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Abstract

This article offers an informal overview of the category-theoretical ap-
proach to causal modeling introduced by Jacobs et al. (2019) and explores
some of its conceptual as well as methodological implications. The cate-
gorical formalism emphasizes the aspect of causality as a process, and rep-
resents a causal system as a network of connected mechanisms. We show
that this alternative perspective sheds new light on the long-standing is-
sue regarding the validity of the Markov condition, and also provides a
formal mapping between micro-level causal models and abstracted macro
models.

1 Introduction

Graphical modeling is now the standard toolkit for studying causality and find-
ing causal relationships from observed data (Spirtes et al., 1993; Pearl, 2000). A
typical causal modelM = (G,P ) in this approach consists of a directed acyclic
graph (DAG) G over a set of variables and a probability distribution P , where
the graph G = (V ,E) is a pair of a set V of variable and a set E ⊂ V × V of
edges between them. Variables designate properties or states of units or objects,
say diet or blood pressure of patients. The existence of edge from one variable to
another means that a state of the latter is causally dependent on that of the for-
mer, in such a way that an intervention in the former results in a change in the
latter. Thus, causality in this framework is understood as relationship between
events, where events are designated by variables assuming particular values. For
instance, BloodPresure = high would designate the event that a given patient’s
blood pressure is high, and a causal question asks whether this type of event
is in a systematic relationships with other types of events regarding, say, one’s
diet or other medical conditions.

The event-centered view dates back to British Empiricism and especially to
David Hume, who took inductive reasoning to be an inference from one type of
events to another. For Hume, this task was equivalent to establishing a causal
relationship between them, which he thought can never be warranted by logic
or experience. Contemporary statistics and machine learning research has tried
to alleviate this skepticism by introducing various empirical and theoretical
assumptions that would allow algorithmic identification of causal relationships
from observed data (Morgan and Winship, 2007; Peters et al., 2017), but the
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basic conceptual framework remains the same: a causal system is considered as
a constellation of events/variables manifesting regular patterns.

On the other hand, some philosophers have proposed an alternative concep-
tion of causality, featuring its aspect as processes (Salmon, 1984; Dowe, 2000)
or mechanisms (Machamer et al., 2000; Cartwright, 2007). Causality, according
to this view, is best understood as a process that transmits influence from one
event to another, or a mechanism that produces an outcome by taking some
inputs. For instance, one may take a metabolic process as a mechanism that
“generates” blood pressure (among other things) in response to, say, a dietary
practice.

We believe that this process-centered view of causality can be formally rep-
resented using the category-theoretic language of string diagrams, and that this
alternative formalism sheds new light on some problems of causality regarding
the causal Markov condition and the problem of abstraction. Following the
seminal work of Jacobs et al. (2019), section 2 presents the categorical formal-
ization of discrete causal models with finite variables. We show how causal
DAGs are translated to string diagrams, and that a functorial mapping of dia-
grams yields causal models. Our presentation prioritizes clarity over theoretical
rigor and proceeds with examples rather than mathematical proofs so that the
core idea can be grasped by a reader without familiarity with category theory.
Section 3 then looks at the old problem of the Markov condition from the cat-
egorical perspective, and points out that the validity of this condition hinges
on the existence of a special mechanism called copier, which duplicates a causal
process without disturbing it. Section 4 turns to the problem of abstracting
a causal model by coarsening its variables. The challenge of abstraction is to
map a “low-level” micro model to a “high-level” macro model in a consistent
fashion. We will show that this mapping is given by a category-theoretic notion
of natural transformation between two causal models/functors. We conclude
that the category-theoretic approach offers a novel perspective and solutions to
some issues that resisted successful formal treatment in the conventional DAG
formalism.

2 Process theory of causality

While the event-centered view of causality has a natural representation in graph-
ical modeling, the process-centered view can be formalized by using process
theory, which have been developed mainly in categorical quantum mechanics
and computer science (e.g. Abramsky and Coecke, 2004; Coecke and Kissinger,
2017). Here we briefly review the application of the process theory to causal
modeling introduced by Jacobs et al. (2019).

2.1 Translating a DAG to a string diagram

Process theory conceptualizes a process as a system of combined mechanisms
that exchange their products with each other. Each mechanism, commonly
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represented by a box, has definite types of inputs and outputs, represented by
wires (there are also special types of mechanisms that do not have either or
both of input and output). The following is an example of a mechanism that
takes two inputs X1, X2 and returns two outputs Y1, Y2;

f

Y1 Y2

X1 X2

Unless mentioned otherwise, it is assumed that causal processes flow from bot-
tom to top.

Given two boxes f and g, if the type of an output of f matches with that
of an input of g, these two boxes can be combined vertically via the matching
wire, as:

f

g

Z

Y

X

Intuitively this can be understood as an initial input X processed by f being
transmitted for a further processing by g to yield a final outcome Z.

In addition to the vertical composition, multiple streams can be combined
horizontally, representing a parallel processing:

f g

A

C

B

D

This describes the situation where two types of inputs, A and B, are indepen-
dently processed by f and g respectively, to output C andD. Parallel processing
can also be understood as a combined input A ⊗ B processed by a combined
process f ⊗ g to yield C ⊗D.

A system created by combining multiple mechanisms via vertical and parallel
compositions is called string diagram. A string diagram as a whole can be
considered as one big process that has combined inputs and outputs.

In the context of causal modeling, a diagram serves as a causal graph, de-
scribing the topological feature (i.e., connectedness) of a causal system. Wires
in a string diagram corresponds to variables. For each variable Y ∈ V , there is
a box of the form

fY

Y

X1 · · · Xk

(1)

where X1, . . . , Xk ∈ PA(Y ) are parents of Y . Intuitively, the box represents
a “generating mechanism” of Y that takes PA(Y ) as input, and thus multiple
edges pointing to one variable are summarized by one box. In addition, we
assume that an exogenous variable (with PA(Y ) = ∅) also has its own “state”
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with no input, depicted with a triangle. By combining these boxes and wires
in accordance with a given DAG, one can create a matching string diagram, as
illustrated in Fig. 1. Note that a string diagram gives a somewhat “flipped”
image of the graph, replacing nodes with wires and edges with boxes.

fD fE

fB fC

fA
A

B C

D E

A

B C

D E

Figure 1: A translation of a DAG (left) to a string diagram (right).

One component of the string diagram in Fig 1 that lacks an explicit graph
counterpart is the cloning process or copier :

which duplicates the input and returns two (or more) outputs of the same type.
A copier is needed when there is a fork X ← Y → Z in the graph. From
the process-perspective, this means that the product Y is used twice, one for an
input to (the generating mechanism of)X and the other to Z. Such an operation
is taken for granted in causal graphs, but not in a string diagram and must be
explicitly counted as an independent process. This is because duplication is not
always possible: in quantum mechanics, for instance, one can not copy one state
without disturbing it. In section 3, we will discuss that the existence of copier
also proves to be crucial for the validity of the causal Markov condition.

String diagrams can be formally described in the language of symmetric
monoidal category. Wires and boxes of a string diagram are objects and mor-
phisms (arrows) of this category. A vertical composition of boxes correspond
to the composition of morphisms with the matching codomain/domain: for ex-
ample the composition of f : A → B and g : B → C yields g ◦ f : A → C.
A parallel composition is given by binary associative operations of objects and
morphisms:

⊗ :ob(C)× ob(C)→ ob(C)
⊗ :C(A,B)× C(C,D)→ C(A⊗B,C ⊗D)

where ob(C) is a class of objects and C(A,B) is the set (“homset”) of morphisms
from A to B of category C. The vertical and parallel compositions of morphisms
f1, f2, g1, g2 must be commutative:

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2).
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In the diagram presentation, this just means the two ways of composing pro-
cesses

f1

g1

f2

g2

=

f1

g1

f2

g2

yield the same diagram.
On this categorical background, Jacobs et al. (2019) introduce a free category

(or what they call free CDU category) over a pair of generating sets of objects
and morphisms. In particular, a causal string category SynG is built from a DAG
G = (V ,E) by taking its variable set V as the generating set of objects and
the set of boxes of the form (1) as the generating set of morphisms. That this
is a free category means that SynG contains anything that can be obtained by
combining these wires and boxes (plus some other special units such as copiers,
discards, units). This includes not just the string diagram in Fig 1, but also any
of its parts and their suitable combinations.

2.2 Probabilistic interpretation of a string diagram

A causal model is a probabilistic interpretation of string diagrams in the above
defined free CDU category. This is done by a functor, a systematic mapping from
one category to another, in the present case from SynG to a Markov category of
an appropriate structure (Jacobs et al., 2019; Fritz, 2020). For discrete causal
models whose variables have only finite values, the target Markov category will
be FinStoch, whose objects are finite sets and morphisms f : X → Y are |Y | ×
|X| dimensional stochastic matrices, i.e., matrices of positive numbers whose
columns each sum up to 1. A functor then assigns each wire of SynG with a
finite set (representing values of the corresponding variable) and each box with
a stochastic matrix (representing conditional probabilities of the effect given its
causes, also known as Markov kernels). In addition, a state (a triangle with
no input) of an exogenous wire/variable X is mapped to a morphism from the
object 1 of FinStoch; this morphism is a |X|×1 stochastic matrix or vector, and
thus gives a marginal distribution P (X) of X.

Fig. 2 illustrates probability assignments by causal model functor F to the
bottom half of the string diagram in Fig. 1. Here, each variable/wire is assumed
to have two values, and thus mapped to two-element sets {a1, a2}, {b1, b2}, and
{c1, c2}. The left-most box F (fA) gives a marginal distribution P (A) in the
2× 1 vector format. F (cpA) interprets the copier with a (2× 2)× 2 matrix that
effectively “duplicates” P (A) to yield P (A×A). This is in turn fed into F (fB)
and F (fC), 2×2 matrices each representing the conditional distribution P (B|A)
and P (C|A), respectively. As a whole, the functor gives the joint probability
distribution P (A,B,C) that satisfies the Markov condition with the DAG B ←
A→ C.1

1Precisely speaking, in string diagrams only those wires extending to the end are assumed
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fB

fC

A

B

C

F(cpA)
a1 a2

a1a1
a1a2
a2a1
a2a2

1 0

0 0

0 0

0 1

{a1, a2}
a1 a2

b1
b2

0.3 0.5
0.7 0.5

{a1, a2}

a1 a2
c1
c2

0.8 0.6
0.2 0.4

{a1, a2} {c1, c2}

{b1, b2}

⊗ ⊗

F( fB)

F( fC)

A

A

fA

a1
a2

-
0.4
0.6

F( fA)

Figure 2: An example of a functorial assignment of values and (conditional)
probabilities to a string diagram. Here the causal flow is from left to right. The
structure shown interprets the bottom part of the string diagram in Fig. 1.

A different functor F ′ : SynG → FinStoch leads to different probability as-
signments, possibly with different numbers of values of the variables. In this way
any causal model that satisfies the Markov condition with DAG G can be rep-
resented as a functor. In fact, this correspondence is one-to-one, which means
that a discrete acyclic causal model (G,P ) can be identified with a functor
F : SynG → FinStoch (Jacobs et al., 2019).

2.3 Intervention via diagram surgery

One of the core features of causal modeling is the operation of intervention,
which forces a target variable to assume a particular distribution. In the cate-
gorical formalization, an intervention is defined as a diagram surgery which re-
places any appearance of the box of a target variable with an exogenous “state”
(triangle) and discards its inputs (denoted by empty circles):

f

Y

X1 Xk· · ·
7→

Y

X1 Xk· · ·

while keeping all the other boxes and wires intact. For a string diagram category
SynG, this mapping defines an endofunctor cutY : SynG → SynG. Interventions
on other variables give rise to similar endofunctors. A post-intervention distri-
bution is obtained by combining an intervention functor with a causal model
functor, such that F · cutY : SynG → FinStoch.

to be observed. Hence to have a joint distribution P (A,B,C), one needs to branch A once
more and run it to the end. But in this article we ignore this convention and assume that all
wires in a string diagram are observed.
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3 The Markov condition

We have reviewed so far the categorical formalization of causal models by Ja-
cobs et al. (2019) as a formal representation of the process-oriented view of
causality. The advantage of taking this alternative perspective is that it sheds
light on some issues that resist a proper theoretical handling in the conventional
DAG formalism. Jacobs et al. (2019) showed that the identifiability of interven-
tion outcomes can be easily determined by the diagrammatic operation called
comb disintegration. In this and next section we discuss two other issues, one
concerning the Markov condition and the other abstraction of causal models.

At the end of the previous section, we noted the one-to-one correspondence
between a discrete causal model (G,E) and a functor F : SynG → FinStoch.
This, however, does not mean the equivalence of the diagrammatic and graph-
theoretic formalization. In fact, the former can deal with a broader range of
causal structures. The aforementioned procedure of constructing a string dia-
gram from a causal graph was based on the assumption that each variable/wire
has its own generating mechanism, giving rise to a box with just one output.
But this needs not be the case in the process theory (or symmetric monoidal
category) in general: boxes may have multiple outputs, such as:

f

Y1 Y2

X , or in general

g

· · ·

· · · . (2)

Since such boxes do not arise in the construction of SynG from a DAG G, they
suggest the possibility of causal structures that do not have a graph-theoretical
counterpart (Jacobs, 2022).

It should be emphasized that the left box f in (2) is not equivalent to a
fork Y1 ← X → Y2. For if it were a fork, the Markov condition should entail
Y1 ⊥ Y2|X. Nothing in the diagrammatic representation, however, enforces this
independence relationship. The morphism f in (2) can be mapped by a functor
to any stochastic matrix P (Y1, Y2|X), where Y1 and Y2 may or may not be
independent given X. To obtain the independence of two outputs Y1 and Y2,
the branching must be made via a copier:

f1 f2

Y1 Y2

X (3)

This is the correct diagrammatic rendition of the fork Y1 ← X → Y2 in a
causal DAG, which makes Y1 and Y2 independent given X in any functorial
(probabilistic) interpretation of this diagram. Note also that since every box in
this diagram has just one output, it can be constructed from a graph following
Jacobs et al’s procedure.
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From the other perspective, the causal Markov condition can be understood
as the claim that every multi-output process as in (2) is a disguised dashed box
as in (3) and must be decomposable into separate mechanisms with a copier.
Note that (3) implies that each of Y1 and Y2 can be modified without affecting
the other by a diagrammatic surgery of box f1 or f2, whereas such a modular
intervention is barred in (2). Hence, the assumption that any multi-output
box as in (2) is replaceable by (3) can be properly called modularity condition.
What was shown by the diagrammatic reasoning above is that the modularity
condition in this sense does imply the Markov condition.2

The question, then, boils down to the validity of the modularity condition,
and it is this point that critics have put under critical scrutiny (Cartwright,
1999, 2007). Cartwright argues that the Markov condition fails when a cause
operates probabilistically, and illustrates her claim with a hypothetical chemical
factory which generates products Y1 and side-effect pollutants Y2, with certain
probabilities such that Y1 and Y2 do not become independent even conditioned
on the operation of the factory (Cartwright, 2007, p. 107). Her factory is
nothing but the process f in (2), and her claim is that it is not decomposable as
in (3) because the chemical products and pollutants are generated by the same
generating mechanism by assumption. Her argument can be paraphrased using
diagrams: it can be shown that, if f in (2) is equivalent to (3), it can also be
rewritten as:

f f

Y1 Y2

X (4)

where empty circles are operators that “discard” each of the two outputs Y1, Y2

(Fritz, 2020, Lemma 12.11). This means that modularity (3) assumes that the
two outputs Y1 and Y2 are produced by applying the same production process
f to the input X twice and then discarding one of the outputs in each. This
strikes as a rather strong assumption, which is unlikely to hold in situations like
Cartwright’s example.

Both in (3) and (4), the copier plays a crucial role. In this sense, the crux of
the Markov condition and the modularity condition is the existence of a copier:
is it always possible to duplicate one process without disturbing it? The an-
swer is known to be negative in the quantum context. The possibility in marco,
non-quantum setups seems to depend, but the process view suggests an inter-
esting empirical hypothesis. The hypothesis is that if an alleged common cause
is a repeatable event or condition that generates effects at separate moments or
through different mechanisms without altering its nature as a cause, as when a

2Hausman and Woodward (1999) proposed a similar argument for the Markov condition,
but their definition of modularity just requires the invariance of structural equations to changes
in values of variables, and is weaker than the modularity defined here as a diagrammatic
surgery. Cartwright (2007) shows that Hausman and Woodward’s modularity is insufficient
to ensure the Markov condition.
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genotype of an individual (e.g. possession of abnormal copies of the β-globin
gene) is said to be a cause of two distinct symptoms (sickle cell disease and
resistance to malaria), the modularity and the Markov condition are expected
to be satisfied. If, on the other hand, the causal factor is transitory and altered,
consumed, or destroyed each time it produces its effects, as in chemical reac-
tions, these conditions are likely to fail. Confirmation or disconfirmation of this
hypothesis, however, must await further empirical investigation.

4 Abstracting Causal Models

The next problem that we focus on is the problem of abstracting causal models.
Causal systems can be described at different levels of granularity, and find-
ing an appropriate macro-level causal features out of micro-level measurements
(such as gene expression data or image pixels) is a major challenge in machine
learning and scientific inquiries in general (Iwasaki and Simon, 1994; Chalupka
et al., 2014, 2016; Schölkopf et al., 2021). The assumption of coarsening is
that the models at different levels, despite having different set of variables and
edges, are consistently related so that they are regarded as modeling the same
phenomenon. Recent studies have proposed formal conditions of such an ab-
straction procedure that maps components of a finer-grained “low-level” model
to those of a coarser-grained “high-level” model (Rubenstein et al. 2017; Beck-
ers and Halpern 2019; Beckers et al. 2020; Rischel 2020; Rischel and Weichwald
2021; Otsuka and Saigo 2022; see Zennaro 2022 for review).

Coarsening may operate on variables, by merging multiple micro variables
into one macro variable, or on values, by reducing multiple values of one variable
to a fewer number of values with less resolution, or both (Zennaro, 2022). Either
way, for the resulting model to count as an abstraction of the original model,
such a mapping must be consistent in three essential aspects of causal models:

1. Structural: causal relationships of the low-level model must be preserved.
In particular, if there is an edge between two micro variables, their macro
counterparts must also have an edge in the matching direction.

2. Probabilistic: the probability assignment of the high-level model must be
consistent with that of the low-level model.

3. Interventional: the two models must make consistent predictions to exter-
nal interventions.

Another way of spelling out these desiderata is that abstraction procedure
must commute with various operations in/on a causal model. For instance,
the probabilistic consistency would require that the probability of an effect cal-
culated in the micro model must “match” with that of its macro counterpart
(Rubenstein et al., 2017; Rischel, 2020; Rischel and Weichwald, 2021). We illus-
trate below that the category-theoretic formulation provides a natural micro-
macro translation that fulfills all these desiderata.
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4.1 Abstraction in a monoidal category

Let us begin with the value reduction. There are two types of value reduction:
the first is a deterministic transformation or supervenience, that merges multiple
values of one variable into a fewer number of values with less resolution. For
discrete variables such a map is given by a rank-deficient stochastic matrix
whose entries are 1 or 0. The second type is stochastic, and simply maps one
variable to another with any stochastic matrix whose size matches the number
of values of the source and target variables. The categorical approach handles
both types in the same way using the notion of natural transformation.

Suppose we are given a causal model F : SynG → FinStoch. An ab-
stracted model that merges some values of its variables is given by another
functor F ′ : SynG → FinStoch such that |F ′(X)| ≤ |F (X)| for any object X
of SynG. Thus an abstraction is a mapping between functors F ⇒ F ′ that
fulfills the consistency requirements listed above. In category theory, such a
mapping is called natural transformation. Given two causal model functors
F, F ′ : SynG → FinStoch, a natural transformation α : F ⇒ F ′ is a set of
morphisms in FinStoch (therefore stochastic matrices) that make the following
diagram commute for any morphism f : X → Y in SynG:

F (X)
F (f)−−−−→ F (Y )

αX

y yαY

F ′(X)
F ′(f)−−−−→ F ′(Y )

(5)

Here the upper half represents a stochastic transition along the causal edge
f : X → Y according to the original model F , while the bottom represents the
corresponding transition in the coarse-grained model F ′. They are stochastic
matrices of dimension |F (Y )| × |F (X)| and |F ′(Y )| × |F ′(X)|, respectively. In
contrast, vertical arrows αX and αY serve to relate these causal flows in a con-
sistent fashion. They are also stochastic matrices, and in case of deterministic
translation (i.e., merging of values) their entries are either 1 or 0. The commu-
tativity of the diagram means that coarsening αX : F (X)→ F ′(X) is consistent
at every step of the causal flow, in the sense that one obtains the same marginal
distribution regardless of whether one follows the causal path in the original
model and then transforms the effect (clockwise path) or transforms the cause
first and then derives its effect in the coarse-grained model (counterclockwise
path). The existence of a natural transformation between two models/functors
F and F ′ thus warrants the probabilistic consistency.

One difficulty of the value reduction is that it may infringe on the Markov
condition. In general, there is no guarantee that conditioning on a coarser-
grained redescription X ′ of the common cause in Y ← X → Z would make its
effects independent, i.e., Y ̸⊥ Z|X ′ even if Y ⊥ Z|X. The categorical approach,
however, is free from this problem, because the fact that F ′ is a functor (i.e.,
causal model) ensures that it satisfies the Markov condition with the original
graph.
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In general, finding an abstraction between two candidate models is a non-
trivial task. In the case of deterministic abstraction, however, there is a nec-
essary and sufficient condition for the existence of a transformation (Otsuka
and Saigo, 2022). This condition is called causal homogeneity, and intuitively
requires that micro values to be merged into the same macro value must have ho-
mogeneous causal effects modulo groups of the effect variable. For more details,
see Otsuka and Saigo (2022). Additionally, Rischel (2020); Rischel and Weich-
wald (2021) propose the use of KL-divergence to measure the non-commutativity
of abstraction when the exact match between two models is hard to come by,
as is expected in empirical measurements.

Let’s now move on to the next problem of variable reduction, where two
or more variables in a macro model are merged into one variable in a micro
model. In a way, this type of merging is already built in a monoidal category as
vertical or horizontal compositions in a string diagrams. Recall that SynG, as
a free symmetric monoidal category, contains any appropriate compositions of
the generating objects and morphisms. One may then consider such combined
objects or morphisms as “abstractions” of its components. For instance, Fig.
3 shows progressive procedures by which components are combined to form
larger processes, which can then be considered as abstraction of its constituting
processes. The horizontal and vertical compositions of string diagram, therefore,
provide a means for variable reduction. The functorial property of a causal
model then takes care of the probabilistic as well as interventional consistency:
in particular, the probabilistic interpretation of the merged processes can be
calculated from that of its constituent.

fD fE

fB fC

A

B C

D E
fD fE

A

B C

D E
fD

A

B C

D E

Figure 3: “Abstraction” with string diagrams. In symmetric monoidal cate-
gories, objects (wires) and morphisms (boxes) can be combined to make another
objects and morphism, which can then be considered as a joint mechanism. The
string diagram in the middle combines a copier and two parallel processes, fB
and fC into one process. The inverse L-shaped box on the right further encom-
passes another copier and fE , making up a process with three outputs B,C and
E.

The categorical/monoidal compositions by themselves, however, cannot be
considered a full-brown abstraction. Abstraction is expected not only to con-
solidate information, but also to discard or forget some of it. Composition may
serve for the former but not the latter purpose, for composed boxes or wires
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retain all the details as its components. Moreover, it does not serve if our aim
is to compare two causal graphs. Boxes resulting from compositions may have
multiple outputs, in which case there is no obvious graph-theoretic counterpart
(Sec. 3). For example, there is no causal graph that corresponds to the middle
and right string diagrams in Fig. 3 that preserves the cause-effect relationships
in the original causal graph (Fig. 1). If one wishes to see abstracted models in
the conventional graphical formalism, a different approach must be taken.

4.2 Abstraction via graph-homomorphism

To avoid this problem, Otsuka and Saigo (2022) propose to combine the DAG
and string diagram formalisms and define abstraction over both levels. As for
abstraction of causal graphs, they require that a target “macro” graph H =
(V H ,EH) be graph homomorphic to an original “micro” causal graph G =
(V G,EG), i.e., there is a mapping ϕ : V G → V H such that if X → Y ∈ EG

then ϕ(X) → ϕ(Y ) ∈ EH . This ensures the structural consistency (the first
desideratum in the above list) between G and H. The graph homomorphism ϕ
then induces an abstraction of string diagrams as a functor Φ : SynG → SynH ,
which sends an object (string) Y in SynG to object ϕ(Y ) in SynH , and boxes:

f

Y

X1 Xk· · ·
7→ ϕ(f)

ϕ(Y )

ϕ(X1) ϕ(Xk) Z1 Zl

· · · · · ·
(6)

where Z1 . . . Zl ∈ PA(ϕ(Y )) \ ϕ(PA(Y )) (note that the right box is indeed a
morphism in SynH).

With this setup, a macro model functor F ′ : SynH → FinStoch is said to
be a Φ-abstraction of a micro model F : SynG → FinStoch if there is a natural
transformation α : F ⇒ F ′Φ, so that for any morphism f : X → Y in SynG the
following diagram commutes:

F (X)
F (f)−−−−→ F (Y )

αX

y yαY

F ′Φ(X)
F ′Φ(f)−−−−−→ F ′Φ(Y )

(7)

The difference from (5) is that the lower half now represents the stochastic
transition in macro graph H. The commutativity thus ensures the probabilistic
consistency (the second desideratum) between the micro causal model F based
on DAG G and the macro model F ′ based on another DAG H. Otsuka and
Saigo (2022, theorem 4) also show that the Φ-abstraction satisfies the interven-
tional consistency, i.e., for any intervention on a macro-level variable there is
a corresponding intervention on a set of micro variables such that these two
interventions yield consistent post-intervention distributions.

Fig 4 illustrates the procedure of Φ-abstraction with a simple example, where
two tips Y, Z of a fork Y ← X → Z are merged into one variablesW . The middle
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DAG SynG / SynH FinStoch

F

αX αY⊗Z

G

H

X
Y

Z

U W

ϕ

Φ(X)

fY

fZ

X
Y

Z

Φ( fY)

Φ( fZ)

Φ(Y )

Φ(Z)
= =

{x1, x2, x3}

{u1, u2}

F′ Φ( fY)

F′ Φ( fZ)

F( fY)

F( fZ)

{y1, y2, y3}

{z1, z2, z3}
⊗

{w1, w2}

{w1, w2}
⊗

Φ

F’

=

Figure 4: An example of Φ-abstraction, adapted from Otsuka and Saigo (2022).
Here the causal flow goes from left to right. The graph homomorphism ϕ on
the left column merges two effects Y,Z in DAG G into single variable W . The
middle column shows how the induced functor Φ : SynG → SynH operates on a
string diagram in SynG. The natural transformation (red arrows) in the right
column connects two models F, F ′ in the category FinStoch.

column is string diagram representations of the corresponding DAGs on the left.
Although the diagram below obtained from the abstraction functor Φ preserves
the fork structure of the original diagram (above), the two branches are identi-
cal. Causal models F and F ′ interpret these string diagrams in FinStoch(right
column). Here “macro” variables X,Y, Z each have three values, while “micro”
variables U,W have two. The morphisms F (fY ), F (fZ) are then 3×3 stochastic
matrices, while F ′Φ(fY ) = F ′Φ(fZ) is 2 × 2. The Φ-abstraction in this case
consists of a 2 × 3 matrix αX and a (2 × 2) × (3 × 3) matrix αY⊗Z that make
the following diagram commutes:

F (X)
F (cpX)−−−−−→ F (X)⊗ F (X)

F (fY )⊗F (fZ)−−−−−−−−−→ F (Y )⊗ F (Z)

αX

y yαY ⊗Z

F ′Φ(X)
F ′(cpΦ(X))−−−−−−−→ F ′Φ(X)⊗ F ′Φ(X)

F ′Φ(fY )⊗F ′Φ(fZ)−−−−−−−−−−−−→ F ′Φ(Y )⊗ F ′Φ(Z)∥∥∥ ∥∥∥ ∥∥∥
F ′(U)

F ′(cpU )−−−−−→ F ′(U)⊗ F ′(U)
F ′(fW )⊗F ′(fW )−−−−−−−−−−−→ F ′(W )⊗ F ′(W ).

(8)
In the above Fig. 4, the abstraction functor Φ replicates the fork structure

in SynH . This construction is legitimate despite the lack of of a fork in DAG
H, because the corresponding free category SynH is equipped with a copier.
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Moreover, the result of the abstraction carries over to DAG H. The abstracted
morphism F ′Φ(fY ) = F ′Φ(fZ) that makes the above diagram (8) commutative
is ipso facto the probabilistic interpretation F ′(fW ) of the morphism fW : U →
W . This stochastic matrix, in turn, gives conditional probabilities P (U |W ) in
DAG H which is consistent with P (Y, Z|X) in the micro model F based on
DAG G. Hence though the fork structure remains in the target string diagram
SynH , its causal model functor F ′ that constitutes the Φ-abstraction can be
interpreted as a macro level causal model on the DAG H that does not have
the fork.

5 Conclusion

This paper reviewed the category-theoretic approach to causal modeling pio-
neered by Jacobs et al. (2019), and explored its philosophical as well as method-
ological implications. The categorical approach represents a causal structure as
a diagrammatic network of mechanisms (box) connected via processes (wires),
and defines a causal model as a functor that assigns a probabilistic interpre-
tation to the diagram. This alternative perspective makes it clear the logical
connection between the Markov condition and the modularity condition, and
their dependence on the existence of a particular process called copier. The
categorical approach also offers a natural method for abstracting causal models
by the notion of natural transformation, combined with graph homomorphism.

Although the presentation in this paper focused on discrete causal models,
we believe that it can be extended to continuous cases by considering functors to
a more general category of measurable Markov kernels Stoch or its subcategory
BorelStoch consisting of standard Borel spaces (Fritz, 2020). Another pending
issue is the extension of the Φ-abstraction discussed in Sec. 4.2. Although it
enables us to merge two parallel processes or forks as shown in Fig. 4, it cannot
be used to collapse a cause-effect relationship X → Y into a single variable,
because graph homomorphism then requires a self-loop at the codomain, making
the graph no longer a DAG. The extension of the abstraction procedure to
handle such cases will be a task for future work.
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