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Abstract
Background: Wound healing is a complex process including 
hemostasis, inflammation, proliferation, and remodeling 
during which an orchestrated array of biological and molec-
ular events occurs to promote skin regeneration. Abnormal-
ities in each step of the wound healing process lead to re-
parative rather than regenerative responses, thereby driving 
the formation of cutaneous scar. Patients suffering from 
scars represent serious health problems such as contrac-
tures, functional and esthetic concerns as well as painful, 
thick, and itchy complications, which generally decrease the 
quality of life and impose high medical costs. Therefore, 
therapies reducing cutaneous scarring are necessary to im-
prove patients’ rehabilitation. Summary: Current approach-
es to remove scars, including surgical and nonsurgical meth-
ods, are not efficient enough, which is in principle due to our 
limited knowledge about underlying mechanisms of patho-
logical as well as the physiological wound healing process. 
Thus, therapeutic interventions focused on basic science in-
cluding genetic and epigenetic knowledge are recently tak-

en into consideration as promising approaches for scar man-
agement since they have the potential to provide targeted 
therapies and improve the conventional treatments as well 
as present opportunities for combination therapy. In this re-
view, we highlight the recent advances in skin regenerative 
medicine through genetic and epigenetic approaches to 
achieve novel insights for the development of safe, efficient, 
and reproducible therapies and discuss promising ap-
proaches for scar management. Key Message: Genetic and 
epigenetic regulatory switches are promising targets for scar 
management, provided the associated challenges are to be 
addressed. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

As a guard of the body, the skin is constantly exposed 
to the potential causes of injuries. The normal tissue re-
sponse following injuries is skin regeneration via the pro-
cess of wound healing which includes hemostasis, inflam-
mation, proliferation, and remodeling stages [1] (shown 
in Fig. 1). In the hemostasis phase, a fibrin clot is formed 
operating as a primary scaffold for the migratory cells. 
Platelets are the main players in this stage, being involved 
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in the release of required cytokines to recruit the inflam-
matory cells (Fig. 1a). In the inflammation stage, the re-
cruited neutrophils and macrophages are activated by cy-
tokines to phagocytose pathogens and damaged cells in 
the wound bed. Neutrophils also secrete cytokines and 
interleukins (ILs), increasing the severity of inflamma-
tory responses. Thereafter, macrophages facilitate the 
transition from inflammation to the proliferation phase 
(Fig. 1b). During the proliferation phase, the wound sur-
face is covered via the migratory, proliferative, and dif-
ferentiated keratinocytes, which is termed reepithelializa-
tion. In this phase, a vascular network is also restored and 
the provisional matrix is replaced with a granular tissue 
containing a large number of fibroblasts, granulocytes, 
macrophages, blood vessels, and collagen proteins 

(Fig.  1c). Finally, during the remodeling phase, fibro-
blasts differentiate into α-smooth muscle actin (αSMA)-
expressing myofibroblasts, which generate contractile 
forces to promote wound closure. Moreover, type III col-
lagen fibers, the most abundant component of the extra-
cellular matrix (ECM), are replaced with type I collagen 
fibers to regenerate a wound with the maximized tensile 
strength of the skin [1–4] (Fig. 1d). Noticeably, the regu-
lated transition of different phases in the wound healing 
process results in optimal skin repair which is a unique 
ability in fetal injured tissues at early gestation, while any 
abnormalities lead to the accumulation of a nonfunction-
al fibrotic tissue which is known as a scar and happened 
mostly in human adults [5–7] (Fig. 1e). Cutaneous exces-
sive scars, hypertrophic or keloid, are the major challeng-
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Fig. 1. The cutaneous wound healing process, a regenerative or 
reparative response. The skin tissue response following injuries in 
gestation and injured fetal tissues is regeneration via a physiologi-
cal wound healing process including four stages. a In the hemosta-
sis phase, platelets are involved in the formation of the blood clot 
and the release of cytokines required in the inflammatory cell re-
cruitment. b In the inflammation stage, neutrophils and macro-
phages are activated to phagocytosis of pathogens and damaged 
cells. Moreover, neutrophils secrete cytokines increasing the sever-
ity of inflammatory responses and macrophages facilitate the tran-

sition from inflammation to proliferation. c In the proliferation 
phase, reepithelialization leads to the covered wound surface, the 
vascular network is restored, and the provisional matrix is replaced 
with the granular tissue. d In the remodeling, stage fibroblasts dif-
ferentiate into myofibroblasts, and collagen type III fibers are re-
placed with collagen type I fibers. e Any abnormalities which are 
leading to delayed repair or enhanced cell responses propel the 
wounds to pathological or reparative healing accompanied by cu-
taneous scar formation which is happened in human adults.



Scar Management: Genetic and Epigenetic 
Landscapes

249Skin Pharmacol Physiol 2022;35:247–265
DOI: 10.1159/000524990

es for the patients and physicians since they cause serious 
health problems such as contractures, functional and es-
thetic concerns as well as painful, thick, and itchy com-
plications. These issues generally reduce the quality of life 
physically, mentally, and socially and impose high medi-
cal costs [8, 9].

Nowadays, several strategies are used for the preven-
tion and treatment of raised scars, including pressure gar-
ments, silicone gels and sheets, corticosteroids, lasers, 
surgical procedures, etc. Pressure garments restrict the 
blood flow to the scar area through compression of the 
local blood vessels, thus limiting blood supply and caus-
ing hypoxia of the scar tissue that consequently increase 
collagenase activity and decrease cohesion between col-
lagen fibers. Pressure therapies also modulate secretion of 
fibrotic cytokines and growth factors. Mechanical stimu-
lations affect cell apoptosis, migration, proliferation, dif-
ferentiation, and collagen fiber turnover, resulting in 
thinning and softening of scar tissues. However, the effec-
tive application of pressure garments highly depends on 
the applied pressure levels. Measuring the exact pressure 
level is difficult and controversial between theoretical 
therapeutic and practically observed pressure magnitude. 
Moreover, early cessation of pressure therapy leads to the 
contraction and thickening of scar tissues. A recent meta-
analysis study examining six randomized trials regarding 
the use of pressure garments in patients with large burn 
scars demonstrated no significant difference between 
pressure garments and no-treatment group [10, 11]. On 
the other hand, silicone gels and sheets work through in-
creasing the temperature and hydration of the occluded 
scar. In a Cochrane review, which analyzed 15 controlled 
trials related to silicone gels and sheets, no evidence was 
found to suggest that they are superior to alternate or to 
no-treatment group in preventing or treating scar tissues 
[12]. Additionally, although corticosteroids suppress in-
flammation, increase vasoconstriction in the scar, reduce 
collagen and glycosaminoglycan production, and lessen 
fibroblast proliferation, side effects such as telangiectasia, 
hypopigmentation, subcutaneous atrophy, and pain as-
sociated with steroid injection restrict the application of 
this clinical method. Finally, constraints on obtainable 
skin quantities for skin grafts, the possibility of trans-
planted tissue rejection, and prevention of infection and 
excessive tension across the wound raise further compli-
cations related to this strategy [12–14]. Accordingly, con-
ventional approaches are not specific and there is no evi-
dence to support their absolute efficacy. Even if the best 
of therapies are used, traumatic scarring is unavoidable 
and the available treatments only help to minimize scar-

ring. Therefore, there is a great requisiteness to establish 
new methods based on the optimization of wound heal-
ing procedure to diminish or prevent dermal fibrosis. 
This purpose necessitates advances in the understanding 
of mechanisms, key regulators, and risk factors involved 
in wound healing [3, 9, 15]. Therapeutic interventions fo-
cused on basic science including genetic and epigenetic 
knowledge are recently taken into consideration as prom-
ising approaches for scar management since they have the 
potential to provide targeted therapies and improve the 
conventional treatments as well as presenting opportuni-
ties for combination therapy.

Thus, in this review, we aimed to highlight the diver-
sity of the major histocompatibility complex (MHC) 
genes and single-nucleotide polymorphisms (SNPs) de-
termining the susceptibility to scar formation to establish 
the prognosis and prevention strategies and subsequently 
personalized medicine. We also depict the genetic net-
work and associated dysregulation in inflammation, 
granulation tissue formation, apoptosis, and ECM re-
modeling to providing insights for genetic manipulation 
to optimize wound healing and block skin fibrosis. Fi-
nally, we consider epigenetic alterations including DNA 
methylations, histone modifications, and noncoding 
RNAs such as microRNAs and long noncoding RNAs 
(lncRNAs) as promising therapeutic tools for scar man-
agement.

From Genetic Architecture to Scar Management

The factors driving skin tissue regeneration are strong-
ly associated with regulatory gene networks. Deregulated 
genes are thus expected to either predispose individuals 
to cutaneous scarring or directly promote abnormal 
wound healing and scar formation. Hence, deciphering 
the association between the genes and aberrant wound 
healing help introduce efficient therapeutic interven-
tions. This requires identifying genetic variations and 
causative genes involved in wound healing and scarring 
as discussed below.

Genetic Variations and Susceptibility in Scar 
Formation
Genetic variations are defined as the differences in 

DNA sequence among people that play an important role 
in susceptibility to a particular disease. Diversity of the 
MHC genes and single base-pair substitutions are such 
genetic causes putting the patients at risk of skin scarring 
[16, 17]. MHC genes in humans, which are known as hu-
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man leukocyte antigens (HLAs), impact cutaneous fibro-
sis via antigen-presenting capacity and immune system 
regulation. HLA molecules work as the co-inducers of in-
flammation and cytokine expression affecting the lesions 
through induction of fibroblast proliferation and colla-
gen deposition. Some particular alleles of the HLA system 
have a higher propensity to bind antigens, leading to 
more intense immune responses in predisposed individ-
uals [17, 18]. Studies have shown the increased levels of 
HLA-DR, HLA-B14, and HLA-Bw16 alleles in individu-
als with hypertrophic and keloid scar compared to nor-
mal tissue [18, 19]. Among HLA-DR alleles, the HLA-
DRB*16 allele was reported to predispose individuals to 
postburn hypertrophic scar formation, while the HLA-
DRB1*15 allele increased the risk of keloid tissue forma-
tion in Caucasians [17, 20, 21]. Moreover, a positive as-
sociation of HLA-DQA1*0104, HLA-DQB1*0501, and 
HLA-DQB1*0503 alleles with keloid diseases was ob-
served in Chinese Han populations. In these patients, 
HLA class I members such as HLA-A*03, HLA-A*25, 
HLA-B*07, and HLA-Cw*0802 were also found to be 
more frequent compared to matched control group [17, 
22, 23].

Single base-pair substitutions known as SNPs are the 
other variations in the human genome where a single nu-
cleotide is replaced by another one in at least 1% of the 
population [24, 25]. Several studies have shown that SNPs 
alter the function of genes involved in wound healing and 
scarring, as they either increase or reduce the susceptibil-
ity of individuals to cutaneous fibrosis. Sood et al. [26–28] 
identified SNPs R163Q, rs56234898, and rs11136645 in 
melanocortin 1 receptor (MC1R), protein tyrosine phos-
phatase nonreceptor type 5 (PTPN5), and CUB and sushi 
multiple domains 1 (CSMD1) genes, respectively. SNP 
R163Q in MC1R is associated with an increased probabil-
ity of postburn hypertrophic scarring. Given that the mel-
anocortin signaling pathway affects the skin scarring 
through decreased dermal fibroblast proliferation, anti-
inflammatory, and anti-fibrotic effects, SNP R163Q-in-
duced MC1R loss of function might enhance the risk of 
inflammation and fibrosis [28, 29]. On the contrary, SNP 
rs56234898 in PTPN5 reduces cutaneous scarring. PTPN5 
known as striatum-enriched protein tyrosine phospha-
tase is a tyrosine phosphatase with a binding motif for 
mitogen-activated protein kinases particularly p38. SNP 
rs56234898 alters the gene function and potentially en-
hances the inhibitory effect of striatum-enriched protein 
tyrosine phosphatase on P38 in myofibroblasts or other 
inflammatory cells, resulting in decreased severity of 
scarring [26, 30]. SNP rs11136645 in CSMD1 is also as-

sociated with a decreased hypertrophic scar in white sub-
jects. CSMD1 is an inflammatory regulator involved in 
the development of the nervous system and wound heal-
ing process [26, 31], albeit little is known about its role in 
wound repair. CSMD1 and SNP rs11136645 seem to re-
duce fibrosis through regulation of complement activa-
tion, neuroinflammation, and/or TGF-β1 signaling path-
way [27, 32]. In another study, Teng et al. [33] reported 
SNPs rs181924090, rs151091483, rs183178644, and 
rs141156594 in the sirtuin 3 (SIRT3), myosin heavy chain 
8 (MYH8), HUS1 checkpoint clamp component B 
(HUS1B), and rotatin (RTTN) genes, respectively, in the 
Chinese Han Population. In this study, rs181924090, 
rs151091483, and rs183178644 were identified as new po-
tential SNPs associated with keloid formation, especially 
related to tumor behaviors of keloids, whereas rs141156594 
was known as a new SNP involved in the ECM formation 
in wound healing [33]. Furthermore, Ogawa et al. [34] 
found SNP rs8032158 in the neural precursor cell ex-
pressed developmentally downregulated protein 4 
(NEDD4) gene that enhances the possibility of keloid for-
mation. rs8032158 contributes to excessive cell prolifera-
tion and matrix deposition and could be a biomarker for 
the prevention of keloid formation.

In summary, MHC alleles and SNPs are intrinsic fac-
tors causing differences among individuals in terms of 
susceptibility to disease, the capacity to promote disor-
ders, and the resistance to drugs and therapies. Therefore, 
identification of such genetic indicators may provide the 
possibility to predict the risk and progression of traumat-
ic scarring as well as characterization of scar types follow-
ing skin injuries. Genetic variations are not the only caus-
ative factors for scar formation. However, their potential 
importance in the development of appropriate and per-
sonalized strategies for the prevention or treatment of cu-
taneous scars cannot be ignored. To achieve this goal, ge-
netic screening to discover such variations and under-
standing their roles might be helpful, which would need 
certain tools and technologies, and further properly de-
signed studies in the future.

Causative Genes in Scar Formation
Following skin injuries, many genes are up- or down-

regulated to modify the wound environment. However, 
deregulated expression of the genes involved in this criti-
cal process can promote abnormal wound healing and 
scarring. Identification of these genes offers the opportu-
nity to manage the different stages of wound healing and 
modulate fibrosis through gene therapy to convert scar-
ring injuries into scar-free repaired wounds [35]. Various 
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genes can be considered for scar-free wound healing such 
as those contributing to inflammation, proliferation, ap-
optosis, granulation tissue formation, and ECM remodel-
ing (Table 1) as discussed below.

The Genes Responsible for Inflammation
An optimized wound healing relies on a proper level 

of inflammatory factors to ensure that cellular responses 
are presented in a coordinated manner. Severe injuries in 
the skin barrier dramatically increase cytokine and che-
mokine production, which may dictate tissue fibrosis. 
Using gene expression profiling of cytokines from kerati-
nocytes of burned patients, Gragnani et al. [36] showed 
that IL-8 is highly expressed in large skin burns. IL-8 
works as a chemoattractant for neutrophils, basophils, T 
lymphocytes, and fibroblasts and serves to restore the epi-
dermal hemostasis. IL-8 is also associated with stimulated 
angiogenesis of endothelial cells, amplified keratinocytes 
mitosis, and regulated production of metalloproteinas-
es-9 (MMP-9) in keratinocytes [37, 38]. Therefore, IL-8 
is a prerequisite to promote wound healing normally. 
However, the related excessive secretions may intensify 
cellular responses, thereby driving cutaneous scarring.

Similarly, overexpression of IL-1α, IL-1β, IL-6, and tu-
mor necrosis factor-α (TNF-α) has been observed in fi-
brotic tissues [39]. IL-1α regulates the activation of kera-
tinocytes, fibroblasts, and endothelial cells that attract 
circulating leukocytes and induces the expression of che-
mokines which in turn persist the inflammation [40, 41]. 
On the other hand, IL-1β upregulates decorin in dermal 
fibroblasts, working coordinately with each other to acti-
vate and enhance peripheral blood mononuclear cells 
(PBMCs) homing potential toward the wound bed. In the 
next induction pick, transforming growth factor-beta 
(TGF-β) dictates a fibrocystic transition from localized 
PBMC [42]. Expectedly, deregulated levels of IL-1α and 
IL-1β result in the development of skin scarring. Thomay 
et al. [43] demonstrated that downregulation of IL-1 sig-
naling improves the quality of wound healing and lessens 
fibrosis. Cutaneous wounds in IL-1 receptor knockout 
mice represent reduced levels of collagen and improved 
architecture of restored skin compared to wild-type ani-
mals [43]. Moreover, IL-6 is a modulator of inflammation 
promoting the pro-inflammatory function of T cells and 
macrophages and also is required for the timely resolu-
tion of wound healing. Studies show that downregulation 
of IL-6 in hypertrophic and keloid scars results in an im-
proved scar score [44]. TNF-α is also the other pro-in-
flammatory cytokines promoting the inflammation and 
infiltration of immune cells into the wound bed. TNF-α 

also stimulates BMP2 and its receptor in keratinocytes, 
thereby provoking the epithelial-to-mesenchymal transi-
tion (EMT) and cell migration [45–48]. Hence, the en-
hanced expression of TNF-α leads to prolonged inflam-
mation and continuous EMT, driving the hypertrophic 
scar or keloid formation.

On the contrary, IL-10 is known as an anti-inflamma-
tory factor and regulates the expression of fibrogenic cy-
tokines such as TGF-β contributing to ECM formation. 
IL-10 has a protective role against excessive collagen de-
position and αSMA expression and modulates the sur-
vival of precursor endothelial cells in damaged tissue [49–
52]. Peranteau et al. [53] indicated that injection of lenti-
viral vectors expressing IL-10 at the wound site in an 
adult murine model of scar formation decreased the 
quantities of pro-inflammatory mediators and conse-
quently inflammation. Injected lenti-IL-10 vectors in the 
wound bed also showed normal collagen deposition and 
restoration of dermal architecture [53]. Importantly, re-
combinant human IL-10 in phase II randomized con-
trolled clinical trial reduced scar formation and improved 
scar appearance [49] demonstrating a translational po-
tential of this cytokine in clinical application for scar ther-
apy in humans, as yet requires further considerations.

The Genes Responsible for Proliferation, Apoptosis, 
and Granulation Tissue Formation
An accelerated secretion of cytokines and chemokines 

in response to the injured skin leads to stimulating the 
growth factor production which is directly affecting the 
cellular events of the wound healing process particularly 
cell proliferation, differentiation, ECM deposition, and 
apoptosis. Platelet-derived growth factor (PDGF) and in-
sulin-like growth factor-1 (IGF-1) are critical players pro-
duced to augment wound repair [54–58]. Barker et al. 
[59] demonstrated that ex vivo genome editing of mouse 
fibroblasts for sustained secretion of PDGF increases the 
speed and quality of wound healing, at least in part, 
through enhanced vascularization. Additionally, Amiri 
and colleagues [60] demonstrated that IGF-1 gene trans-
ferring into fibroblasts and transplanting them to full-
thickness wounds of rat models resulted in an increased 
number of keratinocytes, enhanced organization of gran-
ular tissue, and improved wound contracture. Gene de-
livery of IGF-1 via adenoviral vectors to chronic wounds 
of mice also accelerates epithelial gap closure, promotes 
granulation tissue formation, and enhances neovascular-
ization, reported by Balaji et al. [61]. However, the prop-
er level of expressed PDGF and IGF-1 should be main-
tained since they correlate to the signaling pathways such 
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as TGF-β, ERK, and kinase cascades which consequently 
drive the sequential events leading to skin fibrosis [62, 
63].

Similarly, TGF-β is a pivotal growth factor required to 
support successful wound repair. TGF-β signaling is ac-
tivated through integrin crosstalk and regulated by a neg-
ative feedback loop mechanism. Hence, any abnormali-
ties in TGF-β signaling pathways cause skin tissue disor-
ders [64, 65]. Studies have revealed that high and 
consistent expression of TGF-β-1, TGF-β-2, or TGF-β 
receptors in the wounded skin results in collagen accu-
mulation, impairing tissue architecture and function. 
Thus, TGF-β signaling could be a therapeutic target for 
scar management. Washio et al. [66] represented that 
gene silencing of TGF-β1 at promoter region via synthet-
ic pyrrole-imidazole polyamide in a rat model inhibits the 
induction of growth factors and ECM-encoding mRNAs, 
and limits the number of spindle-shaped fibroblasts. 
Wang and colleagues [67] showed that downregulation of 
the TGFβRI gene via siRNA in a rabbit model of hyper-
trophic scar reduces the ECM deposition of scar tissue 
and the expression of CTGF and αSMA mRNAs. Appli-
cation of bioengineered matrix delivering RNAi against 
TGFβ1 by Liu and colleagues [68], on the skin defects of 
a pig model, revealed the inhibition of TGFβ1, collagen, 
and αSMA expression, and also the similar structure of 
regenerated skin compared to the healthy skin tissue. Fi-
nally, concurrent silencing of TGF-β and COX-2 via siR-
NA in mouse models implanted with human skin graft 
activated cell apoptosis and reduced skin fibrosis, which 
was demonstrated by Zhou et al. [69], and in phase II hu-
man clinical trial [70]. On the contrary, TGF-β3 plays an-
ti-fibrotic roles promoting collagen degradation via up-
regulation of matrix metalloproteinases (MMPs) and re-
ducing collagen type I deposition via limited fibroblastic 
differentiation [37, 71]. Therefore, the ratio of TGF-β3 to 
TGF-β1 or TGF-β2 expression is a determining factor to 
propel physiological or pathological wound healing [71]. 
It is worth noting that TGF-β translation is induced by an 
immediately upstream regulator, P311. P311 also sup-
ports collagen deposition, normal scar formation, and 
tensile strength of newly formed tissue preventing scar 
dehiscence [72, 73]. Cheng et al. [72] depicted that P311 
gene deficiency in knockout mice significantly reduces 
collagen deposition and tensile strength, whereas delivery 
of the P311 gene through lentiviral vectors corrects the 
defects. On the other hand, overexpression of P311 dur-
ing deep wound repair may contribute to hypertrophic 
scar formation, and lentiviral transfer of shRNA against 
P311 downregulates collagen and hydroxyproline con-

tent in scars of wild-type mice [72]. Therefore, regarding 
the importance of TGF-β signaling pathway during 
wound healing, and promising results obtained in related 
preclinical and clinical studies, it appears that TGF-β sig-
naling possesses the potential to be considered as a thera-
peutic target in pharmaceutical marketing, as the associ-
ated challenges are addressed.

In an optimized wound repair, the formation and res-
toration of the blood vessel network supporting oxygen 
and nutrients for the involved cell populations is a crucial 
step regulated by vascular endothelial growth factor 
(VEGF). VEGF binds to the VEGF receptor and stimu-
lates the activation of downstream kinases to improve en-
dothelial cell survival, proliferation, and migration [74]. 
Additionally, homeobox genes and related proteins such 
as Hox-A5 and Hox-A9 are capable of affecting angio-
genesis. Hox-A5 reduces the expression of pro-angiogen-
ic genes such as VEGFR-2, ephrin A1, hypoxia-inducible 
factor 1 subunit alpha (HIF-1), and COX-2 in the endo-
thelial cells, and increases the expression of antiangiogen-
ic genes such as thrombospondin-2, whereas Hox-A9 en-
hances the transcription of VEGF [75]. Studies indicate 
that gene delivery of VEGF by adeno-associated viruses 
accelerates wound healing through well-structured gran-
ulation tissue formation and greater vascularization as 
well as increased epithelium regeneration and neo-angio-
genesis in the rat models [76]. However, the high level of 
VEGF results in hypertrophic and keloid scarring; thus, a 
proper expression of VEGF could be a therapeutic target 
for controlling dermal fibrosis [74, 77].

The programmed cell death is also considered as a crit-
ical mechanism converting the cell-rich granular tissue to 
fibrous tissue in a normal process of wound healing. 
Thus, the tissues with deregulated apoptotic genes such 
as p53, Bax, Bcl-2, and upstream factors including slug 
and secreted frizzled-related protein 2 (SFRP2) direct an 
aberrant repair leading to the raised scar formation [78, 
79]. The factors involved in programmed cell death can 
be remarkable candidates for gene therapy and subse-
quently wound repair with less or without scar formation. 
Shi and colleagues [80] revealed that gene delivery of p53 
through adenoviral vectors and inhibition of Bcl2 gene by 
siRNA in a rabbit ear scarring model results in smaller 
and flatter scars compared to control wounds that were 
injected with adenoviruses carrying shRNA against P53. 
Additionally, the more neatly arranged and thinner struc-
ture of collagen fibers during the scar remodeling process 
is resulted from the upregulation of P53 and downregula-
tion of Bcl2 genes, while using shRNA against P53 leads 
to the more disordered structure and denser collagen fi-
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bers [80]. Hence, targeting apoptosis pathways may be a 
promising approach to propel the wound to heal normal-
ly and preventing scarring, as the balance is maintained 
with the survival and proliferation signaling. Expectedly, 
this requires further designed preclinical and clinical 
studies and consideration of all challenges in the future.

The Genes Responsible for ECM Remodeling
An important event in the remodeling phase of cuta-

neous wound healing is the proteolytic degradation of 
ECM to restore functional tissue architecture. MMPs and 
tissue inhibitor metalloproteinases (TIMPs) are respon-
sible for the degradation and renewal of ECM in the late 
phase of wound repair. The wound healing procedure is 
potentially affected by MMP-1, -2, -3, -8, -9, and -13. 
MMP-1, -8, and -13 work as collagenases I, II, and III, re-
spectively, degrading the fibrillar collagens. The created 
segments are then denatured to produce gelatins and de-
generated by the gelatinases such as MMP-2 and -9 [81–
83]. The activity of MMP is controlled by TIMPs. TIMPs 
bind to and inhibit the MMPs functions, thereby prevent-
ing the ECM degradation and enhancing the total ECM 
proteins [84]. TIMP family contains several protease in-
hibitors such as TIMP-1, -2, and -3, of which TIMP-1 and 
-2 work as effective inhibitors of MMP-1 and -2, respec-
tively, and TIMP-3 inhibits the activity of MMP-1, -2, -3, 
-9, and -13 [83, 85]. Expectedly, deregulated expression 
of MMPs and their inhibitors leads to imbalanced colla-
gen matrix deposition and degradation, which conse-
quently drives excessive cutaneous scarring. Simon et al. 
[86] revealed that the continuous expression of TIMP-1 
in the activated keratinocytes may contribute in the en-
hanced dermal thickness and created hypertrophic scars. 
Arakawa, Neely, and their colleagues reported the re-
duced expression and activity of MMP-1 and -9 promot-
ing the hypertrophic and keloid scar formation [87, 88]. 
Imaizumi et al. [89] reported a high level of MMPs such 
as MMP-2 in the hypertrophic and keloid tissues, with 
this explanation that the overexpressed MMPs may not 
only be inadequate to overcome the excessive signals that 
promote scarring but also help in keloid extension to ad-
jacent normal skin through ECM degradation.

Furthermore, procollagen-lysine2-oxoglutarate 5-di-
oxygenase 2 (PLOD2) and decorin are the other regula-
tors playing important roles in the rearrangement phase 
of wound healing. PLOD2 mediates the formation of col-
lagen cross-linkages such as pyridinoline. The pyridino-
line cross-links are associated with the collagen mole-
cules’ resistance against degradation by MMPs. There-
fore, the increased level of PLOD2 and pyridinoline 

cross-link content give rise to less collagen degradation 
and eventually the accumulation of fibers, as observed in 
hypertrophic and keloid scars [83, 90, 91]. On the other 
hand, decorin regulates the tensile strength of the skin 
through interaction with collagen molecules and noncol-
lagenous proteins such as fibronectin [83]. This protein 
binds to and neutralizes TGF-β, thus minimizing the in-
ductive effects of TGF-β on collagen, fibronectin, and 
GAG production [6]. In dermal ECM, decorin is pro-
duced normally, while downregulated in the wound heal-
ing process following severe injuries [64, 83]. Danielson 
and colleagues [92] demonstrated that reduced expres-
sion of decorin in mice gives rise to thin and fragile skin, 
abnormal morphology, and nonuniformity in the axial 
mass distribution of collagen fibrils, and reduced colla-
gen-bound proteoglycans which potentially reduce the 
tensile strength of the skin and increase the incidence of 
scarring.

Overall, cutaneous wound repair is a complex and 
multifactorial process regulated by various cells, cyto-
kines, growth, differentiation, and apoptotic factors. Any 
abnormalities in the expression and function of such reg-
ulators result in impaired wound healing and possibly 
scarring. It seems that gene therapy is a novel therapeutic 
approach for optimization of wound healing and scar 
management since gene delivery can be accomplished for 
a limited time until healing and also a limited area of in-
terventions. On the other hand, transient effects due to 
the short half-life and difficulties to properly penetrate 
the wound bed and reach the targeted cells prevent the 
topical application of cytokines and growth factors [93, 
94]. For successful genetic manipulations, there are yet 
several issues that must not be ignored. First, the healing 
of the cutaneous wound is mediated by different cell types 
including macrophages, mast cells, keratinocytes, fibro-
blasts, myofibroblasts, endothelial cells, and more, which 
have been targeted for different drugs and therapeutic 
strategies [95].

Hence, the appropriate selection of targeted cells with 
aberrant behavior provoking the initiation and progres-
sion of scarring is a crucial step in this regard. Keratino-
cytes and fibroblasts are the most common cells that have 
been considered in different animal models through ex 
vivo and in vivo gene transferring [76]. However, kerati-
nocyte stem cells due to the ability to generate the suffi-
cient storage of functional epithelial cells and fibroblasts 
from the reticular layer of the dermis due to their further 
potential for scar formation [96] may be more exciting 
candidates for genetic modifications. Second, numerous 
genes which are associated with inflammation, prolifera-
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tion, apoptosis, granulation tissue formation, and ECM 
remodeling as well as their processing enzyme coding 
genes or their receptor-related genes can be targeted for 
manipulations. However, spatiotemporal intervention is 
another key step since some regulators may have a dual 
role in the wound healing process. For instance, TNF-α is 
known as both inflammatory and apoptotic factors, over-
expressed in the early and downregulated in the late phas-
es of wound healing, and promotes scarring [97, 98]. Sim-
ilarly, the increased expression of MMPs in the inflam-
mation stage provokes keratinocyte migration and 
prolonged inflammation, while its downregulation in the 
late stages leads to the accumulation of ECM [81, 99]. 
Thus, temporal and spatial targeting of such factors to 
reverse their expression could affect the outcomes of gene 
therapy. Third, many aforementioned mediators are es-
sential for optimized wound healing. Thus, a proper level 
of manipulations should be exerted to ensure that the cel-
lular responses occur in an orchestrated manner and do 
not impede normal repair. Regulatory inducible systems 
including the tetracycline, ecdysone, and rapamycin in-
ducible systems, which their activities are stimulated by 
pharmacological molecules, and also gene-activated ma-
trix such as engineered biomaterial scaffolds which sup-
port the sustained and long expression of desired gene are 
the strategies considered to regulate the expression of 
transgene [100]. Fourth, the selection of an appropriate 
strategy is crucial to fulfilling the safe, targeted, and effi-
cient delivery. Genetic interventions can be performed 
through viral or nonviral approaches and depend on the 
purpose of therapies. Although they are contributed to 
immunogenicity, viral gene deliveries include 70% gene 
therapy clinical trials [101]. Retroviral gene delivery of 
LAMB3 into the keratinocytes by De Luca et al. [102] for 
epidermolysis bullosa patients is one of the most promi-
nent gene therapies offering promises for treatment of 
other skin disorders as well. Moreover, regarding wound 
repair, injection of adenoviruses encoding PDGFB in pa-
tients with venous leg ulcers, demonstrated in phase-1 
clinical study, represents the reduced size of wounds 
[103]. On the other hand, lipid-based nanoparticles, poly-
meric nanoparticles, antisense oligonucleotide, siRNAs, 
and physical methods are such nonviral delivery systems 
attracted great attention in preclinical studies and clinical 
trial for treatment of skin disorders [101].

Phase II clinical trials for dual-targeted siRNA STP705 
and RXI-109 also indicate the potential of these small RNAs 
as next-generation medicine. STP705 affects the expression 
of TGF-β1 and COX-2 mRNAs simultaneously, and RXI-
109 efficiently targets CTGF mRNA, attenuating the cuta-

neous fibrosis [69, 104–106]. With the emergence of site-
specific nuclease editing tools such as ZFNs, TALENs, and 
clustered regularly interspaced short palindromic repeats 
(CRISPR)-Cas9 system, it seems that gene therapy would 
be a promising therapeutic approach in the future to ge-
netically modify resident wound bed cells, both transiently 
and permanently, albeit being still in infancy [106].

From Epigenetic Knowledge to Scar Management

Gene transcripts are regulated based on the open or 
compact patterns of specific gene loci under a physiolog-
ical or pathological condition. Such regulations can be 
conducted by the mechanisms encompassed in epigene-
tic knowledge. Epigenetic regulation has been recently in-
vestigated as the potential mechanism for changing the 
cell behavior and phenotype during wound healing and 
scar maintenance, thus promising novel targets for scar 
treatments [107]. DNA methylation, histone modifica-
tions, and noncoding ribonucleic acid alterations are epi-
genetic regulations affecting the cell fate in wound repair 
as discussed below.

The Dynamic State of DNA Methylation and Histone 
Modifications during Scar Formation
DNA methylation is an important chromatin modifi-

cation responsible for the long-term changes in the cell 
programming by which the gene transcription is gener-
ally repressed. The maintenance of DNA methylation 
patterns entails the DNA methyltransferase (DNMT) ac-
tivity upon cell replication. Thus, aberrant expression of 
DNMTs is always correlated with abnormal DNA meth-
ylation and consequently human diseases such as fibro-
proliferative disorders [107, 108]. For instance, DNMT1 
is indicated to be increased significantly in both hypertro-
phic and keloid scars compared with normal skin. This 
protein plays an important role in the regulation of col-
lagen synthesis and ECM deposition by scar fibroblasts 
and is strongly associated with the keloid expansion be-
yond the initial wound [108–110]. The evidence shows 
that the inhibition of DNMT1 activity via the inhibitors 
such as 5-aza-2-deoxycytidine represses the proliferation 
of hypertrophic and keloid fibroblasts, increases the ratio 
of cells in the G0/G1 phase of the cell cycle, and enhances 
apoptosis. Additionally, upon the intervention of 5-aza-
2-deoxycytidine, the expression of pro-fibrotic cytokines 
including TGF-β1 is decreased, while the expression of 
SMAD7, as an inhibitory downstream factor of the 
TGF-β1 signaling pathway, is increased [108].
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The genetic potential of DNA can be affected by his-
tone modifications as well. Acetylation, methylation, 
phosphorylation, and ubiquitination of histone proteins 
are such regulations affecting gene expression [111, 112]. 
Histone modifications and histone regulatory enzymes 
are well known to have a pivotal role in cutaneous wound 
healing and scarring [113]. For instance, histone H3K-
27me3 demethylase JMJD3 is required for the proper 
function of keratinocytes in wound healing. JMJD3 in co-
operation with NF-kB induces the expression of inflam-
matory, MMPs, and mitogenic growth factor genes at the 
wound edge. Using in vitro and in vivo mouse skin wound 
models, Na and colleagues showed that the increased lev-
el of JMJD3 in the wounded environment promotes ke-
ratinocyte migration, while JMJD3 depleted cells are as-
sociated with delayed wound closure and aberrant repair 
[114]. Moreover, histone deacetylases (HDACs) such as 
HDAC-2 and sirtuin-1 (SIRT1) are the other histone-
modifying enzymes reported to be involved in cutaneous 
scarring, thus are promising targets for scar management 
[115–117]. Diao et al. [116] depicted that trichostatin A, 
an inhibitor of HDACs, attenuates hypertrophic scarring 
in the rabbit ear model through decreased expression of 
ECM proteins including fibronectin and type I collagen, 
and also causes the scarred tissue to look more similar to 
normal appearing scar [116]. This inhibitor induces cell 
apoptosis and reduces cell growth and collagen synthesis 
in keloid fibroblasts as well [115]. It seems that tricho-
statin A plays a role via the repression of Sp1 activity and 
overexpression of secreted frizzled-related protein 1 
(SFRP1) [115, 118]. On the contrary, Bai et al. [119] rep-
resented that overexpression of SIRT1 via resveratrol 
treatment leads to more organized and thinner collagen 
fibers, similar to normal scars, in the mouse model of 
wound healing. SIRT1 reduces the expression of αSMA 
and type I and III collagens in hypertrophic scar fibro-
blasts. However, decreased expression of SIRT1 observed 
during hypertrophic scar formation prevents the associ-
ated anti-fibrotic effects and drives skin fibrosis [119].

In short, optimized wound healing requires the regu-
lated patterns of DNA methylations and histone modifi-
cations, and epigenetic alterations may result in abnor-
mal repair and scar formation. Hence, targeting epigen-
etic modifying enzymes provides the therapeutic 
opportunity to reverse these deleterious alterations. To 
date, several clinical trials have been performed based on 
the regulation of hypermethylation patterns of different 
genes, and several inhibitors of HDAC are already in clin-
ical use [117, 120]. These observations indicate the rela-
tively smooth pathway of such strategies from bench to 

bedside. However, an important challenge to be carefully 
considered is whether up- or downregulation of epigen-
etic modifying enzymes could affect the expression of on-
cogenes or tumor suppressor genes in adjacent sequenc-
es. Further studies are thus required particularly in skin-
related fibrosis to provide an effective and safe scar 
management approach(es).

Noncoding RNAs in Scar Formation
Noncoding RNAs make up the vast majority of tran-

scripts in the genome lacking the capacity to translate into 
proteins. They are known as crucial regulators of cellular 
physiology and pathology and represent great promises 
for the development of diagnostic and therapeutic strate-
gies [121, 122]. Noncoding RNAs have the potential to 
normalize aberrant genetic networks, as they usually have 
several gene targets. Additionally, therapies based on 
noncoding RNAs allow the target genes to be modulated 
without genomic manipulation, as opposed to some oth-
er gene therapies. In contrast to many traditional treat-
ments, noncoding RNAs are natural molecules in the cells 
and function in a targeted manner; therefore, they can be 
safer and/or more efficacious in treating scars [123]. Mi-
croRNAs and lncRNAs are noncoding ribonucleic acids 
emerging as new therapeutic tools through epigenetic 
regulations as discussed below.

MicroRNAs as the Regulatory Switches during Scar 
Formation
MicroRNAs are small noncoding RNA molecules 

serving as the posttranscriptional gene expression regula-
tors, thereby modulating virtually all biological processes 
and developmental pathways [124–128]. The evidence is 
constantly mounting that microRNAs are capable of reg-
ulating different aspects of wound healing, and their dys-
regulation is linked to aberrant wound repair and scar 
formation. Li and colleagues [129] reported that micro
RNA-132 and microRNA-31 are principal regulators 
promoting keratinocyte migration and proliferation dur-
ing the wound healing process. Using in vitro, human ex 
vivo, and mouse wound models, microRNA-132 was re-
vealed to target heparin-binding EGF-like growth factor 
and regulate the cell cycle-related genes as well as the im-
mune response associated genes to enhance the transition 
from inflammation to proliferation phases of wound 
healing [129]. On the other hand, microRNA-31 directly 
targets epithelial membrane protein 1 (EMP-1) in kerati-
nocytes and improves wound healing [130]. MicroR-
NA-31 is overexpressed in hypertrophic and keloid tis-
sues and accelerates fibroblast proliferation and invasion 
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through the FIH/HIF-1α/VEGF signaling pathway [131, 
132]. Additionally, microRNA-21 plays a critical role to 
enhance the expression of fibro-proliferative-related 
genes such as Col1A1, Col3A1, α-SMA, and fibronectin 
[133, 134]. MicroRNA-21 is upregulated in hypertrophic 
scar tissue, keloid epidermis, and keloid-derived fibro-
blasts [133, 135–137]. Li, Guo, and their colleagues 
showed that the inhibition of microRNA-21 reduces fi-
brosis in the hypertrophic scar nude mice and rabbit ear 
models [133, 138]. Conversely, microRNA-29b and mi-
croRNA-495 serve as anti-fibrotic noncoding RNAs. Guo 
et al. [139] represented that microRNA-29b is downregu-
lated in thermal injury tissue of mice and microRNA-29b 
treatment suppresses collagen deposition and fibrotic 
gene expression in scar tissues via inhibition of the 

TGF-β1/Smad/CTGF signaling pathway. Similarly, Guo 
and colleagues [140] revealed the reduced expression of 
microRNA-495 in the hypertrophic scar tissue and fibro-
blasts. Overexpression of microRNA-495 was found to 
inhibit focal adhesion kinase and COLA1 expression in a 
rat wound model, while it promotes cell death during skin 
regeneration [140]. Recently, several other microRNAs 
have been identified including microRNA-155, -181, 
-145, -16, -203, -519d, -138, -200b, and -137, which affect 
cutaneous scarring via inhibition of pro-fibrotic or anti-
fibrotic targets [134, 141–148] (Fig. 2). This suggests that 
microRNAs have the potential to be modulated for wound 
repair optimization and scar management.

microRNAs which induce skin fibrosis through inhibition of anti-fibrotic targets

miR-155 miR-132 miR-31 miR-21 miR-181 miR-145

SOCS1 HB-EGF EMP-1 PTENFIH SMAD7 PHLPP2 Decorin KLF4

Cytokines 

Wound repair

Proliferation Remodeling

Scar
managementImmune cells Keratinocytes Fibroblasts  Myofibroblasts

Inflammation

COX2 HB-EGF TNF-α, IL-24 SIRT7 FAK PTNPPARβ Zeb1, PCNA TGFβ

miR-16 miR-519d miR-495 miR-137miR-138miR-132 miR-200bmiR-203 miR-29

microRNAs which inhibit skin fibrosis through inhibition of pro-fibrotic targets

Fig. 2. MicroRNAs as regulators of cutaneous wound healing and 
scar formation. MicroRNAs are key epigenetic regulators of 
wound healing since they can target several genes simultaneously. 
Dysregulation of the microRNA network in either overexpression 
of pro-fibrotic microRNAs, such as microRNA-155, microR-
NA-132, microRNA-31, microRNA-21, microRNA-181, and mi-
croRNA-145, or downregulation of anti-fibrotic microRNAs, in-

cluding microRNA-16, microRNA-203, microRNA-519d, mi-
croRNA-495, microRNA-138, microRNA-200b, microRNA-137, 
and microRNA-29, propels the wounds to heal aberrantly, result-
ing in excessive cutaneous scarring. Hence, modulating wound re-
pair through microRNAs regulation may be an interesting ap-
proach in scar management. Arrows indicate “induction,” and 
blunt-ended lines indicate “inhibition.”
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LncRNAs as Regulatory Switches during Scar 
Formation
LncRNAs are regulatory RNA molecules containing 

more than 200 nucleotides involved in the modification of 
chromatin, production of endogenous siRNA, regulation 
of RNA processing, modulation of microRNA activity, 
and regulation of protein functions and localization [149, 
150]. LncRNAs are believed to be related to the patho-
physiology of wound repair (Fig.  3). Herter et al. [151] 
demonstrate that the expression of lncRNA LOC100130476 
is reduced in keratinocytes of the human chronic wound 
edge. LncRNA LOC100130476 restricts the production of 
inflammatory chemokines by keratinocytes and enhances 
cell migration. Hence, its downregulation leads to im-
paired reepithelialization, as observed in human ex vivo 

wounds [151]. Moreover, lncRNAs could be targeted by 
drugs to improve wound healing. Using an ex vivo model 
for treated tissue samples obtained from the nonhealing 
edge of human wounds, Sawaya and colleagues [152] 
showed that topical mevastatin accelerates wound closure, 
in part through induction of lncRNA Gas5. LncRNAs are 
also important in cutaneous scar formation. Chen et al. 
[153] demonstrated that AC067945.2 is downregulated in 
hypertrophic scar tissues, while its overexpression pro-
motes early apoptosis and diminishes the expression of 
COL1A1, COL1A2, COL3A1, and α-SMA in skin fibro-
blasts through VEGF regulation. On the other hand, ln-
cRNAs such as CACNA1G-AS1 (CAS1) and lncRNA ac-
tivated by TGF-β (lncRNA-ATB) affect keloid formation. 
CAS1 is contributed to the WNT signaling pathway and 

LOC100130476 Gas5 lncRNA-ATB AC067945.2 CAS1

Keratinocyte migration

TGFβ production

Fibroblast differentiation
and ECM production

Fibroblast migration

Keratinocyte Fibroblast Myofibroblast

Growth factors ECM  

Fig. 3. LncRNAs are regulatory RNA molecules involved in wound 
repair. LncRNAs are believed to regulate different aspects of 
wound healing. For instance, LOC100130476, Gas5, lncRNA-
ATB, AC067945.2, and CAS1 affect wound healing through regu-
lation of keratinocyte migration, growth factor production, fibro-

blast migration and differentiation, and ECM production. Hence, 
lncRNAs possess the potential to be manipulated for scar manage-
ment. Arrows indicate “induction,” and blunt-ended lines indicate 
“inhibition.”
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is significantly overexpressed in keloid scar compared to 
normal skin. CAS1 enhances the expression of the calcium 
channel protein, synthesis of type I collagen, and also the 
migration of keloid fibroblasts [154, 155]. In addition, ln-
cRNA-ATB is overexpressed by TGF-β signaling and neg-
atively regulates the activity of microRNA-200c resulting 
in the removal of associated inhibitory effect on ZNF217 
transcript. Consequently, the increased expression of 
ZNF217 protein activates TGF-β2 transcription, which in 
turn exacerbates TGF-β signaling and maintains the ln-
cRNA-ATB/microRNA-200c/ZNF217/TGF-β2 loop me-
diating cutaneous fibrosis [156].

Altogether, increasing published research data indi-
cate the regulatory role of noncoding RNAs during 
wound repair and suggest that these players open new 
doors for the development of diagnostic and therapeutic 
strategies of wound complications. Although in compar-
ison with lncRNAs, more studies have been accomplished 
on microRNAs and their functions, there are yet several 
challenges to bring these tiny RNAs to wound therapy. 
First, the expression profile of microRNAs is context-de-
pendent and different in ex vivo and experimental models 
compared to that in human wounds due to different cell 
behaviors. Hence, confirmation of an identified microR-
NA as a therapeutic target is accompanied by complica-
tions. Second, the development of microRNAs as thera-
peutic tools necessitates efficient systems for the safe and 
accurate delivery of agents to specific target cells and tis-
sues. Generally, methods based on viral and nonviral de-
livery are considered in research and clinical applications, 
of which viral deliveries are associated with concerns such 
as toxicity and immunogenicity. Therefore, nonviral de-
livery systems including modified oligonucleotides, exo-
somes, lipid, and polymer-based methods, and engi-
neered nanoparticles have recently gained great attention 
[157], albeit requiring further optimizations in the thera-
peutic landscape. Third, microRNAs have the potential to 
target several genes and signaling pathways in a complex 
wound healing process. Regarding this, modulation of 
microRNAs should be investigated in terms of inadver-
tent dysregulation of genes. Last but not least, in wound 
modeling for RNA-based modification, most studies 
have been focused on animal skin that is structurally dif-
ferent from human skin, indicating that translation of 
findings may be challenging [101]. Therefore, the models 
further mimicking human skin such as a three-dimen-
sional in vivo tissue-like environment provided from or-
ganoid culture and microfluidic system humanized ani-
mal models and engineered skin models are needed to 
extend the results into the human wound dysregulations.

Conclusion

Wound healing is a complex process, in which an or-
chestrated array of biological and molecular events occurs 
to promote skin regeneration. However, any abnormali-
ties in wound healing lead to reparative responses driving 
the normal repair process to the formation of thick, pain-
ful, and itchy scars accompanied by esthetic and function-
al complications. Nowadays, the majority of the strategies 
used for scar treatment are not efficient and specific 
enough. The effective application of pressure garments 
highly depends on the applied pressure levels, and mea-
suring the exact pressure level is difficult and controver-
sial. A recent study found no significant difference be-
tween pressure garments and the no-treatment group in 
patients with large burn scars. Silicone gels and sheets 
were also found to not be superior to the no-treatment 
group in preventing or treating scar tissues. Furthermore, 
their various side effects such as subcutaneous atrophy 
and pain, and constraints on obtainable skin quantities for 
skin grafts have restricted their clinical utility. Hence, de-
veloping more effective and targeted therapies for pre-
venting the deposition of excessive fibrous tissue is of crit-
ical importance. This purpose is achieved through proper 
knowledge about the regulatory mechanisms of wound 
healing and scarring. Given the importance of genetic and 
epigenetic differences in physiologic or pathologic wound 
repair, we highlighted the diversity of the MHC genes and 
SNPs determining the susceptibility to scar formation to 
present the scar management techniques through the es-
tablishment of prognosis and prevention strategies and 
subsequently personalized medicine. For this achieve-
ment, genetic screening to discover the variations and un-
derstanding their roles in wound repair is necessary, 
which requires available tools and technologies, and well-
powered studies in the future. Moreover, key insights were 
obtained from the analyses of gene dysregulations in-
volved in inflammation, granulation tissue formation, ap-
optosis, and ECM remodeling suggesting genetic inter-
ventions to improve wound healing and block skin fibro-
sis. However, the selection of targeted cells, 
spatiotemporal regulation of targeted mediators due to 
their dual activities, the proper level of manipulations, and 
the application of an appropriate strategy for safe, target-
ed, and efficient gene delivery were discussed as challeng-
es that need to be addressed. Finally, we presented epigen-
etic alterations including DNA methylations, histone 
modifications, and noncoding ribonucleic acids such as 
microRNAs and lncRNAs serving as crucial regulatory 
switches in the wound healing process. The regulatory 
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epigenetic molecules were indicated to be promising ther-
apeutic tools for scar management, although their associ-
ated exact roles need to be further explored in terms of 
inadvertent dysregulation of genes. The models that re-
semble human cutaneous wounds were also mentioned to 
be required in preclinical settings to pave the way for more 
effective scar management (Fig. 4). Altogether, clinical tri-
als based on the application of IL-10, TGF-β, siRNA 
STP705, and RXI-109, regulation of hypermethylation 
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a: Conventional approaches for scar management b: Emerging approaches for scar management

Methods Mechanisms of action Challenges Key factors Effects Examples
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patterns, and histone modifications are underway, repre-
senting the therapeutic potential of genetic and epigenetic 
approaches for optimization of wound healing and scar 
management. However, successful application of these 
emerging strategies requires the advancements in avail-
able tools and technologies for discovery, delivery, and 
controlled manipulation of genetic and epigenetic regula-
tors. This helps overcome the associated challenges and 
opens new doors for management of cutaneous fibrosis.

Fig. 4. Conventional and emerging therapeutic approaches for scar 
management. a The conventional approaches for scar manage-
ment include pressure garments, corticosteroids, skin grafts, and 
silicone gels and sheets affecting wound healing and scar forma-
tion through different mechanisms of action. However, they are 
not targeted and efficient enough due to associated challenges. 
Conventional strategies are also used for large groups of people. 
Therefore, (b) new methods based on the optimization of wound 
healing procedure in terms of genetic and epigenetic regulations 
are emerging to diminish or prevent dermal fibrosis. MHCs and 

SNPs, genes coding for key regulators such as cytokines and growth 
factors, DNA methylation signatures, histone modification pat-
terns and related enzymes, and noncoding RNAs interact and co-
operate as a complex network affecting cell proliferation, differen-
tiation, and ECM synthesis. Deregulation of the genetic and epi-
genetic network leads to aberrant behavior of different cells driving 
excessive fibroblast proliferation and differentiation, and conse-
quently cutaneous fibrosis. Thus, these regulators can be identified 
via genetic and epigenetic screening and targeted using precision 
medicine strategies for scar management.
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