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Abstract
Integer quantum Hall (IQH) states and quantum anomalous Hall (QAH) states show the same
static dc response but distinct dynamical ac response. In particular, the ac anomalous Hall
conductivity profile σyx(ω) is sensitive to the band shape of QAH states. For example, dispersive
QAH bands shows resonance profile without a sign change at the band gap while the IQH states
shows the sign change resonance at the cyclotron energy. We argue by flattening the dispersive
QAH bands, σyx(ω) should recover to that of flat Landau bands in IQH, thus it is necessary to
know the origin of the sign change. Taking a topological lattice model with tunable bandwidth, we
found that the origin of the sign change is not the band gap but the van Hove singularity energy of
the QAH bands. In the limit of small bandwidth, the flat QAH bands recovers σyx(ω) of the IQH
Landau bands. Because of the Hall response, these topological bands exhibit giant polarization
rotation and ellipticity in the reflected waves (Kerr effect) and rotation in the order of fine
structure constant in the transmitted waves (Faraday effect) with profile resembles σyx(ω). Our
results serve as a simple guide to optical characterization for topological flat bands.

1. Introduction

The internal structure of electron wave functions in solids can lead to unconventional transport
phenomena. A quantized Hall conductivity σyx without externally applied magnetic field in quantum
anomalous Hall (QAH) materials is one example of such an effect [1, 2]. In close analogy to the integer
quantum Hall (IQH) effect, the Berry curvature effectively acts as a magnetic field in momentum space,
which globally gives rise to a nonzero Chern number resulting in the quantized σyx. In the case of a static dc
electric field, there exist dissipationless chiral edge modes both in QAH and IQH states as a consequence of
the bulk-boundary correspondence.

Exciting IQH states with dynamical ac electromagnetic fields causes a rotation of the polarizations of the
transmitted and reflected light, respectively known as the Faraday and Kerr rotations [3–8]. The
energy-dependent conductivity tensor can be experimentally extracted from these rotation angles. It is
known that σyx(ω) for an IQH state shows resonant behavior marked by a change of sign at frequencies ω
near the cyclotron frequency [9, 10]. However, in QAH systems σyx(ω) can display different resonant
profiles depending on the details of the system. For example, a simple two-band QAH model such as for a
gapped Dirac Hamiltonian, gives rise to a resonant profile without sign change at the band gap [6, 11–13]
whereas the four-band models for bilayer graphene show a resonance with sign change at higher energy
than the broken time reversal symmetry gap [14, 15]. Focusing on two band models only, one may thus ask
if the behavior of σyx(ω) in QAH systems can reproduce that of IQH states by flattening down the dispersive
topological bands.
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In this work, we employ a topological lattice model whose bandwidth can be tuned smoothly to capture
nearly flat and dispersive bands on an equal footing [16, 17]. Other than the band gap, σyx(ω) is determined
by a van Hove singularity (VHS) which naturally emerges in this 2D lattice model. This additional
parameter determines the sign change of σyx(ω) similarly to reference [14]. In topological flat bands, the
VHS energy coincides with the band gap resulting in a change of sign in the resonance profile. In dispersive
bands, in contrast, the VHS energy is higher than the band gap. As a result, the Hall conductivity shows
separate resonance and sign change features, respectively, at the band gap and VHS energy. The different
features of the Hall conductivity in the cases of flat and dispersive bands, respectively, are reflected in the
corresponding Faraday angle θF. At low frequencies, θF approaches a universal value tan−1(α), where
α = e2/�c ≈ 1/137 is the fine structure constant [6]. At larger frequencies, θF follows the trend of the Hall
conductivity with a negative prefactor. In the reflected wave, a giant Kerr angle (π/2) below the gap is
expected for Chern insulators [6]. Above the gap, the Kerr angle changes sign and decays to zero when
approaching the bandwidth.

From a fundamental point of view, our results serve as a one-to-one mapping of IQH states to QAH
states. All phenomena that happen in IQH states with magnetic field can also occur in QAH states without
magnetic field (but with nonzero Berry curvature). To name a few, the Kerr and Faraday rotations,
cyclotron motion [12], and fractional excitation without magnetic field [16–19] can be observed in QAH
states. From a practical point of view, these results provide a simple characterization tool to determine the
bandwidth or band flatness of topological materials. The experimental observation of flat bands is currently
limited only to angle-resolved photo-emission spectroscopy [20, 21]. However, due to the band flatness and
the close proximity to the Fermi energy, a flat band is usually difficult to characterize. A convenient
platform to study flat bands with nontrivial topology has been realized in magic-angle twisted bilayer
graphene in which strong electronic correlations cause a breaking of time-reversal symmetry [22–24].

2. Model Hamiltonian and band structure

An effective two-band Hamiltonian which can model a system with topological flat bands on a square
lattice can be written as [16, 17]

Ĥ = τ · d(p), (1)

where τ = (τ x, τ y, τ z) is a vector of Pauli matrices and p = �k denotes the quasi-momentum. The vector d,
which describes the band structure of the material, is given by

d(p) =
�v

a

⎛⎜⎜⎜⎜⎜⎝
cos

pxa

2�
cos

pya

2�

sin
pxa

2�
sin

pya

2�

b
(

cos
pxa

�
− cos

pya

�

)

⎞⎟⎟⎟⎟⎟⎠ ,

where a and v denote the lattice spacing and Fermi velocity of electrons, respectively. The dy component is
an even function of p and indicates time-reversal symmetry breaking because the complex conjugate of τ y

picks up a minus sign under time reversal. As a result, the bands are topologically nontrivial for b �= 0 and
the Chern number is given by ±sign(b) for conduction and valence bands, respectively [16]. For
|b| < b0 = (2

√
2)−1, the band gap can be defined as 2Δ with Δ = �v(2b)/a. Diagonalizing Ĥ gives the

energy spectrum

E±(p) = ±|d(p)| = ± 1

2
√

2b
Δ

√
1 + 2b2

(
cos

pxa

�
+ cos

pya

�

)2

+ (1 − 8b2) cos
pxa

�
cos

pya

�
. (2)

The parameter b not only determines the band gap but also the band width. For the particular choice
b = b0 = (2

√
2)−1, the flat bands emerge with ratio of the bandwidth to band gap equal to (

√
2 − 1) ≈ 0.4.

These (almost) flat bands are shown in figure 1(a) and their energy spectra are given by

E (flat)
± (p) = ±Δ

√
1

4

(
cos

pxa

�
+ cos

pya

�

)2

+ 1. (3)

The density of state (DOS) is defined as

ρ(E) =
∑
p

∑
η=±

δ(E − Eη(p)). (4)
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Figure 1. (a) The flat bands obtained from equation (2) for b = b0 = (2
√

2)−1. (b) DOS of the flat bands. (c) The dispersive
bands obtained from equation (2) for b = 0.075. (d) DOS of the dispersive bands. Here, Δ = �v(2b)/a.

For the flat bands at b = b0, an analytical form of DOS can be obtained as:

ρ(flat)(E) =
1

Δ

4

π2

|ε|√
ε2 − 1

K(2 − ε2), (1 < |ε| <
√

2), (5)

where ε = E/Δ denotes the dimensionless energy, K is an elliptic integral defined in appendix A
equation (A11) [25], and the range 1 < |ε| <

√
2 denotes the bandwidth. The DOSs of the flat bands is

shown in figure 1(b). It becomes singular both at the maximum of the valence band, and the minimum of
the conduction band because the saddle-points coincide with the band edges.

Let us contrast this band structure with that of dispersive bands, shown for example for b = 0.075 in
figures 1(c) and (d). The band morphology is similar to that of gapped graphene, but this model is defined
on a square lattice rather than on a hexagonal one. At the band edges, the DOSs is finite, as expected for
parabolic bands in 2D systems. Away from the band gap, the DOS exhibits a VHS as a result of the
saddle-point band dispersion, similar to graphene. The VHS and the bandwidth are given by 1

2
√

2b
and

1
2b − 1, respectively, for 0 < b < b0. We will compare the optical conductivities of these different bands in
the next section.

3. Optical conductivity

An electron gas with two sites per unit cell can be described using a pseudo-spin. Matrix elements of this
pseudo-spin encode the wave function as well as geometric properties that underlie electronic transport
[12]. The pseudo-spin is defined as

mp = 〈ψ(p)|τ |ψ(p)〉 , (6)

where ψ(p) = (ψA(p),ψB(p)) is the wavefunction on the A and B sites. The pseudo-spin obeys the Bloch
equation,

d

dt
mp(t) = 〈ψ(p)| 1

i�
[τ , Ĥ]|ψ(p)〉 = 2

�
d(p) ×mp. (7)

In the absence of an applied electric field, mp = m(0)
p = ±d(p)/|d(p)| where the ± signs correspond to

the pseudo-spin of conduction and valence band, respectively. Therefore, the pseudo-spins of the
conduction (valence) band are oriented parallel (antiparallel) to d(p), which in turn leads to
dmp(t)/dt = 0.

Upon applying an external electric field E, the vector d shifts up to linear order as
δdj = A · ∂Adj(p − eA/c) where e and c are electron charge and speed of light, respectively. Furthermore,
the vector potential A is related to E via the relation E = −∂tA/c. On the other hand, in presence of an
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electric field, the pseudo-spin changes to mp(t) = m(0)
p + δmp(t), so it is no longer aligned with

d
′
= d + δd. Hence, equation (7) predicts a precession of the pseudo-spin. Focusing on linear response to

the incident light, equation (7) becomes

d

dt
δmp(t) =

2

�

[
d(p) × δmp(t) + δd(p) ×m(0)

p

]
, (8)

where we dropped the nonlinear term δmp × δd.
Considering without loss of generality an incident electric field linearly polarized along the x axis, we

have E(t) = Ex e−iωt x̂, and obtain

δd(p) =
ievEx

2ω

⎛⎜⎜⎜⎝
sin

pxa

2�
cos

pya

2�

− cos
pxa

2�
sin

pya

2�

2b sin
pxa

�

⎞⎟⎟⎟⎠ . (9)

In equilibrium the electrons occupy the valence band, so m(0)
p = −|d|/d and we can compute δm by

solving equation (8). We obtain

δmx =
δdx

(
d2

z + d2
y

)
+ δdy

[
−i
(
�ω/2

)
dz − dxdy

]
+ δdz[i

(
�ω/2

)
dy − dxdz]

|d|
[(

�ω/2
)2 − |d|2

] , (10)

δmy =
δdx[i

(
�ω/2

)
dz − dxdy] + δdy

(
d2

z + d2
x

)
+ δdz

[
−i
(
�ω/2

)
dx − dydz

]
|d|

[(
�ω/2

)2 − |d|2
] , (11)

δmz =
δdx

[
−i
(
�ω/2

)
dy − dxdz

]
+ δdy[i

(
�ω/2

)
dx − dydz] + δdz

(
d2

x + d2
y

)
|d|

[(
�ω/2

)2 − |d|2
] . (12)

Further details on pseudo-spin dynamics are presented in reference [12] and its supplementary
information.

The electric field induces both longitudinal and Hall current responses in the system. In fact, up to
linear response the optical conductivity σij connects the electrical current in direction i to an external
transverse electric (TE) field in the j direction, J = σE. In the following, we determine both responses by
using the pseudo-spins.

3.1. Longitudinal conductivity
The longitudinal current is given by

Jx(ω) =
e

(2π�)2

∫
d2p

〈
∂Ĥ

∂px

〉
. (13)

Utilizing the relation Jx(ω) = σxx(ω)Ex and calculating the above expectation value for the valence band
states, we obtain the interband longitudinal conductivity σxx as

σxx(ω) = − ev

(2π�)2Ex

∫
d2p

(
δd̃xδmx + δd̃yδmy + δd̃zδmz

)
, (14)

where δd̃ = ω
ievEx

δd. In the end, σxx is independent of Ex because δmp ∼ Ex (see appendix B for details). An
analytical form can be obtained for the flat bands by setting b = b0. We find the real part of σxx to be given
by

Reσ(flat)
xx (ω) =

e2

h

K
(
2 − ω2

)
−
(
ω2 − 1

)
L
(
2 − ω2

)
ω2

√
ω2 − 1

, (15)

for excitation energy inside the bandwidth 1 < ω <
√

2 where ω = �ω/(2Δ) and zero elsewhere. Here, K
and L are elliptic integrals of the first and second kind which are defined in equations (A11) and (B7).

We can evaluate the imaginary part of the longitudinal conductivity numerically by using the
Kramers–Kronig relation:

Im σxx(ω) = −2ω

π

∞∫
0

Reσxx(ω′)

ω′2 − ω2
dω′. (16)

In figure 2, we plot the real and imaginary parts of the longitudinal conductivity in the units of the
conductance quantum e2/h.
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Figure 2. Optical conductivity in longitudinal σxx and transverse (Hall) directions σyx for (a) the flat bands b = b0 and (b) the
dispersive bands b = 0.075. ΩV = 1

2
√

2b
and ΩE = 1

2b , respectively, depict the location of the VHS and the band edge.

3.2. Hall conductivity
In order to investigate the anomalous Hall current, we use

Jy(ω) =
e

(2π�)2

∫
d2p

〈
∂Ĥ

∂py

〉
. (17)

Computing the expectation value on the valence band states and considering Jy(ω) = σyx(ω)Ex, the
anomalous Hall conductivity can be written as

σyx(ω) =
ev

(2π�)2Ex

∑
p

(
δd̃yδmx + δd̃xδmy + b sin

(pya

�

)
δmz

)
. (18)

For the flat bands, we calculate the imaginary part of the Hall conductivity analytically in appendix C,
which gives

Imσ(flat)
yx (ω) =

e2

h

2 − ω2

ω

K
(
2 − ω2

)
√
ω2 − 1

, (19)

inside the bandwidth 1 < ω <
√

2 and zero elsewhere. Using the Kramers–Kronig relation we obtain the
real part of σyx(ω) as

Reσ(flat)
yx (ω)

=
e2

h

1

π

∫ 2

−2
dλ

(λ− 2) (λ+ 2)

(4ω2 − 4 − λ2)
√
λ2 + 4

K
(

1 − λ2

4

)
. (20)

Details of the derivation are presented in appendix C. We perform the integration over λ numerically. The
plots of the real and imaginary parts of σyx in units of e2/h, as a function of frequency ω = �ω/(2Δ) are
shown in figure 2.

3.3. Discussion
For σxx, the real part is plotted in black lines while the imaginary part is in green dashed lines, for the flat
bands in figure 2(a), and for the dispersive bands with b = 0.075 in figure 2(b). The profiles of the real part
are more or less similar to the joint DOS which is expected for dissipative interband transition. From the
real part of σxx, one can probe the size of the band gap and the bandwidth as well as the location of the
VHS energy using optical absorption. On the other hand, the imaginary part takes on negative values and
flips sign at the VHS. Positive and negative values of Imσxx are related to transverse magnetic and TE
surface waves, respectively, in the absence of Hall response [26]. In the dispersive band, see figure 2(b), TE
surface waves can survive up to an excitation energy �ω larger than about three times of the gap size.

Next, we describe the properties of the anomalous Hall conductivity σyx. Its real part (blue lines of
figure 2) is quantized to e2/h at zero frequency, as expected for Chern insulators with the Chern number
one. For the flat bands, Reσyx increases and diverges at the band gap. Above the band gap, it changes
sign and goes to zero for large frequencies. This profile resembles the Hall conductivity of magnetotransport
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σB
yx = σB

0 (1 − x2)−1, where x = ω/ωc. In the quantum Hall regime, σ0 = Ce2/h [10] with C being the
Chern number and in the semiclassical regime, σB

0 = ne2/mωc, ωc is the cyclotron frequency, and n and m
are the electron density and electron mass, respectively [27].

Although our model does not have a perfectly flat band, its properties nevertheless resemble those of
magnetotransport for a flat Landau level. A hint to elucidating this similarity can be traced back to Reσyx of
the dispersive band in figure 2(b). For the dispersive bands, Reσyx does not change sign at the band gap. It
does, however, change sign after it passes the VHS energy. Thus, the flip of sign in Reσyx is related to the
position of the VHS. In the flat bands, the position of the VHS matches the band edge, so Re σyx flips the
sign for excitation energy �ω = 2Δ. Nevertheless, the resonant point of σyx remains at the band gap energy
and it serves as the cyclotron energy of the anomalous Hall materials.

The imaginary part of σyx coincides with the real part of σxx in the flat bands. Numerically, there is
actually a small discrepancy between the two values that makes them hard to distinguish. However, this
coincidence is not generally valid for all ω negative because of the odd symmetry
Imσyx(−ω) = −Imσyx(ω) while Reσxx(ω) is an even function. Indeed Imσyx is distinct from Reσxx in the
dispersive bands as shown in black solid line vs red dashed line of figure 2(b).

4. Kerr and Faraday angles

Anomalous Hall conductivity σxy of topological bands allow transverse current responses in the presence of
an electric field. Thus, such a material can rotate the polarization plane of the reflected and transmitted
electric field. The former is known as the Kerr rotation while the latter is called the Faraday rotation. For
the simplest geometry, i.e., normal incidence of an electric field E0x̂ onto a free-standing two dimensional
material, the Kerr (θK) and Faraday (θF) angles can be defined as [28]

2θK,F = tan−1

(
Im ER

s (ω)

Re ER
s (ω)

)
− tan−1

(
Im EL

s (ω)

Re EL
s (ω)

)
, (21)

and the respective ellipticity angles are defined as

ξK,F =
|ER

s |
|EL

s |
, (22)

where the subscripts s = r, t denote the reflected and transmitted components of the electric field for Kerr
(K) or Faraday (F) rotation, respectively. Moreover, the superscripts R and L denote right-circular and
left-circular polarized components. We solve the Maxwell equation with boundary condition that electric
field parallel to the surface is continuous, while the magnetization is discontinuous due to surface current.
The electric fields are given by [29]

ER,L
r = E0

σ∓(ω)

κ1 − σ∓(ω)
, (23)

ER,L
t = 2κ1E0

κ1 − σ±(ω)

(κ1 − σ+(ω))2 + (κ1 − σ−(ω))2 , (24)

σ± =
(
σxx ± iσyx

)
/σ0, (25)

where κ1 = α−1 = 137, α = e2/(�c) is the fine structure constant, and σ0 = e2/h. The Kerr angle of the flat
bands is shown in figure 3(a). Below the gap, θK = tan−1

(
α−1

)
≈ π/2 as expected for topological

insulators [6]. This is because below the gap Reσxx = 0 and κ1 � σyx/σ0. The value of θK below the gap is
insensitive to the detailed shape of the band structure as shown in figure 3(b) but depends on the incident
angle and the dielectric environment, which are not considered here. Above the gap, it changes sign and
gradually approaches zero. Excitations above the bandwidth do not give a Kerr rotation. Apparently the
large values of |θK| above the band gap are proportional to the bandwidth as shown in figure 3(b) as
compared to (a). The profile of the Faraday angle resembles −Reσyx up to a constant prefactor. At zero
frequency, θF = tan−1(α), as has been shown in reference [6].

Apart from the rotation of the polarization angles, an anomalous Hall conductivity changes the
ellipticity of the electromagnetic waves. When the ellipticity strongly deviates from unity, the linearly
polarized waves transform into circularly polarized ones. As shown in figures 4(a) and (b), the reflected
waves become largely circular for a large window of frequency especially above the band gap. Interestingly,
the behavior seems insensitive to the bandwidth. On the other hand, the transmitted waves remain largely
linear except in a narrow window of resonance near band gap and band edge for both flat and dispersive

6
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Figure 3. Kerr angles of (a) the flat bands and (b) the dispersive bands as a function of excitation energy. Faraday angles of (c)
the flat bands and (d) the dispersive bands as a function of excitation energy. We have used θ0 = tan−1(α) = 7.3 × 10−3 rad.
ΩV = 1

2
√

2b
and ΩE = 1

2b , respectively, depict the location of the VHS and the band edge.

Figure 4. Ellipticity. Kerr ellipticity of reflected waves for (a) the flat bands and (b) the dispersive bands as a function of
excitation energy. Faraday ellipticity of transmitted waves for (c) the flat bands and (d) the dispersive bands as a function of
excitation energy. ΩV = 1

2
√

2b
and ΩE = 1

2b , respectively, depict the location of the VHS and the band edge.

bands (see figures 4(c) and (d)). The flat bands show larger values of both ξK and ξF (larger circular
dichroism) at �ω = 2Δ than the dispersive bands because Re[σxy] and Re[σxx] are both singular due to the
VHS at that energy.

5. Conclusion

Using microscopic pseudo-spin dynamics, we have calculated the full optical conductivity tensor to contrast
optical properties of topological flat bands with those of dispersive bands. We have proposed two methods
to characterize topological flat bands. Firstly, using conventional optical absorption one can probe the
longitudinal conductivity σxx to determine the location of the band gap, the bandwidth, and the VHS
energy. Secondly, the topological properties of the material can be probed via Kerr and Faraday rotations
which are related to the anomalous Hall conductivity. The anomalous Hall conductivity of flat bands
resembles that in the magnetotransport Hall conductivity, in which the sign change appears when the
excitation energy matches the cyclotron frequency. It turns out that this sign change is intimately linked

7
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with the position of the VHS in the joint DOSs. Giant Kerr angles appear below the band gap while the
Faraday angle shows a universal value of tan−1(α) in the dc limit and reaches a maximum absolute value at
the band gap. The reflected waves become right-handed circularly polarized light for excitation energies
around the band gap. One can introduce correlation effects to the topological flat bands to study fractional
quantum Hall (FQH) effects without magnetic field [17, 19, 30, 31]. Flat bands with Chern number greater
than one [32] may host a FQH state with even-denominator filling fraction. The Chern number
dependence of the optical properties of QAH materials will be an interesting field to study in the future as
materials have recently become available [33].
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Appendix A. Analytical derivation of the density of states

This appendix provides additional details on the analytical calculation of the DOS. We can rewrite
equation (4) as

ρ(E) =
∑

p

[
δ(E − |d(p)|) + δ(E + |d(p)|)

]
,

=
a2

(2π�)2

�
2

a2

∫
dkx dky

[
δ(E − |d|) + δ(E + |d|)

]
, (A1)

where kx = pxa/� and ky = pya/�. By changing the sign of E , i.e. E →−E , the second term of the integrand
is same as the first term. Therefore, it is sufficient to examine the expression at positive energies.
Consequently, the DOS simplifies to

ρ(|ε|) = a

�v

1

(2π)2

∫ π

−π

∫ π

−π

dky dkxδ(|ε| − D), (A2)

where ε = aE
�v

and D =
√

2
4

√(
cos kx + cos ky

)2
+ 4 are dimensionless energies. To calculate the integral, we

employ an orthogonal transformation (kx, ky) → (λ, ξ) so that constant coordinate surfaces in the reciprocal
space correspond to constant energy surfaces (see reference [34] for more details). Explicitly, we define

λ = cos kx + cos ky, (A3)

tan ξ = tan
ky

2
cot

kx

2
. (A4)

The Jacobian of this transformation is

dkx dky = J dξ dλ, (A5)

J =
1√

1 − β cos2(2ξ)
, β = 1 − λ2

4
. (A6)

Therefore, the DOS transforms to

ρ(|ε|) = 1

4π2

a

�v

∫ 2

−2
dλ

∫ 2π

0
dξ

δ(|ε| − D)√
1 − β cos2(2ξ)

. (A7)

In order to rewrite the delta function in new coordinates, we employ the inverse transformation

8
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cos kx =
λ

2
+

J−1 − 1

cos(2ξ)
, (A8)

cos ky =
λ

2
− J−1 − 1

cos(2ξ)
, (A9)

on the delta function as

δ(ε− D) = δ

(
ε−

√
2

4

√
λ2 + 4

)
,

=
4|ε|√

2ε2 − 1

[
δ
(
λ− 2

√
2ε2 − 1

)
+ δ

(
λ+ 2

√
2ε2 − 1

)]
.

Therefore, the DOS is reduced to

ρ(|ε|) = a

�v

1

4π2

4|ε|√
2ε2 − 1

∫ 2

−2
dλ

∫ 2π

0
dξ

δ
(
λ− 2

√
2ε2 − 1

)
+ δ

(
λ+ 2

√
2ε2 − 1

)√
1 − β cos2 2ξ

,

=
a

�v

1

4π2

4|ε|√
2ε2 − 1

2

∫ 2

0
dλ δ

(
λ− 2

√
2ε2 − 1

)
4K(2 − 2ε2),

=
a

�v

1

π2

8|ε|√
2ε2 − 1

K(2 − 2ε2),

√
2

2
< |ε| < 1, (A10)

where K is the elliptic integral of first kind [25], defined as

K(β) =
1

4

∫ 2π

0
dξ

1√
1 − β cos2 2ξ

, β � 1. (A11)

The DOSs is shown in figure 1. Taking into account the two different bands, the integration of the DOS
leads to ∫ ∞

−∞
dEρ(E) = 2.

Appendix B. Longitudinal conductivity

In this appendix, we provide additional details about the analytical calculation of the real part of the
longitudinal conductivity σxx in equation (14). Changing ω to ω + iη where η → 0+, decomposing as

1

(�ω/2)2 − |d|2 =
1

|d|

(
1

�ω − 2|d| −
1

�ω + 2|d|

)
,

and using the relation limη→0+(x + iη)−1 = P(1/x) − iπδ(x) where P denotes the principal value, the real
part of the longitudinal conductivity can be written as

Re σxx(ω) =
ie2v2

(2π�)2

∫
d2 p

×
[
δd̃x

δd̃x(d2
z + d2

y ) − δd̃y(dxdy) − δd̃z(dxdz)

ω|d| + (x → y, y → x, z → z) + (x → z, y → y, z → x)

]

×
[−iπ

(
δ(�ω − 2|d|) − δ(�ω + 2|d|)

)
|d|

]
+

ie2v2

(2π�)2

∫
d2p

×

⎡⎣δd̃x
−i
(
�ω/2

)
dzδd̃y + i

(
�ω/2

)
dyδd̃z

ω|d|
((

�ω/2
)2 − |d|2

) + (x → y, y → z, z → x) + (x → z, y → x, z → y)

⎤⎦ ,

(B1)

where x → y means that we replace all x indices by y: dx → dy and δd̃x → δd̃y.
Inserting the components of vectors d and δd, the integrand of the second integral in Reσxx is odd in px

or py, so the second integral is zero. On the other hand, we need to calculate the first integral only for
positive ω because symmetry relations then make it possible to obtain the results for negative ω. By this
assumption, the second delta function in the first integral vanishes for positive ω and d.

9
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Introducing the definition

F(kx, ky) =
cos2 kx

(
cos kx + cos ky

)2 − cos kx

(
cos kx + cos ky

)3 − 4
(

cos kx + cos ky

)
+
(
cos kx + cos ky

)2
+ 8

8 ω̃
((

cos kx + cos ky

)2
+ 4

) ,

the real part of σxx reads as

Reσxx(ω) =
e2

2h

∫ π

−π

dkx

∫ π

−π

dky F(kx, ky)δ(�ω̃ − 2|D|), (B2)

where we have used the dimensionless parameters ω̃ = a/v ω, D = a/(�v)d, kx = pxa/� and ky = pya/�.
To determine Reσxx, we employ the transformation (kx, ky) → (λ, ξ) introduced in appendix A. Switching
to the new coordinate system, the delta function is given by

δ(ω̃ − 2|D|) = δ

(
ω̃ −

√
2

2

√
λ2 + 4

)
,

=

√
2|ω̃|√

ω̃2 − 2

[
δ
(
λ−

√
2
√
ω̃2 − 2

)
+ δ

(
λ+

√
2
√
ω̃2 − 2

)]
. (B3)

Therefore, we rewrite Reσxx in new coordinates (λ, ξ) as

Re[σxx(ω)] =
e2

16h

∫ 2

−2
dλ

∫ 2π

0
dξ

1√
1 − β cos2 2ξ

F(λ, ξ)

√
2|ω̃|√

ω̃2 − 2
[δ (λ− Ω) + δ (λ+Ω)] , (B4)

F(λ, ξ) =

(
λ
2 +

√
1−β cos2 2ξ−1

cos 2ξ

)2

λ2 −
(

λ
2 +

√
1−β cos2 2ξ−1

cos 2ξ

)
λ3 − 4λ+ λ2 + 8

8 ω̃ (λ2 + 4)
, (B5)

where β = 1 − λ2/4 = 2 − ω̃2/2 and Ω =

√
2
(

aω
v

)2 − 4. Performing the integrations over λ and ξ, we find

Reσxx(ω) =
4K

(
2 − ω̃2

2

)
− 2

(
ω̃2 − 2

)
L
(

2 − ω̃2

2

)
√

2ω̃2
√
ω̃2 − 2

,
√

2 < ω̃ < 2, (B6)

where K is defined in equation (A11) and L is the elliptic integral of the second kind

L(β) =
1

4

∫ 2π

0
dξ
√

1 − β cos2 2ξ, β � 1. (B7)

Note that the real component of the longitudinal conductivity is zero if ω <
√

2v
a and ω > 2v

a .

Appendix C. Hall conductivity

In this appendix, we are going to present the detailed derivation of the analytic form of the Hall
conductivity. To this end, in the following, we calculate the real and imaginary part, individually.

C1. Imaginary part
Let us first calculate the imaginary part of the Hall conductivity which is given by

Im σyx(ω) =
ie2v2

(2π�)2

∫
d2 p

[(
δd̃y

δd̃y

(
−i�ω/2

)
dz + δd̃z(i�ω/2)dy

ω|d| + (x → y, y → z, z →−z)

)

+ b sin
(pya

�

) δd̃x

(
−i�ω/2

)
dy + δd̃y(i�ω/2)dx

ω|d|

]
×
[−iπ

(
δ(�ω − 2|d|) − δ(�ω + 2|d|)

)
|d|

]

+
ie2v2

(2π�)2

∫
d2p

⎡⎣⎛⎝δd̃y
δd̃x(d2

z + d2
y ) − δd̃y(dxdy) − δd̃z(dxdz)

ω|d|
((

�ω/2
)2 − |d|2

) + (x → y, y → x, z → z)

⎞⎠

+ b sin
(pya

�

) δd̃z (d2
x + d2

y ) − δd̃x(dxdz) − δd̃y(dydz)

ω|d|
((

�ω/2
)2 − |d|2

)
⎤⎦ , (C1)

10
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where, as before, z →−z denotes dz →−dz and δd̃z →−δd̃z. Since the integrand in the second term of
Imσyx is odd with respect to px or py, the second integral is zero. By a change of variables (kx, ky) to (λ, ξ) as
mentioned before in appendix A, we find

Imσyx = − e2

h

1

8

∫ 2

−2
dλ

∫ 2π

0
dξ

1√
1 − β cos2 2ξ

(λ− 2) (λ+ 2)

(λ2 + 4)

× |ω̃|√
ω̃2 − 2

[
δ
(
λ−

√
2
√
ω̃2 − 2

)
+ δ

(
λ+

√
2
√
ω̃2 − 2

)]
, (C2)

where the delta functions in the new coordinate system is shown in equation (B3). Performing the
integrations over λ and ξ gives

Imσyx(ω) =
e2

h

4 − ω̃2

ω̃

1√
ω̃2 − 2

K
(

2 − ω̃2

2

)
,

√
2 < ω̃ < 2. (C3)

C2. Real part
The real part of σyx(ω) is given by

Reσyx(ω) =
ie2v2

(2π�)2

∫
d2 p

[(
δd̃y

δd̃x(d2
z + d2

y ) − δd̃y(dxdy) − δd̃z(dxdz)

ω|d| + (x → y, y → x, z → z)

)

+ b sin
(pya

�

) δd̃z(d2
x + d2

y ) − δd̃x(dxdz) − δd̃y(dydz)

ω|d|

]

×
[−iπ

(
δ(�ω − 2|d|) − δ(�ω + 2|d|)

)
|d|

]

+
ie2v2

(2π�)2

∫
d2p

⎡⎣⎛⎝δd̃y
−i
(
�ω/2

)
dzδd̃y + i

(
�ω/2

)
dyδd̃z

ω|d|
((

�ω/2
)2 − |d|2

) + (x → y, y → x, z →−z)

⎞⎠
+ b sin

(pya

�

) −i
(
�ω/2

)
dyδd̃x + i

(
�ω/2

)
dxδd̃y

ω|d|
((

�ω/2
)2 − |d|2

)
⎤⎦ . (C4)

The first term of Reσyx, including delta functions, is odd, and consequently the first integral is zero. By
substitution of the components of d and δd, the real part can be expressed as

Reσyx(ω) =
e2

h

1

4π

∫
dkx dky

(
cos kx + cos ky − 2

) (
cos kx + cos ky + 2

)(
2
(

aω
v

)2
4 −

(
cos kx + cos ky

)2
)√(

cos kx + cos ky

)2
+ 4

. (C5)

In order to perform the integration, we map (kx, ky) space to (λ, ξ) space as explained in appendix A.
Therefore, the real part of the Hall conductivity in new space is rewritten as

Reσyx(ω) =
e2

h

1

4π

∫ 2

−2
dλ

∫ 2π

0
dξ

1√
1 − β cos2 2ξ

(λ− 2) (λ+ 2)(
Ω2 − λ2

)√
λ2 + 4

. (C6)

Performing the integration with respect to ξ, we obtain

Reσyx(ω) =
e2

h

1

π

∫ 2

−2
dλ

(λ− 2) (λ+ 2)(
2
(

aω
v

)2 − 4 − λ2
)√

λ2 + 4
K
(

1 − λ2

4

)
. (C7)

We performed the remaining integration over λ numerically. Note that for ω = 0, we recover the result that
Reσyx(ω) = e2/h.
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