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Abstract

Molecular profiling of small-molecules offers invaluable insights into the function of compounds 

and allows for hypothesis generation about small molecule direct targets and secondary effects. 

However, current profiling methods are either limited in the number of measurable parameters 

or throughput. Here, we developed a multiplexed, unbiased framework that, by linking genetic 

to drug-induced changes in nearly a thousand metabolites, allows for high-throughput functional 

annotation of compound libraries in Escherichia coli. First, we generated a reference map of 

metabolic changes from (CRISPR) interference with 352 genes in all major essential biological 

processes. Next, based on the comparison of genetic with 1342 drug-induced metabolic changes 

we made de novo predictions of compound functionality and revealed antibacterials with 

unconventional Modes of Action. We show that our framework, combining dynamic gene 

silencing with metabolomics, can be adapted as a general strategy for comprehensive high-

throughput analysis of compound functionality, from bacteria to human cell lines.

Introduction

Due to the rapid emergence of antibiotic-resistant bacteria, there is an urgent need to speed 

up the discovery of antimicrobial compounds with new mechanisms of action1. However, 

the discovery of antimicrobials that can target new essential functions is extremely difficult 
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2 3 4. Despite significant progress in synthetic chemistry and the target-based design of 

biologically relevant molecules, high throughput growth inhibitory assays still represent a 

major pillar of drug discovery5. The lack of mechanistic knowledge on lead compound’s 

Modes of Action (MoA) is a major limitation, often leading to the rediscovery of 

conventional antibacterial compounds and hampering compound optimization, minimization 

of side effects, drug repurposing and rational design of combination therapies 6 7.

To fill this gap, there has been a continuous interest in reinventing phenotypic screens 

by integrating low-dimensional readouts (e.g. growth-rate, colony size) with high-content 

assays, such as image-based screening8 9 10, or molecular profiling11 12, simultaneously 

monitoring several consequences of small-molecule treatments. Comparison between 

multidimensional characteristics of small molecule effects is a powerful strategy to 

predict if a lead compound has a similar MoA and possibly bioactivity to drugs with 

already characterized mechanisms of action13 14. This approach has proven successful 

with a number of different molecular profiling technologies, like transcriptomics15 11, 

proteomics16, and metabolomics17 12 .

Compared to more mature omics profiling technologies, like transcriptomics and 

proteomics, non-targeted metabolomics is a cost-effective solution and still offers a 

throughput advantage, in that it can scale with the typical size of chemical libraries. 

Moreover, while most high-throughput technologies monitor growth-related phenotypes 

(e.g. colony size, morphology), by monitoring changes in thousands of cellular metabolites, 

current metabolomics platforms18 19 20 provide a rich multidimensional representation of 

drug effects that is largely independent from compounds’ growth inhibitory activity7. 

However, deconvolution of drug targets and mechanisms responsible for antibacterial 

activity remains challenging. Modern genetic tools21,22 to control expression of growth-

essential genes and to systematically construct genome-wide mutant libraries opened new 

opportunities to expand the set of drug targets and to tackle fundamental bottlenecks in 

antimicrobial drug development and discovery22.

Here, by leveraging CRISPR technology23 and non-targeted metabolomics, we propose 

a combined computational/experimental strategy to perform high-throughput de novo 
functional annotations of antibacterials. We show that by comparing genetic to chemically 

induced metabolic changes is a scalable and general solution to gain mechanistic insights 

on small molecule functions and make experimentally testable hypotheses on direct and 

proximal drug targets in a single-pass screen. First, we validated the approach in Escherichia 
coli, Mycobacterium smegmatis and a lung cancer cell line on a set of antimicrobials and 

anticancer drugs with characterized MoAs. Then we applied our framework to a library 

of chemically diverse compounds (i.e. Prestwick library) and functionally annotate small-

molecules with antimicrobial activity but unknown MoAs.

Results

Charting the metabolic landscape of essential genes

Small molecules exhibiting antimicrobial activity often act by inhibiting proteins essential 

for growth and disrupting metabolic homeostasis24 25. However, little is known on the 
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metabolic consequences of limiting the expression of essential genes and whether genetic 

interference can mimic metabolic changes induced by chemical inhibition of essential 

proteins. Here we used a library of CRISPRi tunable knockdowns of essential genes in 

the model gram-negative bacterium E. coli 23. The arrayed strain library consists of mutant 

strains in which we can sterically hinder transcription at the sgRNA base-pairing genomic 

locus and ultimately induce selective knockdown of 376 gene targets, out of which 304 

encodes for growth-essential proteins in glucose minimal medium (M9) (Supplementary 

Dataset 1). Each mutant strain was grown in glucose M9 for 12 hours before inoculation 

in glucose M9 with 1 mM IPTG, a concentration which induces ~10 fold repression of 

rfp 23. Because proteins are expressed and become limiting at different levels, samples 

were collected at multiple time points during mid-log growth phase between 3 to 7 

hours after inoculation. Metabolic changes were measured by flow-injection time-of-flight 

mass spectrometry (FIA-TOFMS)18 (Supplementary Dataset 1). Overall, we detected 991 

putatively annotated metabolites, and an average of 3 time points per mutant strain were 

profiled (Extended Data Figure 1). Raw mass spectrometry data were normalized by 

correcting for instrumental biases (e.g. plate effects) and systematic changes in cell numbers 

(i.e. optical density) (see Online Methods). Relative log2 fold-changes of metabolite levels 

were estimated for each mutant/time point with respect to wild-type levels7. A Z-score 

normalization was applied after estimating the average and standard deviation of fold-

changes over the three replicates (Supplementary Dataset 1). Consistent with previous 

results22 26, a considerable fraction (63 %) of knockdown strains exhibited mild or no 

growth defects (pvalue>0.05) compared to wild-type (Extended Data Figure 1E), suggesting 

that growth of E. coli is robust to fluctuations in levels of essential proteins. For 12 genes, 

lowering gene expression caused a delayed drop in optical density (OD600) (Extended Data 

Figure 2). Consistent with cell lysis being a characteristic consequence of interfering with 

cell envelope, most of these genes (9 genes) are involved in cell wall biosynthesis and 

trafficking of lipoproteins (Extended Data Figure 2).

All 352 gene knockdowns exhibited at least one significant metabolic change during the 

course of the experiment (absolute Z-score ≥1 and pvalue ≤ 1e–5 Bonferroni-adjusted 

threshold) (Extended Data Figure 1). While the metabolic impact of gene knockdown varies 

with the targeted gene (Extended Data Figure 1), on average, after CRISPR induction 

metabolic changes increase with time until reaching a plateau approximately after 6 

hours (Extended Data Figure 1). To test the specificity and reliability of the CRISPRi 

library and whether the protocol used for knockdown induction was sufficient to make 

protein availability limiting, we compared metabolic profiles between 49 non-essential 

gene knockdowns and their respective knockout strains27 (Supplementary Dataset 1). To 

measure the metabolic similarity between mutant strains, we perfected our previously 

developed similarity metric, we called iterative similarity7 (iSim). When assessing 

functional associations from metabolome profiles, iSim outperforms other similarity metrics 

– i.e. correlation metrics, such as Spearman, but also dependency measures, like mutual 

information (Extended Data Figure 3). Receiver operating characteristic (ROC) curve 

analysis showed that metabolic signatures observed in non-essential knockout mutant strains 

could be recapitulated by CRISPRi knockdown of the respective genes (Area Under the 

Curve - AUC = 0.93, Fig. 1A). Moreover, similar to knockout strains of non-essential 
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enzymes27, knockdowns of essential enzymes tend to elicit metabolic changes in metabolites 

that are proximal within the metabolic network (Extended Data Figure 1). Altogether, the 

herein generated compendium of metabolome profiles provides an unprecedented reference 

set of metabolic signatures to interrogate the consequences of interfering with a largely 

diverse set of essential cellular functions.

Gene function-specific metabolic profiles

Because the CRISPRi mutant library consists of genes with largely diverse functions, 

we could systematically investigate whether knockdowns of genes with similar biological 

functions elicit similar metabolic changes. First, we used the Cluster of Orthologous Groups 

(COGs) classification which provides a broad classification of all genes in 26 functional 

groups28. For each group we estimated the average pairwise similarity and excluded gene 

pairs from the same operon to account for CRISPRi polarity22. We found that genes 

involved in the same essential process have significantly (pvalue<1e-9) higher similarity 

than between genes from different functional groups (Fig. 1B, Extended Data Figure 3 and 

Supplementary Dataset 1-2). We also found some notable exceptions and identified crosstalk 

between distinct functional groups (Fig. 1C). Some of the inter-similarity between functional 

groups are expected or obvious. For example, the similarity between ribosomal biogenesis 

and carbohydrate metabolism, reflecting the coordination between bacterial proteome and 

carbon metabolism29. In other cases, the origin of similarity is less obvious, suggesting 

highly coordinated regulation of functionally different processes like cell division and 

energy metabolism (Fig. 1C).

Next, we quantified the ability to retrieve specific gene functions using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG annotation) (Supplementary Dataset 2). Even 

after accounting for CRISPRi polarity due to operon structure, comparing enrichment of 

KEGG pathways with known gene annotations revealed that metabolome-based similarity 

is highly predictive of gene functions (AUC>0.75) (Extended Data Figure 3). Hence, we 

demonstrated that despite interfering with major cellular hubs30, knocking down an essential 

gene induces metabolic changes predictive of its function. As expected, several of the 

most accurate resolved functions are directly related to metabolism, such as amino acids 

biosynthesis pathways (Extended Data Figure 3). Nevertheless, also metabolic changes 

induced by knockdowns of non-metabolic genes are highly specific of gene functions, 

e.g. ribosomal genes (AUC>0.8) (Extended Data Figure 2). Altogether, we showed that 

combining the CRISPR interference system with metabolome profiling can systematically 

reveal functional gene characteristics and new metabolic connections between essential 

cellular functions.

Testing the ability to predict antibiotic MoAs and targets

While we showed that interference with the expression of essential genes elicit function-

specific metabolic changes, it remained to be investigated if chemical interference with 

the same gene products produces similar metabolic consequences. To this end, we profiled 

the metabolic responses of wild-type E. coli two hours after exposure to 63 commonly 

used antibiotics at 10μM (Supplementary Dataset 3) and combined this data with similar 

drug metabolic profiles previously acquired for 148 antimicrobials which are part of a 
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chemically diverse library of 1279 small molecules applied at 100μM7 (i.e. Prestwick 

library). We considered five major antibiotic classes: protein, RNA, folic acid, cell wall 

biosynthesis, and DNA replication inhibitors (Supplementary Dataset 3). First, we estimated 

the pairwise metabolic similarity between gene knockdown and antimicrobial treatment. 

Next, we estimated the significance of the average similarity between genes in each COG 

and KEGG pathway and antibiotics in the five different classes. Remarkably, the strongest 

associations were found between antibiotic classes and gene knockdowns functionally 

related to antibiotic targets (Fig. 2A) - e.g. protein synthesis inhibitors tend to induce 

similar metabolic changes to silencing of genes involved in translation and ribosomal 

biogenesis, while antibiotics inhibiting DNA replication induced most similar metabolic 

changes to knockdowns of genes involved in DNA replication, recombination and repair. 

When zooming in at the KEGG pathway level, the associations became more accurate 

and specific (Fig. 2A). For example, we found that the strongest gene associations with 

inhibitors of folic acid biosynthesis were exclusively enriched for genes in folate synthesis 

(Fig. 2A and Supplementary Dataset 3).

Overall, we showed that comparing metabolic consequences of silencing essential genes to 

the metabolic effects of antibiotic treatment is an effective and rapid strategy to identify 

the essential functions inhibited by small molecules. But can we identify primary drug 

targets? To address this question, for each gene knockdown and time point we assessed 

the specificity of metabolic similarities for antibiotics in the five distinct classes. For 

each knockdown, time point and antibiotic class, we calculated the Area Under the ROC 

Curve (AUC) index, i.e. the higher is the AUC the more specific and similar is the 

knockdown-induced metabolic signature to metabolic changes induced by drugs from one 

antibiotic class. Differently, a low AUC (e.g. AUC<0.2), means that the gene knockdown 

affected similar metabolites as the antibiotic, but in opposite directions (Supplementary 

Dataset 3). Remarkably, we identified gene knockdowns eliciting metabolic changes 

that are highly predictive (AUC>=0.8) of each antibiotic class (Fig. 2B). While several 

knockdowns of genes encoding for primary antibiotic targets, such as rpsL or murG(Fig. 2C-

D), reproduced antibiotic-specific metabolic profiles, on average, we found that antibiotic-

induced metabolic signatures most strongly associated with those of genes involved in the 

downstream effects of antibiotic treatment (Fig. 2E-F). Emblematic examples are inhibitors 

of folic acids biosynthesis, for which the most predictive knockdown folD (Fig. 2F) locates 

downstream of primary targets (e.g. folP).

Not surprisingly, we found that for antibiotic classes in which small molecules directly 

interfere with the catalytic activity of the target, such as ribosome, RNA or cell wall 

synthesis inhibitors, perturbing known antibiotic targets mimicked antibiotic-induced 

metabolic signatures (Fig. 2B). While antibiotics can act by blocking the overall catalytic 

functions of their targets (i.e. enzyme inhibition), antibacterial activity can also arise from 

modifying target catalytic functions. For example, quinolones increase the concentration of 

gyrase–DNA cleavage complexes, thereby turning gyrase into a toxic enzyme fragmenting 

the DNA and increasing levels of double strand breaks. We found that repressing expression 

of gyrA caused opposite metabolic changes to inhibitors of DNA replication (AUC<0.2) 

(Fig. 2B), with some notable exceptions like novobiocin, a competitive inhibitor of the 

ATPase reaction catalysed by GyrB. This result is consistent with the previously reported 
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attempt of E. coli to buffer gyrase inhibitors effects by the overexpression of gyrA25. 

Hence, it is plausible that by inducing target overexpression, drug treatment partially caused 

metabolic effects opposite to gyrA knockdown. On the other hand, on average, DNA 

replication inhibitors induce metabolic changes that are similar to repressing essential genes 

involved in DNA replication (e.g. dnaB), cell cycle regulation (e.g. ftsZ), and non-essential 

genes in DNA synthesis (e.g. pyrG), revealing secondary drug effects and suggesting new 

potential targets to synergize with the drug mechanism of action (Extended Data Figure 

6). Altogether, we demonstrate that phenocopying drugs’ action by genetic interference 

with their primary targets is not always possible. However, we show that for all current 

classes of antibiotics there exist genes functionally close to primary drug-targets that when 

knocked down feature similar metabolic consequences to drug treatment, thereby revealing 

mechanistic insights on compound functions. It is worth noting that function-specific 

metabolic signatures mimicking drug effects are not exclusive to metabolic genes or drugs 

with metabolic targets, but are also found for genes functionally distant from metabolism, 

e.g. gyrase or ribosomes.

From bacteria to human cells: a generalizable approach

The next question we asked is whether the same principles and approach could be applied 

to other organisms. To this end, we first collected dynamic metabolic profiles of 12 essential 

gene knockdown in the acid-fast bacterium Mycobacterium smegmatis 31 (Supplementary 

Dataset 4). Based on the drug-gene similarity analysis in E. coli (Fig. 2B), we selected 10 

representative genes (i.e. gyrA, gyrB, folE, mmpl3, murG, rplP, rplS, rlpS, rpoC, rpoB) 
and two enzymes that are functionally conserved between E. coli and M. smegmatis 
(i.e. eno, leuB). We profiled metabolic changes 3.5, 6, 10 and 24 hours after CRISPR 

induction (Extended Data Figure 4). Similar to E. coli, knockdowns of eno and leuB exhibit 

the characteristic accumulation (pvalue≤1e-5) of metabolic substrates (i.e. 2-phospho-D-

glycerate and (2R,3S)-3-isopropylmalate, respectively) (Fig. 3A-B and Fig. 2E), confirming 

the ability to characterize the specific metabolic effect of interference with essential genes 

in largely diverse bacterial species (Supplementary Dataset 4). To further investigate whether 

metabolic profiles of knockdowns are able to mimic drug induced metabolic changes, we 

applied the same approach described for E. coli and used iSim to estimate the similarity 

between each pair of gene knockdowns and previously acquired metabolome profiles12 

for 42 antimicrobials belonging to the 5 major antibiotic classes tested in E. coli (Fig 

3C-L). Consistent with E. coli, we found that knockdowns of ribosomal, folate and cell 

wall biosynthesis related genes exhibit stronger metabolic similarity with inhibitors of the 

respective functions (Fig. 3C-L). Remarkably, the same opposite effects between knockdown 

of gyrA and inhibitors of DNA replication observed in E. coli (Fig. 2B) emerged also in M 
smegmatis (Fig. 3I). Moreover, similarly to E.coli, knockdown of rpoC featured a stronger 

similarity to inhibitors of RNA polymerases than rpoB knockdown (Fig. 3F-G and Fig. 2B). 

However, differently from E. coli, we observed a strong similarity between DNA replication 

inhibitors and rpoC knockdown (Fig. 3F), possibly reflecting the physical binding between 

the gyrase and RNA polymerase complexes in M. smegmatis 32.

To illustrate the relevance of this approach beyond antimicrobials and its applicability 

to virtually any type of organism or drug, we tested its performance in human cells. 
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Specifically, we used a lung cancer cell line (A549) to interfere with the essential 

enzyme thymidylate synthase, target of several anticancer drugs. For the CRISPR-mediated 

knockout of thymidylate synthase (TYMS), we monitored the dynamic intracellular 

metabolic effects up to 96 hours of incubation with sgRNAs targeting three different gene 

sections (gTYMS1-3) in addition to a control sgRNA inducing cell death (gLethal) by 

targeting multiple sections in the genome. In parallel, we measured metabolic changes 

48 hours after perturbation of cancer cells with 14 drugs (Extended Data Figure 5 and 

Supplementary Dataset 5), out of which 3 are targeting TYMS (methotrexate, pemetrexed 

and 5-fluorouracil), while the remaining drugs act on largely different cellular processes 

(Fig S5). Genetic interference with TYMS elicited a characteristic accumulation of the 

substrate of the thymidylate synthase reaction: deoxyuridine monophosphate (dUMP) (Fig. 

3M). Remarkably, dUMP accumulation is observed only for drugs targeting TYMS (Fig. 

3N) and resulted in a strong and selective metabolic similarity between genetic and chemical 

induced repression of TYMS (Fig. 3O). In conclusion, we provided a proof of principle 

that the same metabolome-based annotation of compound functionality is largely applicable 

to different systems, from bacteria to mammalian cell lines, and drug discovery fields, 

including anticancer discovery.

De novo prediction of antimicrobials MoA

By comparing small molecule-induced metabolic changes with the reference set of 

metabolic profiles from essential gene knockdowns we can rapidly identify cellular 

functions targeted by the small-molecule and, in the case of unconventional MoAs, make 

experimentally testable hypotheses on targets. We applied this approach in E. coli on a 

previously profiled drug library of 1279 chemically diverse small molecules (i.e., Prestwick 

Chemical Library)7, the majority (75%) consisting of human-targeted drugs. First, we 

estimated all pairwise similarities (iSim) between time-dependent metabolic profiles of 

gene-knockdowns and drug-induced metabolic changes and focused on the top 1% of 

gene-drug associations. In total, we found metabolic associations with at least one gene 

knockdown for 516 compounds (Fig. 4A). A major and significant fraction of these 

compounds (i.e. ~65%, pvalue≤1e-5) exhibits growth inhibitory activity against E. coli – 

i.e. 50% growth inhibitory concentration (GI50) below 100μM (Extended Data Figure 6). 

Metabolic similarities with essential genes such as lgt, ddlB, murG, lolD or lolC are the 

most frequent associations found among compounds in the library (Fig. 4A), suggesting that 

many of the compounds are interfering with the cell envelope.

We restricted our analysis to the functional annotation of 39 compounds that exhibit growth 

inhibitory activity (i.e. GI50 below 100μM) and have a poorly characterized antibacterial 

mechanism of action. By performing KEGG enrichment analysis of metabolome-based 

similarity with gene knockdowns, we found significantly (qvalue≤0.05) enriched KEGG 

pathways for 29 out of the 39 selected drugs (Fig. 4B). A large fraction of the compounds 

(20 of 29) was predicted to interfere with the cell envelope, especially with periplasmic 

targets (e.g. Igt, LolC/E), possibly reflecting the difficulties of compounds in reaching 

essential targets in the cytoplasm. The three drugs exhibiting the largest metabolic 

similarities – i.e. suloctidil, thiethylperazine and tegaserod, induced metabolic changes 

similar to knockdowns of the lipoprotein release complex (lolCDE) which is required for 
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trafficking of lipoproteins to the outer membrane33, phosphatidylglycerol—prolipoprotein 

diacylglyceryl transferase (lgt) and N-acetylglucosaminyl transferase (murG) (Fig. 4C, D, 

E). Consistent with metabolome-based predictions, suloctidil was previously shown to cause 

general perturbations of membrane, vesicle trafficking and lipid biosynthesis functions in 

yeast34, and phenothiazine derivatives, like thiethylperazine, were found to affect the cell 

envelope proteins of E. coli and to cause morphological responses similar to those produced 

by β-lactams35. Moreover, all three drugs exhibit metabolome profiles similar to colistin and 

polymixin B (Extended Data Figure 6), reinforcing the predicted role in interfering with the 

bacterial outer membrane.

To support our metabolome-based predictions we probed for drug-induced protein structural 

alterations on a proteome-wide scale using limited proteolysis coupled to mass spectrometry 

(LiP-MS) 36. Protein extracts of E. coli harvested during exponential growth in M9 glucose 

without any drugs were incubated with suloctidil, thiethylperazine or tegaserod before 

conducting limited proteolysis. The analysis identified 29580 peptides mapping to 1504 

unique proteins in E. coli (Supplementary Dataset 6). For each peptide, we quantified the 

difference in abundance between the treated and untreated proteome samples. Differences 

in peptide abundance reflected protein conformational changes induced by direct binding 

events or protein network rearrangements caused by the disruption of protein-protein 

interactions. (Fig. 4F-G-H and Supplementary Dataset 6). For all three drugs, LIP-MS 

analysis individuated only few protein structural alterations, that either directly supported 

our predictions, like in the case of tegaserod and its predicted effect on MurG (Fig. 4E), 

or identified proteins functionally linked to the predicted targets. Specifically, we found 

that tegaserod induced significant structural alterations (pvalue≤ 3.3807e-07 Bonferroni-

corrected, and absolute log2 fold-changes≥1) in MurG, and YbaA, a nonessential protein 

with unknown function. Interestingly both thiethylperazine and suloctidil affected the 

conformation of ElaB, a small C-tail-anchored inner membrane protein also involved in 

membrane trafficking37. Moreover, in E. coli ElaB was found to physically interact with the 

penicillin-binding protein 1A (MrcA) 38 and inhibition of the LolCDE complex was shown 

to induce a strong (i.e. more than 10-fold) upregulation of elaB expression39. To further 

support our metabolome and LIP based evidence, we sought to identify mutations in E. coli 
strains that are resistant to tegaserod. Out of the six independent lineages of wild-type E. 
coli BW25133 that were allowed to evolve increasing resistance to tegaserod in LB medium, 

only 3 exhibited a mild but measurable level of resistance, between 2 (T1 mutant) and 

1.3 times (T2 and T3 mutants) of the wildtype Minimal Inhibitory Concentration (MIC). 

Genome sequencing of a single isolate from each evolved population (i.e. T1, T2 and 

T3) revealed different mutations within the L,D-transpeptidase gene (ybiS) (Supplementary 

Dataset 7). YbiS is involved in the anchoring of the major outer membrane lipoprotein 

Lpp to the peptidoglycan layer, supporting metabolome-based similarities between tegaserod 

effects and knockdowns of lolCDE, lgt and murG, also indirectly involved in the structural 

anchoring between the outer membrane and the peptidoglycan (Fig. 4I). Moreover, whole 

proteomic analyses of mutant strains (Supplementary Dataset 8) revealed that T2 and T3 

exhibit low levels of ybiS (Extended Data Figure 6), while in T1, point mutations (SNPs) in 

ybiS and the outer membrane protein assembly factor bamA associate with overexpression 

of several proteins involved in membrane stability (e.g. DegP, ArnA or EptC) (Extended 
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Data Figure 6). Altogether, LIP-MS and genome sequencing analyses support metabolome-

based MoA predictions, suggesting that tegaserod interferes with the essential structural 

anchoring between peptidoglycan and lipoproteins (Fig. 4I).

In addition to drugs targeting the cell wall, we also found drugs predicted to interfere 

with unconventional antibacterial targets, like chloroxine. Chloroxine has long been used 

as an antimicrobial in dermatology, but its mode of action is still unknown. Interestingly, 

we found that chloroxine induces a significant (pvalue≤1e-5) accumulation of intermediates 

in leucine biosynthesis (e.g. 2-Isopropylmaleate) and strongly associates to knockdowns of 

enzymes in the leucine pathway (e.g. LeuC, LeuD, Fig. 5A), raising the possibility that 

this compound interferes with branched chain amino acids (BCAA) biosynthesis. However, 

LiP-MS proteomics analysis did not detect any significant change in peptide patterns upon 

incubation of protein extracts with chloroxine (Extended Data Figure 7 and Supplementary 

Dataset 6), suggesting for an alternative MoA in which chloroxine acts without directly 

binding to proteins. Comparative analysis of chloroxine-induced metabolic changes revealed 

a striking similarity with clioquinol, another broad-spectrum antibiotic with unknown MoA 

(Fig. 5B). Both compounds have copper-chelating properties40 leading to the hypothesis 

that chloroxine acts primarily by interfering with copper availability. In agreement with 

this hypothesis, we verified that the MIC of chloroxine could be increased more than 5 

fold with the supplementation of CuCl2 in the medium (Fig. 5C and Extended Data Figure 

7). Surprisingly we found that CuCl2 supplementation doesn’t affect chloroxine inhibitory 

activity at low drug concentrations, and only partially rescued cells from chloroxine toxicity 

at concentrations above ~8μM (Fig. 5C). These results suggest that while chloroxine 

can inhibit bacterial growth by limiting copper availability, this is not the only growth 

inhibitory mechanism. Mounting evidence has shown that isopropylmalate isomerase (LeuC/

LeuD) ), which featured a similar metabolic signature as chloroxine, is a primary target 

of reactive oxygen species41. Consistent with this evidence, the oxidative stress agent 

paraquat is among the 10 out of the 1342 chemical perturbations inducing the strongest 

accumulation of 2-Isopropylmaleate (Extended Data Figure 7). Hence, we hypothesized 

that chloroxine interferes with the redox cycling between the cuprous, Cu(I) and cupric 

Cu(II) oxidation states, responsible for the generation of highly reactive hydroxyl radicals42. 

To experimentally test this hypothesis, we treated cells with 7.8μM of chloroxine and 

monitored changes in the promoter activity of cueO, the enzyme responsible for oxidizing 

periplasmic oxidized copper (Cu(I)) to cuprous oxide (Cu(II)). Not only Chloroxine caused 

an overexpression of cueO (Fig. 5D). We also found that deletion of the catalase-peroxidase 

gene (katG) increases growth inhibitory activity of chloroxine at 7.8μM (Extended Data 

Figure 7), reinforcing the hypothesis of oxidative stress as a consequence of chloroxine 

treatment. Next, we asked whether chloroxine toxicity at low concentrations depends on 

the indirect inhibition of leucine biosynthesis. To this end, we measured growth inhibition 

in M9 glucose with and without 0.1, 0.5 or 1mM leucine. Consistent with a link between 

redox imbalance and isopropyl malate isomerase activity, we found that supplementing 

leucine in the medium almost completely abolished the inhibitory activity of chloroxine at 

concentrations below 8 μM (Fig. 5E).

Overall, our results advocate for a scenario in which, by binding preferably to Cu(II), 

chloroxine not only limits copper availability but also disrupt intracellular copper 
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homeostasis. The attempt of cells to maintain copper homeostasis by cueO overexpression to 

oxidize periplasmic Cu(I) to Cu(II) generates hydroxyl radicals in a process analogous to the 

Fenton reaction42, and ultimately contributes to chloroxine toxicity by inhibiting leucine 

biosynthesis. We sought to reinforce our metabolome-based predictions by sequencing 

6 strains from 6 independent lineages that we evolved to acquire a 16-fold increase 

in chloroxine MIC. We found that most common mutations across the 6 independently 

evolved strains are mutations affecting transcriptional regulators (Supplementary Dataset 

7). All 6 strains displayed disruptive insertions in the coding sequence of the acriflavine 

resistance repressor acrR, suggesting for a key role of AcrAB multidrug efflux pump in 

conferring resistance to chloroxine. 5 independent resistant strains also carry an insertion 

in the promoter region of the regulator capsule synthesis B (rcsB) gene and 4 of these 

lineages have an additional insertion upstream of lon protease, also regulating the capsule 

synthesis regulator (RcsAB) 43, suggesting for an additional key role of the Rcs system in 

mediating resistance to chloroxine. By analyzing previously acquired metabolome profiles 

for 3807 E. coli non-essential knockout strains27, we found that ΔrcsB exhibits a unique 

and strong accumulation of 2-demethylmenaquinone 8 (DMK-8), a metabolite involved 

in electron transfer and oxidative phosphorylation (Fig. 5F). Remarkably, out of 3807 

E. coli non-essential knockout strains 27, the largest accumulation of DMK-8 occurs 

upon deletion of the key sensor of intracellular copper availability (cusR) (Fig. 5G). 

Such metabolic similarity indirectly links rcsB regulatory functions to those of cusR and 

further reinforce the predicted action of chloroxine on intracellular copper homeostasis. 

Moreover, at concentrations of chloroxine below 8 μM, deletion of rcsB is beneficial while 

its overexpression is detrimental (Extended Data Figure 7). To gain more insights on the 

regulatory events mediating chloroxine resistance, we performed proteome analysis of 3 

chloroxine resistant strains: C2, C3 and C4 (Supplementary Dataset 7) (Fig. 6A-B-C and 

Supplementary Dataset 8). Notably, CueO and RcsB levels are significantly (qvalue≤0.05) 

reduced in C2 and C4 (Supplementary Dataset 8), while Zwf, a key enzyme mediating 

oxidative stress, is significantly (qvalue≤0.05) upregulated in all 3 resistant strains (Fig. Fig. 

6A-B-C). Because changes in gene expression or protein levels of transcription factors (TFs) 

are a poor proxy of changes in activity, we estimated differences in TFs activity between 

wild type and chloroxine resistant strains directly from the combined protein levels of TF 

targets. To this end, for 163 TFs we estimated average and significance of changes in protein 

levels of regulated genes. We found that in addition to the expected reduced activity of RcsB 

in all three chloroxine resistant strains (Fig. 6D-E-F), the TF with the most significant 

changes in activity is MarA (qvalue≤1e-3). Expression of MarA is controlled by the 

multiple antibiotic resistance regulator and copper sensor MarR44 (Fig. 6D-E-F). Altogether 

experimental evidence suggest that chloroxine resistance is mediated by drug extrusion (e.g. 

acrA, acrB) and regulation of genes involved in copper homeostasis (e.g. cueO, marR) 

and redox balance (e.g. zwf, nfsA, nfsB), supporting the MoA initially predicated on the 

basis of the metabolome similarity between chloroxine, the copper chelator clioquinol and 

knockdown of the redox sensitive isopropylmalate isomerase (Fig. 6G).
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Discussion

Rapid advances in genome sequencing and editing technologies enabled the identification 

of a plethora of potential new promising targets. However, despite an ever-increasing 

throughput of phenotypic drug screening, chemical probes that can interfere with these 

targets are lagging behind. Our combined gene/drug metabolic profiling approach aims at 

closing this gap, providing a high-throughput platform for unbiased and rapid functional 

annotation of compound libraries. While there is not a single technology that provides 

a general solution to the problem of drug-target identification, metabolome profiling 

offers a complementary and sensitive readout orthogonal to directly probing protein-drug 

binding (e.g. LIP-MS), cell growth or morphological phenotypes. Directly measuring the 

metabolic consequences of drug treatment can unravel mechanistic insights on the MoA 

also of compounds that don’t directly bind to proteins (e.g. chloroxine) or have poor 

antibacterial activity. In our work, we have established principles for normalization and 

analysis of non-targeted metabolic profiling data that allow similarities and differences 

between drug- and genetic-induced metabolic changes to be measured. Combined with 

new genetic tools that allow tuning expression of individual genes, our approach offers 

the possibility to systematically investigate the consequences of selectively interfering with 

essential proteins. Because gene essentiality is condition-dependent, in vitro conditions that 

mimic in vivo environments will expand the inventory of essential bacterial functions that 

could become attractive antibacterial targets and improve the selection of lead compounds 

from susceptibility screening45. Here, we demonstrated that our approach can be applied in 

virtually any type of system or conditions and that, even if applied on a single condition, we 

were able to generate testable predictions for 29 out of 39 compounds that exhibit growth 

inhibitory activity and have an uncharacterized antibacterial MoA.

Despite perturbing major hubs in genetic networks30, we showed that limiting the abundance 

of essential proteins elicits specific metabolic signatures that are not only characteristic 

of protein function, but also similar to those induced by compounds targeting the same 

cellular function. This greatly accelerates hypothesis generation on drug-target interactions 

responsible for small-molecule growth inhibitory activity. The scalability of this framework, 

together with recent advances in CRISPR technology enabling genetic manipulation in 

non-model organism bacteria46, makes this approach of widespread use not only to dissect 

bacterial essential gene functions, but also to rapidly screen for compounds able to interfere 

with such functions, ultimately, mitigating the dereplication problem, i.e. the rediscovery of 

common antimicrobial compounds.

Combined with machine-learning tools 47 large scale metabolic profiling of chemical/genetic 

perturbations can open new opportunities for advancing in silico screening strategies and 

chemical optimization of lead compounds47. The presented computational/experimental 

framework to functionally annotate large compound libraries can be applied to largely 

diverse biological systems, from bacteria to human cells48, opening new opportunities to 

improve the selection of lead compounds and speed up drug discovery across many diverse 

therapeutic areas.
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Materials and Method

E. coli CRISPRi library

The E. coli mutant library was generated in and shared by the group of Carol Gross 

at UCSF23. The library consists of arrayed BW25113 strains with an IPTG inducible, 

chromosomally integrated CRISPRi system (full details can be found here 23 and https://

escholarship.org/uc/item/173451xm). The original library contained 540 strains expressing 

dCas9 constitutively as a part of a cassette integrated at Tn7att and marked with gentamicin 

resistance (Supplementary Dataset 1). Each strain contained sgRNA component of the 

CRISPRi targeting one single gene and the expression is under the control of an inducible 

promoter PLIacO-1. Because of technical issues which led to contamination of the strain 

library, deep-sequencing median reads/strain ~200,000) on all strains was performed. Only 

uncontaminated strains (genetic purity above 99.9%) were retained in our study, leading to 

a total number of 376 strains, out of which 24 did not grow in M9 glucose medium, 352 

strains.

Physiology

Bacterial growth was measured using optical density (OD) at 600 nm in a TECAN 

spectrophotometer by diluting 50 μl of M9 bacteria culture in 150 μl in a 5 times diluted 

base salts solution (per liter): 7.52 g Na2HPO4-2H20, 3 g KH2PO4, 0.5 g NaCl, 2.5 g 

(NH4)2SO4). The growth rates were calculated as a slope of a linear regression of the 

logarithmically transformed growth curves. Samples were taken in parallel to metabolomics 

samples, from the same bacterial culture.

Culture media and growth of inducible-knockdown strains

Each strain was revived from frozen stock and incubated for 8 h in 500 μl selective LB 

medium (10 g/l yeast extract, 10 g/l tryptone, 5 g/l NaCl, 10 μg/ml gentamicin and 10 μg/ml 

chloramphenicol). 10 μl of culture were transferred to 690 μl of glucose minimal medium 

(M9) and grown over night. The medium consist of 5 g/l glucose, 7.52 g Na2HPO4-2H20, 3 

g KH2PO4, 0.5 g NaCl, 2.5 g (NH4)2SO4, 14.7 mg CaCl2 2H2O, 246.5 mg MgSO4 7H2O, 

16.2 mg FeCl3 6H2O, 180 μg ZnSO4 7H2O, 120 μg CuCl2 2H2O, 120 μg MnSO4 H2O, 180 

μg CoCl2 6H2O and 1 mg thiamine HCl. Cells were grown in 96 well plates on a shaker at 

37°C and 250 rpm. The day after, triplicates were prepared containing 10 μl of the overnight 

culture and 690 μl M9 supplemented with 1 mM IPTG. OD was measured at multiple 

times points and samples for metabolome extractions were collected at 3 time points with 

approximately 1 h time intervals. Because most proteins in E. coli are not actively degraded 

and each protein can be expressed and become limiting at different levels, we monitored 

dynamic changes across a time window in which most strains could undergo at least 2-3 

duplications. This in order to observe the dynamic changes induced by the dilution of the 

knocked down protein. The procedure for metabolite extraction is described in 12 – i.e. 

extraction was performed at -20°C for 1 h diluting each sample in 1:4 extraction solution 

(50%(v/v) methanol and 50 %(v/v) acetonitrile, 25 μM phenyl hydrazine) in 160 μl total 

volume. The samples were then centrifuged at 4000 rpm for 5 min at 0°C and 100 μl of the 

supernatant were transferred into 96 well storage plates and stored at -80°C.
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Metabolome profiling of the response to antimicrobials

Here we used the same protocol described in 7. E. coli overnight cultures growing on 

M9 minimal medium were diluted to an initial Optical Density (OD600) of 0.05. 700 μL 

cell cultures were distributed in 96 deep well plates and cells were grown at 37°C until 

exponential phase and an OD600 of 0.4 before exposure to the drug treatment by the 

addition of 7ul of a drug solution. The Prestwick library consisted mostly of human targeted 

drugs with unknown effects or penetration in gram negative bacteria like E. coli. The drug 

contraction of 100 μM was chosen because close to the estimated colon concentration 

range for many drugs50. On the contrary, the 63 newly screened compounds are well 

characterized antimicrobials. Hence we selected a lower concentration of 10μM at which 

most compounds already exhibit growth inhibitory activity. Samples for metabolomics 

profiling were taken after 2 hours from drug exposure. Previous analysis have shown 

that metabolic changes between 1 and 2 doublings (i.e. 1 or 2 hours for E. coli growing 

in M9 glucose) after drug treatment are the most consistent in time and maximize the 

predictive power to infer different classes of antibiotics12. 50 μl of whole cell broth were 

directly transferred to 120 μl extraction liquid solution containing 50% (v/v) methanol 

and 50% (v/v) acetonitrile at −20°C. The extraction was carried out by incubating the 

samples for 1 hour at −20°C. Samples were centrifuged for 5 minutes at 4000 RPM and 

80 μl of the supernatant was transferred to 96 well storage plates and stored at −80°C. All 

treatments were measured in 3 biological replicates. Bacterial culture growth was estimated 

by measuring the optical density at 600 nm (OD600) in a plate reader. OD600measurements 

were acquired immediately before drug exposure and after 60, 120, 240 and 360 minutes. 

Growth rates were calculated as a slope of a linear fits to the logarithmically transformed 

growth curves. Only samples in which bacterial culture reached an optical density (OD600) 

of at least 0.2 were retained to have an adequate MS signal for further analysis. As a result, 

24 gene knockdown mutants were excluded. The vast majority (22 genes) are encoding for 

metabolic enzymes, several of which catalyze intermediate steps in amino acids (8 genes) or 

purine biosynthesis (5 genes) (Supplementary Dataset 1).

Mass spectrometry analysis, ion annotation and ion abundance normalization

Cell extract samples were analyzed by flow-injection analysis time-of-flight mass 

spectrometry (FIA-TOFMS) on an Agilent 6550 iFunnel Q-TOF LC-MS System (Agilent 

Technologies, Santa Clara, CA, USA), as described in 18. Raw MS profiles were processed 

to align spectra and pick centroid ion masses using an in-house data processing environment 

in Matlab R2015b (The Mathworks, Natick). Measured ions were putatively annotated 

by matching mass-to-charge ratios to a reference list of calculated masses of metabolites 

listed E. coli K12 model iJO1366 51 within 0.003 amu mass accuracy. The reference 

mass list was generated from the respective sum formulae, considering deprotonation as 

the most prevalent mode of ionization in the chosen acquisition conditions. To allow for 

the annotation of α-keto acid derivatives formed in presence of phenyl hydrazine in the 

extraction solvent, sum formulae for the phenylhydrazone derivatives (+C6H8N2-H2O) 

of a total of 30 α-keto acid compounds (selected via KEGG SimComp search http://

www.genome.jp/tools/simcomp/) were added to the metabolite list for annotation. Data 

were normalized using the multiple linear regression approach described in 12 and 7. Raw 

data normalization was performed by using a multiple linear regression approach. For 
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each detected ion, measured intensity (i.e. ion counts) is considered to be a function of 

extracted biomass (measured by OD600 (O)), plate to plate variance (P), gene knockdown 

effect (G), and white noise (ε) , using the following model: Im = f(O,P,G) + ε. Function 

f is : Im, c, t = αm ⋅ Oc, t
2 + βm ⋅ Oc, t + γm, p + ε, where Im,c,t is the measured intensity of ion 

m upon knockdown of gene g at time t after IPTG induction, Oc,t represents biomass 

(OD600) at the time of extraction, αm and βm represent quadratic and linear dependency 

between ion intensity and OD600. In our model the variance associated to plate effects 

across the large number of MS injections (~4000) is captured by the parameter γm,p. By 

assuming that overall, each ion concentration within the cell is “directly” affected only by 

few drugs, equivalently to assume sparsity of D, the proportionality factors α, β and γ could 

be determined by multiple least square fitting analysis performed on all collected samples 

(i.e. all muntants and time points), for each ion individually. The Matlab function fitlm 
using ordinary least squares, was used for the regression analysis. The relative difference 

between the model-derived expected intensity and the corresponding measured ion intensity 

under in each sample was used to estimate the gene knckdown effect at time t after 

IPTG induction: Gm, t =
Im, c, t

αm ⋅ Oc, t2 + βm ⋅ Oc, t + γm, p
. Log 2 fold changes were calculated before 

Z-score normalization.

Metabolic comparison between CRISPRi mutants and knockout strains

We compared newly generated metabolic profiles in CRISPRi mediated gene knockdowns 

and previously generated metabolic profiles for gene deletion mutants27. We selected non-

essential genes that when knockout exhibited a metabolic phenotype (i.e. at least one 

metabolite exhibit a Z-score≥5). Next, we used iSim to estimate pairwise similarity between 

knockdown and knockout metabolic profiles. Because knockdown profiles were measured 

at multiple time points, for each knockdown-knockout pair we selected the maximum 

similarity estimated at different time points after IPTG induction (Supplementary Dataset 

1).

Pairwise metabolome comparisons between gene knockdowns and drug profiles (iSim)

We predicted gene function using a guilt by association scheme, in which two genes with 

similar metabolic profiles are predicted to have similar function. Similarly, we used drug-

gene metabolic similarity to make predictions of functional annotations of small molecules. 

To compare the metabolome response between two different gene knockdowns we used an 

approach introduced by Campos et al7. Calculation of the similarity score consists of two 

main steps. First, for each pair of gene knockdowns A and B, we performed an exhaustive 

search over two parameters thrA and thrB, to maximize the significance of the overlap 

between metabolites that are significantly changed (|Zscore|≥thr) in A and in B.

ZGeme A, m =
1 if Zscorem ≥ tℎrA
−1 if Zscorem ≤ − tℎrA

0 otℎerwise,

dAvsB ZGene A, ZGene B =
ZGene A ⋅ ZGene B
ZGene A ⋅ ZGene B
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Where ZGeneA, m is the z-score value of metabolite m in knockdown of gene A. The 

significance of the percentage of metabolites that exhibit consistent changes between the two 

drugs is estimated using a hypergeometric test:

PA vs B X ≥ s = Σk = s
n

K
k

N − K
n − k
N
n

,

where consistent changes in both gene knockdowns represent observed successes (s), the 

number of changes in one knockdown strain represents the maximum possible number of 

successes (K), the total number of metabolites represents the total population (N), and the 

number of changes in the second knockdown represents the number of events or draws (n). 

Pvalues were calculated in MATLAB using the hygecdf function. In the second step we 

generate one single similarity score (iSim) for each knockdown pair by multiplying the dot 

product dAvsB by the −log10 of the corresponding pvalue (PAvsB). To account for CRISPRi 

polarity effect we exclude pairs of gene belonging to the same operon according to the 

Operon Database v4 52.

Enrichment analysis of KEGG and COG functions

To predict the functional annotation of genes and cellular functions associated to drug MoA 

the iSim pair wise similarities between knockdown mutants or knockdown mutants and drug 

compounds were rank transformed. A statistical score that models the probability of the 

gene/drug functional annotation (see Tables S2) is based on the collective similarities of 

genes with known function (or drugs with known MoAs) following the approach described 

in 53. The significance of the rank distribution of all annotated gene knockdowns within 

the same functional groups or drugs with the same MoA is tested by means of an iterative 

hypergeometric test, indicating the statistical significance of, for example, all drugs targeting 

a common cellular process (e.g. protein biosynthesis) being distributed toward the top 

ranking ones. Pvalues were corrected for multiple tests by qvalues estimation.

Locality score

The procedure used here is also described in 1. A genome-scale network model of E. coli 
K12 model iJO1366 metabolism was used to determine the distance between each enzyme-

metabolite pair. The resulting pairwise distance matrix (D) between metabolic enzymes and 

metabolites was estimated by means of the minimum number of reactions separating the 

two in a non-directional network. All highly connected metabolites – i.e. metabolites that 

participate in more than 20 reactions, were removed prior to calculation. Next we assessed 

whether largest metabolic changes were statistically more probable in the proximity of the 

repressed enzymes. To this end, we used a locality scoring function1, in which all metabolic 

changes are weighted by the respective distance to a tested enzyme, as follows:
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S ei =
∑

m = 1

M
Di, m−2 Zdm

∑
m = 1

M
Di, m−2

Srand
k ei =

∑
m = 1

M
Drandi, m

k −2 Zdm

∑
m = 1

M
Drand i, m

k −2

p − value gi =
∑
k

1000
Srand

k ≥ S

1000

where for each enzyme ei, a weighted mean over corresponding Zi, m
d  (metabolite m Z-score 

corresponding to drug d) is computed. Weights are functions of the inverse of the squared 

distance between the enzyme i and the metabolite m. We perform a permutation test by 

randomly shuffling the distance matrix D (Drand) K times (K=10000). For each gene we 

ensure to preserve original degree of connectivity in the stoichiometric network.

Disk diffusion assay

Filter paper circles of 6 mm diameter were impregnated with 5 μl of antibiotic solution 

(2.8 mM for oxfloxacin) and left to dry at room temperature. Bacteria in exponential phase 

grown in M9 liquid culture with 0.2 mM IPTG were plated on M9 glucose minimal medium 

agar plate. The plate was left to dry before applying the disk in the middle and incubating for 

24 hours at 37°C.

Limited proteolysis (LiP) sample preparation

Cell pellets were resuspended in 200 μl of cold lysis buffer (100 mM HEPES, 1 mM 

MgCl2, 150 mM KCl, pH 7.5), supplemented with the same volume of acid-washed glass 

beads (Sigma) and disrupted at 4 °C by 3 consecutive rounds of beads-beating for 30 s 

with 4 min intercalating pauses in a FastPrep-24 5G instrument (MP Biomedicals). After 

centrifugation at 16,000 x g for 15 min at 4 °C, the supernatants were collected and the 

protein concentration was determined using a BCA assay (Thermo Fisher). The protein 

concentrations were adjusted to 1ug/ul of which 50ul was used for each LiP assay. For 

each sample, 1ul of the drug of interest (or DMSO used as mock treatment) was incubated 

with the 50 ul of protein extract for exactly 5 min at 25°C. Then 5ul containing 0.5ug 

of Proteinase K from Tritirachium album (Sigma Aldrich) was added to the LiP samples 

and incubated for 5 minutes at 25°C. Samples were then denatured by heating inactivation 

for 5 minutes at 99°C in a thermocycler followed. After 5 minutes cooling on ice 56ul of 

10% sodium deoxycholate (Sigma) was added to each sample for a final concentration of 

5%. The samples were then reduced with 5 mM TCEP (Thermo Fisher) for 30 minutes 

at 37 °C and alkylated with 40 mM iodoacetamide (Sigma) for 30 min at 25°C in the 

dark. The samples were then diluted with 100 mM ammonium bicarbonate to reach a final 

concentration of 1% sodium deoxycholate and finally digested by overnight incubation 
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with 0.5 ug LysC (Wako Chemicals) and 0.5 ug trypsin (Promega) at 37°C under shaking. 

The digests were then acidified by addition of 50% formic acid to a final concentration 

of 2%. The peptide mixtures were passed through 0.2um PVDF filter plates (Corning) to 

remove the sodium deoxycholate precipitates. The filtrates were then desalted on a 96-well 

MicroSpin plate loaded with 300Å C18 silica material (The Nest Group). After elution with 

50% acetonitrile/0.1% formic acid the peptides were dried in a speedvac, resolubilized with 

25ul of 0.1 % formic acid, and transferred to MS vials for LC-MS analysis. Pipeline for data 

analysis can be found here: https://gitlab.ethz.ch/lgillet/mattia-zampieri-crispri.

Antibiotic evolutionary experiment

For each of the two drugs, tegaserod and chloroxine, five and six independent lineages were 

propagated in parallel, respectively. Serial passaging was performed in 96 deep-well plate 

cultivation (2 ml well volume, 500 μl culture volume), using the same protocol described in 
54. Seven wells in a plate column were prepared with gradually increasing concentrations of 

the same antibiotic, and the last row of the plate served as a growth control and contained no 

drug. Every 48 h, OD600 was measured with a plate reader. 5 μl of the bacterial population 

that was able to grow (i.e. OD ≥ 0.5) at the highest of seven tested drug concentrations was 

used for the next passaging step. The number of generations during each passaging step 

was calculated by (i) measuring the final OD after a 48-h growth cycle (ODfin), (ii) 5 μl of 

selected evolved populations was reinoculated in 500 μl of fresh medium yielding a 1/100 

dilution for the new starting OD. At the end of the 48-h growth cycle, OD was measured 

(OD*) and number of generation is calculated by the following formula: log2(OD*/(ODfin/

100)). We reached ~60 generations when evolving resistance to tegaserod, and we were able 

to evolve mild but measurable level of resistance, from 0.015625 to 0.3125 mM, in one 

of the five populations. Already after ~40 generations we reached the solubility limit for 

chloroxine, from an MIC of 0.03125 mM in the wild type to 0.5 mM in all six evolved 

populations.

Genomic DNA extraction, whole-genome sequencing and mutations analyses

For each evolved strain, 1 ml of an over-night LB culture was pelleted and frozen at -80°C. 

Genomic DNA was then extracted using the GenElute Bacterial Genomic DNA kit (Sigma, 

NA2120-1KT). Genomic DNA integrity was monitored by 0.6% agar gel electrophoresis 

and gDNA was send to MiGS (Microbial Genome Sequencing Center), Pittsburgh, USA. 

PE151 sequencing runs were performed on NextSeq 2000 platform with a targeted coverage 

of c.a. 100X. Reads were mapped onto the genome of the reference Escherichia coli str. 

K-12 substr. MG1655 (NC_000913) using Breseq v.0.36.0 under default “consensus” mode 

settings with default settings (see supplements). Consistent genetic variations (as outputted 

by Breseq with these settings) were then analyzed and compared within the evolved resistant 

strains. Mutations conserved among all evolved strains were omitted from Supplementary 

Dataset 7. We used Breseq v.0.36.0 under default “consensus” mode settings. These include: 

--base-quality-cutoff=3, --require-match-fraction=0.9, --bowtie2-scoring=“--ma 1 --mp 3 

--np 0 --rdg 2,3 --rfg 2,3 --ignore-quals”, --bowtie2-stage1=“--local -i S,1,0.25 --score-

min L,1,0.9 -k 2000”,--bowtie2-stage2=“--local -i S,1,0.25 --score-min L,6,0.2 -k 2000”, 

--bowtie2-junction=“--local -i S,1,0.25 --score-min L,1,0.70 -k 2000”, --junction-minimum-

candidates=100, --junction-candidate-length-factor=0.1, --junction-minimum-candidate-pos-
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hash-score=2, --junction-score-cutoff =3.0, --junction-minimum-pos-hash-score=3 , --

junction-minimum-side-match=1, --junction-minimum-pr-no-read-start-per-position=0.1, 

--consensus-score-cutoff=10, --consensus-frequency-cutoff=0.8, --polymorphism-score-

cutoff=10, --polymorphism-frequency-cutoff=0.2. SRA accession numbers for the ancestor 

E. coli strain, the 3 tegaserod and 6 chloroxine resistant strains: SRR16634183 Chloroxine 

1, SRR16634182 Chloroxine 2, SRR16634181 Chloroxine 3, SRR16634191 Chloroxine 

4, SRR16634190 Chloroxine 5, SRR16634189 Chloroxine 6, SRR16634192 Tegaserod 1, 

SRR16634188 Tegaserod 2, SRR16634187 Tegaserod 3, SRR16634193 Wt K-12 ancestor.

Whole proteome analysis of resistant mutants

Whole proteome of resistant mutants was generated following the Standard Operative 

Procedures (SOP v.2020.09.03) at the Proteomic Core Facility of the Biozentrum, Basel. 

A detailed stepwise description of the laboratory protocol and the analysis procedure is 

accessible in a recent methodologic tutorial article 55. Bacterial pellets of resistant strains 

grown in LB at 37°C under agitation for 16h and cells were harvest by centrifugations. 

Cell lysis was conducted in lysis buffer (1% sodium deoxycholate, 10 mM TCEP, 100 mM 

Tris-HCl, pH 8.5) with a microtube sonicator and a 10 minutes heat step at 95°C. Tryptic 

digestion of proteins was performed over 16h at 37°C in presence of chloroacetamide 

in order to stabilize cysteine residues. Peptides were then cleaned and purified with a 

solid-phase extraction cartridge (SDB-RPS). Eluted peptides were then dried and dissolved 

in liquid chromatography buffer A (0.15% formic acid, 2% acetonitrile) prior injection into 

a RP-HPLC column connected to a dual pressure LTQ-Orbitrap Elite mass spectrometer. 

Acquired peptide intensities were calculated using Progenesis QI (v2.0, Nonlinear Dynamics 

Limited) MaxQuant (Version 1.0.13.13) and MASCOT softwares and the SafeQuant R 

package v.2.3.4 (https://github.com/eahrne/SafeQuant/).

Measuring cueO promoter activity

We used GFP transcriptional reporter plasmids in which the promoter regions of cueO 

is fused to green fluorescent protein 56. Promoter activity was measured in M9 glucose 

minimal and LB media using a plate reader recording GFP intensity and optical density 

(OD600). Data were analysized using the protocol described in 56. E. coli was grown 

overnight in the respective media and 5μL of culture were inoculated in 200 μL of fresh 

media. Promoter activity over time was calculated by taking the time derivative of GFP 

divided by OD (dGFP/dt/OD). The analysis was performed using custom Matlab software. 

Negative promoter activity, such as in the case of E. coli exponentially growing in LB, 

reflects faster growth dilution than production of GFP. This is because CueO is transcribed 

more in inoculated starved cells than during exponential growth.

Estimation of Transcription Factors (TFs) differential activity

The network of TF-target genes reported in 57 was used to identify TFs regulating proteins 

with large difference between susceptible and resistant strains. For each TF, we estimated 

the average protein levels of the corresponding regulated genes. Significance was estimated 

using a permutation test (as above), where for each TF the same number of targets were 

randomized 100.000 times and the average protein levels compared to the true one.
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Metabolic profiling of genetic-/chemical perturbations in human cells

A549 human lung cancer cells stably expressing Cas9 nuclease (A549-Cas) were purchased 

from Horizon Discovery (cat. no. HD Cas9-001) and maintained in RPMI-1640 cell culture 

medium (Thermo Fisher Scientific, cat. no. 21870076) supplemented with 5% dialyzed 

fetal bovine serum (FBS), 2 mM glutamine (Thermo Fisher Scientific, cat. no. A2916801) 

and 1% penicillin-streptomycin solution (Thermo Fisher Scientific, cat. no. 15140122). 

On the day before transfection, A549-Cas9 cells were seeded in 96-well plates (Thermo 

Fisher Scientific, cat. no. 167008) at a cell density of 2.3e4 cells/mL (150 μL per well) 

in RPMI-1640 medium without antibiotics supplementation. The cells were incubated over-

night at 37°C in 5% CO2 atmosphere to allow cell attachment. On the next day, cells 

were treated in triplicates with either genetic- or drug perturbations as follows. For CRISPR-

mediated knockouts of thymidylate synthase (TYMS), sgRNAs targeting three different 

gene sections were purchased from Horizon Discovery (Edit-R synthetic guide RNAs, cat. 

no. SG-004717-01-0002, SG-004717-02-0002 and SG-004717-03-0002), in addition to a 

control sgRNA inducing cell death (lethal control, gLethal) by targeting multiple sections 

in the genome (Horizon Discovery, cat. no. U-008000-02-02). The sgRNAs were separately 

introduced into A549-Cas9 cells using lipid-mediated transfection. To that end, 0.2 μL/well 

transfection reagent (DharmaFECT I, Horizon Discovery, cat. no. T-2001-01) was prepared 

in serum- and antibiotics-free RPMI-1640 medium, and mixed with sgRNA solutions in 

serum- and antibiotics-free RPMI-1640 medium. After 15 min incubation, the transfection 

mix was spiked into the supernatants of A549-Cas9 cells with a final sgRNA concentration 

of 25 nM. Three wells were treated only with transfection reagent without sgRNAs as a 

negative control. In parallel to the sgRNA transfections, separate triplicate cell cultures were 

supplemented with 14 drugs with variable metabolic and non-metabolic targets, including 

three inhibitors acting on folate metabolism. The treatment concentrations for each drug 

were chosen based on prior or literature data: 2-Deoxyglucose (11 mM, cat. no. D8375, 

Sigma-Aldrich), 5-fluorouracil (5 μM, cat. no. F8423, Sigma-Aldrich), Atorvastatin (10 μM, 

cat. no. PHR1422, Sigma-Aldrich), Camptothecin (5 μM, cat. no. C9911, Sigma-Aldrich), 

Cisplatin (5 μM, cat. no. P4394, Sigma-Aldrich), Dichloroacetate (30 mM, cat. no. 347796, 

Sigma-Aldrich), Doxorubicin (0.2 μM, cat. no. D1515, Sigma-Aldrich), Carbonyl cyanide 

4-(trifluoromethoxy) phenylhydrazone (FCCP, 5 μM, cat. no. C2920, Sigma-Aldrich), 

Mercaptopurine (200 μM, cat. no. 38171, Sigma-Aldrich), Methotrexate (0.1 μM, cat. no. 

M9929, Sigma-Aldrich), Oxamate (25 mM, cat. no. O2751, Sigma-Aldrich), Pemetrexed 

(0.5 μM, cat. no. Y0001539, Sigma Aldrich), Trifluoperazine (10 μM, cat. no. T8516, 

Sigma-Aldrich), UK5099 (5 μM, cat. no. PZ0160, Sigma-Aldrich). Metabolite extraction 

was carried out at 48 hours after treatment as described in detail previously 48. Metabolite 

extracts were stored at -80°C, and transferred to fresh 96-well plates immediately prior 

to metabolomics measurements (FIA-TOFMS, see above). Measured metabolites were 

annotated to endogenous metabolites listed in HMDBv4 58and Recon3D59 based on accurate 

mass (putative annotation). We detected 1593 putatively annotated metabolites. The MS 

profiles were normalized to account for differences in cell confluence in each sample 

following the procedure described procedure described above for E. coli and previously 48, 

yielding log2 fold-changes and statistical significance (p-value) for each putatively annotated 

metabolite in each treatment as compared to untreated cells (Supplementary Dataset 5).
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Metabolic profiling of M. smegmatis

We selected 12 strains from a collection of M. smegmatis strains with inducible CRISPR-

interference system targeting essential genes: murG, mmpl3, gyrA, gyrB, folE, eno, leuB, 

rpoB, rpoC, rpsL, rplP, rplS31. 100 μl of culture from frozen glycerol stocks were 

used to inoculate inkwell bottles containing 5 ml Middlebrook 7H9 broth (BD Difco™) 

supplemented with 0.2% (v/v) glycerol, 0.05% (v/v) tyloxapol and 20 μg/ml kanamycin. 

The same media was used throughout the course of the experiment. Starter cultures were 

incubated for ~24 h at 37°C with shaking at 100 rpm then 75 μl was transferred to 5 ml fresh 

media and incubated for ~15 h overnight at 37°C with shaking at 150 rpm. Cell cultures 

were diluted to an OD600 of 0.3 with fresh media and 700 μl of each strain distributed 

into triplicate wells in a 96-well 2 ml square well V-bottom deep-well block. A vector 

only control strain and media only controls were also included on the plate. The plate was 

incubated at 37°C with shaking at 300 rpm and after 1 h incubation OD600 was measured 

and cultures adjusted back to OD600 ~0.3-0.4 using pre-warmed media. Anhydrotetracycline 

hydrochloride (Acros Organics) in DMSO was then added at a final concentration of 100 

ng/ml to induce CRIPSR-mediated gene knockdown and plates returned to the incubator. 

Cultures were sampled for metabolomics profiling and OD measurement after 3.5, 6, 10 

and 24 h from induction of gene knockdown. All strains and controls were measured as 

biological triplicates. At each time point, 40 μl of whole-cell broth was transferred to 120 μl 

medium on microtiter plates and OD600 was measured on a FLUOstar Omega plate reader 

(BMG Labtech). In parallel, 40 μl culture was transferred to 120 μl of extraction liquid 

solution containing 50% (v/v) methanol and 50% (v/v) acetonitrile at –20°C. The extraction 

was carried out by incubating the samples for 1 h at –20°C. Samples were centrifuged for 

5 min at 3900 rpm and 50 μl of the supernatant was transferred to replicate 96-well storage 

plates and stored at −80°C. We detected 942 putatively annotated metabolites. The MS data 

was normalized to account for differences in cell confluence in each sample following the 

procedure described above for E. coli and previously 48, yielding log2 fold-changes and 

statistical significance (p-value) for each putatively annotated metabolite in each treatment 

as compared to untreated cells (Supplementary Dataset 4).
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1. Extended Data

Extended Data Fig. 1. Metabolome profiles of CRISPRi mutant library.
A) Distribution of significant metabolic changes per gene knockdowns/time points. On 

average, 24 metabolites underwent significant changes (absolute Z-score ≥ 1 and p value 

≤ 1e–5) per mutant and time point, and most of the metabolites (95%) exhibited a 

significant response in at least one gene knockdown. B) Distribution of significant changes 

for each metabolite across knockdowns/time points. C) Relative distribution of collected 

time points per gene knockdown. D) Distribution of Optical Densities (OD600) at sampling. 

E) Distribution of locality scores for essential (blue) and non-essential knockdowns (red). 

F) Distribution of the number of significant affected metabolites by essential (blue) and 

non-essential (red) gene knockdowns in each time point. G) Estimates of growth rates of 

CRISPRi mutants grown in M9 glucose + 1mM IPTG. Each dot corresponds to mean ± 

standard deviation (SD) across three biological replicates. Average Wild-type growth rate 

± SD are represented by solid and dashed red lines, respectively. Each dot is color-coded 

according to the significance in growth rate difference with respect to wild-type (i.e. t-test 

analysis). Pie chart reports on the fraction of knockdown strains growing significantly 

slower than wild type (pvalue≤0.01). H) Median absolute Z-score of significantly affected 

metabolites (|Z-score| ≥ 1 and p value ≤ 1e–5) in each mutant/time point. Median values 
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for each timepoint across all mutant strains are used to fit a sigmoidal curve (red curve). 

The blue shaded area identifies the confidence region (95% confidence interval). Green 

dashed lines report the 95% confidence interval for the time necessary to reach 90% of the 

maximum estimated changes (i.e. plateau).

Extended Data Fig. 2. Analysis of growth phenotypes.
A) Growth dynamics of each individual mutant. Each line corresponds to the OD averaged 

across 3 biological replicates. In orange, mutants exhibiting a sudden drop in OD are 

highlighted. B) Median absolute Z-score of significantly affected metabolites in each 

mutant/time point vs estimated growth rate. As expected the slower the growth rate the 

larger is the impact of gene knockdowns on metabolism7, although the dependency is mild: 

Spearman correlation of -0.19. C) Distribution of growth rates for essential and non-essential 
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gene knockdowns. D) Distribution of growth rates for gene knockdowns across KEGG 

pathways.

Extended Data Fig. 3. Metabolome-based predictions of functional gene-gene similarity.
A) ROC analysis comparing the performance of different similarity metrics in detecting 

pair of genes that are either encoding for subunits of the same protein complex or for 

iso-enzymes. We used previously published data27 profiling the metabolome across 3873 

gene knockout mutants. We selected only genes encoding for proteins complexes and 
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isoenzymes with at least one significant metabolic changes as defined in 27 (|Z-score|>5). 

Area Under the Curve (AUC) is reported for Spearman correlation, mutual information, 

context likelihood of relatedness (CLR) 60 applied on mutual information, iterative similarity 

and CLR applied on iterative similarity (iSim). The best performance was obtained with 

iSim (Table S1). To cope with the fact that similarity metrics, like mutual information, can 

be biased by hidden global patterns in the data (in our case likely to reflect indirect and 

general type of effects (e.g. growth rates)), and to take into account the typical patterns 

of interaction of multivariate datasets, the authors in 60 developed an effective and simple 

approach to normalize pair wise mutual information. The CLR algorithm applies an adaptive 

background correction step to the matrix of pair-wise similarity scores to eliminate indirect 

global similarities between drug/gene knockdown metabolome profiles. After computing 

the similarity between drug/gene pairs, the algorithm compares the similarity between drug/

gene A and drug/gene B to the background distribution of similarity scores calculated for 

all possible drug/gene pairs that include either A or B. The pairs with the most probable 

functional associations are those whose similarity scores is larger than the background 

distribution of similarity scores. This step, when applied on mutual information, improves 

predictions by eliminating “promiscuous” cases, where one gene weakly co-varies with a 

large numbers of genes. The improvement of CLR applied on iSim are minor. Hence, in this 

work iSim is used instead of iSim+CLR. B) For each gene, we ranked gene-gene metabolic 

similarity and performed KEGG-functional enrichment analysis -i.e. KEGG pathways that 

exhibit a significant (qvalue≤0.01) enrichment of gene knockdowns exhibiting similar 

metabolic profiles. In blue the ROC curve obtained by considering only similarities between 

gene pairs from different operons. In purple, we report ROC analysis of KEGG functional 

enrichment without accounting for operon structure. D) Each corresponds to a KEGG 

metabolic pathway and the respective AUC values estimated from gene-gene similarity. 

Only KEGG pathways with an AUC≥0.6 are reported.
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Extended Data Fig. 4. Metabolic profiles of genetic perturbations in Mycobacterium Smegmatis.
A) Growth dynamics of each individual M. smegmatis CRISPR mutant after ATC induction. 

Each line and errorbar corresponds to the OD600 average and standard deviation across 3 

biological replicates. B) Heatmap of metabolome profiles 24 hours after CRISPR induction.
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Extended Data Fig. 5. Metabolic profiles of chemical perturbations in A549 cancer cells.
A) Dynamic monitoring of cell confluence (% well area covered by cells) in A549 cancer 

cell line in the presence of sgRNAs targeting three different sections of thymidylate 

synthase, in addition to a control sgRNA inducing cell death (lethal control, gLethal) 

by targeting multiple sections in the genome. B) Dynamic monitoring of cell confluence 

in A549 cancer cell line treated with different drugs. C) The volcano plots illustrate 

metabolic changes (i.e. log2 fold-change and p-value significance) for 1593 putatively 

annotated metabolites in A549 cells 48 hours after treatment with 14 different drugs. Pvalues 

are estimated by two-sided t-test analysis. 3 drugs are targeting TYMS (methotrexate, 

pemetrexed and 5-fluorouracil). The remaining drugs act on largely different cellular 

processes, such as central metabolism (oxamate, dichloroacetate, carbonyl cyanide, 2-

deoxyglucose, UK5099), nucleotide biosynthesis (mercaptopurine), mevalonate pathway 
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(atorvastatin), DNA repair (camptothecin, cisplatin, doxorubicin) and dopamine receptors 

(trifluoperazine).

Extended Data Fig. 6. Gene-drug associations.
A) Disk diffusion assay testing the susceptibility to ofloxacin (10 μg) in wild-type E. coli 
and pyrG knockdown. Violin plot represents mean ± SD across 3 biological replicates. 

Two representative petri dishes are reported on the lower panel. B) Imipramine gene-drug 

associations. Volcano plot of similarities between drug and knockdowns time dependent 

Anglada-Girotto et al. Page 27

Nat Chem Biol. Author manuscript; available in PMC 2022 August 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



metabolic profiles. Notably, we found genes exhibiting more rare but strong associations to 

chemically induced metabolic changes, such as the association between the gene mediating 

chromosome partitioning during division mukF, and imipramine, a drug typically used 

as antidepressant, potentially hinting at the toxic side effects of imipramine as DNA 

damaging agent; C) Vatalanib gene-drug associations. Vatalanib, a tyrosine kinase inhibitor 

that interferes with the ATP-binding site of vascular endothelial growth factor receptors 

(VEGFR1-3), induces similar metabolic changes to purA knockdown, a key gene in the 

adenosine ribonucleotides de novo biosynthesis. D) fraction of compounds inhibiting at 

least 50% of the growth-rate at 100μM for (i) compounds within the top 1% of drug-

gene knockdown similarities, (ii) compounds within the top 1% of drug-gene knockout 

similarities (data reported in27), (iii) all tested compounds. We found that drugs with strong 

similar metabolic profiles to at least one essential gene knockdown (i.e. top 1% of all 

drug-genes associations) are significantly enriched (pvalue = 2.3071e-183 ≤ 0.001 ***, from 

13% to 60%) for drugs inducing Growth Inhibition (GI) greater than 50%. On the contrary 

when selecting the top 1% of similarities between drugs and the ~3800 non-essential 

gene knockout7 27, we found no significant enrichment and the majority of drugs exhibits 

relatively low growth inhibition (GI<50%). E-F-G) Volcano plot of similarities between 

tegaserod, suloctidil, thiethylperazine and the remaining 1341 drugs. Pvalues are estimated 

by hypergeometric test analysis. H-J-K) Volcano plot of proteome changes in three tegaserod 

resistant strains (Table 1 of the main text) with respect to the ancestor wild-type E. coli 
(Table S7). Proteins with significant (qvalue≤0.05 and | FC|≥1) changes with respect to 

the wild-type are highlighted in red. Pvalues are estimated by two-sided t-test analysis and 

corrected for multiple tests.
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Extended Data Fig. 7. Chloroxine induce copper toxicity.
A-B-C-D) Results from limited proteolysis analysis. Each dot in the volcano plot represents 

the relative difference in peptide abundance between the treated and untreated proteome 

extracts. None of the 13797 detected peptides exhibit significant (pvalue<7.2480e-07, 

Bonferroni corrected) conformational changes between untreated and whole proteome 

extracts treated with 4 different concentrations of chloroxine (Table S6). Pvalues are 

estimated by twosided t-test analysis. E) Relative growth rates at different concentrations 

of chloramphenicol with respect to the untreated condition. Wild type E. coli was grown 
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in LB medium with and without 200 μM of CuCl2. Growth inhibitory activity for different 

chloramphenicol concentrations were measured in triplicates. Errorbars are mean ± standard 

deviation across three biological replicates. F) 2-Isopropylmaleate z-score levels across the 

1342 tested compounds. G) Average Z-score across metabolites in the branched chain amino 

acids biosynthesis pathway as defined in KEGG. Significance (i.e. pvalue estimated by 

permutation test) of enrichment analysis is testing for each compound an average increase 

of metabolite levels. Out of the 1342 tested compounds (i.e. Prestwick library + antibiotics), 

only 35 (less than 3%) induced significant changes in the levels of BCAA intermediates 

(pvalue≤5e-4 Bonferroni corrected and mean Z-score≥0.5). In addition to chloroxine, 

clioquinol, CuCl2 and paraquat, we observed that several of the 35 compounds inhibit 

protein synthesis (e.g. apramacyn, tobramycin, ribostamacyn...). This is likely reflecting 

the indirect accumulation of amino acids, including BCAA intermediates, as a results of 

the inhibition of protein synethesis4,18. H) Growth of wild-type E.coli (blue) and ΔkatG 

(black) without and with (dashed lines) 7.8μM of chloroxine. H) Growth of wild-type 

E.coli (blue), ΔrcsB (black) and rcsB++ (expression of rcsB is under the control of an IPTG-

inducible promoter, here we used 1mM of IPTG) without and with (dashed lines) 7.8μM 

of chloroxine. J) Scatter plot of metabolic changes induced by chloroxine vs clioquinol. K) 

Scatter plot of metabolic changes induced by chloroxine vs paraquat. Some of the largest 

metabolic changes induced by paraquat involved metabolic intermediates of branched chain 

amino acids.
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Figure 1. Metabolome profiling of essential gene knockdown.
A) ROC analysis of the similarity between metabolome profiles of non-essential enzyme 

knockout18 vs knockdown. The pie chart reports the fraction of non/essential genes in the 

CRISPRi mutant library with characterized vs non-characterized (i.e. y-genes) function. B) 

Histograms of the averaged similarities between genes from the same (blue) or different 

(red) functional groups (COG). The tops and bottoms of each box are the 25th and 75th 

percentiles, respectively, while the line in the middle of each box is the samples median. 

The lines extending above and below each box are the whiskers. Whiskers extend from the 

ends of the boxes delimited by the interquartile to the largest and smallest observations. 

Pvalue estimated by one-tailed t-test analysis. C) Heatmap of metabolome similarity 

between functional groups (i.e. COGs). For each pair of genes within the same functional 

group (diagonal) or between two different functional groups (off-diagonal), we estimated 

the average of similarity scores (iSim) and use a permutation test to estimate pvalue 

significance. COG names and identifiers are reported on the Y- and X-axis, respectively. 

Only similarities with pvalue≤0.05 are reported. The similarity between genes of the 

same functional group is illustrated for selected cases by a 2-dimensional projection of 

metabolome profiles. Metabolic profile similarities were calculated for all gene pairs by 

computing iSim. Each dot correspond to a gene knockdown/time point laid out using 

an edge-weighted, spring-embedded, network layout algorithm30. Genes sharing similar 

metabolic profiles are proximal to each other; less-similar genes are positioned farther apart. 

Each dot is colorcoded by the average distance to knockdowns from a specific functional 

group (green dots).
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Figure 2. Functional associations between gene knockdowns and major antibiotic classes.
A) The heatmap highlights the functional groups of genes (i.e. COGs or KEGG pathways) 

that exhibit the most significant (pvalue≤0.05) averaged similarity to metabolic changes 

induced by antibiotics in 5 major classes. B) Sorted maximum AUC indexes estimated 

for each knockdown and antibiotic class (grey dots). Primary drug targets are highlighted 

in blue. Genes with an AUC greater than 0.8 or lower than 0.2 are marked in red and 

green respectively. C-D-E-F) Metabolic profiles (red panel), gene-gene similarity (purple 

panel) and associations with compounds in 5 major antibiotic classes (yellow) panel, for 

4 gene knockdowns: rpsL (480 minutes after CRISPRi induction), murG (345 minutes 

after CRISPRi induction), eno (360 minutes after CRISPRi induction) and folD (375 

minutes after CRISPRi induction). The volcano plots illustrate: the metabolic changes 

averaged over 3 biological replicates (i.e. Z-score and pvalue significance) for 991 

putatively annotated metabolites (left, red panel); similarity between knockdown metabolic 

profiles (i.e. similarity and pvalue significance)(right, purple panel). Metabolites that are 

significantly (two-tailed t-test analysis) affected by the gene knockdown and genes that 

exhibit significant (hypergeometric test) metabolic similarities are highlighted in red and 

purple, respectively. Histograms (yellow panel) represent the distributions of similarities 

scores (iSim) with compounds in each major antibiotic class.
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Figure 3. Metabolic profiling of chemical and genetic perturbations in M. smegmatis and A549 
cancer cells.
A-B) Time-course profiles of changes in intracellular metabolite abundances after CRISPR-

mediated knockdown of enolase (eno) and 3-isopropylmalate dehydrogenase (leuB) in 

M. smegmatis. Reported data are average over 3 biological replicates. C-L) Each dot 

represents the metabolic similarity (i.e. similarity scores) between genetic and chemical 

perturbations in M. smegmatis. Antimicrobials are grouped in 5 major antibiotic classes and 

the distribution of similarities with gene knockdowns metabolic profiles are illustrated by 

box plots. The tops and bottoms of each box are the 25th and 75th percentiles, respectively, 

while the red line in the middle of each box is the samples median. The lines extending 

above and below each box are the whiskers. Whiskers extend from the ends of the boxes 

delimited by the interquartile to the largest and smallest observations. M) Time-course 

profiles of changes in intracellular metabolite abundances in A549 lung cancer cells after 

CRISPR-mediated knockout of thymidylate synthase (TYMS), using three individual guide 

RNAs targeting different gene exons and a separate guide RNA targeting multiple genomic 

regions (gLethal) is used to induce general growth inhibition (Extended Data Figure 5). 

Changes in dUMP are highlighted in red. Reported data are average ± standard deviation 

over 3 biological replicates. N) Metabolic changes induced by 14 drugs with diverse targets 

and MoAs. Each dot corresponds to a putatively annotated metabolite, the log2 fold-change 

is reflected in the dot size, and statistical significance (p-value estimated by by two-tailed t-

test analysis) on the x-axis. Drugs targeting enzymes in folate metabolism are highlighted in 

blue, changes in dUMP abundance in red. O) Boxplot of metabolic similarity (i.e. similarity 

scores) between genetic and chemical perturbations in A549 human lung cancer cells. 

Similarities between genetic and chemical interference with TYMS (blue) are compared to 

all remaining pairwise similarities (grey). The tops and bottoms of each box are the 25th 

and 75th percentiles, respectively. The lines extending above and below each box are the 

whiskers. Whiskers extend from the ends of the boxes delimited by the interquartile to the 

largest and smallest observations.
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Figure 4. Chemical vs genetic interference.
A) Number of significant (top 1%) associations with drugs and the max similarity for each 

gene knockdown. B) The heatmap highlights drugs with a GI50 below 100μM that exhibit a 

significant (qvalue≤0.05) enrichment of gene associations with at least one KEGG pathway. 

C) Volcano plot of similarities between suloctidil and knockdowns metabolic profiles. D) 

Volcano plot of similarities between thietylperazine dimalate and knockdowns metabolic 

profiles. E) Volcano plot of similarities between tegaserod maleate and knockdowns 

metabolic profiles. Pvalues were estimated by hypergeometric test (see iSim). G) Volcano 

plots of limited proteolysis samples from E. coli lysates treated with suloctidil. Peptide 

mixes produced in the presence or absence of 500 μM suloctidil are compared. Fold changes 

(FC) in peptide abundance for treated and untreated samples are shown as a function of 

statistical significance. Significance cutoffs were pvalue = 3.3807e-07 (two-tailed t-test 

analysis, Bonferroni corrected) and FC = 1. Peptides passing both cutoffs are in purple and 

labeled by protein name (Supplementary Dataset 4). H) Volcano plots of limited proteolysis 

samples from E. coli lysates treated with thietylperazine dimalate. I) Volcano plots of limited 

proteolysis samples from E. coli lysates treated with tegaserod maleate. Data represent the 

average over 3 biological replicates. I) Schematics of metabolome derived gene-tegaserod 

associations and their relation to genetic and proteome changes in tegaserod resistant strains.
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Figure 5. Gene-Drug associations.
A) Volcano plot of similarities between chloroxine and knockdowns metabolic profiles at 

different time points. Chloroxine gene-drug associations that are among the top 1% are 

highlighted in yellow. Pvalues are estimated by hypergeometric test (see iSim). B) Volcano 

plot of similarities between chloroxine and the remaining 1341 drugs. Pvalues are estimated 

by hypergeometric test (see iSim). C) Growth rates at different concentrations of chloroxine 

relative to the untreated condition. Wild type E. coli was grown in LB medium with and 

without 100 or 200 μM of CuCl2 . Bar plot are mean ± standard deviation across three 

biological replicate. D) Promoter activity of cueO in M9 glucose medium and LB media 

with 7.8 μM chloroxine, 155 μM chloramphenicol and 185 μMCuCl2. Bar plots represent 

mean ± standard deviation of promoter activities in mid-log growth phase over 3 biological 

replicates. E) Growth rates at different concentrations of chloroxine relative to the untreated 

condition. Wild type E. coli was grown in M9 medium with and without 0.1/0.5/1 mM of 

leucine. Bar plot are mean ± standard deviation over two biological replicates. F) Relative 

metabolite z-score levels in ΔrcsB27. G) Relative z-score levels of 2-demethylmenaquinone 

across 3807 E. coli non-essential knockout strains27.
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Figure 6. Chloroxine resistance.
A-B-C) Volcano plot of proteome changes in three chloroxine resistant strains 

(Supplementary Dataset 7) with respect to wild-type E. coli (Supplementary Dataset 8). 

Significant changes (qvalue≤0.05 and |FC|≥1) are highlighted in red. Proteins that are 

transcriptionally regulated by marA or rcsB are highlighted in blue and green, respectively. 

Reported data are average over three biological replicates. Pvalues estimated from two-sided 

ttest analysis are corrected for multiple tests by q-value estimation49. D-E-F) Transcription 

Factor differential activity profiles. For each TF, we reported average fold-changes of 

regulated proteins and significance of the difference with respect to wild-type (qvalue) 

estimated using a permutation test (see Materials and Methods). TFs with significant 
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changes in activity are highlighted in red (qvalue≤0.05). G) Schematics of metabolome 

derived gene-chloroxine associations and their relation to genetic and proteome changes in 

chloroxine resistant strains.
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