claims that this list is comprehensive.

7 Sullivan's view may be that what we distinguish as functionally approximate irrelevance and implementation
irrelevance here both fall under some more general concept of implementation irrelevance. Our account may be
interpreted as a refinement of Sullivan, making explicit that accounting for role and degree of approximation matters
to understanding.
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FI (Feature Importance): Which features associated with the input x-data either

individually or in combination are more/less important to such an informative

relationship.

LR (Learned Representation): How transforming the input x-data to better enable

estimation of the y-target reveals informative ways of organizing the x-data and the

features it represents for this or other estimation purposes.

To illustrate how functionally approximate irrelevance plays a role, consider the sentence

completion task discussed in Section 3. Using the same neural network architectures and the

same (or similar sampling of) training data we could train two different models. Random

differences in how the parameters are initialized before training, order differences in how the

models see the training data, or differences in hyper-parameters used to define how the models

are trained can result in two substantively different learned parameterizations and , even

though the probability estimates and generated by the respective DL models

approximate the feature relationships described by equivalently. Sullivan defines

“highest level” ML opacity (blackboxing) as cases where one merely has access to model inputs

and outputs but not execution details. IR is compatible with Sullivan’s highest level opacity. If

both models are successfully trained, performing sufficiently and equivalently across different

strata of the data, we can infer that since and both approximate ,

which in turn describes features of the target phenomenon, significant parameter detail

differences (i.e. ) are irrelevant to understanding that there is an informative

relationship. With the ML model’s target clearly defined as the relationships of features

represented by and , the fact that has approximate irrelevance becomes clear:

approximates well enough, so while the details matter to how the estimates

are made, they can still be (approximately) irrelevant for the target of understanding. With the

functionally approximate irrelevance of particular parameter details ensured, IR understanding

even with “highest level” opacity is possible. At minimum, the reliable generalizability of an ML

model to similarly sampled data increases our understanding that there is some signal in the

x-data useful for y-target estimation. The existence of even an opaque but sufficiently reliable
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estimator can entail that there is mutual information between the features represented

by and .

Turning to FI, assigning feature importance in DL is an active research area. Certain

“permutation” style techniques treat the DL model with highest-level opacity where x-features

are manipulated (e.g., occluding part of an image as in (Seiler and Ferguson 2014)) and the

impact on estimation performance is then analyzed. Other methods attribute importance from

internal network properties, tracing individual contributions (typically involving gradients) from

neuron to neuron (Shrikumar et al. 2017; Simonyan et al. 2013). Arguments for FI-based

understanding for either permutation methods, or methods that meticulously trace contributions

through the network are similar to the arguments for IR above. If two similarly trained models

irreconcilably diverge in their feature importance implications, approximate irrelevance comes

into question and the researcher should doubt whether such FI attribution yields very much

genuine understanding of which features are predictive of the target. In contrast, if two similarly

trained models tend to agree on which features are important, or better yet, multiple feature

attribution techniques agree on which features matter to model predictions for certain sorts of

input, then the functionally approximate irrelevance of the specific layer-by-layer calculations is

evident, supporting FI understanding of the phenomenon. Again, the details matter in the sense

that changing them has a direct impact; however, by establishing that certain detail variations

approximately preserve resulting insights into the target phenomenon’s feature relationships (viz.

FI relationships), understanding is possible.

In their influential discussion of representation learning, Bengio et al. (2013) describe

how DL models must “learn to identify and disentangle the underlying explanatory factors

hidden in the observed milieu of low-level sensory data.” Research into how DL models

“disentangle” and organize the “low-level” input data focuses not only on studying the

informative relationship between input and output substantiated by the possibility of training a

DL model to detect these relationships successfully (IR), but also on how the data are

represented via transformations from one hidden layer to the next hidden layer of the network

(LR), revealing what kind of information is preserved and how it is represented in the associated
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vector (tensor) spaces of these layers. Sullivan (2022, 119) echoes Bengio et al., describing how9

DL models learn to “tease out the relevant features from the irrelevant,” as in image

classification where each hidden “layer gradually picks out higher and higher-level abstractions

until it reaches a classification of the image.” How hidden layer representations interact and

combine for the ultimate classification goal is studied not just for a deeper understanding of the

neural networks themselves, but also to understand how they organize and incorporate relevant

information content in the “low-level sensory data” as they mathematically transform it into new

representations for optimal estimation (Olah et al. 2020).

A simple example of such informative hidden layer representations is traditional word

vectorization. The early efforts of Mikolov et al. (2013) used shallow neural networks to map10

individual terms to vector representations, which were optimized for “fill in the blank” style

tasks similar to the example in Section 3. Such vectorized word-embeddings are not merely

useful for the original task. The representations could be reused as pre-trained representations

for novel text-based tasks. Embeddings were widely used to study and leverage ostensible11

semantic relationships (e.g., analogies, synonymy clusters) manifested by their usage patterns for

practical applications.

In contrast to IR and FI, LR must engage directly with the learned representations of data

(like word-embeddings) associated with hidden layers or neurons. As above, the individual

parameterizations of the learned representations are opaque, but in the case of LR, understanding

is achieved through direct engagement with these representations. The ostensible target12

phenomenon of the original Mikolov et al. (2013) task is the relationship between the terms

12 There are numerous methods of visualizing and analyzing learned representations directly, including projecting to
a lower-dimensional space, inspecting particular weights indicating strength of importance to the task, developing
generative models, sweeps in latent feature spaces (Chen et al. 2018; Kingma and Welling 2013), and more.

11 Because information about frequency in contexts learned by these models can be useful in more general text-based
tasks, these representations and more advanced techniques are commonly also used as pre-trained representatives for
new models. Such pre-training is standard for both novel text tasks and image classification tasks. As we see in
Section 5, both Esteva et al. (2017) and Haenssle et al. (2018) use versions of pre-trained Inception models (v3 and
v4 respectively) for image classification.

10 More complex contemporary Transformer techniques use much deeper pre-training of text embedding methods
bearing some similarities to shallower early word vector pre-training representations but have been adapted to
embed both chunks of text and embed individual terms in the context of the surrounding text in which they are
written (Vaswani et al 2017; Devlin et al. 2018).

9 See, for example, (Kingma and Welling 2013; Chen et al. 2018; Achille and Soatto 2018; Olah et al. 2020; and
Tamir and Shech 2022), for a discussion of the various DL and information theoretic techniques for studying such
representations.
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“filled in” (y-targets) and their surrounding context terms (x-data). This relationship is described

by some distribution capturing (some of) this frequency in context information. Study of these

vectorizations, such as the relative position of vector differences can capture analogical (

vs ) or morphological ( vs )

term usage in (sampled) text. Similarly, projecting word-embeddings onto lower dimensional13

visualizations, or studying clustering patterns of embeddings can inform understanding of term

usage as a surrogate for synonymy. As with the discussion of IR, different embeddings likely14

have non-identical parameterizations due to differences in the training data, the way that the

models were initialized, neural architecture, training process, etc. However, if these

representations can be used for LR understanding of the represented features, properties such as

the relative positions of word-embeddings used to complete analogies should be evident in the

respective representations despite these differences. Dev et al. (2019) explain that “rotation or

scaling of the entire dataset will not affect synonyms (nearest neighbors), linear substructures

(dot products), analogies, or linear classifiers” because “there is nothing extrinsic about any of

these properties.” For example, in studying the impact of basis rotations to align GloVe

(Pennington et al. 2014) and Word2Vec (Mikolov et al. 2013) embeddings, they confirm that

using a vector from Word2Vec to complete an analogy using GloVe embeddings “is very poor,

close to 0; that is, extrinsically there is very little information carried over” by the (basis

dependent) parameter values themselves. However, when the learned rotations were used to align

the embeddings first, near equivalent performance was recovered.

Studies like these illustrate how individual parameterization details can differ but still

have functionally approximate irrelevance to the specific method of studying the properties of

the DL model. In the simple case of word-embeddings, we see that properties such as relative

angles or positions that are invariant to certain changes of coordinate values allow for a direct

engagement with hidden layer representations to gain LR understanding. This suggests a path15

15 For a more complex example, see Olah et al.’s (2020) universality hypothesis.

14 Esteva et al. (2020) discussed below does a similar low dimensional projection of learned representation vectors of
dermatology photos to study how clustering patterns of these images relates to their respective diagnosis labels.

13 When learned representations are particularly effective as pre-trained representations, it is tempting for additional
applications to infer that they capture relationships about language (or vision, etc.) in general. However, there are
epistemic risks associated with adopting patterns in the data on which a pre-trained model was trained, leading, for
example, to gender bias in word-vectorizations (Bolukbasi et al. 2016).
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to reconciling Sullivan’s contrast of DL models with idealized models. Namely, although DL

models have an overwhelming “blackbox level” number of parameter details, focusing on how

scientists and researchers leverage these models for LR (FI and MI) understanding reveals the

approximate irrelevance of these particular details. By attending to which details are

(approximately) irrelevant to these more illuminating relationships and properties, we

can see how such opacity (at an approximately irrelevant individual parameter detail level) need

not prohibit improved understanding.

5. Disambiguating Link Uncertainty

Our above discussion explored the TML hypothesis that understanding with ML models

targets the relationships of features represented by the data and described by some underlying

distribution directly or indirectly estimated by the model. Further, if varying certain “blackbox”

details impact the target relationships of an ML model only approximately, then DL

understanding is still possible at least for MI, FI, and even LR when we “open up the black box”

to acquire this understanding. In this section, we consider examples discussed by Sullivan to

disambiguate two kinds of link uncertainty that we submit are conflated in Sullivan (2022) so

that the understanding gained from FI and LR can potentially be leveraged to prevent such

uncertainty.

Sullivan (2022, 126) presents Esteva et al.’s (2017) melanoma classifier as an example of

low link uncertainty. Esteva et al. (2017) use the Inception-v3 (Szegedy et al. 2016) model and

then fine-tune (further train) it for dermatology images. The authors tested their model using data

points with biopsy verified labels, inferring that it could outperform most expert dermatologists

evaluated on “the same data.” What links justify the conclusion that their model was able to

outperform expert dermatologists tested on “the same data?” First, although the model’s x-data

are processed from images that the dermatologists looked at, even these data are not identical:

Inception-v3 takes as input 2-dimensional arrays of RGB values, whereas human dermatologists

view images. Issues of proper lighting at test time, etc. might affect human performance but not

the model. Further, issues of data leakage (Kuehlkamp et al. 2017; McCoy et al. 2019; Torralba

and Efros 2011), where unintended signal correlated to the y-target is inadvertently left in the
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x-data, pose a risk to the validity of this horizontal link. For instance, Haenssle et al. (2018)

reported that their DL trained algorithm with the similar Inception-v4 convolutional

neural network (CNN) architecture performed competitively with expert dermatologists.

However, in a follow-up study, Winkler et al. (2019) note that “[i]n clinical routine, suspicious

lesions are frequently marked before being excised or photographed” and that benign images

were “frequently labeled as being malignant by the CNN when ink markers were visible

at the periphery of the dermoscopic image.” In subsequent tests of the CNN on new data taken

before and after marking, they found that adding the marking significantly increased false

positivity, suggesting that human markings made before the original study leaked unintended

human expert information about the y-target into the x-data. Since ML models primarily16

“learn” from the provided data, ruling out data leakage and confounding bias in sampling

methodology, data preparation, and y-target labeling are fundamental to preventing link

uncertainty with ML models. In data leakage cases, the actual features represented by the data

were not just the intended features (specifically, how skin looks (x-data) and dermatological state

(y-target)). The data also included influential features, namely, experts selectively added

markings in a way that correlated with suspicions of dermatological states. Conclusions drawn

from a successfully trained DL model are about these features (also), because that is what the

actually sampled data represent, rendering the link with intended features, namely,

unmarked skin and their dermatological state uncertain. Let us call this kind of link uncertainty,

resulting from relevant and unintended misrepresentation of target features by the data,

misrepresentation uncertainty.

Misrepresentation uncertainty can clearly corrupt the horizontal links between the model

and target (in both directions), confounding the intended features of the target phenomenon to be

understood. This is different from the kind of empirical link uncertainty introduced in Section 2

that occurred with Schelling’s model. In that case, the uncertainty did not arise from an

unintended mismatch between what elements of the simulation model (coins as residents,

squares in the grid as houses) are supposed to represent. Rather, the alleged uncertainty

16 Esteva et al. (2017) have a similar potential source of data bias where dermatologists selectively used a ruler when
capturing images of lesions, one of the authors is quoted in popular media as recognizing that “[i]n our data set,
dermatologists tended to do this only for lesions that were a cause for concern” (Patel 2017).
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concerned a mismatch between empirical facts about homeowner reactions and intended model

parameters (namely, the 30% similarity preference threshold), and it is not clear that these model

assumptions veridically correspond to the target. In misrepresentation uncertainty such as

leakage cases, however, the data still veridically correspond to some feature actually measured

and encoded in the data, but substantively not the intended features to be understood.

Sullivan (2022, 126) argues that “[i]mplementation black boxes do not get in the way of

understanding phenomena in the melanoma case because the model is operating within a

background of existing scientific understanding.” She highlights that “[t]he level of scientific

justification and background knowledge linking the appearance of moles to instances of

melanoma is extensive,” noting that it is a “leading deciding factor for medical intervention” and

biopsies. This supports claims that there may be meaningful relationships between features of the

phenomenon, but it does not provide clear horizontal links for understanding. Certainly,

background scientific knowledge can inform the kinds of features to target with an ML model,

but in order to establish a link between the model and the target, more is needed. Disambiguating

misrepresentation link uncertainty from empirical link uncertainty helps clarify what is needed.

The data used by an ML model must represent the targeted features of the phenomenon as

intended. If not, a background of scientific evidence does not prevent misrepresentation

uncertainty. Haenssle et al. (2018) rely on the same “background knowledge” for a similar use

case and even DL model but demonstrably fail to link the model to the target. Complementary to

the important role of background scientific knowledge for informing how ML models link with

their target phenomenon, misrepresentation uncertainty also highlights that appropriate sampling

methodology and data preparation are necessary to establish a representation link between the

ML model’s data and the intended features of the target phenomenon.

Moreover, FI and LR, discussed in Section 4, can be instrumental not just as examples of

understanding, but also in helping to rule out misrepresentation uncertainty. Consider Sullivan’s

(2022, 127) discussion of Wang and Kosinski’s (2018) DL model. She explains that “researchers

built the model . . . to see whether it was possible to identify an individual’s sexual orientation

based on facial features alone.” Their model is trained on profile pictures taken from dating

websites (x-data) and self-reported orientation for said websites (y-target). Although the
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reported estimator quality metrics are high enough to suggest mutual information between these

features (profile pictures and self-reports), Sullivan (2022, 127) observes that the “link

uncertainty is vast. . . . As the researchers themselves note, many of the features that the model

tracks are cultural features, such as certain grooming patterns and dating-profile picture

conventions.” According to our account, this is a case of misrepresentation uncertainty. Instead

of using data that represents “facial features alone” and “sexual orientation” they allow for data

leakage in the form of “grooming patterns and profile conventions.” The extent to which this

data leakage was influential could be achieved by alternative data sampling methods. It might

also be better understood through an analysis of FI using permutation importance techniques

such as visual occlusion of grooming features, etc., which are believed to have leaked

confounding information, or more gradient-based techniques used to identify which parts of an17

image have a greater impact on model estimation. Similarly, studying how the DL model

transforms and represents higher-level features may also inform greater LR understanding

of the actually represented features.

Although the three modes of ML understanding explored in Section 4 are not intended to

be comprehensive, we emphasize that a predictable relationship between the represented features

is not necessarily causal. Background scientific theory is vital for inferring causal claims from

information-theoretic claims about features. Sullivan argues effectively against the existence of

any background scientific knowledge supporting parental hormone theory (PHT), an origin

theory for sexual orientation. Even if the model were reconciled of its misrepresentation

uncertainty using improved data sampling methods, etc., further inference from such an IR

(between the features veridically representing facial structure and appropriately defined

orientation features) cannot be made based on an ML model alone. Though PHT causal

hypotheses may be loosely related to the features targeted by such a methodologically rectified

ML model, far more scientific work (in the context of an appropriate background theory) is

required before it could be said to even partially provide supporting evidence. It is a question of

what kind of evidentiary patterns do (and do not) support causal claims within a scientific

17 FI might similarly be used to detect the above identified potential dermatology data leakage risks, by
understanding the importance of markings and ruler usage included in the x-data.
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domain. Origin theories about causal links such as PHT are not merely suspect; they fall outside

the scope of target features to be understood by ML models according to the TML hypothesis.

6. Conclusion

Our account can be taken in part as a development of Sullivan (2022), adding further

distinctions. Specifically, (1) we have explored the TML hypothesis as an account of the

appropriate kind of target for ML models, and (2) we have identified MI, FI, and LR as (at least)

three modes of understanding such targets with ML models. (3) We have argued that functionally

approximate irrelevance be distinguished from implementation irrelevance, and we have

suggested that this distinction helps illuminate why parameter detail proliferation does not

necessarily render the level of questions answered by MI, FI, and LR opaque. Last, (4) we have

argued that the difference between empirical and misrepresentation-based link uncertainty brings

more clarity to the role of background scientific knowledge in supporting ML model based

understanding.
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