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Graphical abstract Abstract

The power generation of solar photovoltaic (PV) technology is being
implemented in every nation worldwide due to its environmentally clean
characteristics. Therefore, PV technology is significantly growing in present
applications and usage of PV power systems. Despite the strength of the
PV arrays in power systems, the arrays remain susceptible to certain faults.
An effective supply requires economic returns, the security of the
equipment and humans, precise fault identification, diagnosis, and
interruption tools. Meanwhile, the faults in unidentified arc lead to serious
fire hazard to commercial, residential, and utility-scale PV systems. To
ensure a secure and dependable distribution of electricity, the detection
of such hazard is crucial in the early phases of the distribution. In this paper,
a detailed review on modern approaches for the identification of DC arc
faults in PV is presented. In addition, a thorough comparison is performed
between various DC arc-fault models, characteristics, and approaches
used for the identification of the faults.

Keywords: DC Arc fault detection, Fault diagnosis, Photovoltaic systems
(PV), Fire hazard photovoltaic, Fault detection method

Abstrak

Penjanaan kuasa melalui teknologi fotovoltan suria atau solar photovoltaic
(PV) kini dilaksanakan di setiap negara di seluruh dunia kerana ciri-cirinya
yang tidak mencemarkan alam sekitar. Teknologi PV ini semakin
berkembang dari segi perlaksanaan terkini dan penggunaan sistem kuasa
PV. Walaupun susunan PV, atau PV arrays, mempunyai kekuatannya di
dalam sistem kuasa, susunan ini tetap terdedah kepada beberapa
kesilapan atau faults. Bekalan yang efektif memerlukan pulangan
ekonomi, keselamatan peralatan dan manusia, pengenalpastian
kesilapan yang tepat, diagnosis serta perkakas penyelaan (interruption
tools). Sementara itu, kesilapan arka yang tidak berjaya dikesan akan
membawa kepada risiko kebakaran pada sistem PV di fasiliti kediaman,
komersial, serta berskala utiliti. Untuk memastikan penghantaran elektrik
yang selamat dan boleh diharap, pengesanan bahaya seperti ini amatlah
penting, terutamanya di peringkat awal pembahagian tersebut. Dalam
penulisan ini, ulasan terperinci yang dilakukan ke atas kaedah moden
pengesanan kesilapan arka arus terus atau direct current (DC) dalam PV
akan dibentangkan. Tambahan juga, pelbagai model kesilapan-arka DC
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(arc-faults), ciri-ciri, dan kaedah yang telah digunakan untuk pengesanan
kesilapan dibandingkan dengan teliti.

Kata kunci: Pengesanan kesilapan arka DC, Diagnosis kesilapan, Sistem
fotovoltan (PV), Risiko kebakaran fotovoltan, Kaedah pengesanan
kesilapan
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1.0 INTRODUCTION

Clean energy resources have become increasingly
important in the current years as a result of climate
changes and decreasing fossil resources. The PV
technology is shown to be the appropriate method
to fulfil the need for these resources due to the
remarkable features including: the reduction in PV
module price [1], low maintenance price, short
installation time, and environmental compatibility [2],
[3]. As a result, a notable increase in the installed
capacity of the global PV power plant was observed
from 1.3 GW in 2000 to 177 GW in 2014 [3]. However,
an increase in the global in stalled PV capacity to
310 GW was recorded in 2016 [4]. Provided the
increase in the solar power generation worldwide,
the residential rooftop solar panels or grid-connected
PV generation would have an essential functionin
supporting the main loads and micro-grids.
Furthermore, the enhanced PV systems and DC
voltage level contribute to significantly possible
emergence of DC arc faults, i.e., utility-scaled PV
solar farms normally generate a range of voltage
from 600 V and 1000 V, while the normal building PV
systems generate voltage ranging from 120 V to 600
V in the USA [5], [6].

The declining condition conductors, connectors,
cables, and other system components occur due to
long-term ageing and weathering impact.
Additionally, the insufficient scheduling of
maintenance contributes to the possible increase in
the DC arc occurrence in PV systems [7]. Arc faults
are normally occurred in the PV systems.
Hightemperature plasma developed by the
sustained arc may heavily harm the elements in the
system [8]. The defects in the system occurred as a
result of fire and arc faults in Bakersfield, USA and
Mount Holly, the USA in 2009 and 2011, respectively.
This phenomenon became prominent and led to the
development and enhancement of the related
standards and codes[9], [10]. According to the 2011
National Electrical Code (NEC), all rooftop PV
systems of DC operating voltage should amount to
over 80 V and be equipped with a series of arc-fault
circuit interrupters. Furthermore, the importance
constitutes all categories of PV systems with a
voltage higher than 80 V in 2014 to manage the fire
hazard, which is caused by arc faults [11]. Three
surveys were associated with the DC arc faults in the
PV systems [12]–[14]. Yao et al. [12] presented a short
review of the restricted amount of the approaches of

identifying DC arc faults in the PV systems, while Alam
et al. [13] performed a thorough survey on
approachesofidentifyingandmanagingthecatastroph
icfaults, including arc faults, ground faults, and line-
line faults in the PV systems. [14] presented a
comprehensive review on the DC series arc fault with
a simply listing and reviewing every method studied
in the literature without including the challenges of
each group method. However, no substantial
investigation was performed on the approaches for
the diagnosis of the arc faults for PV systems. Also,
none of the surveys made a discussion on the
capacities and restrictions of various algorithms of
identification.

The main objective of this paper is to discuss the
modern approaches of detection for the diagnosis of
DC arc faults in the PV systems. Discussion and
comparison were performed on the functionalities
and restrictions of various DC arc models. For the
development of an efficient detection algorithm, the
understanding of the features and instruments of the
DC arc faults is an essential point.

2.0 PV SYSTEM AND PV GENERATOR MODEL

The setup of PV could be categorised based on the
power degrees which are: industrial, buildings,
residential, and utility scales. These degrees are also
organised based on their link to the utility grid, which
consists of stand-alone or grid-connected systems.
Based on Figure 1 [15], which presents the system
structure, the systems primarily consist of PV modules
with a connection to the DC/AC inverter, normally
through a junction box. Blocking diodes are normally
incorporated in the development of each solar
panel. Furthermore, the PV module is the result of the
merging of PV cells, which generates electrical
power upon exposure to light. The systems also cover
the components, which play a role in the production
of energy in a PV generator.
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Figure 1 Schematic diagram of grid connected PV system
with local load

Furthermore, every cell series is connected to a by-
pass diode, which functions is to prevent the modules
from presenting the same behaviour to the receivers
and the heating of cells upon partial illumination. It
could be seen from Figure 2 that the I-V and P-V
curves of the PV generator are according to the
elementary cell modelled by an equal circuit. The
phenomenon of power loss is considered in the
parallel (Rp) and series resistance (Rs). Notably, this is
the most frequently used model in the literature
regarding PV monitoring, which is also shown in the
EN 50530 standard [16]. The parameters of the model
presented the following formula, and various
monitoring methods are according to the
parameters, including series resistance and shunt
resistance measurement. However, several
references highlighted in this review paper are
dependent on the two diode models, [17] and [18],
with one of the diode models described in (1).

Ipv= Iph - I0 (e (1)

I0 = (2)

UT= (3)

Tmod = (4)

with Ipv: Module current (A), I0: Diode saturation
current (A), Iph: Photocurrent (A), Upv: Module voltage
(V), UT: Temperature voltage (V), Ugap: Band gap
voltage (V), Rs: Series resistance (Ω), Rp: Parallel
resistance (Ω), T: Ambient temperature (K), Tmod:
Module temperature (K), G: Irradiance (W/m2), C:
Temperature model constant, e0: Elementary charge,
k: Boltzmann constant, m: Diode factor.

Figure 2 PV cell equivalent model

The inverter is supplied by an MPPT, which utilised
the compatibility between the solar array and the
grid. As a result, the system achieves its optimum
power, as shown in Figure 3.

Figure 3 I–V and P–V characteristics of PV model

3.0 CATEGORIES OF DC ARC FAULTS

Fault represents the change in the function of an
element from its predicted action [19]. Through an
arc fault, a new part in the air is developed. This
component may be established due to a disruption
in the existing carrying conductors or insulation
breakdown, which is parallel to the carrying
conductors. It is noteworthy that any category of arc
fault would damage the PV system and lead to fire,
which may contribute to fire hazards and insulation
burn-out when flammable substances are present
within the area of the PV plant [20] - [25]. Furthermore,
provided that if the DC operating voltage is greater
than or equal to 80 V, a series of arc-fault protection
tools may be essential for NEC-2011 in the PV system.
These tools are known as arc-fault circuit interrupters
(AFCIs) [26] [27]. Generally, the installation of AFCI
devices and ground-fault detection and interruption
(GFDI) is performed within the inverter of the PV
system, with its front panel being presented to
illustrate the categories of fault taken place. Any arc
developed as a result of any disruption in current-
carrying conductors (CCCs) mostly lead to abrasion
from various sources, rodent damage, connector
corrosion, and solder disjoint among others. These
elements are known as a series of arc faults, while
any arc fault between two adjacent conductors with
various potentials is identified as parallel arc fault. The
parallel and series arc faults are presented in Figure 4.
Majority of the AFCI tools have a role in disrupting the
processes of the PV system upon the presence of a
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series arc fault, and the AFCIs may not be capable of
a good response when the parallel arc fault is
present. The series and parallel arc-faults lead to the
emergence of high-frequency noise in the DC of the
PV string, while the parallel arc fault enhances the
reduced voltage/current within the PV array. The
difference between the parallel and series arc faults
could be performed through observation of the rapid
reduction of voltage/current, which is related to the
heightened noise in DC. All series arc faults could be
distinguished through the disconnection of the PV
array from the inverter, which occurs when one of
the terminals of every PV string is opened. However,
module-level disconnects, short-circuiting of the PV
string, or module terminals are essential in several
parallel arc faults after the disconnection from the
inverter to disconnect the arc.

Figure 4 Examples of different DC arc faults in a PV array

4.0 DC ARC MODELS

Although arc models have been investigated since
the past century, the first models emphasise on
voltage-current (V-I) equations and Finite Element
Analysis (FEA), which identify the arc as a normal
phenomenon occurring when a mechanical arc
furnace process or circuit breaker is opened, instead
of a fault [28 - 29].

An FEA model is developed through the
simulation of the overall physical operation in the
plasma release. Despite the benefits of the FEA
model in the investigation of an arc physical features,
it has not been used in the research regarding the
impacts of arc fault in a circuit. The V-I equation may
be applicable in the examination of the steady-state
features of an arc, which generally associates the
arc current and voltage with an equation, some
coefficients identified by the electrode gap lengths,
shapes, and materials among others. Although the
equation could also be used to estimate the
reactions of the steady-state fault towards a DC
system, an essential characteristic of the arc is

omitted in the V-I equations (see Figure 3).
Specifically, this characteristic refers to a plasma
release channel, which is related to the diverse high-
frequency elements. These elements rely on random
molecular collision-dominated operations.

High-frequency elements have a crucial function
in identification. To be specific, these elements allow
the identification of the presence of an arc fault as
they are monitored either by the current or voltage
measurements. The transmission of high-frequency
elements in a system leads to the development of
sensors in a distant location and possibly decreases
the number of required local sensors. Meanwhile, the
transmission of the high-frequency element possibly
results in cross-talking and unneeded tripping in a
neighbouring non-faulted section of the circuit. These
issues illustrate the importance of the modelling of
high-frequency elements to assist the research on the
effects of the elements in a wide range of systems
under diverse phenomena.

Three categories of models are generally
incorporated, the high-frequency component model,
the steady-state model (V-I), and the transient model.
Each model demonstrates an important element in
the analysis of arc fault reaction and could be
utilised individually or simultaneously with another
model according to the specified application of it.

A. Steady-state Model (V-I equations)

The DC arc fault is frequently specified as high
impedance fault due to the strong resistance shown
by the channel, which is unavoidable. Therefore, V-I
equations are implemented to illustrate the nonlinear
resistive features of the arcing. In general, V-I
equations is obtained empirically using the current
and curve fitting of the arc voltage with a high
amount of testing points.

According to the experimental condition, several
V-I equations have been proposed relatively similar
forms. A comprehensive review of the proposed
equations is presented in [29]. Meanwhile, a summary
of several equations and a current modified
equation is presented in Table (1), in which L refers to
the gap length used to estimate the arc length. On
the other hand, A, B, C, and D are the coefficients
influenced by experimental conditions [30].

The majority of these equations are proposed for
high power applications with a large current and
gap lengths The modified Paukert equation
incorporates gap lengths in smaller steps compared
to the original Paukert equation, which consists of
smaller current and gap length ranges. Following that,
the modelling of DC arc faults in the scale is
proposed, and these faults could also be found in the
modem DC power systems with DC bus voltages of
several hundred volts.

Another feature incorporated in the Modified
Paukert equation is the nonlinear impact of the gap

length L on Varc, as represented by the term
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in the denominator. Further information on this
derivation i can be found in [31].

Table 1 V-I Equations in previous studies

B. High-frequency Component Model

The randomness of the arc current, which is
represented by the noise generating high-frequency
elements, is due to the plasma release in the DC
arcing channel. Essentially, the molecule and
coulomb collision in the plasma channel is a random
process, which results in a Gaussian probability
distribution of the ac component of the arc current.
Furthermore, a zero-mean Gaussian noise function
was used in [32] to illustrate the fluctuated voltage in
the arc. Following that, further investigation was
performed by [30] regarding the Gaussian distribution
of an arc current under different conditions. The ac
component of the arc current is compatible with the
Gaussian distribution, as shown in equation (5):

(5)

This study illustrates the feasibility of a Gaussian
distribution to describe the current randomness of the
arc, which further indicates that this distribution is
quantitatively associated with the DC component
level of the arc current. The Gaussian distribution
fitting of measurement noise may also be separated
from the arcing current randomness. A different
approach was adopted in [33] where a value
developed by random was added to the arc
resistance equation as shown in equation (6):

(6)

And to create jitter (q) through a random function as
shown in equation (7):

(7)

A coloured wideband noise was proposed in [34]
to model the small-signal behaviour of arcing. While

the Gaussian function describes the probability
distribution related to the value, the “colour”
indicates the signal power distribution over a wide
frequency range. It was generally assumed that the
random noise of a DC arc was either a pink or
Brownian noise [35]. Specifically, the development of
the pink noise frequently occurs through the filtering
of the Gaussian white noise. As can be seen, the
modelling of the high-frequency element of arcing
could be performed from the elements of frequency
domain distribution and probability amplitude.

C. Transient Model

An arc transient is identified based on the generation
of the arc. The test setup is recommended for UL
1699B, and two electrodes are located at a
predetermined gap length, while fine steel wool is
placed in a polycarbonate tube. When the circuit is
energised, a current will flow through the steel wool,
which shortens the two separated electrodes. The
current will then melt the steel wool through a similar
method of the fuse. Furthermore, the melting of steel
wool would lead to ionisation of the air and initiate
arcing. In this case, the short arc transient is indicated
by the sudden current drop in the load circuit and
the voltage increase in the electrodes. The measured
arc voltage consists of two parts, namely the anode
and cathode voltage, and column voltages. To be
specific, the anode and cathode voltage is related
to the electromotive force (EMF) and is present in the
layer nearest to the electrodes [36]. Notably, ft is
essential in the initiation and sustainability of the
arcing channel. Although the anode and cathode
voltage are generally independent of the gap length
and external circuit, it is dependent on the electrode
material. Meanwhile, the column voltage is a result of
the flow of current along the resistive arcing channel,
and it also relies on the gap length and current.
Therefore, when generated by the steel wool with a
fixed gap length, the arc voltage reaches its stability
in a short duration. However, the model of this short
transient has not been studied in detail. Nevertheless,
the di/dt produced during this transient has been
widely used as a fault indicator in detecting the series
DC arc faults. Another common approach to
generate an arc is performed by pulling apart two
electrodes, which have initially made a contact. This
process is performed until a predetermined gap
length is reached or when the arc is naturally
extinguished while the circuit is energised. In this case,
the voltage across arc still consists of the anode and
cathode voltage, and column voltage. The cathode
and anode voltage are established in a short
duration, and it becomes constant during the entire
pulling process. However, the column voltage
constantly increases throughout the puling process
due to the increase in the gap length. In this case,
the transient process consists of two parts, namely the
initial sudden current and voltage step change.
Moreover, the quasi-stationary stage takes place
when the arcing is established and constantly
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growing. A transient model for this drawn arc is
presented in [33], in which the exponential functions
are used to describe the arc voltage, current, and
resistance development during the entire elongation
of the arc.

5.0 DC ARC FAULTS DETECTION METHODS

Extensive research has been made on the
identification of AC arc fault, although the
development of DC arc fault is low [37]. As the
standard associated with the DC arc fault protection
in PV system was released in 2011 (UL 1699B),
efficacious identification algorithms for DC arc fault
and products has become increasingly important [38,
39]. Most of the identification approaches involve the
use of measured system voltage data and current,
while other approaches incorporate other physical
features of arcs. Other than the identification
approaches for PV, reviews will be made on several
effective identifications approaches for other DC
system, including electric vehicle and DC microgrid.
It is noteworthy that these approaches are
applicable in the PV systems with or without minor
changes involved [14]. The detection process of DC
series arc fault can be classified according to the
utilized method.

A. Model-based Approaches

The model-based approach was suggested in [40]
and [41] for the development and verification of the
arc fault detection algorithm. The small-signal
analysis could be performed on the propagation
behaviour of high-frequency elements to assist the
creator in identifying the most ideal identification
frequency band. Meanwhile, the large-signal analysis
could be conducted on the quasi-stationary actions
for the assessment of the boundary states for arc
faults. This analysis highlights that the arc and system
fault modelling is important due to its higher
testability of various operating and weather
conditions and system topologies compared to the
actual condition. Furthermore, the calculation of the
difference between the simulated and actual signals
could be performed after the establishment of a
precise system model. This calculation contributes to
the efficient identification of arc faults. The
effectiveness of these approaches is mostly restricted
by the modelling accuracy. It is also noteworthy that
model-based approaches are highly compatible
with AI-based approaches (data-driven techniques)
due to the high amount of data generated for
training purpose [42]. Parameter estimation and
detection of PV cell and module are crucial to
achieving an accurate model of the PV systems [43].
The production of static and dynamic parameters is
reviewed in [44] and [45], respectively. A summary of
these methods can be seen in Table 2.

B. Artificial Intelligence-based Approaches

Artificial intelligence is applied in automatic fault
detection [46], which involves an artificial network
(ANN) and conventional analytical approaches. A
two-layer ANN is implemented for the estimation of
power according to the temperature and irradiance
of the module. Following that, the comparison is
made between the estimated power and the actual
measurement of it for the identification of fault
category and occurrence. Afterwards, the measured
open-circuit voltage and value of short circuit value
are then compared using the analytical equation,
with the calculated values being incorporated.
Moreover, this equation consists of a compact
structure, high accuracy, and swift identification
reaction. It also does not require complex tools or
system comprehension. Another method is based on
the Artificial Neural Network-Based Model (ANNBM),
which functions in identifying loss in the PV panel due
to partial shading, as shown in [47]. A Multilayer
Perceptron is incorporated for the estimation of
electrical output according to environmental data.
The monitoring system enables fast identification of
system faults through the calculation and analysis of
residual faults between the estimated and
calculated functions of the ANNBM. Notably, in the
ANNBM method, any complex system or
mathematical model is not required for the
calculation of output power. A proper monitoring
method involving probabilistic neural network was
highlighted in [48] for the identification and
categorisation of faults, including the detection of
faulty string in PV array. Accordingly, the suggested
method incorporates electrical and environmental
data. To validate this method, a new approach to
model the PV system was incorporated into the
manufacturer datasheet data. It is illustrated in [49]
that the hybrid model for the monitoring and
estimation of PV module maximum power output
considers the nonlinear characteristics of the system,
which is known as estimation model (EM). This
approach aims towards achieving a more effective
estimation method of the actual action of the system.
Therefore, correction of the estimation of one-diode
model power involves a supervised adaptive
resonance theory neural network, while the
implementation of the monitoring system is
performed through Matlab, followed by its
assessment on the sample data. Notably, the
suggested model facilitates any PV module
technology due to its assessment on the input and
output relations. Provided that the simple layer ANN is
less compatible in providing a precise solution for the
faults in PV modules, another fault identification
approach, particularly for short circuit defaults,
involves three-layer artificial neural network [50].
Through this approach, the short-circuited PV module
is localised in a string. In localising the fault further
between strings, addition in the amount of data
training and update of the control rule is essential in
the system. Furthermore, although the suggested
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method has simplicity and accuracy, the
implementation of it may be complex in large-scale
PV systems. To illustrate, a large memory is required in
this implementation as a high number of ANN
classifiers are involved. Health management (PHM)
system and PV prognostic are illustrated in [51]. This
model targets the evaluation of degradation, PV
health monitoring system, and further details of the
maintenance plans. This approach is according to a
duplicate neural network model, including the power
input and environmental information. Therefore, the
users would have an awareness regarding the
decrease in performance. The model also predicts
the output of the system according to
meteorological parameters. It could be said from the
contrast between the estimated and measured AC
power that identification is performed the failures,
which lead to power loss. In the modelling of output
power in the ANN health monitoring system, the data
regarding the elements or system topology is not
essential. The system is also capable of indicating
serious failures when monitoring the degradation rate.
Finally, a PHM system is capable of estimating the
faults in PV according to fault precursors. Although
the function of ANN is to estimate the power output
from the PV array according to the monitored
irradiance in comparison to the calculated power, it
is incapable of detecting the factors of the faults. It
was stated in [52] that the use of the second artificial
intelligence approach, which is known as Bayesian
Belief Networks (BBN). The method implemented by
the author was similar to the approach shown in [53]
for the detection of faults sources. In this research,
BBN was developed to indicate the reliance of the
measurement variables, which are the
representations of particular devices. The
measurements achieved by BBN results in an
automatic adoption of a decision related to the
possible factors of a fault. Introduction of the
algorithms according to the fuzzy logic was made in
[54 – 56]. Specifically, [54] algorithm was introduced
by authors according to the fuzzy mathematics and
evidence theories. The suggested study developed
new and precise framework of fault identification
structure, which was followed by the consolidation of
the contrasts between the estimated and calculated
value according to the data fusion approach and
fuzzy mathematics. It was indicated from the
investigations that data fusion is capable of
managing the uncertainties from the interaction
between PV arrays and localising faults more
effectively for large scale PV arrays. An approach
based on the measurement of PV module
parameters in various situations of operation through
the Neuro-Fuzzy method was suggested in [56].
Furthermore, the PV system status is identified by the
norms of assessment and comparison. This intelligent
system emerged in the Matlab and Simulink
environment, and it was found that the diagnosis
system was capable of differentiating between a
normal and defective operation through the similar
defective appearance of interference and noises.

Another expert system for PV monitoring was
suggested in [57], and it investigates the system
database and identifies the energy loss resulting from
the inverter defaults. This approach comprises the
differentiation between the stored value and real-
time output in the database in a fault-free
functioning. Notably, a monthly update should be
performed on this approach, and it is not applicable
for real-time monitoring. As a result, the reduction in
power is not identified in the system with the
presence of shading. This technique is also according
to the shading approach, and it also considers
particular states of the monitored system. Moreover,
it performs simplification of the processes and
preservation of PV plants despite its requirement for
various measurement sensors. It involves the
standards of the database, performs analysis on the
information acquired from the PV system, and affirms
if the plant is functioning properly. Two categories of
faults were detected in this approach, namely
shading and inverter failures. The authors in [58] used
the extension theory for PV systems to highlight the
two-stage diagnosis system. Through this approach,
the identification of diagnosis failures is possible. The
primary approach is the detection of fault array in
the daytime and the use of light scanning method for
the detection of a faulty module in the night. in [59]
SVM method was used to detect the series arc fault
in the PV which is better than the ANN methods.
Table 3 illustrates a brief description of these methods.

C. Statistics-based Methods

Various statistical features could be applied in the
identification of DC arc faults, including entropy, RMS
value, standard deviation, mean, and the highest
value of the input signal. Basing on time-domain
analysis, this approach is present in [60– 68]. Although
the rate of changes in the loop current in the time
domain was suggested in [63] to indicate the arc
fault event, it would receive the impact of random
spike disturbance. It is shown in [61] and [64] that the
contrast between the highest and lowest value of
current within a certain duration is identified as an
indicator. Despite the simplicity of the approach, it is
relatively efficacious in identifying arc fault,
particularly in the initial phase. Although it is capable
of eliminating random interference from the noise,
the function of possibly receives an impact from
other elements, including the MPPT operation from
the inverter during the swift changes in the irradiation
level. It is shown in [65, 66] that through the simulation,
an outlier analysis-based detection approach
obtained 98% of the identification degree of PV series
arc fault at 0.01% false alarm rate in a single PV
module. Furthermore, the Minimum Covariance
Determinant (MCD) predictor is applied to reach the
optimum function of the algorithm. It could be seen
from the outlier analysis that the current of various PV
modules and operating voltage at a similar time
instant are placed in the MCD estimator. This was
followed by the calculation of the distance of the I-V
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characteristic curve between each PV module and
the centre of the administration of PV module by the
MCD estimator, which could be applied for
identification. A Finite Impulse Response (FIR)
estimator was applied in [67] to measure the
difference of the input voltage signal under the 50
kHz sampling frequency. Initially, the input signal
would flow through a band-pass filter with 1 kHz and
7.5 kHz cut-off frequency before being placed into
the estimator. Comparison between the current and
previous values would be conducted by the
estimator. The variance should amount to 0 with an
ideal estimation. As the variance goes beyond a pre-
defined threshold value, the detection of an arc fault
event is possible. Notably, the implementation of the
proposed algorithm is more convenient and less
costly although it leads to lower accuracy in
comparison to other algorithms. Various detection
features were used in [68] for joint detection of arc
faults in PV systems. Meanwhile, the calculation of
the statistical characteristics, such as the mean and
variance of the loop current, is performed in the time
domain. In the frequency domain, the calculation is
performed on the ratio of frequency contents of the
loop current in 1 Hz – 4 kHz to DC and AC

components. The identification of an arc event is
performed after a minimum of the one-time domain
and frequency domain characteristics go beyond
the pre-defined threshold value. It is noteworthy that
multiple detecting criteria lead to significant
improvement in the precision of the algorithm.
Currently, an introduction was made in [62] on a
statistical detection method according to the arc
current entropy. This approach is capable of an
effective differentiation of the arc faults from the
normal events (non-arc states), including MPPT
operation and switch of the inverter. This
differentiation is performed by measuring the
adjusted Tsallis entropy of loop current for two times.
Through Tsallis entropy, the extent of disorder and
signal intrinsic behaviour are presented:

M= (8)

(9)

(10)

Table 2 DC Arc Fault Detection Model-based Approaches

Ref.
No.

Experimentally verified? Product or
Microcontroller

Frequency of
Sampling

Accuracy of Test Time of Detection

[41] No Not Stated Not Stated Not Stated Not Stated
[42] No Not Specified Not Stated Not Stated Not Stated

Table 3 DC Arc Fault Detection based Artificial Intelligence

Ref. No. Method Experiment
verified?

Product or Microcontroller Frequency of
Sampling

Accuracy of
Test

Time of
Detection

[46]

ANN and the
conventional
analytical
method

No Not performed 20 kHz Not stated 1 ms

[47]
an artificial neural
network-based
model (ANNBM)

No Not performed 1 MHz Not stated Not stated

[48]
probabilistic
neural network
(PNN)

No Not performed Above 60
MHz around 98% Not stated

[49]

supervised
adaptive
resonance theory
neural network

Yes Not performed 22 kHz around 98.9% Not stated

[52][53] Bayesian belief
network (BBN) Yes FINEMAN 500 MHz Not stated Not Stated

[54] Data Fusion and
Fuzzy Yes Not performed Not stated Not stated Not stated

[59] SVM Yes STM8S103 Above 60
MHz 99.25% 84 ms
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Where M represents the modified Tsallis entropy, while
q, q′> 0, and x_krefer to the specimens of the interest
of the signal, K denotes the size of the sliding window
in the initial measurement, and K’ represents the size
of sliding window in the measurement which follows it.
In every sliding window, p(x_k) and p(x_(k,M))
amount to 1. The acquired current represents the
input signal in the initial phase of the adjusted Tsallis
entropy evaluation (M). As a result of the fast
movement and mechanical vibration by the wind,
the MPPT algorithm would present variance in M
values with particular patterns. Using the appropriate
value of K and K’, the interferences could be
managed in the second phase of adjusted Tsallis
entropy evaluation (M’), in which M refers to the
input signal. Furthermore, a first order infinite impulse
response (IIR) filter would be transferred by the M’
with 16 Hz cut-off frequency for the elimination of the
DC off-set of M to obtain the detection characteristic
Mzo. The calculation of the threshold value can be

performed based on the standard deviation of Mzo,
and the update of it will be made in every 0.5
seconds to be in line with the evolving operating
state of the system. The sampling frequency was
found to be highly profitable as it amounted to 10
kHz, while the computational load only amounted to
24 N flops in comparison to 5N log2 N flops of FFT per
sliding window. However, the effectiveness of this
approach would be lower when the noise in the
environment is higher, and the effects of the impulse
reaction of digital IIR filter in the algorithm must be
considered. Although the lower sampling frequency
and computational attempt are mostly required in
the statistics-based fault diagnosis approaches, the
effectiveness of these approaches receives a
significant impact from the degree of noise from the
environment. Table 4 presents a summary of these
methods.

Table 4 DC Arc Fault Detection Statistical based

Ref. No. Method Experiment
verified?

Product or
Microcontroller

Frequency of
Sampling

Accuracy of
Test

Time of
Detection

[60] Statistics Yes TI TMS320F28335 10 kHz

Pass all test
cases under
experimental
condition

0.511 s

[65][66] Statistics Yes Not stated Not stated 98% Not stated

[67] Statistics Yes TI TMS320F2808 50 kHz Not stated Less than 175 us

[68]
Statistics and
FFT

Yes Not performed
more than 8
kHz

Not stated Not stated

D. Wavelet Transform

Wavelet transform (WT) is a multi-resolution analysis
which is capable of the decomposition of the aimed
signal into various bands of frequency. In comparison
to STFT, adjustability is present in the windowing
function of WT. Specifically, larger window size
improves the time resolution for low-frequency
elements, while smaller window size improves the
frequency resolution for high-frequency elements [69].
Wavelet Packet Decomposition (WPD) and Discrete
Wavelet Transform (DWT) have been applied for the
identification and analysis of arc faults in PV systems
[70, 71, 61, 72, 73 – 79]. It could be seen in [69] and
[74] that DWT has been applied for the analysis of the
arc flash signal. In 7.8 – 62.5 kHz frequency band
under 1 MHz sampling rate, DWT is capable of
effectively locking the arc instant and identifying the
arc fault. The selection of Daubechies (db) wavelets
is due to its effectiveness in identifying the
discontinuity in the waveforms [76]. It was also
recorded that db9 was capable of achieving a
positive agreement between computational

precision and complexity. Furthermore, 4-level DWT
has been applied as an indicator [77], while a real-
time arc fault identification approach for PV systems
according to 1-level DWT was proposed in [78]. The
ratio of the average power of the first level DWT
coefficients (50 – 100 kHz) under 200 kHz sampling
frequency within a frame to the reference average
power was used as the characteristics. An arcing
event is established when the ratio is higher than the
ratio set for two concessive frames. The frame size of
128 was selected to reduce the increase in the noise
and maintain the precision in localising the time for
an arc fault. The calculation of the reference
average power was performed based on the first 32
frames of information, which was presumed to be the
non-arc state. However, the weakness of it is the
failure of it upon the occurrence of arc fault in the
algorithm initialisation phase. Based on [79], the
implementation of 4-level DWT has been made to
obtain the energy information and modulus
maximum of 126 – 250 kHz frequency band from the
loop current lower than 2000 kHz sampling frequency
to identify the parallel arc faults in PV systems. The
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investigations found that the two features exhibited
1.85% and 1.47% rejection rates, respectively, with 0%
malfunction rate. To achieve further improvement in
the effectiveness of the detection, the highest value
of the reverse current was represented as an
adequate state due to its significant malfunction rate
(13.42%) with 0% rejection rate. The three
characteristics would develop a new combined
criterion, which leads to a notable reduction of the
malfunction (0%) and rejection rates (0.875%).
Although the high sampling degree is the weakness
of the suggested approach, mixing criteria
significantly compensate for the insufficiency in the
single criterion. The implementation of WPD was
made in [73] to obtain the energy of various
subbands under 100 kHz sampling frequency. After six
levels of decomposition, the detection of series and
parallel arc faults is performed when the ratio of the
overall square of reconstruction coefficient, which
progresses from the highest (781.25 Hz – 50 kHz) to the
lowest frequency band (0 – 781.25 Hz), goes beyond
the established threshold value for some consecutive
analysis durations. In [61] and [75], two-level WPD
was implemented to achieve normalisation under
200 kHz sampling frequency. Normalisation was
performed on the RMS value of coefficient frequency
band of 0 – 25 kHz (including DC off-set) through the
frequency band of 25 – 50 kHz within a particular
duration (e.g., 10ms). Following that was an increase
in the RMS value from 6% to 15%, indicating that the
signature was caused by the increase in the series
arc fault. The primary contrast between DWT and
WPD is illustrated in Figure 6. Besides the
decomposition of the lower frequency band at each
degree, the decomposition of WPD also occurs at a
higher frequency band of the signal. Therefore, more
information was offered by WPD compared to DWT,
which nearly resulted in a twofold computational
burden. More details on these methods presented in
Table 5.

E. FFT (Fast Fourier Transform)

FFT (Fast Fourier Transform) is a time-frequency
analysis technique used to save DFT computing time
[80]. The detection approaches according to the
Fast Fourier Transform (FFT) are present in [39, 81-
88,72]. Most of the approaches make a comparison
between the arc state and non-arc state in terms of
the power of the frequency spectrum and amplitude.
Based on [39] and [82], the power spectrum of
contents in 40 – 100 kHz frequency band was used for
the detection of both parallel and series arcs under
250 kHz sampling frequency. The frequency bands of
40 – 80 kHz and 30 – 100 kHz were also incorporated
in the 200 kHz sampling frequency in [83] and [84],
respectively. However, these approaches might
meet their failures upon the presence of
electromagnetic interference [87, 88]. In [85], rather
than the comparison of the overall spectrum, the
frequency spectrum was separated into various sub-

bands, which contributed to a significant increase in
the accuracy.

Based on [89] and [90], STFT was implemented in
the calculation of one of two features for the
detection of series arc fault in PV systems under 200
kHz sampling frequency. It was also recorded that
the maximum extent of the frequency element,
which amounted to over 50 kHz, was not sufficient to
indicate the contrast between the arc-state and
non-arc-state. Following that was the total frequency
contents, which were lower than 50 kHz with the rise
of the value within each duration. Continuous
supervision was made on the value to detect faults. It
was also recorded that STFT was capable of
achieving a proper computational load through
proper selection of the window size. These methods
are illustrated in more details in Table 6.

Furthermore, the detection method that are
classified and discussed in detail as mention in this
section according to the utilized method, Table 7
shows a brief comparison among these methods
according to several factors. The challenges of the
methods are depicted in the Challenges Section.

6.0 LIMITATIONS OF EXISTING METHODS

There are many challenges and unresolved issues
can affect the performance of the detection process.
These issues are listed and discussed according to
their affection in each group of methods as follows:
1. Time Domain Based: these methods utilize

the information of voltage or current in the time-
domain; they can quickly detect arc faults using
straightforward DC circuit. Nevertheless, they are not
appropriate for DC arc detection, since the changes
affection of the normal load current and the noise
signals could usually send false trigger for faults
detection. Therefore, the time domain methods can
be considered as unreliable detection methods.

2. Frequency Domain Based: in these methods,
the election of a suitable frequency band without
noise signals of the switching process play an
essential role of arc fault accuracy

detection. Therefore, they are not suitable to
successfully operate in the common DC arc that
includes the noise signals of the switching process as
a results of electronics devices multiple power.

3. Modelling Based: in these methods, the high
precision of the arc fault detection is significantly
depending on the properly modeled of the DC
circuit component. However, it is quite difficult to
model the component of DC circuit with the required
level of the modeling precision.

4. Time-Frequency Based: these methods are
directly affected with the presence of the
electromagnetic interference.
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5. Statistical based: the methods which based
this kind of detection are frequently need less
sampling with less effort of computational. On the
other hand, their efficiency is highly affected by the
noise degree at the surrounding environment.

6. Artificial Intelligence: these methods may
suffer different challenges as the degradation of the

performance that can occurs in many artificial
intelligence algorithms. The over-fitting and under
fitting problems which affect the accuracy of the
detection methods. And the high computational
complexity

Table 5 DC Arc Fault Detection Wavelet based

Ref. No. Method Experiment
verified?

Product or
Microcontroller

Frequency of
Sampling

Accuracy of Test Time of
Detection

[69] WPD Yes Not performed 100 kHz 100% 0.1 s

[61][75] WPD and
Statistics

Yes TI TMS320F28335 200 kHz 100% at voltage below
300 V and current
below 25 A; 60% at 240
V/25 A; 40% at 300
V/25 A

Less than
0.9 s

[70] DWT Yes Not performed 1 MHz Not stated Not stated

[78] DWT Yes TI RD-195 200 kHz Not stated Less than
0.2 s

[79] DWT and
Statistics

Yes Not performed 2 MHz 0% malfunction rate
and 0.875%

Not stated

Table 6 DC Arc Fault Detection FTT based

Ref. No. Method Experiment
verified?

Product or
Microcontroller

Frequency of
Sampling

Accuracy of
Test

Time of
Detection

[39,82] FFT Yes TI RD-195 250 kHz Not stated under 0.2 s

[83] FFT Yes Not stated 200 kHz Not stated under 0.2 s

[84] FFT Yes Not stated 200 kHz Not stated Not stated

[85] FFT Yes Not performed 250 kHz Not stated Not stated

[86] FFT Yes TI TMS 320F28377D 250 kHz Pass all test
cases under
experimental

under 16 ms

[89,90] STFT Yes Not stated 200 kHz 98.24% 0.5 s
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Table 7 Comparison of DC arc fault detection methods

Method of
Detection

Domain Resolution
of
Frequency

Resolution of
Time

Sampling
frequency

Computational
complexity/effort

Popularity
trend

Model-based Both Relay on Relay on Relay on High Higher

Electromagnetic
Radiation

Time Not
applicable

High High low Higher

SSTDR Time Not
applicable

High High Medium Stable

ANN Both Relay on Relay on Relay on Medium/High Lower

SVM Both Relay on Relay on Relay on Medium/High Higher

HMM Both Relay on Relay on Relay on High Higher

Fuzzy Logic Both Relay on Relay on Relay on Medium/High Lower

Statistics-based Both Relay on Relay on Relay on Low Higher

DWT Both Medium Medium Medium/Hig
h

Low/Medium Higher

WPD Both Medium Medium Medium/Hig
h

Medium Stable

FFT Frequency High Not
applicable

Medium/Hig
h

Medium Stable

STFT Both Medium Medium Medium/Hig
h

Medium/High Stable

7.0 CONCLUSION

The review has been made on the current
formulations of DC arc-fault identification in the
literature and patents. Following the increase in the
DC system scale and complexity, more sophisticated
detection algorithms were proposed. It was
concluded in this research that the improved versions
of detection algorithms are yet to be developed.
Their algorithms would play a role in the
management of more complicated environments
consisting of spurious noise due to normal operating
conditions. Provided that it may be challenging for a
single detection strategy to function properly under
all conditions, the understanding of the limitations of
this strategy in different applications is important.
Among the approaches highlighted in the previous
segment of this article, the majority of the fault
signatures were obtained from the 1 – 100 kHz
frequency band. As a result, the most minor effect
was developed on the arc fault diagnosis by most of
the interferences, with the inverter/converter noise
being the exception. Subsequently, omitting the
impact of power electronics noise could lead to a
notable rise in the precision and dependability of the
identification algorithms. Currently, the introduction

has been made on various approaches to
identification with proper switching noise immunity.
Overall, this article has presented a review on DC
arc-fault modelling approaches, including the
recently formulated detection approaches, which
could be applied in PV systems. Moreover, a
thorough discussion has also been made on the
merits and demerits of various detection approaches,
followed by a comparison between them. However,
the improved arc fault detection approaches for PV
systems with proper self-adaptability, strength and
profitability are yet to be identified. For that reason,
further attempts are necessary to achieve
improvement in the precision and dependability of
fault identification.
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