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Abstract

We describe the process of enabling the Mutual Hazard Network model for large data
sets, i.e., for high dimensions, by using the Tensor Train decomposition. We first briefly
review the Mutual Hazard Network model and explain its limitations when using classical
methods. We then introduce the Tensor Train format and explain how to perform
required operations in it with a particular emphasis on solving systems of linear equations.
Next, we explain how to apply the Tensor Train format to the Mutual Hazard Network.
Furthermore, we describe some technical aspects of the software implementation. Finally,
we present numerical results of different methods used to solve linear systems which
occur in the Mutual Hazard Network model. These methods allow the complexity in
the number of events 𝑑 to be reduced from 𝒪(2𝑑) to 𝒪(𝑑3), thereby enabling the Mutual
Hazard Network model to be applied to larger data sets.
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Preface

The work presented in this dissertation is part of an interdisciplinary project, combining
advanced numerical methods and high-performance computing with cancer genomics. In
order to make progress with difficult problems, the combination of individual disciplines
can be helpful as each discipline can bring in its own expertise. In our case, theoretical
physics, we contribute our expertise in algorithmic development and implementation of
highly efficient software. Here, we use known numerical methods applied in theoretical
physics, adapt them for these new applications and develop them further. Some of these
newly developed methods can then be used again in physics or in other fields. The same
applies to the software implementation.

Among others, researchers from the fields of applied mathematics, Lars Grasedyck1 and
Maren Klever1, bioinformatics, Rainer Spang2 and Rudolf Schill2, and theoretical physics,
Tilo Wettig and myself, are working on this project. Working in such an interdisciplinary
environment has been a very interesting and pleasant experience.

1 Institute for Geometry and Applied Mathematics, RWTH Aachen University
2 Department of Statistical Bioinformatics, University of Regensburg
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Chapter 1

Introduction

Cancer has a major impact on society in Germany and across the world. According to
the World Health Organisation (WHO) about one in six deaths in 2018 is due to cancer,
making it the second most cause of death globally. Due to the higher life expectancy
the share is even higher in developed countries, e.g., for the year 2019 about 25% of all
deaths in Germany are attributed to cancer as reported by the Statistisches Bundesamt.
Consequently, cancer is one of the most pressing and important research topics with
large resources being invested worldwide. Increased funding in recent years, e.g., by the
internationally known Cancer Moonshot Initiative (USA) launched by Barack Obama
in 2016, led to encouraging progress. With these advances new research challenges
emerge, of which many involve complex computations. Hence it has been recognized that
expertise in applied mathematics, physics, and computation can contribute to solving
these.

Cancer is a complex dynamic disease driven by various events [1]. A better understanding
of this process is needed to improve tumor therapy. In tumor progression, the rates of
events that have not yet occured are determined by the combination of pre-existing
events, i.e., it can be modeled as a Markov process on the state space of all possible
combinations of events. The state space grows exponentially with the number of events
𝑑. The recent increase of 𝑑 in available datasets, mainly due to progress in genome
sequencing, results in a state space explosion. Hence, tumor progression models need to
mitigate the state space explosion to be applicable to current and future datasets. In
this dissertation we restrict ourselves to one such progression model in particular: The
Mutual Hazard Network (MHN) model introduced in [2]. See [3, 4] for a review of other
current progression models.
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Chapter 2

Problem statement

The main objective of this work is to enable the MHN tensor progression model for large
datasets. To understand the current limitations we briefly summarize this model with
an emphasis on implementation aspects. A more mathematical approach to the MHN
model is presented in [5], for biological aspects see [2].

In the MHN model tumor progression is modeled as a continuous-time Markov chain on
a state space 𝑆 = {0, 1}𝑑 of all combinations of predefined events 𝑑. Its transition rate
matrix1 𝑄Θ ∈ ℝ𝑆 × 𝑆 is given by

𝑄Θ =
𝑑

∑
𝑖=1

𝑄𝑖 (2.1)

with
𝑄𝑖 = [𝑖−1⊗

𝑗=1
(1 0

0 Θ𝑖𝑗
)] ⊗ (−Θ𝑖𝑖 0

Θ𝑖𝑖 0) ⊗ [ 𝑑⊗
𝑗=𝑖+1

(1 0
0 Θ𝑖𝑗

)] (2.2)

and 𝑑2 parameters (Θ𝑖𝑗) ≕ Θ ∈ ℝ+𝑑 × 𝑑.

Given a dataset 𝒟 of tumors, the optimal parameters Θ𝑖𝑗 are found by maximizing the
marginal log-likelihood score

𝒮𝒟 (Θ) = ⟨p𝒟, logpΘ⟩ (2.3)

where the logarithm of pΘ is taken element-wise. p𝒟 ∈ ℝ+2𝑑 represents an empirical
probability distribution defined by 𝒟 on 𝑆 where an entry p𝒟(x) is the relative frequency
of observed tumors with state x in 𝒟. The marginal distribution pΘ is given by

pΘ = [Id − 𝑄Θ]−1 p∅ (2.4)

with initial probability distribution p∅ = (1, 0, … , 0)𝑇 ∈ ℝ2𝑑 .
1A transition rate matrix 𝑄 satisfies 𝑄(𝑖, 𝑖) ≤ 0 ∀𝑖, 𝑄(𝑖, 𝑗) ≥ 0 ∀𝑖 ≠ 𝑗, and ∑𝑖 𝑄(𝑖, 𝑗) = 0 ∀𝑗.
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Chapter 2 – Problem statement

In practice we do not optimize the log-likelihood score 𝒮𝒟 (Θ) directly but add a penalty
term to avoid overfitting:

𝒮𝒟 (Θ) − 𝜆 ∑
𝑖≠𝑗

∣logΘ𝑖𝑗∣ (2.5)

where 𝜆 is a tuning parameter. The penalty term promotes sparsity of the networks, i.e.
it is chosen such that off-diagonal elements of Θ are pushed towards one. This means
that many events do not interact, which is a desired effect.

Using classical algorithms for the optimization of 𝒮𝒟 (Θ) it is also required to calculate
the partial derivatives of 𝒮𝒟 (Θ) with respect to each parameter Θ𝑖𝑗. These are given
by

𝜕𝒮𝒟 (Θ)
𝜕Θ𝑖𝑗

= ⟨q, 𝜕𝑄Θ
𝜕Θ𝑖𝑗

pΘ⟩ (2.6)

with
q = [Id − 𝑄Θ]−𝑇 (p𝒟 ⊘ pΘ) (2.7)

where ⊘ denotes element-wise division.

The advantage of the MHN model is that it allows us to fully describe the transition rate
matrix 𝑄Θ ∈ ℝ2𝑑 × 2𝑑 using only 𝑑2 parameters Θ𝑖𝑗. Hence the model is named after the
matrix Θ, which is called a Mutual Hazard Network (MHN) in [2].

However, finding the optimal parameters Θ𝑖𝑗 requires solving equations involving 𝑄Θ
and other objects of exponential size, e.g. pΘ. Hence when using classical methods the
computational complexity and data requirements grow exponentially with 𝑑. In practice
this limits the computation of the MHN model to 𝑑 ⪅ 25 on modern workstations.

To achieve our main objective – enable the MHN tensor progression model for large
datasets – it is critical to avoid any exponential growth with 𝑑 in both computational
complexity and data requirements.

4



Chapter 3

Tensors

In this chapter, we will briefly introduce tensors as multidimensional generalizations
of vectors and matrices and clarify the associated notations and operations where we
restrict ourselves to aspects which are relevant in the following chapters.

But first we note that throughout the rest of this work, when using ∑, ∏, or any other
similar notation with bounds, we omit the lower bound if it is obvious, e.g. equal to one,
for brevity. We omit the index entirely if the lower bound is obvious and the index is
not needed at all, i.e., if the elements do not dependent on the index. For example, we
write ∏𝑑

𝑘 𝑛𝑘 instead of ∏𝑑
𝑘=1 𝑛𝑘 and ×𝑑

𝑘 𝑛𝑘 instead of ×𝑑
𝑘=1 𝑛𝑘 and shorten ×𝑑

𝑘 2 by ×𝑑 2.

3.1 Definition

An object 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 is called a tensor of dimension 𝑑. Each direction 𝑖 ∈ {1, … , 𝑑} is

called a mode of 𝑥, and each 𝑛𝑖 is called the i-mode size. A single element of a tensor 𝑥
is obtained by 𝑥(𝑖1, … , 𝑖𝑑) with indices 𝑖𝑘 ∈ {1, … , 𝑛𝑘}.

3.2 Linear operators

A 𝑑-dimensional linear operator 𝑋 ∶ ℂ×𝑑
𝑘 𝑛𝑘 → ℂ×𝑑

𝑘 𝑚𝑘 is represented as a tensor in
ℂ(×𝑑

𝑘 𝑚𝑘) ×(×𝑑
𝑘 𝑛𝑘).1 A single element of 𝑋 is obtained by 𝑋(𝑖1, … , 𝑖𝑑; 𝑗1, … , 𝑗𝑑) with in-

dices 𝑖𝑘 ∈ {1, … , 𝑚𝑘} and 𝑗𝑘 ∈ {1, … , 𝑛𝑘}.1

1 We use parentheses and semicolons to group the mode sizes and indices into those that belong to
the origin tensor space and those that belong to the target tensor space. For brevity we often refer to a
multidimensional linear operator as tensor operator or simply operator.
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Chapter 3 – Tensors

Note that the definition of a multidimensional linear operator is not unique Other defini-
tions are also possible by reordering the modes 𝑚1, … , 𝑚𝑑 and 𝑛1, … , 𝑛𝑑. One advantage
of this convention is that the definition of the transpose of a multidimensional linear op-
erator is then simply given by

(𝑋𝑇 )(𝑗1, … , 𝑗𝑑; 𝑖1, … , 𝑖𝑑) = 𝑋(𝑖1, … , 𝑖𝑑; 𝑗1, … , 𝑗𝑑) (3.1)

with the transposed linear operator 𝑋𝑇 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑚𝑘).

Having the similar shape of a tensor and a tensor operator and the necessity to add
superfluous symbols to clarify the differences in mind, it is obvious that a tensor 𝑥 and a
tensor operator 𝑋 hardly differ. In particular we may consider an operator of dimension
𝑑 as a tensor of twice the dimension in many cases. This allows us to often only refer to
tensors while the same applies to operators as well. In cases where there is a difference
between tensors and tensor operators we will state this explicitly.

3.3 Indexing
We have already seen how to use indexing to obtain a single entry of a tensor or operator.
However, this simple form is often not sufficient to allow for an efficient notation. Hence
we introduce the following additional ways of indexing. In this section 𝑥 is always a
tensor in ℂ×𝑑

𝑘 𝑛𝑘 and 𝑋 an operator in ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑛𝑘).

Free indices
It is often useful to only fix certain indices and leave others free. To do so we use
colons to indicate the free modes, e.g., we may obtain 𝑥(∶ , 𝑖2, … , 𝑖𝑑−1, ∶ ) ∈ ℂ𝑛1 × 𝑛𝑑 ,
𝑥(𝑖1, ∶ , … , ∶ , 𝑖𝑑) ∈ ℂ𝑛2 ×⋯ × 𝑛𝑑−1 , and 𝑋(∶ , … , ∶ ; 𝑗1, … , 𝑗𝑑) ∈ ℂ×𝑑

𝑘 𝑚𝑘 .

Multiindex
A multiindex 𝑖𝑝, … , 𝑖𝑞 is an index which takes all possible combinations of the underlying
indices 𝑖𝑝, … , 𝑖𝑞. Using colexicographical ordering2 the index is given by

𝑖𝑝, … , 𝑖𝑞 =
𝑞

∑
𝑘=𝑝

(
𝑘−1
∏
𝑗=𝑝

𝑛𝑗) 𝑖𝑘. (3.2)

This allows us to consider tensors as vectors by using a single multiindex of all indices.
This is referred to as linearization. We will often use linearization and therefore introduce
a shortened notation

𝑥[ ∶ ] = 𝑥(∶ , … , ∶) = 𝑥(∶ , … , ∶) (3.3)

with 𝑥[ ∶ ] ∈ ℂ∏𝑑
𝑘 𝑛𝑘 .

2Colexicographical ordering means that the last index 𝑖𝑞 is the slowest changing index when storing
multidimensional objects in linear storage.
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3.4 Basic operations

Similarly, we also define a linearization for tensor operators which allows us to consider
these as matrices given by

𝑋[∶ , ∶ ] = 𝑋(∶ , … , ∶ ; ∶ , … , ∶ ) = 𝑋(∶ , … , ∶ ; ∶ , … , ∶ ) (3.4)

with 𝑋[∶ , ∶ ] ∈ ℂ𝑚1⋯𝑚𝑑 × 𝑛1⋯𝑛𝑑 .3

3.4 Basic operations
Many basic operations which are defined for vectors or matrices can easily be applied to
the multidimensional case of tensors. This is especially true for element-wise operations,
e.g., addition, subtraction or the element-wise multiplication. We will not define these
obvious operations. However, for some operations this is not obvious and sometimes
there is no unique definition. This applies in particular to the different types of products.

Tensor product

Given two tensors 𝑎 ∈ ℂ×𝑑
𝑘 𝑚𝑘 and 𝑏 ∈ ℂ×𝑓

𝑘 𝑛𝑘 the tensor product4 𝑐 = 𝑎 ⊗ 𝑏 is given by

𝑐(𝑖1, … , 𝑖𝑑, 𝑗1, … , 𝑗𝑓) = 𝑎(𝑖1, … , 𝑖𝑑) 𝑏(𝑗1, … , 𝑗𝑓) (3.5)

with 𝑐 ∈ ℂ𝑚1 ×⋯ × 𝑚𝑑 × 𝑛1 ×⋯ × 𝑛𝑓 .

Kronecker product
The Kronecker product is usually defined for matrices only. Indeed, we only give the
definition for matrices to distinguish it from the tensor product: Given two matrices
𝐴 ∈ ℂ𝑚1 × 𝑛1 and 𝐵 ∈ ℂ𝑚2 × 𝑛2 the Kronecker product 𝐶 = 𝐴 ⊠ 𝐵 is given by

𝐶(𝑖2, 𝑖1, 𝑗2, 𝑗1) = 𝐴(𝑖1, 𝑗1) 𝐵(𝑖2, 𝑗2) (3.6)

with 𝐶 ∈ ℂ𝑚1𝑚2 × 𝑛1𝑛2 . However, given its definition for matrices the generalization to
higher dimensions is obvious. Note the symbol ⊠ – which is also used in [6] – to denote
the Kronecker product instead of the more usual ⊗. Often the same symbol ⊗ is used
for both operations. We use different symbols to avoid any confusion.

Operator-by-Tensor product

Given a tensor operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑛𝑘) and a tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 the operator-by-

tensor product 𝑐 = 𝐴 𝑏 with 𝑐 ∈ ℂ×𝑑
𝑘 𝑚𝑘 is given by

𝑐[𝑖] =
∏𝑑

𝑘 𝑛𝑘

∑
𝑠

𝐴[𝑖, 𝑠] 𝑏[𝑠] .5 (3.7)

3In other works, linearization is often referred to as vectorization for tensors and as matricization for
operators. However, there is no single naming nor notation, especially not for the matricization.

4The outer product, which is very similar to the tensor product and is usually defined for vectors, may
also be generalized for tensors. For two tensors 𝑎 and 𝑏 the outer product is given by 𝑐 = 𝑎 ⊗ℂ 𝑏 = 𝑎 ⊗ 𝑏∗.
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Chapter 3 – Tensors

Operator-by-Operator product

Given two tensor operators 𝐴 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑓

𝑘 𝑙𝑘) and 𝐵 ∈ ℂ(×𝑓
𝑘 𝑙𝑘) ×(×𝑑

𝑘 𝑛𝑘) the operator-
by-operator product 𝐶 = 𝐴 𝐵 with 𝐶 ∈ ℂ(×𝑑

𝑘 𝑚𝑘) ×(×𝑑
𝑘 𝑛𝑘) is given by

𝐶[𝑖, 𝑗] =
∏𝑑

𝑘 𝑙𝑘

∑
𝑠

𝐴[𝑖, 𝑠] 𝐵[𝑠, 𝑗] . (3.8)

Inner product
Given two tensors 𝑎 ∈ ℂ×𝑑

𝑘 𝑛𝑘 and 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 the inner product ⟨𝑎, 𝑏⟩ ∈ ℂ is given by

⟨𝑎, 𝑏⟩ = 𝑎† 𝑏 =
∏𝑑

𝑘 𝑛𝑘

∑
𝑖

(𝑎∗)[𝑖] 𝑏[𝑖] . (3.9)

Given two tensor operators 𝐴 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑛𝑘) and 𝐵 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑛𝑘) the (Frobe-
nius) inner product ⟨𝐴, 𝐵⟩ ∈ ℂ is given by

⟨𝐴, 𝐵⟩ = tr(𝐴† 𝐵) =
∏𝑑

𝑘 𝑚𝑘

∑
𝑖

∏𝑑
𝑘 𝑛𝑘

∑
𝑗

(𝐴∗)[𝑖, 𝑗] 𝐵[𝑖, 𝑗] . (3.10)

Norm
There are many different norms for vectors and matrices of which many can be general-
ized to higher dimensions. In higher dimensions we then distinguish between tensor and
operator norms instead of vector and matrix norms. We limit ourselves to the 𝑝-norm
for both tensors and operators. The 𝑝-norm is given by

‖𝑥‖𝑝 = ⎛⎜⎜
⎝

∏𝑑
𝑘 𝑛𝑘

∑
𝑖

|𝑥[𝑖]|𝑝⎞⎟⎟
⎠

1
𝑝

and ‖𝑋‖𝑝 = ⎛⎜⎜
⎝

∏𝑑
𝑘 𝑚𝑘

∑
𝑖

∏𝑑
𝑘 𝑛𝑘

∑
𝑗

|𝑋[𝑖, 𝑗]|𝑝⎞⎟⎟
⎠

1
𝑝

(3.11)

for a tensor 𝑥 and tensor operator 𝑋, respectively. In most cases we use the 2-norm which
is also known as Euclidian norm in case of vectors, Frobenius norm in case of matrices,
and canonical norm as it is induced by the inner product as following for tensors and
operators:6

‖𝑥‖ = ‖𝑥‖2 =√⟨𝑥, 𝑥⟩ ‖𝑋‖ = ‖𝑋‖2 =√⟨𝑋, 𝑋⟩ (3.12)

5We do not define the tensor-by-operator product as it is already defined by the operator-by-tensor
product due to the property 𝑐 = 𝑏 𝐴 = (𝐴𝑇 𝑏𝑇 )𝑇 = 𝐴𝑇 𝑏. Note that we do not distinguish between a
tensor and its transposed for brevity, i.e., we do not distinguish between column and row vectors, but
simply always assume that tensors are of the correct type in each operation.

6For the canonical norm we usually omit the explicit two in ‖.‖2.
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Chapter 4

Tensor Train Decomposition

There exit many different decompositions for vectors, matrices, and multidimensional
tensors. Some of these decompositions are defined in terms of specific properties of their
individual parts. Others reveal interesting properties of the original object. In this chap-
ter we look at decompositions that factorize multidimensional tensors into sums and
products of lower dimensional tensors, where the total storage cost of all factors is lower
than the storage cost of the multidimensional tensor itself. This is crucial for multidi-
mensional tensors since the storage cost of storing them explicitly increases exponentially
with their dimension 𝑑. For this use case various different tensor decompositions have
been proposed. We restrict ourselves to the Tensor Train (TT) decomposition [7, 8].
Other possible decompositions are, e.g., Tucker [9] and Hierarchical Tucker [10, 11, 12].
Indeed the TT format can be derived as a special case from the Hierarchical Tucker
format. Note that one of the main issues of interest for all these decompositions is how
to find an optimal exact representation or approximation of a high dimensional tensor.
We will not look into this particular issue as we will later show that all tensors in the
MHN are either given in a format convertible to the TT format or a TT representation
can easily be found.

In this chapter we first introduce two basic tensor decompositions folowed by the TT
format. For the TT format we will then introduce important properties and describe how
to perform basic operations. Next we introduce the very important rounding operation,
which can be used to approximate tensors in the TT format with tensors, again in the TT
format, with lower storage requirements. We then show how linear systems of equations
can be solved in the TT format and how to utilize one of these techniques to accelerate
the approximate evaluation of linear algebra operations.

At this point it should already be pointed out that no uniform notation and naming for
TT exists. Depending on the field of research the format itself and algorithms developed
for it are known under different names. Rather than referencing the various names
throughout the chapter, we use one naming convention and notation, and give a brief
overview of the corresponding names used in other disciplines at the end of this chapter.
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Chapter 4 – Tensor Train Decomposition

4.1 Rank-One Tensors
A tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 is rank one if there exist 𝑥(𝑘) ∈ ℂ𝑛𝑘 ∀𝑘 = 1, … , 𝑑 such that

𝑥 =
𝑑

⨂
𝑘

𝑥(𝑘). (4.1)

This means that all of its elements are defined by

𝑥(𝑖1, … , 𝑖𝑑) =
𝑑

∏
𝑘

𝑥(𝑘)(𝑖𝑘) . (4.2)

4.2 CP Decomposition
The idea of the CP decomposition is to express a tensor as the sum of a finite number
of rank-one tensors. While this has been first proposed in [13] this decomposition has
been named CANDECOMP/PARAFAC (CP) [14] after its introduction in [15] and [16].
For an overview of different names for the CP decomposition see [17, Table 3.1].

The CP decomposition of a tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 is given by

𝑥 =
𝑟

∑
𝛼

𝑥𝛼 =
𝑟

∑
𝛼

𝑑
⨂

𝑘
𝑥(𝑘)

𝛼 (4.3)

with factors 𝑥(𝑘)
𝛼 ∈ ℂ𝑛𝑘 and rank1 𝑟 ∈ ℕ+.

Using element-wise notation (4.3) may be written as

𝑥(𝑖1, … , 𝑖𝑑) =
𝑟

∑
𝛼

𝑑
∏

𝑘
𝑥(𝑘)

𝛼 (𝑖𝑘) . (4.4)

A core advantage of the CP decomposition is its low storage cost of 𝒪(𝑟 ∑𝑑
𝑘 𝑛𝑘). How-

ever, the format suffers from two crucial drawbacks. First, determining the optimal rank
of a given tensor 𝑥 is an NP-hard problem [18]. This is negligible in case all tensors are
given in CP format. Second, approximation of a tensor in CP format with one of a lower
rank can be an ill-posed problem [19]. Although methods for computing the best low-
rank approximation in the CP format exist, cf. [20], these are not guaranteed to work
and might even fail if a good approximation is known to exist. This is an issue as many
operations on tensors in CP format yield results in CP format with increased rank. This
leads to steadily increasing ranks and hence to increased storage cost and computational
complexity in many cases. This is an issue especially for iterative algorithms.

1Note that in [13] the rank of a tensor 𝑥 is defined as the smallest number of summands 𝑟 required
to express a tensor 𝑥 as a sum of rank-one tensors. For simplicity we call the number of summands 𝑟 of
a particular CP representation rank regardless of whether it is the optimal rank.
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4.3 Tensor Train Format

The TT decomposition, which we describe next, suffers from similar drawbacks. Its
main advantage is that the approximation of a TT tensor with one of lower ranks is not
an ill-posed problem, i.e., a method to calculate the best low-rank approximation exists
and is guaranteed to work. This leads to a significantly increased usability. For many
applications, this is even what makes the TT format usable in the first place.

4.3 Tensor Train Format
A tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 is said to be in the TT format if all of its elements are defined by

𝑥(𝑖1, … , 𝑖𝑑) =
𝑑

∏
𝑘

𝑥(𝑘)( ∶ , 𝑖𝑘, ∶ ) (4.5)

with cores 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 and ranks 𝑟𝑘 ∈ ℕ+. Boundary conditions 𝑟0 = 𝑟𝑑 = 1
are imposed to make the right-hand side a scalar.2 We refer to tensors in the TT format
as TT tensors for brevity. For simplicity in estimating storage cost and computational
complexity we also define the rank 𝑟 ≔ max𝑘 𝑟𝑘. Similarly we define the maximum of all
mode sizes 𝑛 ≔ max𝑘 𝑛𝑘. Then the storage cost of the TT decomposition is of 𝒪(𝑑𝑛𝑟2).
The computational complexity to evaluate a single entry of 𝑥 is of 𝒪(𝑑𝑟2).3

Respectively, a linear operator 𝑋 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑛𝑘) is said to be in the TT format if all
of its elements are defined by

𝑋(𝑖1, … , 𝑖𝑑; 𝑗1, … , 𝑗𝑑) =
𝑑

∏
𝑘

𝑋(𝑘)( ∶ , 𝑖𝑘, 𝑗𝑘, ∶ ) (4.6)

with cores 𝑋(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑚𝑘 × 𝑛𝑘 × 𝑟𝑘 . As with tensors, we refer to linear operators in the
TT format as TT operators.

Throughout this chapter we often refer to TT tensors only although the same is appli-
cable to TT operators. This can be easily seen as a TT operator 𝑋 ∈ ℂ(×𝑑

𝑘 𝑚𝑘) ×(×𝑑
𝑘 𝑛𝑘)

may be viewed as a TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑚𝑘𝑛𝑘 at any time by using multiindices 𝑖𝑘, 𝑗𝑘,

i.e., its cores are defined by

𝑥(𝑘)( ∶ , 𝑖𝑘, 𝑗𝑘, ∶ ) = 𝑋(𝑘)( ∶ , 𝑖𝑘, 𝑗𝑘, ∶ ) . (4.7)

In cases where there is a difference, we specifically mention TT operators.

2Strictly speaking the right-hand side is an element of ℂ1 × 1 ≅ ℂ. It would therefore be necessary to
take the trace of the right-hand side to obtain a scalar. For brevity we omit the trace.

3At first glance it seems that 𝑑 − 1 matrix-by-matrix products have to be evaluated. Exploiting the
fact that the first and last core are indeed vectors – not matrices – for fixed indices 𝑖𝑘 these can be
replaced by matrix-by-vector products.
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Chapter 4 – Tensor Train Decomposition

4.4 Conversion from CP to Tensor Train

We first rewrite (4.5) to emphasize the differences from the CP decomposition.

𝑥 =
𝑟0

∑
𝛼0

⋯
𝑟𝑑

∑
𝛼𝑑

𝑑
⨂

𝑘
𝑥(𝑘)(𝛼𝑘−1, ∶ , 𝛼𝑘) (4.8)

𝑥(𝑖1, … , 𝑖𝑑) =
𝑟0

∑
𝛼0

⋯
𝑟𝑑

∑
𝛼𝑑

𝑑
∏

𝑘
𝑥(𝑘)(𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) (4.9)

With these it is easy to define the conversion from CP to the TT format by comparing
(4.8) to (4.3) or (4.9) to (4.4) and paying attention to the boundary condition 𝑟0 = 𝑟𝑑 = 1.

Let ̃𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 be a tensor in CP format with rank ̃𝑟. Then a tensor 𝑥 = ̃𝑥 in TT format

is given by

𝑥(𝑘)(𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) =
⎧{
⎨{⎩

̃𝑥(𝑘)
𝛼𝑘 (𝑖𝑘) for 𝑘 = 1

𝛿(𝛼𝑘−1, 𝛼𝑘) ̃𝑥(𝑘)
𝛼𝑘 (𝑖𝑘) ∀ 𝑘 = 2, … , 𝑑 − 1

̃𝑥(𝑘)
𝛼𝑘−1(𝑖𝑘) for 𝑘 = 𝑑

(4.10)

with cores 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 and ranks 𝑟𝑘 = ̃𝑟 ∀1 ≤ 𝑘 < 𝑑. The conversion does not
require any arithmetic operations, but merely consists of reshaping objects. Hence the
computational complexity is given by the required copies which are of 𝒪(𝑑𝑛𝑟2). In the
special case of a rank-one tensor, i.e., ̃𝑟 = 1, (4.10) may be simplified to 𝑥(𝑘)[ ∶ ] = ̃𝑥(𝑘)( ∶ ).

An alternative approach is to first convert all ̃𝑟 rank-one tensors ̃𝑥𝛼 to the TT format
and then evaluate the sum in the TT format. Both approaches yield the same result.

4.5 Notation

In this chapter we introduce various notations which we will use throughout the rest
of the work to ease working with the TT format. Throughout this section 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘

is a TT tensor with cores 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 , 𝑋 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑛𝑘) is a TT operator
with cores 𝑋(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑚𝑘 × 𝑛𝑘 × 𝑟𝑘 , and 𝑘, 𝑝, 𝑞 are indices with suitable conditions, e.g.,
𝑝 < 𝑞.

Core notation for TT tensor and TT operator:

𝑥(𝑘)⟨𝑖𝑘⟩ = 𝑥(𝑘)( ∶ , 𝑖𝑘, ∶ )
𝑋(𝑘)⟨𝑖𝑘, 𝑗𝑘⟩ = 𝑋(𝑘)( ∶ , 𝑖𝑘, 𝑗𝑘, ∶ )
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4.5 Notation

Subtrain of TT tensor and TT operator:

𝑥(𝑝∶𝑞)⟨𝑖𝑝, … , 𝑖𝑞⟩ =
𝑞

∏
𝑘=𝑝

𝑥(𝑘)⟨𝑖𝑘⟩ , 𝑥(𝑝∶𝑞) ∈ ℂ𝑟𝑝−1 × 𝑛𝑝⋯𝑛𝑞 × 𝑟𝑞

𝑋(𝑝∶𝑞)⟨𝑖𝑝, … , 𝑖𝑞, 𝑗𝑝, … , 𝑗𝑞⟩ =
𝑞

∏
𝑘=𝑝

𝑋(𝑘)⟨𝑖𝑘, 𝑗𝑘⟩ , 𝑋(𝑝∶𝑞) ∈ ℂ𝑟𝑝−1 × 𝑚𝑝⋯𝑚𝑞 × 𝑛𝑝⋯𝑛𝑞 × 𝑟𝑞

Linearized core and subtrain of TT tensor:

𝑥[𝑘](𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) = 𝑥(𝑘)(𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) , 𝑥[𝑘] ∈ ℂ𝑟𝑘−1𝑛𝑘𝑟𝑘

𝑥[𝑝∶𝑞](𝛼𝑝−1, 𝑖𝑝, … , 𝑖𝑞, 𝛼𝑞) = 𝑥(𝑝∶𝑞)(𝛼𝑝−1, 𝑖𝑝, … , 𝑖𝑞, 𝛼𝑞) , 𝑥[𝑝∶𝑞] ∈ ℂ𝑟𝑝−1𝑛𝑝⋯𝑛𝑞𝑟𝑞

Left-folded TT tensor core:

𝑥|𝑘⟩(𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) = 𝑥(𝑘)(𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) , 𝑥|𝑘⟩ ∈ ℂ𝑟𝑘−1𝑛𝑘 × 𝑟𝑘

Right-folded TT tensor core:

𝑥⟨𝑘|(𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) = 𝑥(𝑘)(𝛼𝑘−1, 𝑖𝑘, 𝛼𝑘) , 𝑥⟨𝑘| ∈ ℂ𝑟𝑘−1 × 𝑛𝑘𝑟𝑘

Folded TT operator core:

𝑋|𝑘|(𝛼𝑘−1, 𝑖𝑘, 𝑗𝑘, 𝛼𝑘) = 𝑋(𝑘)(𝛼𝑘−1, 𝑖𝑘, 𝑗𝑘, 𝛼𝑘) , 𝑋|𝑘| ∈ ℂ𝑟𝑘−1𝑚𝑘 × 𝑛𝑘𝑟𝑘

Left-folded subtrain of TT tensor:

𝑥|𝑝∶𝑞⟩(𝛼𝑝−1, 𝑖𝑝, … , 𝑖𝑞, 𝛼𝑞) = 𝑥(𝑝∶𝑞)(𝛼𝑝−1, 𝑖𝑝, … , 𝑖𝑞, 𝛼𝑞) , 𝑥|𝑝∶𝑞⟩ ∈ ℂ𝑟𝑝−1𝑛𝑝⋯𝑛𝑞 × 𝑟𝑞

Right-folded subtrain of TT tensor:

𝑥⟨𝑝∶𝑞|(𝛼𝑝−1, 𝑖𝑝, … , 𝑖𝑞, 𝛼𝑞) = 𝑥(𝑝∶𝑞)(𝛼𝑝−1, 𝑖𝑝, … , 𝑖𝑞, 𝛼𝑞) , 𝑥⟨𝑝∶𝑞| ∈ ℂ𝑟𝑝−1 × 𝑛𝑝⋯𝑛𝑞𝑟𝑞

Folded subtrain of TT tensor:

𝑥|𝑘∶𝑘+1|(𝛼𝑘−1, 𝑖𝑘, 𝑖𝑘+1, 𝛼𝑘+1) = 𝑥(𝑘∶𝑘+1)(𝛼𝑘−1, 𝑖𝑘, 𝑖𝑘+1, 𝛼𝑘+1) , 𝑥|𝑘∶𝑘+1| ∈ ℂ𝑟𝑘−1𝑛𝑘 × 𝑛𝑘+1𝑟𝑘+1

Frame matrix of a core and subtrain of TT tensor:

𝑥!(𝑘) = 𝑥|1∶𝑘−1⟩ ⊠ Id𝑛𝑘
⊠ 𝑥⟨𝑘+1∶𝑑|𝑇 , 𝑥!(𝑘) ∈ ℂ𝑛1⋯𝑛𝑑 × 𝑟𝑘−1𝑛𝑘𝑟𝑘

𝑥!(𝑝∶𝑞) = 𝑥|1∶𝑝−1⟩ ⊠ Id𝑛𝑝⋯𝑛𝑞
⊠ 𝑥⟨𝑞+1∶𝑑|𝑇 , 𝑥!(𝑝∶𝑞) ∈ ℂ𝑛1⋯𝑛𝑑 × 𝑟𝑝−1𝑛𝑝⋯𝑛𝑞𝑟𝑞
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Chapter 4 – Tensor Train Decomposition

4.6 Linearity
The TT format is linear in its cores. This follows directly from the definition of the
TT format for tensors in (4.5) and operators in (4.6). The linearity allows us to write
a given TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 as a product of its frame matrix of the 𝑘-th core or 𝑝 to
𝑞-th subtrain and its linearized 𝑘-th core or 𝑝 to 𝑞-th subtrain, respectively,

𝑥 = 𝑥!(𝑘) 𝑥[𝑘] = 𝑥!(𝑝∶𝑞) 𝑥[𝑝∶𝑞]. (4.11)

4.7 Uniqueness
The TT representation of a tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 is not unique. Given a TT representation
of a tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with cores 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 an equivalent representation ̃𝑥 = 𝑥
with cores ̃𝑥(𝑘) ∈ ℂ ̃𝑟𝑘−1 × 𝑛𝑘 × ̃𝑟𝑘 is evidently given by

̃𝑥(𝑘)⟨𝑖𝑘⟩ ≔ 𝑃 −1
𝑘−1 𝑥(𝑘)⟨𝑖𝑘⟩ 𝑃𝑘 ∀𝑘 = 1, … , 𝑑 (4.12)

with 𝑃𝑘 ∈ ℂ𝑟𝑘 × ̃𝑟𝑘 and its right inverse 𝑃 −1
𝑘 ∈ ℂ ̃𝑟𝑘 × 𝑟𝑘 . From (4.12) we can derive two

special cases which will be useful later:

i) Given two TT representations ̃𝑥 and 𝑥 of a tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with ̃𝑥(𝑘) = 𝑥(𝑘)

for all but the 𝑝-th and (𝑝 + 1)-th core where 1 ≤ 𝑝 < 𝑑, the representations are
equivalent if

̃𝑥|𝑝⟩ = 𝑐|𝑝⟩ and ̃𝑥⟨𝑝+1| = 𝑅 𝑥⟨𝑝+1| where 𝑥|𝑝⟩ = 𝑐|𝑝⟩ 𝑅 (4.13)

with 𝑐(𝑝) ∈ ℂ𝑟𝑝−1 × 𝑛𝑝 × ̃𝑟𝑝 and 𝑅 ∈ 𝐶 ̃𝑟𝑝 × 𝑟𝑝 and it holds ̃𝑟𝑘 = 𝑟𝑘 ∀𝑘 ≠ 𝑝.4

ii) Given two TT representations ̃𝑥 and 𝑥 of a tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with ̃𝑥(𝑘) = 𝑥(𝑘)

for all but the 𝑝-th and (𝑝 − 1)-th core where 1 < 𝑝 ≤ 𝑑, the representations are
equivalent if

̃𝑥⟨𝑝| = 𝑐⟨𝑝| and ̃𝑥|𝑝−1⟩ = 𝑥|𝑝−1⟩ 𝐿 where 𝑥⟨𝑝| = 𝐿 𝑐⟨𝑝| (4.14)

with 𝑐(𝑝) ∈ ℂ ̃𝑟𝑝−1 × 𝑛𝑝 × 𝑟𝑝 and 𝐿 ∈ 𝐶𝑟𝑝−1 × ̃𝑟𝑝−1 and it holds ̃𝑟𝑘 = 𝑟𝑘 ∀𝑘 ≠ 𝑝 − 1.

4.8 Basic operations
In this section we will introduce several basic operations which are supported in the TT
format. For most we will simply describe how to execute the operation, but give no
derivation. An explicit derivation is not required in most cases as it simply consists of
using (4.5) or (4.6) followed by basic mathematical transformations. For each operation
we will also give an estimate of its computational complexity. Note that not all operations
defined on tensors or linear operators can be evaluated in the TT format.

4We make use of the core notation here to indicate that 𝑐(𝑝) has the structure of a core.
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4.8 Basic operations

4.8.1 Scalar multiplication
Given a TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with cores 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 and a scalar 𝜆 ∈ ℂ, the
multiplication 𝑦 = 𝜆 𝑥 is a TT tensor with cores 𝑦(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 . The cores 𝑦(𝑘) are
not uniquely defined. A possible definition is to multiply one of the 𝑑 cores by 𝜆, e.g.,
multiply the first core with 𝜆 in which case the cores are defined by

𝑐(1) = 𝜆 𝑎(1) and 𝑐(𝑘) = 𝑎(𝑘) ∀𝑘 = 2, … , 𝑑. (4.15)

An equivalent approach is to scale all cores by the same scalar, i.e., define the cores by

𝑐(1) = sgn(𝜆) 𝑑√|𝜆| 𝑎(1) and 𝑐(𝑘) = 𝑑√|𝜆| 𝑎(𝑘) ∀𝑘 = 2, … , 𝑑. (4.16)

Although the first approach requires less arithmetic operations it still requires copying
all other cores, i.e., the computational complexity of both is 𝒪(𝑑𝑛𝑟2). The advantage of
the second approach is a potentially increased numerical stability by ensuring that the
norms of all cores are in a similar range if that was the case prior to scaling 𝑎 by 𝜆.

4.8.2 Addition
For TT tensors 𝑎, 𝑏 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with cores 𝑎(𝑘) ∈ ℂ𝑟(𝑎)
𝑘−1 × 𝑛𝑘 × 𝑟(𝑎)

𝑘 and 𝑏(𝑘) ∈ ℂ𝑟(𝑏)
𝑘−1 × 𝑛𝑘 × 𝑟(𝑏)

𝑘

the sum 𝑐 = 𝑎 + 𝑏 is a TT tensor with its cores 𝑐(𝑘) ∈ ℂ𝑟(𝑎)
𝑘−1+𝑟(𝑏)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑎)
𝑘 +𝑟(𝑏)

𝑘 defined by

𝑐(1)⟨𝑖1⟩ = [𝑎(1)⟨𝑖1⟩ 𝑏(1)⟨𝑖1⟩] ,

𝑐(𝑘)⟨𝑖𝑘⟩ = [𝑎(𝑘)⟨𝑖𝑘⟩ 0
0 𝑏(𝑘)⟨𝑖𝑘⟩] ∀𝑘 = 2, … , 𝑑 − 1,

𝑐(𝑑)⟨𝑖𝑑⟩ = [𝑎(𝑑)⟨𝑖𝑑⟩
𝑏(𝑑)⟨𝑖𝑑⟩] . (4.17)

The addition of two TT tensors requires no arithmetic operations. The computational
complexity is given by the amount of data to copy, which is of 𝒪(𝑑𝑛 (𝑟(𝑎) + 𝑟(𝑏))2).

4.8.3 Element-wise product

For TT tensors 𝑎, 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with cores 𝑎(𝑘) ∈ ℂ𝑟(𝑎)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑎)
𝑘 and 𝑏(𝑘) ∈ ℂ𝑟(𝑏)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑏)
𝑘 the

element-wise product 𝑐 = 𝑎 ⊙ 𝑏 is a TT tensor with its cores 𝑐(𝑘) ∈ ℂ𝑟(𝑎)
𝑘−1𝑟(𝑏)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑎)
𝑘 𝑟(𝑏)

𝑘

defined by

𝑐(𝑘)⟨𝑖𝑘⟩ = 𝑎(𝑘)⟨𝑖𝑘⟩ ⊠ 𝑏(𝑘)⟨𝑖𝑘⟩ ∀𝑘 = 1, … , 𝑑. (4.18)

The element-wise product requires 𝒪(𝑑𝑛 (𝑟(𝑎)𝑟(𝑏))2) arithmetic operations.
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4.8.4 Inner product

For TT tensors 𝑎, 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with cores 𝑎(𝑘) ∈ ℂ𝑟(𝑎)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑎)
𝑘 and 𝑏(𝑘) ∈ ℂ𝑟(𝑏)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑏)
𝑘

the inner product is given by

⟨𝑎, 𝑏⟩ =
𝑑

∏
𝑘

(
𝑛𝑘

∑
𝑖𝑘

𝑎(𝑘)∗⟨𝑖𝑘⟩ ⊠ 𝑏(𝑘)⟨𝑖𝑘⟩) . (4.19)

The straightforward implementation, calculating the element-wise product followed by
summation over all mode sizes and ranks, requires 𝒪(𝑑𝑛 (𝑟(𝑎)𝑟(𝑏))2) arithmetic opera-
tions. By reordering the summation, not explicitly evaluating the Kronecker product,
using auxiliary objects, and exploiting the boundary conditions 𝑟0 = 𝑟𝑑 = 1 the cost can
be reduced to 𝒪(𝑑𝑛𝑟(𝑎)𝑟(𝑏) (𝑟(𝑎) + 𝑟(𝑏))), see Alg. 4.1.5 Note that this recursive calcula-
tion is prone to numerical instabilities, in particular due to numerical underflows. Hence
we normalize the auxiliary object 𝑠 in every step and scale it accordingly afterwards.6

Algorithm 4.1: Inner product in the TT format

Input: TT tensors 𝑎, 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘

Output: Inner Product 𝑠 = ⟨𝑎, 𝑏⟩
1 Initialize 𝑠 ≔ Id1 and 𝜆 ≔ 0
2 for 𝑘 = 1 to 𝑑 do

3 𝑠 ≔
𝑟(𝑎)

𝑘−1
∑

𝛼(𝑎)
𝑘−1

[𝑠(𝛼(𝑎)
𝑘−1, ∶) ⊗ 𝑎(𝑘)∗(𝛼(𝑎)

𝑘−1, ∶ , ∶)] // 𝑠 ∈ ℂ𝑟(𝑏)
𝑘−1 × 𝑛𝑘 × 𝑟(𝑎)

𝑘

4 𝑠 ≔
𝑛𝑘
∑
𝑖𝑘

𝑟(𝑏)
𝑘−1
∑

𝛼(𝑏)
𝑘−1

[𝑠(𝛼(𝑏)
𝑘−1, 𝑖𝑘, ∶) ⊗ 𝑏(𝑘)(𝛼(𝑏)

𝑘−1, 𝑖𝑘, ∶)] // 𝑠 ∈ ℂ𝑟(𝑎)
𝑘 × 𝑟(𝑏)

𝑘

5 𝜆 ≔ 𝜆 + log(‖𝑠‖)
6 𝑠 ≔ ‖𝑠‖−1 𝑠
7 return 𝑠 ≔ exp(𝜆) 𝑠 // 𝑠 ∈ ℂ𝑟(𝑎)

𝑑 ×𝑟(𝑏)
𝑑 = ℂ1×1 ≅ ℂ

5A partial derivation of this approach is given in Sec. B.1.
6Calculating a product of numbers ∏𝑖 𝜆𝑖 where |𝜆𝑖| < 1 can result in numerical underflow. In Alg. 4.1

𝜆𝑖 ≥ 0 ∀𝑖, hence we can use the equality ∏𝑖 𝜆𝑖 = exp(∑𝑖 log(𝜆𝑖)) to avoid this issue.
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4.8.5 Operator-by-Tensor product

For TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑛𝑘) and TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with cores 𝐴(𝑘) ∈

ℂ𝑟(𝐴)
𝑘−1 × 𝑚𝑘 × 𝑛𝑘 × 𝑟(𝐴)

𝑘 and 𝑏(𝑘) ∈ ℂ𝑟(𝑏)
𝑘−1 × 𝑛𝑘 × 𝑟(𝑏)

𝑘 the operator-by-tensor product 𝑐 = 𝐴 𝑏 is a
TT tensor with its cores 𝑐(𝑘) ∈ ℂ𝑟(𝐴)

𝑘−1𝑟(𝑏)
𝑘−1 × 𝑚𝑘 × 𝑟(𝐴)

𝑘 𝑟(𝑏)
𝑘 defined by

𝑐(𝑘) ⟨𝑖𝑘⟩ =
𝑛𝑘

∑
𝑗𝑘

[𝐴(𝑘) ⟨𝑖𝑘, 𝑗𝑘⟩ ⊠ 𝑏(𝑘) ⟨𝑗𝑘⟩] ∀𝑘 = 1, … , 𝑑. (4.20)

The operator-by-tensor product requires 𝒪(𝑑𝑚𝑛 (𝑟(𝐴)𝑟(𝑏))2) arithmetic operations.

4.8.6 Operator-by-Operator product

For TT operators 𝐴 ∈ ℂ(×𝑑
𝑘 𝑚𝑘) ×(×𝑑

𝑘 𝑙𝑘) and 𝐵 ∈ ℂ(×𝑑
𝑘 𝑙𝑘) ×(×𝑑

𝑘 𝑛𝑘) with cores 𝐴(𝑘) ∈
ℂ𝑟(𝐴)

𝑘−1 × 𝑚𝑘 × 𝑙𝑘 × 𝑟(𝐴)
𝑘 and 𝐵(𝑘) ∈ ℂ𝑟(𝐴)

𝑘−1 × 𝑙𝑘 × 𝑛𝑘 × 𝑟(𝐴)
𝑘 the operator-by-operator product

𝐶 = 𝐴 𝐵 is a TT operator with its cores 𝐶(𝑘) ∈ ℂ𝑟(𝐴)
𝑘−1𝑟(𝐵)

𝑘−1 × 𝑚𝑘 × 𝑛𝑘 × 𝑟(𝐴)
𝑘 𝑟(𝐵)

𝑘 defined by

𝐶(𝑘) ⟨𝑖𝑘, 𝑗𝑘⟩ =
𝑙𝑘

∑
ℎ𝑘

[𝐴(𝑘) ⟨𝑖𝑘, ℎ𝑘⟩ ⊠ 𝐵(𝑘) ⟨ℎ𝑘, 𝑗𝑘⟩] ∀𝑘 = 1, … , 𝑑. (4.21)

The operator-by-operator product requires 𝒪(𝑑𝑙𝑚𝑛 (𝑟(𝐴)𝑟(𝐵))2) arithmetic operations.

4.9 Orthogonality
In this section we will introduce the important property of TT tensors and operators
called orthogonality.7 We will often use this property throughout the rest of this chapter.

4.9.1 Definition
A TT core 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 is called left-orthogonal if

𝑥|𝑘⟩† 𝑥|𝑘⟩ =
𝑛𝑘

∑
𝑖𝑘

𝑥(𝑘)⟨𝑖𝑘⟩† 𝑥(𝑘)⟨𝑖𝑘⟩ = Id𝑟𝑘
. (4.22)

Given a TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with cores 𝑥(𝑘) left-orthogonal ∀𝑘 = 1, … , 𝑝 its subtrains

𝑥(1∶𝑞) with 1 ≤ 𝑞 ≤ 𝑝 are called left-orthogonal and it can be shown that

𝑥|1∶𝑞⟩† 𝑥|1∶𝑞⟩ = Id𝑟𝑞
∀𝑞 = 1, … , 𝑝. (4.23)

7Usually the term orthogonal is used for real matrices and unitary is used for complex matrices. To
be consistent with literature we use orthogonal independent of whether the TT tensor is real or complex.
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Chapter 4 – Tensor Train Decomposition

Respectively, a TT core 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 is called right-orthogonal if

𝑥⟨𝑘| 𝑥⟨𝑘|† =
𝑛𝑘

∑
𝑖𝑘

𝑥(𝑘)⟨𝑖𝑘⟩ 𝑥(𝑘)⟨𝑖𝑘⟩† = Id𝑟𝑘−1
. (4.24)

Given a TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with cores 𝑥(𝑘) right-orthogonal ∀𝑘 = 𝑝, … , 𝑑 its subtrains

𝑥(𝑞∶𝑑) with 𝑝 ≤ 𝑞 ≤ 𝑑 are called right-orthogonal and it can be shown that

𝑥⟨𝑞∶𝑑| 𝑥⟨𝑞∶𝑑|† = Id𝑟𝑞−1
∀𝑞 = 𝑝, … , 𝑑. (4.25)

Furthermore, the frame matrix 𝑥!(𝑘) of a TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 is called orthogonal if its

subtrains 𝑥(1∶𝑘−1) and 𝑥(𝑘+1∶𝑑) are left- or right-orthogonal, respectively.

The proof for (4.23) can be found in Sec. B.2. The proof for (4.25) is analogous.

4.9.2 Orthogonalization
Given a TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with cores 𝑥(𝑘) ∈ ℂ𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘 an equivalent repre-
sentation ̃𝑥 = 𝑥 with cores ̃𝑥(𝑘) ∈ ℂ ̃𝑟𝑘−1 × 𝑛𝑘 × ̃𝑟𝑘 whose 𝑝-th (1 ≤ 𝑝 < 𝑑) core ̃𝑥(𝑝) is
left-orthogonal may be obtained by following (4.13) and therefore setting

̃𝑥|𝑝⟩ ≔ 𝑄|𝑝⟩ and ̃𝑥⟨𝑝+1| ≔ 𝑅 𝑥⟨𝑝+1|, (4.26)

and ̃𝑥(𝑘) ≔ 𝑥(𝑘) otherwise where 𝑄|𝑝⟩ and 𝑅 are chosen such that

𝑥|𝑝⟩ = 𝑄|𝑝⟩ 𝑅 and 𝑄|𝑝⟩† 𝑄|𝑝⟩ = Id𝑟𝑝
. (4.27)

The QR decomposition of 𝑥|𝑝⟩ is an obvious choice which satisfies both conditions. Note
that while the ranks ̃𝑟𝑘 are equal to 𝑟𝑘 ∀𝑘 ≠ 𝑝, ̃𝑟𝑝 is not necessarily equal to 𝑟𝑝 as it
depends on the choice of 𝑄|𝑝⟩ and 𝑅. In particular, when using the thin [21] or reduced
[22] QR decomposition, ̃𝑟𝑝 = min{𝑟𝑝−1𝑛𝑝, 𝑟𝑝}, i.e., the ranks of ̃𝑥 might be lower than
the ranks of 𝑥 although 𝑥 = ̃𝑥.
Given a TT tensor 𝑥 an equivalent representation ̃𝑥 = 𝑥 with all but the last core left-
orthogonal may be obtained by repeating this method in a structured way as shown on
the left in Alg. 4.2. In practice we use a slightly modified Alg. 4.3 to improve numerical
stability by normalizing 𝑅 in each step before multiplying it with the neighboring core
and scale 𝑥(𝑑) accordingly afterwards.8 The computational complexity of both algorithms
is of 𝒪(𝑑𝑛𝑟3) and the rank ̃𝑟 has an upper bound of ∏𝑑

𝑘 𝑛𝑘.

The respective method and algorithm for right-orthogonalization are very similar and
have the same computational complexity and other properties. Since both methods are
very similar, both are shown side by side in Alg. 4.2 and 4.3.

8This is essentially the same idea we already employed for the inner product in Alg. 4.1.
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Algorithm 4.2: Orthogonalization of TT tensor

Input: TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘

Output: TT tensor ̃𝑥 = 𝑥

Output: ̃𝑥(1∶𝑑−1) left-orthogonal

1 Initialize 𝑝(1) ≔ 𝑥(1)

2 for 𝑘 = 1 to 𝑑 − 1 do
3 [ ̃𝑥|𝑘⟩, 𝑅] ≔ QR(𝑝|𝑘⟩)
4 𝑝⟨𝑘+1| ≔ 𝑅 𝑥⟨𝑘+1|

5 ̃𝑥(𝑑) ≔ 𝑝(𝑑)

Output: ̃𝑥(2∶𝑑) right-orthogonal

Initialize 𝑝(𝑑) ≔ 𝑥(𝑑)

for 𝑘 = 𝑑 to 2 by −1 do
[𝐿, ̃𝑥⟨𝑘|] ≔ LQ(𝑝⟨𝑘|)

𝑝|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
̃𝑥(1) ≔ 𝑝(1)

Algorithm 4.3: Orthogonalization of TT tensor with normalization

Input: TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘

Output: TT tensor ̃𝑥 = 𝑥

Output: ̃𝑥(1∶𝑑−1) left-orthogonal

1 Initialize 𝑝(1) ≔ 𝑥(1) and 𝜆 ≔ 0
2 for 𝑘 = 1 to 𝑑 − 1 do
3 [ ̃𝑥|𝑘⟩, 𝑅] ≔ QR(𝑝|𝑘⟩)
4 𝑝⟨𝑘+1| ≔ ‖𝑅‖−1 𝑅 𝑥⟨𝑘+1|

5 𝜆 ≔ 𝜆 + log(‖𝑅‖)
6 ̃𝑥(𝑑) ≔ exp(𝜆) 𝑝(𝑑)

Output: ̃𝑥(2∶𝑑) right-orthogonal

Initialize 𝑝(𝑑) ≔ 𝑥(𝑑) and 𝜆 ≔ 0
for 𝑘 = 𝑑 to 2 by −1 do

[𝐿, ̃𝑥⟨𝑘|] ≔ LQ(𝑝⟨𝑘|)
𝑝|𝑘−1⟩ ≔ ‖𝐿‖−1 𝑥|𝑘−1⟩ 𝐿

𝜆 ≔ 𝜆 + log(‖𝐿‖)
̃𝑥(1) ≔ exp(𝜆) 𝑝(1)

4.9.3 Norm

The orthogonality of a TT tensor is not directly related to its norm, but merely gives us
another approach to calculate its norm. Given a TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with orthogonal
frame matrix 𝑥!(𝑝) where 1 ≤ 𝑝 ≤ 𝑑, its norm is given by

‖𝑥‖ = ∥𝑥(𝑝)∥ . (4.28)

The proof of this assertion can be found in Sec. B.3. This allows us to compute the
norm of 𝑥 either by orthogonalization or inner product ⟨𝑥, 𝑥⟩. Both approaches require
𝒪(𝑑𝑛𝑟3) arithmetic operations. However, the latter suffers from worse numerical stabil-
ity, especially if we use one of the modified variants with improved numerical stability
for the former.
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4.10 Rounding
We have seen in Sec. 4.8 that almost all of the basic operations may increase the ranks
of a TT tensor leading to an increased storage and computational cost for subsequent
operations. Especially for iterative algorithms this can quickly lead to very large ranks
nullifying the benefits of using the TT format. Furthermore, the resulting TT tensor of
many operations suffers from suboptimal ranks, i.e., an equivalent representation of the
same tensor with lower ranks exists. For example when adding up the same TT tensor
all ranks are doubled. However, we can also compute the same quantity by scaling the
TT tensor by two which does not increase the ranks. Apparently the addition leads to
suboptimal ranks.

Even though the left- and right-orthogonalization may be used to obtain an equivalent
representation with possible lower ranks this is not a sufficient solution as its behavior
depends on the mode sizes and can not be controlled. Furthermore, we do not always
require the full accuracy but want to approximate a tensor maintaining a given accuracy.
In other words, we want to find the best possible representation minimizing all ranks
approximating the original tensor with a given accuracy.

Before we describe the method to obtain such a representation, let’s first remember
that a similar problem with a well-known solution exists for matrices: Given a matrix
𝐴 ∈ ℂ𝑚 × 𝑛 the singular value decomposition (SVD) is given by9

𝐴(𝑖, 𝑗) =
𝑟

∑
𝛼

𝑈(𝑖, 𝛼) 𝑆(𝛼, 𝛼) 𝑉 (𝛼, 𝑗) (4.29)

with 𝑈 ∈ ℂ𝑚 × 𝑟 left-orthogonal10, 𝑆 ∈ ℂ𝑟 × 𝑟 diagonal matrix of singular values in de-
scending order, 𝑉 ∈ ℂ𝑟 × 𝑛 right-orthogonal10, and 𝑟 = min{𝑚, 𝑛}11. An approximation

̃𝐴 ≈ 𝐴 is given by considering only the ̃𝑟 < 𝑟 largest singular values of 𝐴

̃𝐴(𝑖, 𝑗) =
̃𝑟

∑
𝛼

𝑈(𝑖, 𝛼) 𝑆(𝛼, 𝛼) 𝑉 (𝛼, 𝑗) =
̃𝑟

∑
𝛼

̃𝑈(𝑖, 𝛼) ̃𝑆(𝛼, 𝛼) ̃𝑉 (𝛼, 𝑗) (4.30)

with absolute error

∥𝐴 − ̃𝐴∥ =
√√√
⎷

𝑟
∑

𝛼= ̃𝑟+1
𝑆(𝛼, 𝛼)2 . (4.31)

̃𝑈 ∈ ℂ𝑚 × ̃𝑟, ̃𝑆 ∈ ℂ ̃𝑟 × ̃𝑟, ̃𝑉 ∈ ℂ ̃𝑟 × 𝑛 are submatrices of 𝑈 , 𝑆, 𝑉 discarding all columns
and rows corresponding to the smallest 𝑟 − ̃𝑟 singular values. We denote this operation
as SVD ̃𝑟 and refer to it as ̃𝑟-truncated SVD. It has been proven, e.g., in [23], that ̃𝐴 is

9Contrary to the common definition of the SVD we do not use the conjugate transpose of 𝑉 .
10 𝑈 and 𝑉 are semi-unitary matrices. However, for a semi-unitary (rectangular) matrix 𝐴 it is not

obvious which of the conditions 𝐴†𝐴 = Id or 𝐴𝐴† = Id applies. The former applies if the number of
rows exceeds the number of columns, the latter otherwise. Hence we use left-orthogonal (𝐴†𝐴 = Id) and
right-orthogonal (𝐴𝐴† = Id) for clarification.

11We use the thin or economy-sized SVD not storing unnecessary columns of 𝑈 and rows of 𝑉 .
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the best possible approximation of 𝐴 for a given ̃𝑟. However, in most cases we do not
want to find the best possible approximation for a given ̃𝑟, but instead find the lowest
possible ̃𝑟 for which a given accuracy 𝛿 is maintained. Hence we define the 𝛿-truncated
SVD of a given matrix 𝐴 ∈ ℂ𝑚 × 𝑛 denoted by SVD𝛿(𝐴)

SVD𝛿(𝐴) = ̃𝑈 ̃𝑆 ̃𝑉 = ̃𝐴 ≈ 𝐴 = 𝑈 𝑆 𝑉 = SVD(𝐴) (4.32)

with ̃𝑈 ∈ ℂ𝑚 × ̃𝑟 left-orthogonal, ̃𝑆 ∈ ℂ ̃𝑟 × ̃𝑟 diagonal matrix of the ̃𝑟 largest singular
values in descending order, ̃𝑉 ∈ ℂ ̃𝑟 × 𝑛 right-orthogonal, and ̃𝑟 ∈ ℕ+ the smallest possible
number of the largest singular values to be considered to satisfy ∥𝐴 − ̃𝐴∥ ≤ 𝛿 ‖𝐴‖. Note
that we use the same notation for both types of truncation, i.e., whether its subscript is
a number of singular values or a desired accuracy is crucial.

Next we describe the rounding method which allows us to approximate a TT tensor 𝑥 by
̃𝑥 = ℛ𝜀(𝑥) ≈ 𝑥 with ‖𝑥 − ̃𝑥‖ ≤ 𝜀 ‖𝑥‖ following [24, 8]. The basic idea is to determine each

optimal rank ̃𝑟𝑘 ≤ 𝑟𝑘 independently. The rank 𝑟𝑘 is determined by the 𝑘-th unfolding
matrix

𝑥(𝑖1, … , 𝑖𝑘, 𝑖𝑘+1, … , 𝑖𝑑) =
𝑟𝑘

∑
𝛼𝑘=1

𝑥|𝑘⟩(𝑖1, … , 𝑖𝑘) 𝑥⟨𝑘+1|(𝑖𝑘+1, … , 𝑖𝑑) . (4.33)

Hence we may obtain the optimal rank ̃𝑟𝑘 maintaining a given accuracy 𝛿𝑘 by calculat-
ing the 𝛿𝑘-truncated SVD of the 𝑘-th unfolding matrix. Obviously we do not want to
calculate the SVD of this possibly very large matrix directly. Instead we assume that
𝑥!(𝑘) is orthogonal. Then the SVD of the 𝑘-th unfolding matrix may be obtained by
calculating the SVD of the smaller matrix 𝑥|𝑘⟩. Retaining (4.13) we can now define a
method to optimize a single rank of 𝑥:
Given a TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with orthogonal frame matrix 𝑥!(𝑝) where 1 ≤ 𝑝 < 𝑑, an
approximation ̃𝑥 ≈ 𝑥 with optimal rank ̃𝑟𝑝 ≤ 𝑟𝑝 and ‖𝑥 − ̃𝑥‖ ≤ 𝛿𝑝 ‖𝑥‖ is given by setting

̃𝑥|𝑝⟩ = ̃𝑈 |𝑝⟩ and ̃𝑥⟨𝑝+1| = ̃𝑆 ̃𝑉 𝑥⟨𝑝+1| where SVD𝛿𝑝
( ̃𝑥|𝑝⟩) = ̃𝑈 |𝑝⟩ ̃𝑆 ̃𝑉 (4.34)

and ̃𝑥(𝑘) = 𝑥(𝑘) otherwise.

Notice that the (𝑝+1)-th frame matrix of the resulting tensor ̃𝑥 is orthogonal. Because of
that it is now clear how to use this method to optimize all 𝑑−1 ranks in a structured way.
It only remains to be shown how the errors of each step accumulate to the total error.
Using the sub-additivity property of the norm it is easy to see that ‖𝑥 − ̃𝑥‖ ≤ ∑𝑑−1

𝑘 𝛿𝑘 ‖𝑥‖.
In [8, Theorem 2.2] a lower bound

‖𝑥 − ̃𝑥‖ ≤
√√√
⎷

𝑑−1
∑

𝑘
𝛿2

𝑘 ‖𝑥‖ ≤
𝑑−1
∑

𝑘
𝛿𝑘 ‖𝑥‖ (4.35)

for the total error has been proven. While we are free to choose different accuracies 𝛿𝑘
for each step we usually choose a common value 𝛿 = 𝛿𝑘. A possible choice for 𝛿 satisfying
‖𝑥 − ̃𝑥‖ ≤ 𝜀 ‖𝑥‖ is

𝛿 = 1√
𝑑 − 1

𝜀. (4.36)
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The resulting algorithm which we refer to as truncation is shown on the left in Alg. 4.4.

Algorithm 4.4: Truncation of TT tensor

Input: TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 and accuracy 𝜀

Output: TT tensor ̃𝑥 ≈ 𝑥 with optimal ranks, ‖𝑥 − ̃𝑥‖ ≤ 𝜀 ‖𝑥‖

Input: 𝑥(2∶𝑑) right-orthogonal
Output: ̃𝑥(1∶𝑑−1) left-orthogonal

1 Initialize 𝑝(1) ≔ 𝑥(1) and 𝛿 ≔ 𝜀 −2√𝑑 − 1
2 for 𝑘 = 1 to 𝑑 − 1 do
3 [ ̃𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿(𝑝|𝑘⟩)
4 𝑝⟨𝑘+1| ≔ 𝑆 𝑉 𝑥⟨𝑘+1|

5 ̃𝑥(𝑑) ≔ 𝑝(𝑑)

Input: 𝑥(1∶𝑑−1) left-orthogonal
Output: ̃𝑥(2∶𝑑) right-orthogonal

Initialize 𝑝(𝑑) ≔ 𝑥(𝑑) and 𝛿 ≔ 𝜀 −2√𝑑 − 1
for 𝑘 = 𝑑 to 2 by −1 do

[𝑈, 𝑆, ̃𝑥⟨𝑘|] ≔ SVD𝛿(𝑝⟨𝑘|)
𝑝|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝑈 𝑆

̃𝑥(1) ≔ 𝑝(1)

Note that the chosen assumption to efficiently calculate the SVD of the 𝑘-th unfolding
matrix is ambiguous. The other equally good choice is to assume that 𝑥!(𝑘+1) is orthog-
onal. The SVD of the 𝑘-th unfolding matrix may then be obtained by calculating the
SVD of 𝑥⟨𝑘+1|.12 The corresponding algorithm is very similar and basically just runs in
the other direction, hence both are shown side by side in Alg. 4.4.

We have seen that both the algorithms for truncation and orthogonalization exist in pairs,
one starting with the first core and one starting with the last core. To better distinguish
between these algorithms for truncation and orthogonalization, we refer to them as left-
to-right or right-to-left truncation and orthogonalization depending on wheter we start
with the first or last core, respectively.

The rounding method is given by combining one of the truncation algorithms in Alg. 4.4
with a matching algorithm from Alg. 4.2, or a variant thereof in Alg. 4.3, to ensure
the initial orthogonalization. In practice we use a variant of the orthogonalization algo-
rithms with improved numeric stability and apply similar modifications to the truncation
algorithm. Again, we normalize all matrices in each step before multiplying with the
neighboring core. In addition we normalize the core we start with and all orthogonal
cores after truncation.13 Afterwards we scale each core with the same value to restore
the correct norm. Hence the resulting tensor has no guaranteed orthogonality properties
anymore but instead the norms of all cores are equal. These modifications have been
applied to the truncation algorithms in Alg. 4.5. The computational complexity of all
variants of the truncation algorithms is of 𝒪(𝑑𝑛𝑟3). This is the same computational
complexity as for the orthogonalization and thus also for the full rounding algorithm.

12Note that 𝑥|𝑘⟩ and 𝑥⟨𝑘+1| are the only two cores depending on 𝑟𝑘, i.e., we need to calculate the SVD
of one or the other to optimize 𝑟𝑘. Hence there are no further reasonable choices.

13Note that the canonical norm of a left- or right-orthogonal matrix is given by its mode sizes.
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Algorithm 4.5: Truncation of TT tensor with normalization

Input: TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 and accuracy 𝜀

Output: TT tensor ̃𝑥 ≈ 𝑥 with optimal ranks, ‖𝑥 − ̃𝑥‖ ≤ 𝜀 ‖𝑥‖

Input: 𝑥(2∶𝑑) right-orthogonal

1 Initialize 𝑝(1) ≔ ∥𝑥(1)∥−1 𝑥(1),
𝛿 ≔ 𝜀 −2√𝑑 − 1 , and 𝜆 ≔ log(∥𝑥(1)∥)

2 for 𝑘 = 1 to 𝑑 − 1 do
3 [𝑈, 𝑆, 𝑉 ] ≔ SVD𝛿(𝑝|𝑘⟩)
4 𝑝⟨𝑘+1| ≔ ‖𝑆‖−1 𝑆 𝑉 𝑥⟨𝑘+1|

5 𝜆 ≔ 𝜆 + log(‖𝑆‖) + log(‖𝑈‖)
6 ̃𝑥|𝑘⟩ ≔ ‖𝑈‖−1 𝑈
7 ̃𝑥(𝑑) ≔ 𝑝(𝑑)

Input: 𝑥(1∶𝑑−1) left-orthogonal

Initialize 𝑝(𝑑) ≔ ∥𝑥(𝑑)∥−1 𝑥(𝑑),
𝛿 ≔ 𝜀 −2√𝑑 − 1 , and 𝜆 ≔ log(∥𝑥(𝑑)∥)

for 𝑘 = 𝑑 to 2 by −1 do
[𝑈, 𝑆, 𝑉 ] ≔ SVD𝛿(𝑝⟨𝑘|)

𝑝|𝑘−1⟩ ≔ ‖𝑆‖−1 𝑥|𝑘−1⟩ 𝑈 𝑆
𝜆 ≔ 𝜆 + log(‖𝑆‖) + log(‖𝑉 ‖)

̃𝑥⟨𝑘| ≔ ‖𝑉 ‖−1 𝑉
̃𝑥(1) ≔ 𝑝(1)

8

9

for 𝑘 = 1 to 𝑑 do
̃𝑥(𝑘) ≔ exp(𝜆𝑑−1) ̃𝑥(𝑘)

4.11 Linear Systems

In many problems, including MHN, it is required to solve a system of linear equations

𝐴 𝑥 = 𝑏. (4.37)

These can, e.g., be solved using direct or iterative methods, where the former is often
not a viable choice, especially for large systems. An alternative approach is to solve
the linear system by considering an optimization problem. Given a hermitian positive
definite operator 𝐴 the solution of the linear system is the minimizer of the function

𝐽𝐴,𝑏(𝑥) = 1
2 ⟨𝑥, 𝐴 𝑥⟩ − Re(⟨𝑥, 𝑏⟩) . (4.38)

In this section we first describe one particular well-known iterative method, GMRES,
and show how this method, exemplary for many iterative methods, can be adapted for
the case of 𝐴, 𝑥, and 𝑏 in the TT format. After that we describe algorithms solving the
linear system in the TT format by optimizing the function 𝐽𝐴,𝑏(𝑥) given above.
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4.11.1 Generalized Minimal Residual
The Generalized Minimal Residual (GMRES) [25] method is a well-established Krylov
subspace method to solve indefinite non-symmetric linear systems 𝐴 𝑥 = 𝑏 with a given
accuracy 𝜀. Usually the restarted GMRES method denoted by GMRES(𝑚) and shown
in Alg. 4.6 is used. Compared to [25, Algorithm 4] the implementation of GMRES(𝑚)
described in Alg. 4.6 includes the proposed changes for a practical implementation de-
scribed in [25, Sec. 3.2]. Note that we can either use the classical Gram-Schmidt (CGS)
or modified Gram-Schmidt (MGS) method for the orthogonalization in lines 10 – 12. The
CGS method is known to have inferior numerical stability than MGS. See [26] for an anal-
ysis of the numerical behavior of both orthogonalization methods. Where the difference
matters, we explicitly refer to GMRES(𝑚) using the classical or modified Gram-Schmidt
orthogonalization as CGS-GMRES(𝑚) or MGS-GMRES(𝑚), respectively.

Note that, like for many other algorithms that are widely used, many variants of the
GMRES method exist, e.g., flexible GMRES [27], GMRES with deflated restarts [28],
and loose GMRES [29]. In addition it is very often combined with a preconditioning
method. See also [30] for an overview of different variants of GMRES. We restrict
ourselves to the restarted GMRES(𝑚) with no preconditioning.

Next we describe how to adapt the GMRES(𝑚) method for the TT format, i.e., all
initial operators and tensors are given in the TT format and all auxiliary tensors and
the solution shall be in the TT format as well. First of all, we point out that all operations
to be performed on objects in the TT format are feasible and have been described in
Sec. 4.814. However, two of these operations, the operator-by-tensor product and the
addition, lead to increased ranks in each step of the iterative method. Hence for a
practical implementation we have to reduce the ranks in each step, e.g., by using the
rounding method introduced in Sec. 4.10. Apparently this has to be done in a controlled
manner maintaining the convergence of the iterative method.

The calculation of the Krylov tensors 𝑣𝑗 involves operator-by-tensor products. It has
been shown in [31, 32, 33, 34] that an inexact solution of these products is sufficient.
Furthermore, the required accuracy may be relaxed proportional to the inverse of the
norm of the residual. Various strategies for such a relaxed accuracy have been proposed
in [31, 32, 33, 34]. One possible strategy is to use

𝛿𝑗 = ‖𝑏 − 𝐴 𝑥‖ |𝑔(𝑗)|−1 𝜀 (4.39)

as a relaxed accuracy for the operator-by-tensor product. This means we can replace
𝑣𝑗+1 ≔ 𝐴 𝑣𝑗 in line 9 of Alg. 4.6 by 𝑣𝑗+1 ≔ ℛ𝛿𝑗

(𝐴 𝑣𝑗). The initial residual 𝑣1 may also
be approximated. In this case we can not further relax the accuracy but have to use 𝜀.
However, instead of only approximating the operator-by-tensor product we also apply
the rounding method after the subtraction, i.e., we replace 𝑣1 ≔ 𝑏 − 𝐴 𝑥 in line 4 by
𝑣1 ≔ ℛ𝜀(𝑏 − ℛ𝜀(𝐴 𝑥)).

14Strictly speaking the subtraction of two TT tensors is not directly possible, but can be implemented
using a scalar multiplication followed by an addition.
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Algorithm 4.6: GMRES(m)

Input: Operator 𝐴 ∈ ℂ𝑛 × 𝑛, right-hand side 𝑏 ∈ ℂ𝑛, initial guess 𝑥0 ∈ ℂ𝑛,
accuracy 𝜀, and number of inner iterations 𝑚

Output: Solution 𝑥 ∈ ℂ𝑛 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖
1 Initialize: 𝑥 ≔ 𝑥0, 𝑔 ∈ ℂ𝑚, and 𝑅 ∈ ℂ𝑚+1 × 𝑚

2 do
3 Initialize: 𝑔 ≔ 0, 𝑅 ≔ 0, and 𝑗 ≔ 1
4 𝑣𝑗 ≔ 𝑏 − 𝐴 𝑥
5 𝑔(𝑗) ≔ ∥𝑣𝑗∥
6 while 𝑗 ≤ 𝑚 and |𝑔(𝑗)| > 𝜀 ‖𝑏‖ do
7 𝑣𝑗 ≔ ∥𝑣𝑗∥

−1 𝑣𝑗
9 𝑣𝑗+1 ≔ 𝐴 𝑣𝑗

/* CGS-GMRES(𝑚) */
10 for 𝑖 = 1 to 𝑗 do
11 𝑅(𝑖, 𝑗) ≔ ⟨𝑣𝑗+1, 𝑣𝑖⟩
12 𝑣𝑗+1 ≔ 𝑣𝑗+1 − ∑𝑗

𝑖=1 𝑅(𝑖, 𝑗) 𝑣𝑖

/* MGS-GMRES(𝑚) */
for 𝑖 = 1 to 𝑗 do

𝑅(𝑖, 𝑗) ≔ ⟨𝑣𝑗+1, 𝑣𝑖⟩
𝑣𝑗+1 ≔ 𝑣𝑗+1 − 𝑅(𝑖, 𝑗) 𝑣𝑖

14 for 𝑖 = 1 to 𝑗 − 1 do 𝑅(𝑖 ∶ 𝑖 + 1, 𝑗) ≔ 𝐺𝑖 𝑅(𝑖 ∶ 𝑖 + 1, 𝑗)
15 𝑅(𝑗 + 1, 𝑗) ≔ ∥𝑣𝑗+1∥
16 Find Givens rotation 𝐺𝑗 ∈ ℂ2 × 2 such that 𝐺𝑗 𝑅(𝑗 ∶𝑗 + 1, 𝑗) = 𝑟 e1
17 𝑅(𝑗 ∶𝑗 + 1, 𝑗) ≔ 𝐺𝑗 𝑅(𝑗 ∶𝑗 + 1, 𝑗)
18 𝑔(𝑗 ∶𝑗 + 1) ≔ 𝐺𝑗 𝑔(𝑗 ∶𝑗 + 1)
19 𝑗 ≔ 𝑗 + 1
20 Compute solution 𝑦 ∈ ℂ𝑗 of reduced system 𝑅(1∶𝑗, 1 ∶𝑗) 𝑦 = 𝑔(1∶𝑗)
21 𝑥 ≔ 𝑥 + ∑𝑗

𝑖=1 𝑦(𝑖) 𝑣𝑖
22 while |𝑔(𝑗)| > 𝜀 ‖𝑏‖
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The orthogonalization of the Krylov tensors 𝑣𝑗 requires calculating multiple additions or
subtractions. Formally we may not approximate any of the interim results but have to
evaluate those exactly to maintain the orthogonality. Only after the orthogonalization
is done the Krylov tensor 𝑣𝑗 may be approximated using the relaxed accuracy 𝛿𝑗. This
applies to both the CGS and MGS case. However, in case of using CGS it is reasonable
to approximate the sum ∑𝑗

𝑖 𝑅(𝑖, 𝑗) 𝑣𝑖 before subtracting it from 𝑣𝑗+1 and then rounding
again afterwards. But we have to calculate the sum exactly, i.e., we must not apply the
rounding operation after each addition. This is not only true for this summation, but
for any sum in general it is better to sum exactly and approximate only the final result.
This is especially true if the summands differ significantly in magnitude. Depending on
the number of summands and their ranks this calculation may not be practically feasible.
Hence for a practical implementation we require a method to calculate the approximate
solution of a sum of TT tensors. In case of using MGS it is not really reasonable to
approximate each of the subtractions. Nevertheless, for a practical implementation we
have to apply the rounding operation after each subtraction. Therefore, assuming a
method to approximately calculate the sum exists, using CGS instead of MGS seems to
be the better choice in terms of stability.

In [35] it has been shown that the convergence of an iterative method is maintained if
the rounding error is sufficiently small. Following this statement we apply the rounding
operation to the correction of the solution, i.e., we may replace 𝑥 ≔ 𝑥 + ∑𝑗

𝑖 𝑦(𝑖) 𝑣𝑖
in line 21 of Alg. 4.6 by 𝑥 ≔ ℛ𝜀(𝑥 + ℛ𝜀(∑𝑗

𝑖 𝑦(𝑖) 𝑣𝑖)). The aforementioned arguments
concerning the calculation of the sum apply here as well.

So far we have always used an accuracy for the approximation of any TT tensor which
depends on the accuracy of the GMRES(𝑚) method. We introduce two new accuracies,
𝛿 and 𝛾, to allow for better control of the approximations. These accuracies have to be
chosen sufficiently small to ensure that the desired accuracy 𝜀 of the solution can be met.
The final algorithms adapting GMRES for the TT format are shown in Alg. 4.7 and can
be compared to the adaptations in [36] and [37].

To estimate the computational complexity of TT-GMRES(𝑚) – assuming that we are
using the rounding operation – it is sufficient to add up the computational complexity
of all rounding operations since these are dominant. The correction of the solution is
performed only once after 𝑚 inner iterations, hence we give the computational complexity
for one iteration and add the computational effort for the correction proportionally.
Using MGS for the orthogonalization this is given by

𝒪(𝑑𝑛 ((𝑟(𝐴)𝑟(𝑥))3 + (𝑟(𝐴)𝑟(𝑣))3 + (𝑟(𝑏) + 𝑟(𝑣))3 + (𝑟(𝑥) + 𝑟(𝑣))3 + 𝑚2𝑟(𝑣)3)) (4.40)

where 𝑟(𝑥) is the maximum rank of the solution 𝑥 and 𝑟(𝑣) is the maximum rank of all
Krylov tensors. Using CGS an additional term of 𝒪(𝑑𝑛 (𝑚𝑟(𝑣))3) is added.
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Algorithm 4.7: TT-GMRES(m)

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿, 𝛾,

and number of inner iterations 𝑚
Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖
1 Initialize: 𝑥 ≔ 𝑥0, 𝑔 ∈ ℂ𝑚, and 𝑅 ∈ ℂ𝑚+1 × 𝑚

2 do
3 Initialize: 𝑔 ≔ 0, 𝑅 ≔ 0, and 𝑗 ≔ 1
4 𝑣𝑗 ≔ ℛ𝛿(𝑏 − ℛ𝛿(𝐴 𝑥))
5 𝑔(𝑗) ≔ ∥𝑣𝑗∥
6 while 𝑗 ≤ 𝑚 and |𝑔(𝑗)| > 𝜀 ‖𝑏‖ do
7 𝑣𝑗 ≔ ∥𝑣𝑗∥

−1 𝑣𝑗
8 𝛿𝑗 ≔ ‖𝑏 − 𝐴 𝑥‖ |𝑔(𝑗)|−1 𝛿
9 𝑣𝑗+1 ≔ ℛ𝛿𝑗

(𝐴 𝑣𝑗)

/* TT-CGS-GMRES(𝑚) */
10 for 𝑖 = 1 to 𝑗 do
11 𝑅(𝑖, 𝑗) ≔ ⟨𝑣𝑗+1, 𝑣𝑖⟩
12 𝑣𝑗+1 ≔ ℛ𝛿𝑗

(𝑣𝑗+1 − ℛ𝛿(∑𝑗
𝑖=1 𝑅(𝑖, 𝑗) 𝑣𝑖))

13

/* TT-MGS-GMRES(𝑚) */
for 𝑖 = 1 to 𝑗 do

𝑅(𝑖, 𝑗) ≔ ⟨𝑣𝑗+1, 𝑣𝑖⟩
𝑣𝑗+1 ≔ ℛ𝛿(𝑣𝑗+1 − 𝑅(𝑖, 𝑗) 𝑣𝑖)

𝑣𝑗+1 ≔ ℛ𝛿𝑗
(𝑣𝑗+1)

14 for 𝑖 = 1 to 𝑗 − 1 do 𝑅(𝑖 ∶ 𝑖 + 1, 𝑗) ≔ 𝐺𝑖 𝑅(𝑖 ∶ 𝑖 + 1, 𝑗)
15 𝑅(𝑗 + 1, 𝑗) ≔ ∥𝑣𝑗+1∥
16 Find Givens rotation 𝐺𝑗 ∈ ℂ2 × 2 such that 𝐺𝑗 𝑅(𝑗 ∶𝑗 + 1, 𝑗) = 𝑟 e1
17 𝑅(𝑗 ∶𝑗 + 1, 𝑗) ≔ 𝐺𝑗 𝑅(𝑗 ∶𝑗 + 1, 𝑗)
18 𝑔(𝑗 ∶𝑗 + 1) ≔ 𝐺𝑗 𝑔(𝑗 ∶𝑗 + 1)
19 𝑗 ≔ 𝑗 + 1
20 Compute solution 𝑦 ∈ ℂ𝑗 of reduced system 𝑅(1∶𝑗, 1 ∶𝑗) 𝑦 = 𝑔(1∶𝑗)
21 𝑥 ≔ ℛ𝛾(𝑥 + ℛ𝛾(∑𝑗

𝑖=1 𝑦(𝑖) 𝑣𝑖))
22 while |𝑔(𝑗)| > 𝜀 ‖𝑏‖
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Chapter 4 – Tensor Train Decomposition

4.11.2 Alternating Linearized Scheme
In this section, we describe the alternating linearized scheme (ALS) introduced in [38]
to solve linear systems in the TT format by optimization. The main idea is to take
advantage of the linearity of the TT format and optimize 𝐽𝐴,𝑏(𝑥) over one core 𝑥(𝑘) at
a time while the other cores are fixed. Usually all cores are updated one after the other
by looping through all cores in one direction and then in the reverse direction. This is
repeated until ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖ for a given accuracy 𝜀.
The local optimization problem is given by

̃𝑥(𝑘) = argmin
𝑥(𝑘)

𝐽𝐴,𝑏(𝑥) . (4.41)

Using the linearity (4.11) we can transform this to

̃𝑥(𝑘) = argmin
𝑥(𝑘)

𝐽𝐴𝑘,𝑏𝑘
(𝑥[𝑘]) (4.42)

with

𝐴𝑘 = 𝑥!(𝑘)† 𝐴[∶ , ∶ ] 𝑥!(𝑘) and 𝑏𝑘 = 𝑥!(𝑘)† 𝑏[ ∶ ] (4.43)

where 𝐴𝑘 ∈ ℂ𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 × 𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 and 𝑏𝑘 ∈ ℂ𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 . The minimum ̃𝑥(𝑘) of the local
optimization problem is then given by the solution of the local linear system

𝐴𝑘 ̃𝑥[𝑘] = 𝑏𝑘. (4.44)

The local linear system is small enough to be solved by a standard method, e.g., using
GMRES(𝑚) described in Alg. 4.6 or even a direct solver. While iterating over each
core, it is actually sufficient to replace 𝑥(𝑘) by ̃𝑥(𝑘) for each local system and then move
on to the next core. However, the properties of the local problem may be improved
by ensuring that 𝑥!(𝑘) is orthogonal in every step, see [38, Theorem 4.1]. In particular
the condition number of 𝐴𝑘 is then bound by the condition number of 𝐴 and 𝐴𝑘 is
hermitian positive definite, i.e., the local system (4.44) has an unique solution. After an
initial orthogonalization, single steps of left- or right-orthogonalization are sufficient to
ensure the desired orthogonality. Note that we multiply the (𝑘 − 1)-th or (𝑘 + 1)-th core
by the non-orthogonal part of 𝑥|𝑘⟩ or 𝑥⟨𝑘|, respectively, as part of the orthogonalization.
This is actually not necessary as we optimize that core next anyway. But we update the
next core anyway to use it as the initial guess for solving the next local system.

The orthogonality of 𝑥!(𝑘) also allows to determine the necessary accuracy 𝛾 of the local
solution ̃𝑥[𝑘] to maintain the given overall accuracy 𝜀. Indeed the residual of the local
system ∥𝑏𝑘 − 𝐴𝑘 ̃𝑥[𝑘]∥ is a lower bound of the residual ‖𝑏 − 𝐴 𝑥‖:

∥𝑏𝑘 − 𝐴𝑘 ̃𝑥[𝑘]∥ = ∥𝑥!(𝑘)† 𝑏[ ∶ ] − 𝑥!(𝑘)† 𝐴[∶ , ∶ ] 𝑥!(𝑘) ̃𝑥[𝑘]∥

= ∥𝑥!(𝑘)† 𝑏[ ∶ ] − 𝑥!(𝑘)† 𝐴[∶ , ∶ ] ̃𝑥[ ∶ ]∥

≤ ∥𝑥!(𝑘)†∥ ‖𝑏 − 𝐴 𝑥‖ = ‖𝑏 − 𝐴 𝑥‖ . (4.45)
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4.11 Linear Systems

This means that the local linear system has to be solved with at least the same accuracy
as desired for the solution of the full linear system, i.e., 𝛾 ≤ 𝜀. Solving the local linear
system with a higher accuracy might improve the convergence rate of the ALS algorithm
at the expense of increased time to solve the local systems. Since we are solving a local
linear system for each core it is recommended to use an accuracy 𝛾 for the local solver
which scales with the number of cores 𝑑, e.g., we recommend to set 𝛾 ≔ −2√𝑑 𝜀 or higher.

While the local system is of small size the naive calculation of 𝐴𝑘 and 𝑏𝑘 scale exponen-
tially with 𝑑. Fortunately, 𝐴𝑘 and 𝑏𝑘 can be calculated using only the TT cores of 𝐴, 𝑏,
and 𝑥. By starting from (4.43), re-written to express 𝐴𝑘 for every single entry explicitly
using index notation, using the definition of 𝑥!(𝑘) and exploiting the TT format of 𝐴 we
notice that we can calculate 𝐴𝑘 using auxiliary objects Ψ𝐴,𝑘 and Φ𝐴,𝑘. Furthermore,
we recognize that these auxiliary objects are defined recursively. We save ourselves the
lengthy but straightforward derivation and instead only give the result for 𝐴𝑘:

𝐴𝑘(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝛼(𝑥)

𝑘 , 𝛼′(𝑥)
𝑘−1, 𝑖′

𝑘, 𝛼′(𝑥)
𝑘 ) =

𝑟(𝐴)
𝑘−1

∑
𝛼(𝐴)

𝑘−1

𝑟(𝐴)
𝑘

∑
𝛼(𝐴)

𝑘

Ψ𝐴,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝐴)

𝑘−1, 𝛼′(𝑥)
𝑘−1) ⋅

⋅ 𝐴(𝑘)(𝛼(𝐴)
𝑘−1, 𝑖𝑘, 𝑖′

𝑘, 𝛼(𝐴)
𝑘 ) Φ𝐴,𝑘(𝛼(𝑥)

𝑘 , 𝛼(𝐴)
𝑘 , 𝛼′(𝑥)

𝑘 ) (4.46)

with

Ψ𝐴,𝑘(𝛼(𝑥)
𝑘 , 𝛼(𝐴)

𝑘 , 𝛼′(𝑥)
𝑘 ) =

𝑟(𝑥)
𝑘−1

∑
𝛼(𝑥)

𝑘−1

𝑟(𝑥)
𝑘−1

∑
𝛼′(𝑥)

𝑘−1

𝑟(𝐴)
𝑘−1

∑
𝛼(𝐴)

𝑘−1

𝑛𝑘

∑
𝑖𝑘

𝑛𝑘

∑
𝑖′

𝑘

Ψ𝐴,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝐴)

𝑘−1, 𝛼′(𝑥)
𝑘−1) ⋅

⋅ 𝑥(𝑘)∗(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝛼(𝑥)

𝑘 ) 𝐴(𝑘)(𝛼(𝐴)
𝑘−1, 𝑖𝑘, 𝑖′

𝑘, 𝛼(𝐴)
𝑘 ) 𝑥(𝑘)(𝛼′(𝑥)

𝑘−1, 𝑖′
𝑘, 𝛼′(𝑥)

𝑘 ) (4.47)
and

Φ𝐴,𝑘(𝛼(𝑥)
𝑘 , 𝛼(𝐴)

𝑘 , 𝛼′(𝑥)
𝑘 ) =

𝑟(𝑥)
𝑘+1

∑
𝛼(𝑥)

𝑘+1

𝑟(𝑥)
𝑘+1

∑
𝛼′(𝑥)

𝑘+1

𝑟(𝐴)
𝑘+1

∑
𝛼(𝐴)

𝑘+1

𝑛𝑘+1

∑
𝑖𝑘+1

𝑛𝑘+1

∑
𝑖′

𝑘+1

𝑥(𝑘+1)∗(𝛼(𝑥)
𝑘 , 𝑖𝑘+1, 𝛼(𝑥)

𝑘+1) ⋅

⋅ 𝐴(𝑘+1)(𝛼(𝐴)
𝑘 , 𝑖𝑘+1, 𝑖′

𝑘+1, 𝛼(𝐴)
𝑘+1) 𝑥(𝑘+1)(𝛼′(𝑥)

𝑘 , 𝑖′
𝑘+1, 𝛼′(𝑥)

𝑘+1) ⋅

⋅ Φ𝐴,𝑘+1(𝛼(𝑥)
𝑘+1, 𝛼(𝐴)

𝑘+1, 𝛼′(𝑥)
𝑘+1) (4.48)

where Ψ𝐴,𝑘, Φ𝐴,𝑘 ∈ ℂ𝑟(𝑥)
𝑘 × 𝑟(𝐴)

𝑘 × 𝑟(𝑥)
𝑘 . By convention Ψ𝐴,0 = Φ𝐴,𝑑 = 1. The calcula-

tion of Ψ𝐴,𝑘 and Φ𝐴,𝑘−1 require 𝒪(𝑛2𝑟(𝐴)2𝑟(𝑥)4) arithmetic operations each. The same
computational effort is required to compute 𝐴𝑘. Although this is already a signifi-
cant improvement compared to the exponential growth, these can be further reduced to
𝒪(𝑛𝑟(𝐴)𝑟(𝑥)2 (𝑛𝑟(𝐴) + 𝑟(𝑥))) for Ψ𝐴,𝑘 and Φ𝐴,𝑘−1, and 𝒪(𝑛2𝑟(𝐴)𝑟(𝑥)2 (𝑟(𝐴) + 𝑟(𝑥)2)) for
𝐴𝑘. This is achieved by not evaluating all contractions in one step, but gradually using
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temporary objects. The computation of 𝐴𝑘 is then the dominant contribution. How-
ever, 𝐴𝑘 is often only required to compute matrix-by-vector products 𝐴𝑘 𝑣 which require
𝒪(𝑛2𝑟(𝑥)4) operations. These matrix-by-vector products can also be calculated using
Ψ𝐴,𝑘, Φ𝐴,𝑘 and 𝐴(𝑘) without explicitly evaluating 𝐴𝑘 first. This allows us to reduce the
computational complexity to 𝒪(𝑛𝑟(𝐴)𝑟(𝑥)2 (𝑛𝑟(𝐴) + 𝑟(𝑥))), i.e., the same as required to
compute the auxiliary objects Ψ𝐴,𝑘 and Φ𝐴,𝑘 themselves.

The right-hand side 𝑏𝑘 of the local linear system is calculated analogously:

𝑏𝑘(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝛼(𝑥)

𝑘 ) =
𝑟(𝑏)

𝑘−1

∑
𝛼(𝑏)

𝑘−1

𝑟(𝑏)
𝑘

∑
𝛼(𝑏)

𝑘

Ψ𝑏,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝑏)

𝑘−1) ⋅

⋅ 𝑏(𝑘)(𝛼(𝑏)
𝑘−1, 𝑖𝑘, 𝛼(𝑏)

𝑘 ) Φ𝑏,𝑘(𝛼(𝑥)
𝑘 , 𝛼(𝑏)

𝑘 ) (4.49)
with

Ψ𝑏,𝑘(𝛼(𝑥)
𝑘 , 𝛼(𝑏)

𝑘 ) =
𝑟(𝑥)

𝑘−1

∑
𝛼(𝑥)

𝑘−1

𝑟(𝑏)
𝑘−1

∑
𝛼(𝑏)

𝑘−1

𝑛𝑘

∑
𝑖𝑘

Ψ𝑏,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝑏)

𝑘−1) ⋅

⋅ 𝑥(𝑘)∗(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝛼(𝑥)

𝑘 ) 𝑏(𝑘)(𝛼(𝑏)
𝑘−1, 𝑖𝑘, 𝛼(𝑏)

𝑘 ) (4.50)
and

Φ𝑏,𝑘(𝛼(𝑥)
𝑘 , 𝛼(𝑏)

𝑘 ) =
𝑟(𝑥)

𝑘+1

∑
𝛼(𝑥)

𝑘+1

𝑟(𝑏)
𝑘+1

∑
𝛼(𝑏)

𝑘+1

𝑛𝑘+1

∑
𝑖𝑘+1

𝑥(𝑘+1)∗(𝛼(𝑥)
𝑘 , 𝑖𝑘+1, 𝛼(𝑥)

𝑘+1) ⋅

⋅ 𝑏(𝑘+1)(𝛼(𝑏)
𝑘 , 𝑖𝑘+1, 𝛼(𝑏)

𝑘+1) Φ𝑏,𝑘+1(𝛼(𝑥)
𝑘+1, 𝛼(𝑏)

𝑘+1) (4.51)

where Ψ𝑏,𝑘, Φ𝑏,𝑘 ∈ ℂ𝑟(𝑥)
𝑘 × 𝑟(𝑏)

𝑘 . Again we set Ψ𝑏,0 = Φ𝑏,𝑑 = 1. The calculation of Ψ𝑏,𝑘,
Φ𝑏,𝑘−1, and 𝑏𝑘 each require 𝒪(𝑛𝑟(𝑏)𝑟(𝑥) (𝑟(𝑏) + 𝑟(𝑥))) arithmetic operations.

The auxiliary objects Ψ and Φ are computed recursively. In particular, if a core 𝑥(𝑝) is
updated only Ψ𝐴,𝑘 and Ψ𝑏,𝑘 or Φ𝐴,𝑘 and Φ𝑏𝑘

need to be re-calculated ∀𝑘 ≥ 𝑝 or 𝑘 < 𝑝,
respectively. Optimizing all cores in a structured way as initially proposed, e.g., first
from left to right and then from right to left, we can update the auxiliary objects as
required while looping through the cores. We only need to initially calculate all Ψ or Φ
once depending on the initial direction.

A possible implementation of the ALS algorithm is described in Alg. 4.8. Note that both
inner loops only loop over 𝑑 − 1 cores. This prevents a core from being unnecessarily
optimized twice in a row. Additionally, it helps to avoid conditionals within the loop.
The initial right-orthogonalization and calculation of Φ𝐴,𝑘 and Φ𝑏,𝑘 are done in one fused
loop to improve performance. Furthermore, it is easy to see that we can use the same
storage for Ψ𝐴,𝑘 and Φ𝐴,𝑘 and for Ψ𝑏,𝑘 and Φ𝑏,𝑘 as we never require both auxiliary
objects with equal 𝑘 at the same time.
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Algorithm 4.8: TT-ALS

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀 and 𝛾 ≤ 𝜀

Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖

1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1
2 for 𝑘 = 𝑑 to 2 by −1 do
3 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|)
4 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
5 Form Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

6 do
7 for 𝑘 = 1 to 𝑑 − 1 do
8 Form 𝐴𝑘 and 𝑏𝑘 folowing (4.46) and (4.49)
9 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

10 [𝑥|𝑘⟩, 𝑅] ≔ QR( ̃𝑥|𝑘⟩) // Orthogonalize 𝑥!(𝑘+1)

11 𝑥⟨𝑘+1| ≔ 𝑅 𝑥⟨𝑘+1|

12 Update Ψ𝐴,𝑘 and Ψ𝑏,𝑘 following (4.47) and (4.50)

13 for 𝑘 = 𝑑 to 2 by −1 do
14 Form 𝐴𝑘 and 𝑏𝑘 folowing (4.46) and (4.49)
15 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

16 [𝐿, 𝑥⟨𝑘|] ≔ LQ( ̃𝑥⟨𝑘|) // Orthogonalize 𝑥!(𝑘−1)

17 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
18 Update Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

19 while ‖𝑏 − 𝐴 𝑥‖ > 𝜀 ‖𝑏‖

The recursive calculation of the auxiliary objects Ψ and Φ suffers from similar numerical
stability issues as the calculation of the inner product. Hence we apply a similar strategy
to avoid these issues as previously employed in Alg. 4.1 for the inner product, i.e., we
normalize each Ψ and Φ. In addition we normalize the non-orthogonal part of 𝑥|𝑘⟩ or
𝑥⟨𝑘|, respectively, to improve the numerical stability of the orthogonalization. We then
scale the right-hand side of each local linear system and the final solution accordingly.
The resulting algorithm is described in Alg. 4.9.
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Algorithm 4.9: TT-ALS with normalization

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀 and 𝛾 ≤ 𝜀

Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖

1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1, 𝜆𝑥 ≔ 0
2 for 𝑘 = 𝑑 to 2 by −1 do
3 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ (‖𝐿‖−1 𝐿) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝐿‖)
4 Form Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)
5 𝜆𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥ , Φ𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥−1 Φ𝐴,𝑘−1

6 𝜆𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥ , Φ𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥−1 Φ𝑏,𝑘−1

7 𝜆𝑥 ≔ 𝜆𝑥 + log(∥𝑥(1)∥) , 𝑥(1) ≔ ∥𝑥(1)∥−1 𝑥(1)

8 do
9 for 𝑘 = 1 to 𝑑 − 1 do

10 Form 𝐴𝑘 and 𝑏𝑘 folowing (4.46) and (4.49)
11 𝜆 ≔ exp(∑𝑑−1

𝑖=1 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
12 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝜆 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

13 [𝑥|𝑘⟩, 𝑅] ≔ QR( ̃𝑥|𝑘⟩) // Orthogonalize 𝑥!(𝑘+1)

14 𝑥⟨𝑘+1| ≔ (‖𝑅‖−1 𝑅) 𝑥⟨𝑘+1| , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑅‖) // ∥𝑥⟨𝑘+1|∥ = 1
15 Update Ψ𝐴,𝑘 and Ψ𝑏,𝑘 following (4.47) and (4.50)
16 𝜆𝐴,𝑘 ≔ ∥Ψ𝐴,𝑘∥ , Ψ𝐴,𝑘 ≔ 𝜆−1

𝐴,𝑘 Ψ𝐴,𝑘
17 𝜆𝑏,𝑘 ≔ ∥Ψ𝑏,𝑘∥ , Ψ𝑏,𝑘 ≔ 𝜆−1

𝑏,𝑘 Ψ𝑏,𝑘

18 for 𝑘 = 𝑑 to 2 by −1 do
19 Form 𝐴𝑘 and 𝑏𝑘 folowing (4.46) and (4.49)
20 𝜆 ≔ exp(∑𝑑−1

𝑖=1 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
21 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝜆 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

22 [𝐿, 𝑥⟨𝑘|] ≔ LQ( ̃𝑥⟨𝑘|) // Orthogonalize 𝑥!(𝑘−1)

23 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ (‖𝐿‖−1 𝐿) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝐿‖) // ∥𝑥|𝑘−1⟩∥ = 1
24 Update Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)
25 𝜆𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥ , Φ𝐴,𝑘−1 ≔ 𝜆−1

𝐴,𝑘−1 Φ𝐴,𝑘−1
26 𝜆𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥ , Φ𝑏,𝑘−1 ≔ 𝜆−1

𝑏,𝑘−1 Φ𝑏,𝑘−1

27 while ‖𝑏 − exp(𝜆𝑥) 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
28 𝑥 ≔ exp(𝜆𝑥) 𝑥
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Although it is not easy to determine the leading term of the computational complexity
of a full left-to-right-to-left sweep, a good estimation – assuming that we calculate 𝐴𝑘
explicitly – is given by 𝒪(𝑑𝑛2𝑟(𝐴)𝑟(𝑥)2 (𝑟(𝐴) + 𝑟(𝑥)2) + 𝑑𝑛𝑟(𝑏)𝑟(𝑥) (𝑟(𝑏) + 𝑟(𝑥))). However,
we have to compute the residual ‖𝑏 − 𝐴 𝑥‖ of the current solution 𝑥 afterwards to de-
termine convergence. This requires 𝒪(𝑑𝑛 (𝑟(𝐴)𝑟(𝑥) + 𝑟(𝑏))3 + 𝑑𝑛2 (𝑟(𝐴)𝑟(𝑥))2) arithmetic
operations. While the algorithm does not suffer from exponential growth, the total cost
might actually be dominated by the calculation of the convergence criteria. Unfortu-
nately, there is no cheaper way to calculate the exact residual. An alternative approach
is to not calculate the residual, but instead assume that the method converged once no
further progress is being made. One possible metric for the progress of the method is
the relative change of the updated core ̃𝑥(𝑘) to the previous solution 𝑥(𝑘) in every local
optimization step. We stop once this relative change is lower than a given threshold 𝜀𝐹
for every local optimization step 𝑘 of a full left-to-right-to-left sweep. This means we
stop once

∥ ̃𝑥(𝑘) − 𝑥(𝑘)∥ ≤ 𝜀𝐹 ∥ ̃𝑥(𝑘)∥ ∀𝑘. (4.52)

Another measure for the progress of the method is the residual of the updated local
system using the previous solution 𝑥(𝑘). Again we stop once the local residual is lower
than a given threshold 𝜀𝑅 for every local optimization step, i.e., once

∥𝑏𝑘 − 𝐴𝑘 𝑥(𝑘)∥ ≤ 𝜀𝑅 ‖𝑏𝑘‖ ∀𝑘. (4.53)

While both metrics are meaningful measurements of the progress there is no correlation
between 𝜀𝐹 or 𝜀𝑅 and the given accuracy 𝜀.

The proposed ALS to calculate the solution 𝑥 of the linear system 𝐴 𝑥 = 𝑏 seems to be a
very promising method. However, it suffers from two major drawbacks. The first is that
we have to set the ranks of the solution 𝑥 a priori, i.e., the ranks are not set adaptively
as required. This can easily lead to ranks either being set too low or too high. If we
underestimate the ranks we may not obtain the solution with the given accuracy. If we
overestimate the ranks the required computational effort will be higher than actually
necessary. While this is certainly a disadvantage, it can be managed. However, the
second drawback is a more severe issue: The ALS has no guarantee of finding the global
minimum, i.e., the method might be stuck in local minima. Furthermore, it is hard to
detect whether the method is stuck in a local minimum. Fortunately, the method works
for many problems in practice.

The issue of potentially trapping in local minima makes it all the more important to
choose a sensible initial guess. If none exists for a particular linear system it is recom-
mended to use a normalized random tensor instead of, e.g., the zero tensor.
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4.11.3 Modified Alternating Linearized Scheme
The modified ALS (MALS) [38] has been proposed to address the disadvantage of fixed
ranks in ALS. The general idea here is to not optimize over one core 𝑥(𝑘) at a time, but
over the contraction of two subsequent cores, i.e., over a subtrain 𝑥(𝑘∶𝑘+1), at a time.
However, we still sweep through all cores in one direction first and in the other direction
afterwards like for ALS. This means when looping from left-to-right we optimize over
𝑥(𝑘∶𝑘+1) and over 𝑥(𝑘−1∶𝑘) otherwise. Thus when looping through all cores the subtrains
overlap. Apart from that, we proceed analogously to ALS. We only describe the pro-
cess optimizing over 𝑥(𝑘∶𝑘+1) going from left-to-right since only a single modification is
required for the other direction.

To form the local linear system we also have to replace 𝐴(𝑘) and 𝑏(𝑘) by the corresponding
subtrains in (4.44), (4.46), and (4.49). The local linear system is then given by

𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] = 𝑏𝑘∶𝑘+1. (4.54)

with

𝐴𝑘∶𝑘+1(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝑖𝑘+1, 𝛼(𝑥)

𝑘 , 𝛼′(𝑥)
𝑘−1, 𝑖′

𝑘, 𝑖′
𝑘+1, 𝛼′(𝑥)

𝑘 ) =
𝑟(𝐴)

𝑘−1

∑
𝛼(𝐴)

𝑘−1

𝑟(𝐴)
𝑘+1

∑
𝛼(𝐴)

𝑘+1

Ψ𝐴,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝐴)

𝑘−1, 𝛼′(𝑥)
𝑘−1) ⋅

⋅ 𝐴(𝑘∶𝑘+1)(𝛼(𝐴)
𝑘−1, 𝑖𝑘, 𝑖𝑘+1, 𝑖′

𝑘, 𝑖′
𝑘+1, 𝛼(𝐴)

𝑘+1) Φ𝐴,𝑘+1(𝛼(𝑥)
𝑘+1, 𝛼(𝐴)

𝑘+1, 𝛼′(𝑥)
𝑘+1) (4.55)

and

𝑏𝑘∶𝑘+1(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝑖𝑘+1, 𝛼(𝑥)

𝑘+1) =
𝑟(𝑏)

𝑘−1

∑
𝛼(𝑏)

𝑘−1

𝑟(𝑏)
𝑘+1

∑
𝛼(𝑏)

𝑘+1

Ψ𝑏,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝑏)

𝑘−1) ⋅

⋅ 𝑏(𝑘∶𝑘+1)(𝛼(𝑏)
𝑘−1, 𝑖𝑘, 𝑖𝑘+1, 𝛼(𝑏)

𝑘+1) Φ𝑏,𝑘+1(𝛼(𝑥)
𝑘+1, 𝛼(𝑏)

𝑘+1) (4.56)

where 𝐴𝑘∶𝑘+1 ∈ ℂ𝑟(𝑥)
𝑘−1𝑛𝑘𝑛𝑘+1𝑟(𝑥)

𝑘+1 × 𝑟(𝑥)
𝑘−1𝑛𝑘𝑛𝑘+1𝑟(𝑥)

𝑘+1 and 𝑏𝑘∶𝑘+1 ∈ ℂ𝑟(𝑥)
𝑘−1𝑛𝑘𝑛𝑘+1𝑟(𝑥)

𝑘+1 . The calcula-
tion of the auxiliary objects Ψ𝐴,𝑘, Ψ𝑏,𝑘, Φ𝐴,𝑘, and Φ𝑏𝑘

remains the same.

After solving the local linear system, its solution ̃𝑥(𝑘∶𝑘+1) is separated back into updated
cores ̃𝑥(𝑘) and ̃𝑥(𝑘+1). An apparent approach to separate ̃𝑥(𝑘∶𝑘+1) into two factors of the
necessary form is by calculating the SVD of ̃𝑥|𝑘∶𝑘+1| ∈ ℂ𝑟(𝑥)

𝑘−1𝑛𝑘 × 𝑛𝑘+1𝑟(𝑥)
𝑘+1 . We then set

𝑥|𝑘⟩ ≔ 𝑈 and 𝑥⟨𝑘+1| ≔ 𝑆 𝑉 with SVD( ̃𝑥|𝑘∶𝑘+1|) = 𝑈 𝑆 𝑉 . (4.57)

This way the orthogonality of 𝑥!(𝑘+1) for the next step is ensured as well. The rank 𝑟(𝑥)
𝑘

of the updated solution 𝑥 is determined by the number of singular values of ̃𝑥|𝑘∶𝑘+1|.

It is now apparent how to adaptively adjust the ranks: We simply use the 𝛿-truncated
SVD. Due to the orthogonality of 𝑥!(𝑘∶𝑘+1) the local error of ̃𝑥|𝑘∶𝑘+1| introduced by the
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𝛿-truncated SVD is the same as the global error of 𝑥, i.e., the error can be controlled.15

While we are free to choose different values of 𝛿 for each local optimization step we
choose a common value of 𝛿 for all steps. Considering the accumulation of the local
errors looping over all 𝑑 cores an upper bound for 𝛿 is given by −2√𝑑 𝜀.16

In [39] it has been suggested to use the residual instead of the relative error to determine
how many singular values to keep in the 𝛿-truncated SVD to avoid understimating the
ranks. This means we search for the smallest possible number of the largest singular
values to be considered to satisfy

∥𝑏𝑘∶𝑘+1 − 𝐴𝑘∶𝑘+1 ̂𝑥[𝑘∶𝑘+1]∥ ≤ 𝛿 ‖𝑏𝑘∶𝑘+1‖ (4.58)
instead of

∥ ̃𝑥[𝑘∶𝑘+1] − ̂𝑥[𝑘∶𝑘+1]∥ ≤ 𝛿 ∥ ̃𝑥[𝑘∶𝑘+1]∥ (4.59)

where ̂𝑥|𝑘∶𝑘+1| ≈ ̃𝑥|𝑘∶𝑘+1| is the result of the 𝛿-truncated SVD of ̃𝑥|𝑘∶𝑘+1|. However, deter-
mining the optimal rank satisfying the condition (4.58) is more expensive as it actually
requires calculating 𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] multiple times with different numbers of singular val-
ues considered.

Sweeping in the other direction we only need to replace (4.57) by

𝑥⟨𝑘−1| ≔ 𝑈 𝑆 and 𝑥|𝑘⟩ ≔ 𝑉 with SVD𝛿( ̃𝑥|𝑘−1∶𝑘|) = 𝑈 𝑆 𝑉 . (4.60)

Applying the described modifications to ALS, see Alg. 4.8, then gives the MALS algo-
rithm as shown in Alg. 4.10. Note that we should also apply the modifications to improve
the numerical stability of ALS by normalization, see Alg. 4.9, to MALS. These modifi-
cations have been omitted to highlight the differences between ALS and MALS, but are
straight-forward to apply and are shown in Alg. A.1 for completeness. The accuracy 𝛿
used for the truncated SVD and the accuracy 𝛾 used to solve the local linear system do
not depend on each other. Still, it is beneficial to choose 𝛾 < 𝛿, e.g., by setting 𝛾 ≔ 𝑐 𝛿
with 𝑐 < 1 and where 𝑐 = 0.5 is recommended, to prevent the truncation from catching
the noise of the too imprecise solution.

The MALS addresses the disadvantage of fixed ranks in ALS at the expense of increased
computational complexity. The calculation of the local objects, 𝐴𝑘 and 𝑏𝑘, requires
𝒪(𝑛4𝑟(𝐴)𝑟(𝑥)2 (𝑟(𝐴) + 𝑟(𝑥)2))+𝒪(𝑛2𝑟(𝑏)𝑟(𝑥) (𝑟(𝑏) + 𝑟(𝑥))) arithmetic operations. Another

𝒪(𝑛4𝑟(𝐴)3), 𝒪(𝑛2𝑟(𝑏)3), and 𝒪(𝑛2𝑟(𝑥)3) for the evaluation of the subtrains of 𝐴, 𝑏, and
𝑥, respectively. Plus 𝒪(𝑛3𝑟(𝑥)3) arithmetic operations are needed for the separation of

̃𝑥(𝑘∶𝑘+1) into two cores. Hence the overall computational complexity of MALS is given
by 𝒪(𝑑𝑛4𝑟(𝐴) (𝑟(𝐴) + 𝑟(𝑥)2)

2
) + 𝒪(𝑑𝑛2𝑟(𝑏) (𝑟(𝑏) + 𝑟(𝑥))2).

15This is only true if using the Euclidian respectively the Frobenius norm to calculate the error.
16Compare to the accuracy used for each truncated SVD in the rounding method in Sec. 4.10.
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Algorithm 4.10: TT-MALS

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿 ≤ −2√𝑑 𝜀, and 𝛾 ≤ 𝜀

Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖

1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1
2 for 𝑘 = 𝑑 to 2 by −1 do
3 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|)
4 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
5 Form Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

6 do
7 for 𝑘 = 1 to 𝑑 − 1 do
8 Form 𝐴𝑘∶𝑘+1 and 𝑏𝑘∶𝑘+1 folowing (4.55) and (4.56)
9 Solve 𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] = 𝑏𝑘∶𝑘+1 with accuracy 𝛾 and initial guess 𝑥[𝑘∶𝑘+1]

10 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘∶𝑘+1|) // Orthogonalize 𝑥!(𝑘+1)

11 𝑥⟨𝑘+1| ≔ 𝑆 𝑉
12 Update Ψ𝐴,𝑘 and Ψ𝑏,𝑘 following (4.47) and (4.50)

13 for 𝑘 = 𝑑 to 2 by −1 do
14 Form 𝐴𝑘−1∶𝑘 and 𝑏𝑘−1∶𝑘 folowing (4.55) and (4.56)
15 Solve 𝐴𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] = 𝑏𝑘−1∶𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘−1∶𝑘]

16 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥|𝑘−1∶𝑘|) // Orthogonalize 𝑥!(𝑘−1)

17 𝑥|𝑘−1⟩ ≔ 𝑈 𝑆
18 Update Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

19 while ‖𝑏 − 𝐴 𝑥‖ > 𝜀 ‖𝑏‖

4.11.4 (Modified) Alternating Linearized Scheme with enrichment

Both ALS and MALS suffer from the fundamental issue of possibly getting stuck in a
local minima and thus never achieving the desired accuracy of the solution. This is due
to the fact that both methods only optimize local problems. These local optimizations
do not contain sufficient information about the direction towards the global solution. In
this sections we introduce modifications to (M)ALS which incorporate these informations
leading to (more) reliable methods.
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This idea is motivated by the observation in [39] that even by expanding 𝑥(𝑘) with random
numbers after the local optimization the global convergence properties can be improved.
This concept has been further developed in [40]: After updating the 𝑘-th core 𝑥(𝑘) in
each local step, this and the next core are expanded according to

𝑥|𝑘⟩ ≔ [𝑥|𝑘⟩ 𝜂|𝑘⟩] and 𝑥⟨𝑘+1| ≔ [𝑥⟨𝑘+1|

0 ] (4.61)

or

𝑥⟨𝑘| ≔ [𝑥⟨𝑘|

𝜂⟨𝑘|] and 𝑥|𝑘−1⟩ ≔ [𝑥|𝑘−1⟩ 0] (4.62)

when looping from left to right or reverse, respectively, where 𝜂(𝑘) ∈ ℂ𝑟(𝑥)
𝑘−1 × 𝑛𝑘 × ̂𝑟𝑘 or

𝜂(𝑘) ∈ ℂ ̂𝑟𝑘−1 × 𝑛𝑘 × 𝑟(𝑥)
𝑘 , respectively, and the zero blocks are of appropriate shape. This

expansion by 𝜂(𝑘) is called enrichment in [41, 42, 43, 44]. The enrichment rank ̂𝑟𝑘 can be
freely chosen and determines how much additional information is being added. In doing
so, 𝑟(𝑥)

𝑘 or 𝑟(𝑥)
𝑘−1 is increased by ̂𝑟𝑘 or ̂𝑟𝑘−1, respectively, after each local optimization.

Note that the enrichment does not change the current solution 𝑥 but merely adds new
components to the 𝑘-th core which are all cancelled by the zero block added to the
neighboring core. Still the enrichment may improve the convergence. This is possible as
the next local linear system is formed using 𝑥!(𝑘+1) or 𝑥!(𝑘−1), see (4.43), i.e., the core
with the added zero block to cancel the enrichment is omitted.

In (M)ALS we make sure that 𝑥!(𝑘+1) or 𝑥!(𝑘−1) is orthogonal after each local step 𝑘 to
improve the conditioning of the next local linear system. The enrichment by 𝜂(𝑘) most
certainly does not preserve the orthogonality, i.e., we have to re-orthogonalize afterwards.
Accordingly, the orthogonalization before the enrichment is not necessary. However, we
keep this orthogonalization as the re-orthogonalization is then cheap. In case of MALS
it is part of the truncation step which we have to do before applying the enrichment.

The additive increase in ranks after each local optimization makes it necessary to decrease
the ranks in a later step to avoid high ranks. In case of MALS no modifications are
required as the ranks are chosen adaptively anyway. In case of ALS we replace the QR or
LQ decomposition by the 𝛿-truncated SVD to obtain orthogonalized factors and reduce
one of the local ranks at the same time. At first this might seem like a drawback, but it
actually solves the disadvantage of fixed ranks in ALS while only slightly increasing the
computational complexity due to the additively increasing ranks. This is also the reason
why enrichment if often only used for ALS and not combined with MALS. Accordingly we
restrict ourselves to ALS with enrichment. However, the ideas of MALS and enrichment
can be combined which is mostly straight-forward.

The resulting ALS with random enrichment, i.e., with 𝜂(𝑘) filled with random numbers,
is shown in Alg. 4.11.17 Here we chose the same enrichment rank ̂𝑟 for every enrichment
step. Again we omitted the normalization steps in order to not distract from the inter-
esting differences. The normalization with added enrichment is very similar as without.

17The MALS with random enrichment is shown in Alg. A.2 for completeness.
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Algorithm 4.11: TT-ALS with random enrichment

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿 ≤ −2√𝑑 𝜀, and 𝛾 ≤ 𝜀,

enrichment rank ̂𝑟
Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖
1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1
2 for 𝑘 = 𝑑 to 2 by −1 do
3 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|)
4 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
5 Form Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

6 do
7 for 𝑘 = 1 to 𝑑 − 1 do
8 Form 𝐴𝑘 and 𝑏𝑘 folowing (4.46) and (4.49)
9 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

10 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘⟩) // Orthogonalize 𝑥!(𝑘+1)

11 𝑥⟨𝑘+1| ≔ 𝑆 𝑉 𝑥⟨𝑘+1|

12 Enrich 𝑥|𝑘⟩ by random 𝜂|𝑘⟩ and update 𝑥⟨𝑘+1| according to (4.61)
13 [𝑥|𝑘⟩, 𝑅] ≔ QR(𝑥|𝑘⟩) // Re-orthogonalize 𝑥!(𝑘+1)

14 𝑥⟨𝑘+1| ≔ 𝑅 𝑥⟨𝑘+1|

15 Update Ψ𝐴,𝑘 and Ψ𝑏,𝑘 following (4.47) and (4.50)

16 for 𝑘 = 𝑑 to 2 by −1 do
17 Form 𝐴𝑘 and 𝑏𝑘 folowing (4.46) and (4.49)
18 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

19 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥⟨𝑘|) // Orthogonalize 𝑥!(𝑘−1)

20 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝑈 𝑆
21 Enrich 𝑥⟨𝑘| by random 𝜂⟨𝑘| and update 𝑥|𝑘−1⟩ according to (4.62)
22 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) // Re-orthogonalize 𝑥!(𝑘−1)

23 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
24 Update Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

25 while ‖𝑏 − 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
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We only add an additional normalization step after the re-orthogonalization following
the enrichment step. As already explained for MALS it is beneficial to choose 𝛾 < 𝛿 to
prevent the truncation from catching the noise of the too imprecise solution. Further-
more, it can also be advantageous here to use the residual instead of the relative error
to determine how many singular values to keep in the 𝛿-truncated SVD.

The enrichment increases the ranks of the current solution by ̂𝑟. To avoid this increase
in ranks in the final solution it is recommended to run another full sweep skipping the
enrichment step after the given accuracy of the solution 𝑥 has been reached.

ALS with random enrichment improves the convergence rate and helps avoid getting
stuck in local minima. Unfortunately, this is not sufficient for complicated problems
for which it might still get stuck in local minima. Having introduced the concept of
enrichment we next want to motivate a better choice for 𝜂(𝑘) which is more sophisticated
than simply adding random values.

In [42] the ALS(𝑡+ 𝑧) algorithm has been introduced which combines ALS with steepest
descent (SD). The basic idea of the SD algorithm is to use the residual to push the
solution in the right direction by setting ̃𝑥 = 𝑥 + 𝛼𝑧 where 𝑧 = 𝑏 − 𝐴 𝑥 and 𝛼 ∈ ℂ. In
ALS(𝑡 + 𝑧) one step of SD is applied followed by one or multiple ALS sweeps. This is
repeated until a given accuracy has been reached. The SD step may be interpreted as a
global enrichment which enriches all cores of the solution 𝑥 with the corresponding core
of the residual 𝑧. While this algorithm shows good results it is merely the motivation
and basis for the alternating minimal energy (AMEn) algorithm introduced in [43].18

The AMEn algorithm mixes the SD and ALS steps. This means that in each step we
first update 𝑥(𝑘) by solving the local linear system, update the residual 𝑧 and use 𝑧(𝑘) as
enrichment. In practice calculating the exact residual is too expensive and actually not
necessary since even an approximation of 𝑧(𝑘) is sufficient. There exist different methods
to approximate the residual, see [43, Sec. 4]. We restrict ourselves to using ALS itself to
approximate the residual 𝑧 = 𝑏 − 𝐴 𝑥. We will explain in more details how to use ALS
for fast approximate solution of linear algebra problems in Sec. 4.12.

In a nutshell, the idea is to optimize 𝐽Id,𝑏−𝐴 𝑥(𝑧). The local optimum is then given by

𝑧[𝑘] = ̂𝑏𝑘 − ̂𝐴𝑘 𝑥[𝑘] (4.63)

with

̂𝐴𝑘 = 𝑧!(𝑘)† 𝐴[∶ , ∶ ] 𝑥!(𝑘) and 𝑏̂𝑘 = 𝑧!(𝑘)† 𝑏[ ∶ ] (4.64)

where ̂𝐴𝑘 ∈ ℂ𝑟(𝑧)
𝑘−1𝑛𝑘𝑟(𝑧)

𝑘 × 𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 and 𝑏̂𝑘 ∈ ℂ𝑟(𝑧)
𝑘−1𝑛𝑘𝑟(𝑧)

𝑘 .

18The two articles [42] and [43] are a two-part series with [41] being a combined version of both articles.
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Again, ̂𝐴𝑘 and ̂𝑏𝑘 can be calculated efficiently using auxiliary objects:

̂𝐴𝑘(𝛼(𝑧)
𝑘−1, 𝑖𝑘, 𝛼(𝑧)

𝑘 , 𝛼′(𝑥)
𝑘−1, 𝑖′

𝑘, 𝛼′(𝑥)
𝑘 ) =

𝑟(𝐴)
𝑘−1

∑
𝛼(𝐴)

𝑘−1

𝑟(𝐴)
𝑘

∑
𝛼(𝐴)

𝑘

Ψ̂𝐴,𝑘−1(𝛼(𝑧)
𝑘−1, 𝛼(𝐴)

𝑘−1, 𝛼′(𝑥)
𝑘−1) ⋅

⋅ 𝐴(𝑘)(𝛼(𝐴)
𝑘−1, 𝑖𝑘, 𝑖′

𝑘, 𝛼(𝐴)
𝑘 ) Φ̂𝐴,𝑘(𝛼(𝑧)

𝑘 , 𝛼(𝐴)
𝑘 , 𝛼′(𝑥)

𝑘 ) (4.65)

with

Ψ̂𝐴,𝑘(𝛼(𝑧)
𝑘 , 𝛼(𝐴)

𝑘 , 𝛼′(𝑥)
𝑘 ) =

𝑟(𝑧)
𝑘−1

∑
𝛼(𝑧)

𝑘−1

𝑟(𝑥)
𝑘−1

∑
𝛼′(𝑥)

𝑘−1

𝑟(𝐴)
𝑘−1

∑
𝛼(𝐴)

𝑘−1

𝑛𝑘

∑
𝑖𝑘

𝑛𝑘

∑
𝑖′

𝑘

Ψ̂𝐴,𝑘−1(𝛼(𝑧)
𝑘−1, 𝛼(𝐴)

𝑘−1, 𝛼′(𝑥)
𝑘−1) ⋅

⋅ 𝑧(𝑘)∗(𝛼(𝑧)
𝑘−1, 𝑖𝑘, 𝛼(𝑧)

𝑘 ) 𝐴(𝑘)(𝛼(𝐴)
𝑘−1, 𝑖𝑘, 𝑖′

𝑘, 𝛼(𝐴)
𝑘 ) 𝑥(𝑘)(𝛼′(𝑥)

𝑘−1, 𝑖′
𝑘, 𝛼′(𝑥)

𝑘 ) (4.66)
and

Φ̂𝐴,𝑘(𝛼(𝑧)
𝑘 , 𝛼(𝐴)

𝑘 , 𝛼′(𝑥)
𝑘 ) =

𝑟(𝑧)
𝑘+1

∑
𝛼(𝑧)

𝑘+1

𝑟(𝑥)
𝑘+1

∑
𝛼′(𝑥)

𝑘+1

𝑟(𝐴)
𝑘+1

∑
𝛼(𝐴)

𝑘+1

𝑛𝑘+1

∑
𝑖𝑘+1

𝑛𝑘+1

∑
𝑖′

𝑘+1

𝑧(𝑘+1)∗(𝛼(𝑧)
𝑘 , 𝑖𝑘+1, 𝛼(𝑧)

𝑘+1) ⋅

⋅ 𝐴(𝑘+1)(𝛼(𝐴)
𝑘 , 𝑖𝑘+1, 𝑖′

𝑘+1, 𝛼(𝐴)
𝑘+1) 𝑥(𝑘+1)(𝛼′(𝑥)

𝑘 , 𝑖′
𝑘+1, 𝛼′(𝑥)

𝑘+1) ⋅

⋅ Φ̂𝐴,𝑘+1(𝛼(𝑧)
𝑘+1, 𝛼(𝐴)

𝑘+1, 𝛼′(𝑥)
𝑘+1) (4.67)

where Ψ̂𝐴,𝑘, Φ̂𝐴,𝑘 ∈ ℂ𝑟(𝑧)
𝑘 × 𝑟(𝐴)

𝑘 × 𝑟(𝑥)
𝑘 and Ψ̂𝐴,0 = Φ̂𝐴,𝑑 = 1, and

̂𝑏𝑘(𝛼(𝑧)
𝑘−1, 𝑖𝑘, 𝛼(𝑧)

𝑘 ) =
𝑟(𝑏)

𝑘−1

∑
𝛼(𝑏)

𝑘−1

𝑟(𝑏)
𝑘

∑
𝛼(𝑏)

𝑘

Ψ̂𝑏,𝑘−1(𝛼(𝑧)
𝑘−1, 𝛼(𝑏)

𝑘−1) ⋅

⋅ 𝑏(𝑘)(𝛼(𝑏)
𝑘−1, 𝑖𝑘, 𝛼(𝑏)

𝑘 ) Φ̂𝑏,𝑘(𝛼(𝑧)
𝑘 , 𝛼(𝑏)

𝑘 ) (4.68)
with

Ψ̂𝑏,𝑘(𝛼(𝑧)
𝑘 , 𝛼(𝑏)

𝑘 ) =
𝑟(𝑧)

𝑘−1

∑
𝛼(𝑧)

𝑘−1

𝑟(𝑏)
𝑘−1

∑
𝛼(𝑏)

𝑘−1

𝑛𝑘

∑
𝑖𝑘

Ψ̂𝑏,𝑘−1(𝛼(𝑧)
𝑘−1, 𝛼(𝑏)

𝑘−1) ⋅

⋅ 𝑧(𝑘)∗(𝛼(𝑧)
𝑘−1, 𝑖𝑘, 𝛼(𝑧)

𝑘 ) 𝑏(𝑘)(𝛼(𝑏)
𝑘−1, 𝑖𝑘, 𝛼(𝑏)

𝑘 ) (4.69)
and

Φ̂𝑏,𝑘(𝛼(𝑧)
𝑘 , 𝛼(𝑏)

𝑘 ) =
𝑟(𝑧)

𝑘+1

∑
𝛼(𝑧)

𝑘+1

𝑟(𝑏)
𝑘+1

∑
𝛼(𝑏)

𝑘+1

𝑛𝑘+1

∑
𝑖𝑘+1

𝑧(𝑘+1)∗(𝛼(𝑧)
𝑘 , 𝑖𝑘+1, 𝛼(𝑧)

𝑘+1) ⋅

⋅ 𝑏(𝑘+1)(𝛼(𝑏)
𝑘 , 𝑖𝑘+1, 𝛼(𝑏)

𝑘+1) Φ̂𝑏,𝑘+1(𝛼(𝑧)
𝑘+1, 𝛼(𝑏)

𝑘+1) (4.70)

where Ψ̂𝑏,𝑘, Φ̂𝑏,𝑘 ∈ ℂ𝑟(𝑧)
𝑘 × 𝑟(𝑏)

𝑘 and Ψ̂𝑏,0 = Φ̂𝑏,𝑑 = 1.
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Comparing these to (4.46) – (4.51) we see that these are almost identical except that 𝑥
has been replaced by 𝑧 twice. Thus the computational complexity of ALS approximating
the residual is dominated by the same leading term as the ALS solving the linear system
with some 𝑟(𝑥) replaced by 𝑟(𝑧).

Usually a rough estimate of the residual is already sufficient to improve the convergence.
Hence we choose a small rank ̂𝑟 = 𝑟(𝑧). As the initial value for 𝑧 we use a randomized
tensor. Additionally we only run a single local optimization step updating 𝑧(𝑘) when
𝑥(𝑘) is updated to approximate the corrected 𝑧. This allows us to run the ALS solving
𝐴 𝑥 = 𝑏 and the ALS approximating 𝑧 = 𝑏 − 𝐴 𝑥 simultaneously as shown in Alg. 4.12.
The computational complexity of this variant of AMEn is of the same leading order as
the computational complexity of ALS with random enrichment.

Note that while we may also apply enrichment to the ALS approximating the residual
𝑧 this seems to be unnecessary. Especially since we always only run a single local
optimization before 𝑥 is updated again. However, we may also apply the enrichment
by the residual 𝑧 to MALS where it then makes perfect sense to use MALS to update
the residual 𝑧 as well. We refer to this variant of the algorithm as modified AMEn
(MAMEn), see Alg. A.3.

The updated core 𝑧(𝑘) of the residual can not be directly used as the enrichment 𝜂(𝑘). An
additional mapping from ℂ𝑟(𝑧)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑧)
𝑘 to ℂ𝑟(𝑥)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑧)
𝑘 or ℂ𝑟(𝑧)

𝑘−1 × 𝑛𝑘 × 𝑟(𝑥)
𝑘 , depending

on the current loop direction, is required. The enrichment 𝜂(𝑘) is then given by

𝜂⟨𝑘| = ⃗𝑃𝑘−1 𝑧⟨𝑘| where ⃗𝑃𝑘−1 = 𝑥|1∶𝑘−1⟩† 𝑧|1∶𝑘−1⟩ (4.71)

or

𝜂|𝑘⟩ = 𝑧|𝑘⟩ 𝑃⃗ 𝑘 where 𝑃⃗ 𝑘 = 𝑧⟨𝑘+1∶𝑑| 𝑥⟨𝑘+1∶𝑑|† (4.72)

for the left-to-right or right-to-left sweep, respectively. The explicit calculation of the
mapping ⃗𝑃𝑘 and 𝑃⃗ 𝑘 is not feasible. Fortunately, we can apply these mappings directly
to ̂𝑏𝑘 and ̂𝐴𝑘 in (4.63) which, by exploiting the orthogonality, leads to

𝜂[𝑘] = ⃗𝑏𝑘 − ⃗𝐴𝑘𝑥[𝑘] or 𝜂[𝑘] = 𝑏⃗𝑘 − 𝐴⃗𝑘𝑥[𝑘] (4.73)
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Algorithm 4.12: TT-AMEn

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿 ≤ −2√𝑑 𝜀, and 𝛾 ≤ 𝜀,

enrichment rank ̂𝑟
Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖
1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1
2 Initialize: Ψ̂𝐴,0 = Φ̂𝐴,𝑑 = 1, Ψ̂𝑏,0 = Φ̂𝑏,𝑑 = 1, randomized tensor 𝑧
3 for 𝑘 = 𝑑 to 2 by −1 do
4 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
5 [_, 𝑧⟨𝑘|] ≔ LQ(𝑧⟨𝑘|)
6 Form Φ𝐴,𝑘−1, Φ𝑏,𝑘−1, Φ̂𝐴,𝑘−1, Φ̂𝑏,𝑘−1 following (4.48), (4.51), (4.67), (4.70)

7 do
8 for 𝑘 = 1 to 𝑑 − 1 do
9 Form 𝐴𝑘, 𝑏𝑘, ̂𝐴𝑘, 𝑏̂𝑘, ⃗𝐴𝑘, ⃗𝑏𝑘 by (4.46), (4.49), (4.65), (4.68), (4.74), (4.75)

10 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

11 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘⟩) , 𝑥⟨𝑘+1| ≔ 𝑆 𝑉 𝑥⟨𝑘+1|

12 𝑧[𝑘] ≔ 𝑏̂𝑘 − ̂𝐴𝑘 ̃𝑥[𝑘] , 𝜂[𝑘] ≔ ⃗𝑏𝑘 − ⃗𝐴𝑘 ̃𝑥[𝑘]

13 Enrich 𝑥|𝑘⟩ by 𝜂|𝑘⟩ and update 𝑥⟨𝑘+1| according to (4.61)
14 [𝑥|𝑘⟩, 𝑅] ≔ QR(𝑥|𝑘⟩) , 𝑥⟨𝑘+1| ≔ 𝑅 𝑥⟨𝑘+1| // Orthogonalize 𝑥!(𝑘+1)

15 [𝑧|𝑘⟩, _] ≔ QR(𝑧|𝑘⟩) // Orthogonalize 𝑧!(𝑘+1)

16 Update Ψ𝐴,𝑘, Ψ𝑏,𝑘, Ψ̂𝐴,𝑘, Ψ̂𝑏,𝑘 following (4.47), (4.50), (4.66), (4.69)

17 for 𝑘 = 𝑑 to 2 by −1 do
18 Form 𝐴𝑘, 𝑏𝑘, ̂𝐴𝑘, 𝑏̂𝑘, 𝐴⃗𝑘, 𝑏⃗𝑘 by (4.46), (4.49), (4.65), (4.68), (4.77), (4.78)
19 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

20 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝑈 𝑆
21 𝑧[𝑘] ≔ 𝑏̂𝑘 − ̂𝐴𝑘 ̃𝑥[𝑘] , 𝜂[𝑘] ≔ 𝑏⃗𝑘 − 𝐴⃗𝑘 ̃𝑥[𝑘]

22 Enrich 𝑥⟨𝑘| by 𝜂⟨𝑘| and update 𝑥|𝑘−1⟩ according to (4.62)
23 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘+1⟩ 𝐿 // Orthogonalize 𝑥!(𝑘−1)

24 [_, 𝑧⟨𝑘|] ≔ LQ(𝑧⟨𝑘|) // Orthogonalize 𝑧!(𝑘−1)

25 Update Φ𝐴,𝑘−1, Φ𝑏,𝑘−1, Φ̂𝐴,𝑘−1, Φ̂𝑏,𝑘−1 following (4.48), (4.51), (4.67), (4.70)

26 while ‖𝑏 − 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
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4.11 Linear Systems

with

⃗𝐴𝑘(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝛼(𝑧)

𝑘 , 𝛼′(𝑥)
𝑘−1, 𝑖′

𝑘, 𝛼′(𝑥)
𝑘 ) =

𝑟(𝐴)
𝑘−1

∑
𝛼(𝐴)

𝑘−1

𝑟(𝐴)
𝑘

∑
𝛼(𝐴)

𝑘

Ψ𝐴,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝐴)

𝑘−1, 𝛼′(𝑥)
𝑘−1) ⋅

⋅ 𝐴(𝑘)(𝛼(𝐴)
𝑘−1, 𝑖𝑘, 𝑖′

𝑘, 𝛼(𝐴)
𝑘 ) Φ̂𝐴,𝑘(𝛼(𝑧)

𝑘 , 𝛼(𝐴)
𝑘 , 𝛼′(𝑥)

𝑘 ) (4.74)

⃗𝑏𝑘(𝛼(𝑥)
𝑘−1, 𝑖𝑘, 𝛼(𝑧)

𝑘 ) =
𝑟(𝑏)

𝑘−1

∑
𝛼(𝑏)

𝑘−1

𝑟(𝑏)
𝑘

∑
𝛼(𝑏)

𝑘

Ψ𝑏,𝑘−1(𝛼(𝑥)
𝑘−1, 𝛼(𝑏)

𝑘−1) ⋅

⋅ 𝑏(𝑘)(𝛼(𝑏)
𝑘−1, 𝑖𝑘, 𝛼(𝑏)

𝑘 ) Φ̂𝑏,𝑘(𝛼(𝑧)
𝑘 , 𝛼(𝑏)

𝑘 ) (4.75)

(4.76)

where ⃗𝐴𝑘 ∈ ℂ𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑧)

𝑘 × 𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 and 𝑏⃗𝑘 ∈ ℂ𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑧)

𝑘 , or

𝐴⃗𝑘(𝛼(𝑧)
𝑘−1, 𝑖𝑘, 𝛼(𝑥)

𝑘 , 𝛼′(𝑥)
𝑘−1, 𝑖′

𝑘, 𝛼′(𝑥)
𝑘 ) =

𝑟(𝐴)
𝑘−1

∑
𝛼(𝐴)

𝑘−1

𝑟(𝐴)
𝑘

∑
𝛼(𝐴)

𝑘

Ψ̂𝐴,𝑘−1(𝛼(𝑧)
𝑘−1, 𝛼(𝐴)

𝑘−1, 𝛼′(𝑥)
𝑘−1) ⋅

⋅ 𝐴(𝑘)(𝛼(𝐴)
𝑘−1, 𝑖𝑘, 𝑖′

𝑘, 𝛼(𝐴)
𝑘 ) Φ𝐴,𝑘(𝛼(𝑥)

𝑘 , 𝛼(𝐴)
𝑘 , 𝛼′(𝑥)

𝑘 ) (4.77)

𝑏⃗𝑘(𝛼(𝑧)
𝑘−1, 𝑖𝑘, 𝛼(𝑥)

𝑘 ) =
𝑟(𝑏)

𝑘−1

∑
𝛼(𝑏)

𝑘−1

𝑟(𝑏)
𝑘

∑
𝛼(𝑏)

𝑘

Ψ̂𝑏,𝑘−1(𝛼(𝑧)
𝑘−1, 𝛼(𝑏)

𝑘−1) ⋅

⋅ 𝑏(𝑘)(𝛼(𝑏)
𝑘−1, 𝑖𝑘, 𝛼(𝑏)

𝑘 ) Φ𝑏,𝑘(𝛼(𝑥)
𝑘 , 𝛼(𝑏)

𝑘 ) . (4.78)

where 𝐴⃗𝑘 ∈ ℂ𝑟(𝑧)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 × 𝑟(𝑥)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 and 𝑏⃗𝑘 ∈ ℂ𝑟(𝑧)
𝑘−1𝑛𝑘𝑟(𝑥)

𝑘 .

Note that we can re-use the auxiliary objects required to calculate 𝐴𝑘, 𝑏𝑘, ̂𝐴𝑘, and ̂𝑏𝑘.
While it may seem that the mapping is only required to ensure the enrichment tensor is
of appropriate size it also makes sense logically. For the computation of 𝐴𝑘, 𝑏𝑘, ̂𝐴𝑘, and̂𝑏𝑘 we use the cores of 𝑥 which have already been updated and enriched by the residual 𝑧
during this particular loop from left to right or right to left and the cores of the residual
𝑧 otherwise. E.g., when looping from left to right the computation of ⃗𝐴𝑘 and ⃗𝑏𝑘 includes
all 𝑝 < 𝑘 cores of 𝑥 and all 𝑞 > 𝑘 cores of 𝑧.

All variants of ALS with enrichment should also include normalization steps to improve
numerical stability like the variants without enrichment. The (M)AMEn algorithms with
normalization are shown in Alg. A.4 – A.6
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Chapter 4 – Tensor Train Decomposition

4.12 Fast Approximated Linear Algebra
We have already seen that the result of many operations working on operands in TT
format is given in TT format but with increased ranks. This means we essentially
have to always reduce the ranks afterwards using the rounding method described in
Sec. 4.10. For a TT tensor the complexity of the rounding algorithm is of 𝒪(𝑑𝑛𝑟3).
E.g., for TT operator 𝐴 ∈ ℂ(×𝑑

𝑘 𝑛𝑘) ×(×𝑑
𝑘 𝑛𝑘) and TT tensor 𝑏 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with ranks 𝑟(𝐴)
𝑘

and 𝑟(𝑏)
𝑘 the operator-by-tensor product 𝑐 = 𝐴 𝑏 with ranks 𝑟(𝑐)

𝑘 = 𝑟(𝐴)
𝑘 𝑟(𝑏)

𝑘 itself requires
𝒪(𝑑𝑛2 (𝑟(𝐴)𝑟(𝑏))2) arithmetic operations. Compared to 𝒪(𝑑𝑛 (𝑟(𝐴)𝑟(𝑏))3) arithmetic
operations required to reduce the ranks of 𝑐 afterwards, i.e., the total cost of the operation
is dominated by the rounding algorithm if 𝑛 ≪ 𝑟(𝐴)𝑟(𝑏).

For the addition of two TT tensors it is not as bad as the ranks are only added not
multiplied. However, there are cases in which we need to calculate the sum of multiple
tensors. In this case it is crucial to calculate the sum exactly and only apply the rounding
operation once afterwards, i.e., we must not apply the rounding operation after each
addition. This is especially important if the summands differ significantly in magnitude.
Otherwise the error of the approximate solution may be too large. Suppose we sum 𝑠
tensors with same rank 𝑟, then the computational complexity of the rounding operation
after the summation is of 𝒪(𝑑𝑛 (𝑠𝑟)3).
Instead of describing more efficient approaches for both the approximate solution of the
operator-by-tensor product and the summation of tensors we consider the more generic
operation

𝑥 =
𝑠

∑
𝑖

𝜆𝑖 𝑀𝑖 𝑣𝑖 (4.79)

with 𝜆𝑖 ∈ ℂ, TT operators 𝑀𝑖 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), and TT tensors 𝑣𝑖 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with

ranks 𝑟(𝑀𝑖)
𝑘 and 𝑟(𝑣𝑖)

𝑘 .19 The basic idea is to find an approximate solution 𝑥 with given
accuracy 𝜀 by minimization of the error ∥∑𝑠

𝑖 𝜆𝑖 𝑀𝑖 𝑣𝑖 − 𝑥∥. This is the same approach
as in Sec. 4.11 for solving linear systems and has, e.g., been used in [40] to approximate
operator-by-tensor products. Indeed, we can reuse the algorithms for solving linear
systems by optimization, i.e., ALS and modifications thereof, introduced in Sec. 4.11 by
setting

𝐴 ≔ Id and 𝑏 ≔
𝑠

∑
𝑖

𝜆𝑖 𝑀𝑖 𝑣𝑖 (4.80)

with 𝑟(𝐴)
𝑘 = 1 and 𝑟(𝑏)

𝑘 = ∑𝑠
𝑖 𝑟(𝑀𝑖)

𝑘 𝑟(𝑣𝑖)
𝑘 ∀𝑘 = 1, … , 𝑑 − 1. Thus the application of ALS to

find an approximate solution of (4.79) with accuracy 𝜀 is straight-forward and we only
describe possible simplifications and pitfalls due to 𝐴 = Id.

19For brevity we use 𝑟(𝑀) = max𝑖 𝑟(𝑀𝑖) and 𝑟(𝑣) = max𝑖 𝑟(𝑣𝑖) in computational complexity estimations.
Additionally we may certainly assume that 𝑟(𝑥) ≪ 𝑟(𝑀)𝑟(𝑣).
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Starting with the basic ALS the local optimization problem (4.44) is simplified to

̃𝑥[𝑘] = 𝑏𝑘 = 𝑥!(𝑘)
𝑠

∑
𝑖

𝜆𝑖 (𝑀𝑖 𝑣𝑖) (4.81)

as 𝐴𝑘, which is defined in (4.43), is equal to the identity matrix due to 𝐴 = Id and
the ensured orthogonality of 𝑥!(𝑘) in every local optimization problem. It follows that
Ψ𝐴,𝑘 = Φ𝐴,𝑘 ∈ ℂ𝑟(𝑥) × 1 × 𝑟(𝑥) ≅ ℂ𝑟(𝑥) × 𝑟(𝑥) are given by Id𝑟(𝑥) . From (4.81) follows that the
updated local optimum ̃𝑥(𝑘) is simply given by 𝑏𝑘. In particular the previous 𝑥(𝑘) is not
only not required but of no use at all. When solving linear systems the previous solution
has been used as the initial guess. This means there is no need anymore to update the
next core in truncation or orthogonalization steps as this core will be optimized next
anyway. The only exception is at the end of a full left-to-right-to-left sweep: The first
core will not be optimized next as it is the first core to be optimized in the next sweep.
However, the algorithm might be terminated if the desired accuracy has been reached.
Hence in this case the next core needs to be updated appropriately in truncation and
orthogonalization steps.

For the calculation of each local system we have two possible options. We can either use
the same calculation (4.49) – (4.51) using 𝑏𝑘, Ψ𝑏,𝑘, and Φ𝑏,𝑘 which requires 𝒪(𝑛𝑟(𝑥)𝑟(𝑏)2)
arithmetic operations with 𝑟(𝑏) = 𝑠𝑟(𝑀)𝑟(𝑣). Or we calculate the local system (4.81) by
first transforming it to

̃𝑥[𝑘] = 𝑏𝑘 = 𝑥!(𝑘)
𝑠

∑
𝑖

𝜆𝑖 (𝑀𝑖 𝑣𝑖) =
𝑠

∑
𝑖

𝜆𝑖 𝑥!(𝑘) (𝑀𝑖 𝑣𝑖) =
𝑠

∑
𝑖

𝜆𝑖 𝑏𝑖,𝑘 (4.82)

with 𝑏𝑖,𝑘 defined similar to (4.49) but for every 𝑏 = 𝑀𝑖 𝑣𝑖 and using recursively calcu-
lated auxiliary objects Ψ𝑏,𝑖,𝑘 and Φ𝑏,𝑖,𝑘 analogue to (4.50) and (4.51). This requires
𝒪(𝑛𝑟(𝑥)𝑟(𝑏)2) operations with 𝑟(𝑏) = 𝑟(𝑀)𝑟(𝑣) for each summand. Hence the computa-

tional complexity can be reduced from 𝒪(𝑛𝑠2𝑟(𝑥)𝑟(𝑀)2𝑟(𝑣)2) to 𝒪(𝑛𝑠𝑟(𝑥)𝑟(𝑀)2𝑟(𝑣)2).

Instead of using the exact error ∥∑𝑠
𝑖 𝜆𝑖 𝑀𝑖 𝑣𝑖 − 𝑥∥ to determine convergence the previ-

ously introduced alternatives using the current progress of the method as an indicator
of convergence can be used again. Note that the relative local change (4.52) and the
local residual (4.53) of the current solution 𝑥 are identical for the given problem (4.79).
Using ALS to approximate (4.79) the penalty of calculating the exact error is even more
noticeable. The naive approach, neglecting the operator-by-tensor products themselves,
requires 𝒪(𝑑𝑛 (𝑠𝑟(𝑀)𝑟(𝑣))3) arithmetic operations. The computational complexity can
be reduced using the equality

∥∑𝑠
𝑖 𝜆𝑖 𝑀𝑖 𝑣𝑖 − 𝑥∥ = ‖𝑥‖ − 2Re(⟨𝑥, ∑𝑠

𝑖 𝜆𝑖 𝑀𝑖 𝑣𝑖⟩) + ∥∑𝑠
𝑖 𝜆𝑖 𝑀𝑖 𝑣𝑖∥ . (4.83)

However, the last term, although it is constant and therefore only needs to be com-
puted once at the beginning, already requires 𝒪(𝑑𝑛 (𝑠𝑟(𝑀)𝑟(𝑣))3) arithmetic operations.
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This means that the leading term of the computational complexity to calculate the exact
error is about the same as the one of the direct computation of (4.79) followed by a single
application of the rounding operation. Hence it is crucial to not use the exact error to
determine the convergence of the method.

When moving from ALS to MALS or adding random enrichment there is nothing to be
considered in particular compared to solving systems of linear equations. For (M)AMEn,
however, one potential pitfall should be pointed out: Ψ̂𝐴,𝑘 and Φ̂𝐴,𝑘 ∈ ℂ𝑟(𝑧)

𝑘 × 1 × 𝑟(𝑥)
𝑘 ,

which are defined in (4.66) and (4.67), may be replaced by matrices in 𝐶𝑟(𝑧)
𝑘 × 𝑟(𝑥)

𝑘 similar
to Ψ𝐴,𝑘 and Φ𝐴,𝑘 but are not equal to Id.

4.13 A remark on notation and naming
In this chapter we used some notation and naming conventions. However this does
not reflect a single convention which has been agreed upon. Instead we have chosen the
notation and names we thought to be best and even introduced some new notations. This
was necessary since different notations and names are used in the literature depending
on the scientific background of the authors. The used notation and naming is similar to
the one used by mathematicians. We will not list here all possible naming conventions,
but still give some examples of different naming for the most crucial parts.

The TT decomposition itself is known in quantum physics since the late 1980s as Matrix
Product States (MPS) [45, 46, 47, 48]. For MPS we distinguish between periodic and
non-periodic MPS. The TT decomposition corresponds to the non-periodic case. The
Tensor Ring decomposition has been proposed in [49] to adapt TT for the periodic case.
In the periodic case the boundary conditions 𝑟0 = 𝑟𝑑 = 1 are loosened to 𝑟0 = 𝑟𝑑. This
means the result of (4.5) is not a scalar anymore. To solve this the trace of the product
has to be taken. However, loosening the boundary condition has further consequences
which can not be solved that easily. In [50] some ideas to solve these issues have been
proposed with varying degrees of success.

ALS is known in quantum physics as Density Matrix Renormalization Group (DMRG)
[51, 52] and used to compute the ground state of many-body systems. This done by
optimization of the Rayleigh Quotient instead of the energy function 𝐽𝐴,𝑏(𝑥) (4.38).20 It
has later been adapted to solve systems of linear equations, cf. [54]. The name DMRG
is used for both ALS and MALS. Hence it is often explicitly stated whether one core
or the contraction of two cores are optimized at a time. In quantum physics the cores
are called sites, i.e., we then refer to these algorithms as one-site or two-site DMRG.
A similar technique to enrichment has also been introduced to DMRG in [55]. This
algorithm is referred to as corrected one-site DMRG and has been compared to AMEn
in [56]. See [57, 58] for a reasonable up to date review of different DMRG variants.

20Optimizing the Rayleigh Quotient ALS can also be used to compute eigenvalues, see [53].
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Chapter 5

Application of Tensor Train to
Mutual Hazard Networks

In the previous chapter we have introduce the Tensor Train (TT) decomposition. In this
chapter we will now describe how to apply this to the specific problem of the Mutual
Hazard Network (MHN). To do so we use the tensor product for ⊗ in (2.2) instead of the
Kronecker product, i.e., 𝑄Θ ∈ ℝ(×𝑑 2) ×(×𝑑 2) and all vectors, e.g., p𝒟 and p∅, are tensors
in ℝ+×𝑑 2. For the TT format to be applicable to the MHN model we need to show
that all required tensors and operators can be converted to TT tensors and operators,
respectively, and that all required operations are supported in the TT format. We will
show that in this chapter step by step. At the end of the chapter we briefly discuss some
aspects of the optimizer regardless of whether the TT format is used or not.

5.1 Mutual Hazard Networks Operator
We call [Id − 𝑄Θ] with transition rate matrix 𝑄Θ, see (2.1), the MHN operator. The
transition rate matrix 𝑄Θ consists of 𝑑 summands 𝑄𝑖 which are all rank one, i.e., these
can be easily converted to TT operators with rank one using (4.10). The identity operator
Id can also be represented as a TT operator IdTT with rank one and cores Id|𝑘|

TT = Id2.
Evaluating the sum and subtraction the resulting TT operator [Id − 𝑄Θ] is of rank
𝑑 + 1. However it is not always sensible to evaluate the MHN operator as we might take
advantage of its form. For instance when applying [Id − 𝑄Θ] to a tensor 𝑥 it might be
beneficial to not evaluate [Id − 𝑄Θ] first but instead compute the (approximate) result
via

𝑦 = [Id − 𝑄Θ] 𝑥 =
𝑑

∑
𝑖=0

𝜆𝑖 𝑄𝑖 𝑥 (5.1)

with 𝑄0 = Id, 𝜆0 = 1 and 𝜆𝑖 = −1 ∀𝑖 ≠ 0. Note that this equation is of the same form as
(4.79), i.e., we can use the methods described in Sec. 4.12 for approximate calculation.
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5.2 Probability distributions

The initial probability distribution p∅ can be represented as a TT tensor with rank one
and cores p[𝑘]

∅ = e1. However, the empirical probability distribution p𝒟 which is defined
by the data set can not be easily represented as a TT tensor with low rank. Fortunately,
for all current data sets p𝒟 is sparse which we will later use to justify a workaround.
This is probably also true for future data sets. An upper bound of non-zero entries,
which is also an upper bound for the rank of p𝒟, is given by the amount of data points
which will very likely always be much smaller than 2𝑑 for reasonable large 𝑑.

However, there is a more serious issue concerning probability distributions related to TT.
A probability distribution p is essentially defined by two basic properties:

i) All entries of p are non-negative

ii) ‖p‖1 = 1

The second property requires us to be able to calculate the 1-norm as it is used for
normalization or as a termination criterion in iterative methods. Both approaches used
for the 2-norm obviously do not work for the 1-norm since they exploit the connection
between the inner product and the 2-norm. Nevertheless, the inner product, or rather
the scalar product, can also be used to calculate the 1-norm of a probability distribution:

‖p‖1 = ∑
𝑖

|p[𝑖]| = ∑
𝑖

p[𝑖] = ∑
𝑖

p[𝑖] u[𝑖] = ⟨p,u⟩ (5.2)

where u ∈ ℝ×𝑑 2 is a tensor with u[𝑖] = 1 ∀𝑖. The all-ones tensor u can be represented
as a TT tensor with rank one and cores u(𝑘) = 1, i.e., its cores are also all-ones tensors.
Here we used property i) and the fact that a probability distribution is real-valued, i.e., it
is not necessary to take the absolute value of p[𝑖] as |p[𝑖]| = p[𝑖] anyway. Hence property
ii) poses no problem if property i) is preserved. This is the case as long as we perform
all calculations exactly and do not use any form of approximation. This is obviously not
possible working in the TT format as approximations are required to keep the ranks low.
Neither the rounding operation nor any of the iterative methods described in Sec. 4.11
and 4.12 preserve this property. The rounding operation is based on optimizing the 2-
norm. A rounding operation based on the 1-norm would be necessary. But as far as we
know, such an operation does not exist. Fortunately, a slight violation often only leads
to marginally increased errors without any further consequences. However, this requires
special consideration in some cases and is indeed a problem that can not be neglected.
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5.3 Marginal log-likelihood score
The marginal log-likelihood score function 𝒮𝒟 (Θ), (2.3), needs to be frequently evaluated
when optimizing its parameters Θ𝑖𝑗. For this it is necessary to compute pΘ, (2.4), for
a given Θ𝑖𝑗 first. In (2.4) we, of course, do not compute the inverse of [Id − 𝑄Θ] but
instead solve the linear system

[Id − 𝑄Θ] pΘ = p∅. (5.3)
We have already seen that both [Id − 𝑄Θ] and p∅ can be represented in the TT format.
Hence we can use any of the algorithms for TT introduced in Sec. 4.11 to compute pΘ.1

By exploiting the fact that 𝑄Θ is a transition rate matrix, there is another way to
compute pΘ using an iterative method based on the uniformization method [59], cf. [5]:
Given an upper bound 𝛾 ≥ maxx∈𝑆 |𝑄Θ[x, x]| > 0 on the diagonal entries of 𝑄Θ the
marginal distribution pΘ is given by

pΘ = 1
1 + 𝛾

∞
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
[Id + 1

𝛾 𝑄Θ]
𝑘

p∅ (5.4)

with a natural approximation

pΘ ≈ p̃Θ = 1
1 + 𝛾

𝐾
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
[Id + 1

𝛾 𝑄Θ]
𝑘

p∅. (5.5)

However, the approximation p̃Θ does not satisfy the condition ‖p̃Θ‖1, i.e., it is not a
probability distribution. This can be corrected by scaling p̃Θ accordingly. The proper
scaling factor 𝜆−1 is given by

𝜆 = ‖p̃Θ‖1

= ∥ 1
1 + 𝛾

𝐾
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
[Id + 1

𝛾 𝑄Θ]
𝑘

p∅∥
1

= ∥ 1
1 + 𝛾

𝐾
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
∥

1

= 1
1 + 𝛾

𝐾
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
(5.6)

where we used the fact that [Id + 1
𝛾 𝑄] is a left transition matrix.2 Applying a left tran-

sition matrix on a probability distribution from the left yields a probability distribution.
1Strictly speaking all methods in Sec. 4.11 based on optimization are limited to hermitian positive

definite systems. Nevertheless, these can still be formally applied to any linear system but with no
guaranteed convergence to the global minimum, i.e., the solution of the linear system. Another approach
is to solve 𝐴† 𝐴 𝑥 = 𝐴† 𝑏 instead of 𝐴 𝑥 = 𝑏. This linear system is hermitian positive definite independent
of 𝐴. However this squares the ranks of the operator and increases the ranks of the right-hand side which
is very likely to slow down the computation. Therefore, we recommend to apply these algorithms directly
to the original linear system despite the loss of theoretical support.

2A transition or stochastic matrix 𝑃 satisfies 0 ≤ 𝑃(𝑖, 𝑗) ≤ 1 ∀𝑖, 𝑗 and ∑𝑖 𝑃(𝑖, 𝑗) = 1 ∀𝑗.
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Algorithm 5.1: Uniformization method

Input: Transition rate matrix 𝑄Θ ∈ ℝ2𝑑 × 2𝑑 , probability distribution p∅ ∈ ℝ+2𝑑 ,
𝛾 ≥ maxx∈𝑆 |𝑄Θ[x, x]|, and accuracy 𝜀

Output: Probability distribution p ∈ ℝ+2𝑑 with ‖[Id − 𝑄Θ] p − p∅‖ ≤ 𝜀 ‖p∅‖
1 Initialize 𝑘 = 0, 𝑠 = 1, 𝜆 = 1, 𝑝0 = p∅, and 𝑞 = p∅
2 while ∥𝑐−1 [Id − 𝑄Θ] 𝑝𝑘 − p∅∥ > 𝜀 ‖p∅‖ do
3 𝑠 ≔ 𝛾

1+𝛾 𝑠
4 𝜆 ≔ 𝜆 + 𝑠
5 𝑞 ≔ [Id + 𝛾−1 𝑄Θ] 𝑞 // ‖𝑞‖1 = 1
7 𝑝𝑘+1 ≔ 𝑝𝑘 + 𝑠 𝑞 // ‖𝑝𝑘+1‖1 = 𝜆
9 𝑘 ≔ 𝑘 + 1

10 return p ≔ 𝜆−1 𝑝𝑘

The individual terms of the sum and product can be calculated recursively. This enables
an efficient implementation as shown in Alg. 5.1. Note that we used the relative error
with respect to the 2-norm to determine when the approximation is sufficiently accurate.
However, this requires applying the operator [Id − 𝑄Θ] which is quite expensive. A
cheaper, but still reasonable stopping criterion is the scaling factor 𝜆 which only depends
on 𝛾 (and 𝐾), i.e., we stop once ‖p̃Θ‖1 = 𝜆 is sufficiently close to one. This also
means that the convergence rate of the uniformization method highly depends on the
quality of the upper bound 𝛾, i.e., we prefer a 𝛾 which is equal to or greater than
but very close to maxx∈𝑆 |𝑄Θ[x, x]|. On the other hand 𝛾 should be reasonable cheap
to calculate. Calculating 𝛾 exactly using all diagonal elements of 𝑄Θ requires 𝒪(𝑑2𝑑)
arithmetic operations. This exponential growth in computational complexity needs to
be avoided. Instead, we estimae the upper bound 𝛾 by evaluating the maximum absolute
diagonal entry 𝛾𝑖 = maxx∈𝑆 |𝑄𝑖[x, x]| > 0 of each 𝑄𝑖 given by

𝛾𝑖 = Θ𝑖𝑖
𝑑

∏
𝑗=1,𝑗≠𝑖

max{Θ𝑖𝑗, 1} . (5.7)

An upper bound on the maximum value of the diagonal entries of 𝑄Θ is then given by

𝛾 =
𝑑

∑
𝑖=1

𝛾𝑖 ≥ max
x∈𝑆

|𝑄Θ[x, x]| . (5.8)

This only requires 𝒪(𝑑) arithmetic operations for each 𝛾𝑖 or 𝒪(𝑑2) in total. However,
this is only a good estimation for an upper bound of the absolute diagonal entries of 𝑄Θ
if most off-diagonal elements of Θ are less than or equal to one, or at least close to one.
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Some adjustments are required to make the Alg. 5.1 usable for TT as well. In fact, we
not only insert the rounding operation at appropriate places to maintain low ranks, but
also apply simple transformations using (2.1) and (5.8) to (5.5):

pΘ ≈ p̃Θ = 1
1 + 𝛾

𝐾
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
[Id + 1

𝛾 𝑄Θ]
𝑘

p∅

= 1
1 + 𝛾

𝐾
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
[ 1

𝛾
𝑑

∑
𝑖=1

(𝛾𝑖 Id + 𝑄𝑖)]
𝑘

p∅ (5.9)

Algorithm 5.2: TT-Uniformization method

Input: Transition rate matrix 𝑄Θ ∈ ℝ(×𝑑 2) ×(×𝑑 2), probability distribution
p∅ ∈ ℝ×𝑑 2, 𝛾𝑖 ≥ maxx∈𝑆 |𝑄𝑖[x, x]| ∀𝑖 = 1, … , 𝑑, and accuracies 𝜀 and 𝛿

Output: Probability distribution p ∈ ℝ×𝑑 2 with ‖[Id − 𝑄Θ] p − p∅‖ ≤ 𝜀 ‖p∅‖
1 Initialize 𝑘 = 0, 𝑠 = 1, 𝜆 = 1, 𝛾 ≔ ∑𝑑

𝑖=1 𝛾𝑖, 𝑝0 = p∅, and 𝑞 = p∅
2 while ∥𝜆−1 [Id − 𝑄Θ] 𝑝𝑘 − p∅∥ > 𝜀 ‖p∅‖ do
3 𝑠 ≔ 𝛾

1+𝛾 𝑠
4 𝜆 ≔ 𝜆 + 𝑠

5 𝑞 ≔ 𝛾−1 ℛ𝛿(
𝑑

∑
𝑖=1

ℛ𝛿(𝛾𝑖 𝑞 + 𝑄𝑖 𝑞))

6 𝑞 ≔ ‖𝑞‖−1
1 𝑞 // ‖𝑞‖1 = 1

7 𝑝𝑘+1 ≔ ℛ𝛿(𝑝𝑘 + 𝑠 𝑞)
8 𝑝𝑘+1 ≔ 𝜆 ‖𝑝𝑘+1‖−1

1 𝑝𝑘+1 // ‖𝑝𝑘+1‖1 = 𝜆
9 𝑘 ≔ 𝑘 + 1

10 return p ≔ 𝜆−1 𝑝𝑘

The resulting uniformization method adapted for TT is shown in Alg. 5.2. Note that
we restore the correct 1-norm after each approximation. However, it is not clear if
this actually is an improvement. After an approximation the 1-norm is not correct
anymore, but the approximation is not necessarily improved by correcting this fact.
Actually, depending on the used metric, the approximation might even get worse. In
fact, a correct norm for the intermediate steps is not implicitly necessary, only the final
result must have the correct norm. The alternative approach is to omit lines 6 and
8 and instead, only correct the 1-norm of the final result. For the calculation of 𝑞 in
line 5 we can either use the rounding operation described in Sec. 4.10 or one of the
methods for fast approximated linear algebra described in Sec. 4.12. When using the
former, the computational complexity for extending the series by one term is given by
𝒪(𝑑𝑛 ((𝑑𝑟(𝑞))3 + (𝑟(𝑝) + 𝑟(𝑞))3)) with the maximum ranks 𝑟(𝑞) of 𝑞 and 𝑟(𝑝) of 𝑝.
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Unfortunately, Alg. 5.2 has a weak spot in line 7. There we are effectively calculating
a sum of 𝐾 summands. We have already mentioned previously that when evaluating a
sum it is recommended to approximate only the final result to keep the error low. This
is especially true if the summands differ significantly in magnitude, which is the case
here. However, it is difficult to only approximate the final result in this case. To do
so, we would have to store all intermediate results of the recursively calculated product
( 𝛾

1+𝛾 )𝑘 [ 1
𝛾 ∑𝑑

𝑖=1 (𝛾𝑖 Id + 𝑄𝑖)]
𝑘

p∅. This is not a feasible option, i.e., we have to stick
with approximating after each addition.

Once pΘ has been computed we can evaluate the marginal log-likelihood score function

𝒮𝒟 (Θ) = ⟨p𝒟, logpΘ⟩ . (2.3)

The element-wise logarithm of pΘ can not be calculated directly in the TT format.
However, p𝒟 is not given in TT format anyway, i.e., we need a workaround to compute
the scalar product of a sparse full tensor and a TT tensor. A possible workaround is
naturally given by the sparsity of p𝒟:

𝒮𝒟 (Θ) = ∑
x∈𝒟

p𝒟[x] logpΘ[x] (5.10)

where x ∈ 𝒟 means all multiindices x for which p𝒟[x] ≠ 0. This is a feasible workaround
as long as the number of non-zero entries in p𝒟 is reasonable low. Note that the compu-
tational complexity for each single summand x ∈ 𝒟 is dominated by the evaluation of
pΘ[x] which requires 𝒪(𝑑𝑟2) arithmetic operations. Fortunately, the evaluation of pΘ[x]
for each x ∈ 𝒟 is independent of each other, i.e., we can trivially parallelize this task
with a very high efficiency.

In Sec. 5.2 we discussed the issue of negative entries appearing in a probability distribu-
tion due to approximations in the TT format. This applies here to pΘ and has serious
consequences as the logarithm of a non-positive number is undefined. We propose to
use a cutoff to deal with this problem, i.e., we replace pΘ[x] in (5.10) by max {pΘ[x] , 𝜀}
where 0 < 𝜀 ∈ ℝ. The justification for this workaround is that if pΘ[x] ≪ p𝒟[x] > 0 for
one or multiple x ∈ 𝒟 then the current parameters Θ𝑖𝑗 are certainly not optimal. Thus
the exact score does not matter as long as the affected x-th summands add a sufficiently
large negative penalty to it to allow the optimizer to progress further. For this to work 𝜀
must be significantly smaller than minx∈𝒟 p𝒟[x]. This might be an issue for future data
sets as with increasing 𝑑 and number of data points, the number of non-zero entries in
p𝒟 also increases. As a result, the non-zero entries of p𝒟 become smaller and smaller
due to the condition ‖p𝒟‖1 = 1. Once the parameters Θ𝑖𝑗 are close to the optimum the
issue is less likely to occur since then pΘ[x] ≈ p𝒟[x] ∀x. Note that this indeed is also
a problem when not using any approximations at all: For certain x ∈ 𝒟, pΘ[x] may be
equal to zero even though p𝒟[x] ≠ 0.
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5.4 Gradient of the score function
Using classical algorithms for the optimization of 𝒮𝒟 (Θ) it is also required to calculate
its gradient, i.e., calculate its partial derivatives with respect to each parameter Θ𝑖𝑗
given by

𝜕𝒮𝒟 (Θ)
𝜕Θ𝑖𝑗

= ⟨[Id − 𝑄Θ]−𝑇 (p𝒟 ⊘ pΘ) , 𝜕𝑄Θ
𝜕Θ𝑖𝑗

pΘ⟩ (2.6 & 2.7)

The element-wise division of two TT tensors can not be calculated directly in the TT
format and p𝒟 is not given in the TT format. Again, we use a similar workaround given
by the sparsity of p𝒟 as for the calculation of the score function itself in (5.10):

𝜕𝒮𝒟 (Θ)
𝜕Θ𝑖𝑗

= ∑
x∈𝒟

p𝒟[x]
pΘ[x] [Id − 𝑄Θ]−𝑇 ex

𝜕𝑄Θ
𝜕Θ𝑖𝑗

pΘ (5.11)

where ex ∈ ℝ×𝑑 2 is a single-entry TT tensor with ex[x] = 1 and all other entries equal to
zero. The tensor ex can be represented as a TT tensor with rank one and cores e[𝑘]

x = ex𝑘
where x𝑘 is the 𝑘-th index of the multiindex x. Unfortunately, this means that we have
to solve a linear system

[Id − 𝑄Θ]𝑇 qx = ex (5.12)

for each x ∈ 𝒟. Note that we can not use the uniformization method described in Sec. 5.3
to solve this linear system as 𝑄𝑇

Θ is not a transition rate matrix. Fortunately, we can
solve these linear systems independent of each other, i.e., we can trivially parallelize
this task with a very high efficiency. In addition, we do not have to calculate pΘ[x]
twice, once for the score function and once for the gradient, as the score function and
the gradient usual have to be both evaluated for the same parameters Θ𝑖𝑗, i.e., the loops
over x ∈ 𝒟 in (5.10) and (5.11) can be fused.

The problem of negative or zero entries in pΘ can be solved for (5.11) by simply omitting
affected summands.

5.5 Optimizer
While not part of the main topic, let’s briefly consider the choice of a suitable optimizer
for the log-likelihood score (2.3). This is important because this choice directly affects
the total execution time as it determines how often we need to solve (2.3) and (2.6).
However, not all optimizers are applicable to this problem.

One reason is the boundary condition of the parameters Θ𝑖𝑗 > 0 which needs to be
ensured at any time, i.e., only optimizers which support bound constraint are suitable.
L-BFGS-B [60] is a common choice for such problems. However, L-BFGS-B, like many
other optimizers which support bound constraints, needs to be combined with a complex
line search method supporting bound constraints as well. Usually L-BFGS-B is combined
with the line search routine of Moré and Thuente [61]. This line search is not only
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complex to implement, but also tends to require more evaluations of the score function
and its gradient than line search methods for unconstrained optimization problems.

Fortunately, we can easily avoid the boundary condition by not optimizing Θ𝑖𝑗 but
𝜗𝑖𝑗 = log(Θ𝑖𝑗) ∈ ℝ. When evaluating the score function or its gradient we simply
convert from 𝜗𝑖𝑗 to 𝜃𝑖𝑗 and vice versa whenever needed. Note that we then need to
calculate the partial derivative of 𝒮𝒟 (𝜗) with respect to each parameter 𝜗𝑖𝑗. This
parameter transformation allows us to, e.g., use BFGS [62], L-BFGS [63, 64], or a
variant of gradient descent (GD), cf. [65], combined with efficient line search routines
ensuring the Wolfe [66, (3.6)] or even strong Wolfe conditions [66, (3.7)].

Note that L-BFGS, a variant of BFGS with reduced memory requirements by lowering
the accuracy of the approximated inverse Hessian matrix compared to BFGS, has no real
advantages over BFGS in this case since the memory requirements of BFGS of 𝒪(𝑑2)
are negligible for for current data sets, but may even be disadvantageous due to the less
accurate approximation. Hence BFGS is preferred over L-BFGS in this case.

The other reason why not all optimizer are applicable to this problem is the added penalty
term in (2.5). This term is not differentiable at any point, i.e., the objective function
including this term is non-differentiable. This is, e.g., an issue for GD and BFGS as these
optimizers only have guaranteed convergence for differentiable functions. A variant of
the L-BFGS designed in particular for such penalty terms is the Orthant-wise limited-
memory quasi-Newton (OWL-QN) [67, 68] method. However, this algorithm has not
yet been implemented in our software. Fortunately, BFGS works very well despite the
non-differentiability and has indeed been used in [2].

A common approach in machine learning to reduce the time to solution is to not calcu-
late the actual gradient using the entire data set but only an estimate thereof using a
randomly selected subset. The size of the subset can be dynamically increased to ensure
that the exact optimum is reached once close to it while allowing fast computation of the
estimated gradient in the early phase. In the early phase an estimation of the gradient
is often sufficient to still drive the solution towards the global optimum. Note that while
it seems that simply replacing non-zero entries of p𝒟 in (2.7) by zero with a certain
probability, instead of randomly selecting a subset of the data set and creating p𝒟 a
new, is sufficient it is indispensable to ensure that the modified p𝒟 is a probability distri-
bution afterwards, i.e., ‖p𝒟‖1 = 1. The concept of only using an estimate of the gradient
can be applied to various optimizers. These variants often carry the prefix stochastic or
online, cf. [69]. Having in mind the issue of non-differentiability a stochastic variant of
OWL-QN seems most promising, cf. [70].
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Chapter 6

Software Implementation

When we started working on the topic, we first looked for and evaluated existing imple-
mentations of the TT format. The TT-Toolbox [71] is the de facto reference implemen-
tation. However, this implementation is not developed with a focus on performance, but
to develop and test new algorithms. In addition, the TT-Toolbox is based on Matlab
[72] which is a proprietary programming language. Our focus is to develop open source
software that can be used independently of any proprietary solutions. Later an effort
to rewrite the TT-Toolbox in Python [73] with its computing core implemented in For-
tran [74] has been started. However, this attempt was not necessarily successful and
the development stalled. Other libraries implementing TT are often tailored towards a
specific field of use, e.g., [75, 76, 77] for Neural Networks and [78, 79, 80, 81, 82] for
quantum physics. [83, 84, 85] are examples for implementations implementation which
try to be generic enough to be used for different use cases. Unfortunately, development
of some of these libraries appears to have stalled or even been discontinued. None of
the listed libraries was considered a viable choice either due to the high specialization,
current state of development, or some have simply not yet been publicly available at the
time. Instead, we decided to implement our own library in C++17 heavily relying on
template metaprogramming (TMP). We not only implemented the TT format ourselves,
but also developed our own underlying tensor library. The tensor libraries of Boost [86]
and Eigen [87] have been evaluated, but again neither was found to be a viable choice.

Implementing a library from scratch many design decisions have to be made. Some of
these have a major impact on how and for what the library can be used. One major design
decision of our library was to not allow dynamically changing the mode sizes of a tensor
but fix mode sizes at compile time. While this limits the flexibility it dramatically lowers
the amount of required dynamic memory allocations and deallocations. This decision
was made specifically for the MHN model as the mode sizes of all involved tensors are
two, i.e., the cores of a TT tensor or operator are small. In terms of C++ this means
that the mode sizes define the tensor’s class type, i.e., tensors are implemented as a class
template with template parameters specifying the mode sizes.
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In this chapter we will first explain required programming features to implement the
tensor class with an arbitrary number of mode sizes set at compile time. Next we will
discuss some limitations imposed by this design decision and especially the impact on
the algorithms introduced in Chapter 4. Afterwards we describe one particular generic
feature of the library. Finally we explain how to specialize function templates depending
on type properties up to C++17 and show how this can be simplified in C++20.

As of writing this work, our library consisted of ∼24 000 lines of code using the C++17
standard revision depending on one feature [88] from C++20. The release of the software
under an open source license is planned for after the completion of the dissertation.

6.1 Parameter Pack
For the implementation of the class template Tensor representing a (full) tensor in
𝕂×𝑑

𝑘 𝑛𝑘 , where 𝕂 can either be ℝ or ℂ, we need to be able to specify an arbitrary
number of mode sizes using non-type template parameters. For that we use a non-type
template parameter pack introduced in C++11 [89, 90], i.e., the class declaration is given
by template<class T, Size... Ns> class Tensor; where ... specifies that Ns is
a parameter pack representing an arbitrary number of non-type template arguments
of type Size.1 Size itself is a type alias referring to an unsigned integer type, usually
std::size_t. The template parameter T is used to specify the data type of each element
of the tensor, i.e., it is used to specify whether it is a real or complex tensor and to set
the floating-point precision with the default being double precision. In C++11 parameter
packs are essentially restricted to expansions using .... This means we have to use
recursive function calls to be able to deal with one element of Ns at a time.

An example using pack expansion is shown in Code 6.1.2 In this example we calculate the
linearized size, i.e., the total amount of elements, of the tensor. The calculation requires
two helper functions which are both called helper but differ in parameters. The version
without any parameters is required to end the recursive function call in line 6.3 This
is quite a lot of code for such a simple task and hence motivated the addition of fold
expressions [93, 94] in C++17. These allow us to reduce, i.e., fold, a parameter pack over
a binary operator with an optional initial value at the beginning or at the end. The
Code 6.1 rewritten with fold expressions is much easier to read, write, and understand,
see Code 6.2.4

1A template with at least one parameter pack is called a variadic template.
2Note that in this example most functions are marked as constexpr functions using the constexpr

specifier. These functions can be evaluated at compile time and thus be used where only constant
expressions, i.e., expressions which can be evaluated at compile time, are allowed. However, constexpr
functions are not required to be evaluated at compile time. In C++20 immediate functions [91] have been
introduced. These are required to produce a compile time constant. If a function is evaluated at compile
time it makes no difference whether it is a constexpr or immediate function.

3The two versions of the helper function can be combined into one version using compile time
conditions [92], also known as constexpr if, introduced in C++17.

4Note that we have simplified both Code 6.1 and 6.2 to focus on the features discussed.
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Code 6.1: Parameter pack expansion [C++11]

1 constexpr Size helper() {
2 return 1;
3 }
4 template <class T, class ...Ts>
5 constexpr Size helper(T const N, Ts const... Ns) {
6 return N * helper(Ns...);
7 }
8 template <class T, Size... Ns>
9 struct Tensor

10 {
11 static constexpr Size size()
12 {
13 return helper(Ns...);
14 }
15 };

Code 6.2: Code 6.1 rewritten with fold expressions [C++17]

1 template <class T, Size... Ns>
2 struct Tensor
3 {
4 static constexpr Size size()
5 {
6 return Ns * ... * 1;
7 }
8 };

Code 6.3: Simultaneous parameter pack expansion [C++11]

1 template <class T, Size... Ns>
2 struct Tensor
3 {
4 template <Size... Offsets, class ...Is>
5 T& periodicShiftByOffset(Is const ...indices)
6 {
7 return operator()((Offsets + indices) % Ns...);
8 }
9 };
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In Code 6.3 we show a snippet of a possible extensions of the Tensor class template
using a simultaneous parameter pack expansion in line 7. Simultaneous parameter pack
expansions require all parameter packs to be of the same length.

Although we can implement all required functionality in C++17, some features still re-
quire quite a lot of boilerplate code or are cumbersome to implement. Here we only want
to mention three cases:

1. Storing a parameter pack, e.g., as a class member, is not directly possible. The
usual solution is to store a std::tuple constructed from it instead.

2. Accessing a particular element of a parameter pack by index requires to, e.g., first
construct a std::tuple from it and then access the element using std::get.

3. In Code 6.3 line 4 we need to add checks that all Is are of appropriate type, e.g.,
Size, and the length of Is is the same as that of Ns.5

Fortunately, C++ is a continuously evolving programming language which attempts to
fix such inconveniences in new revisions of the C++ standard. A proposal which covers
all three use cases has already been developed [95] and proposed to the C++ Standards
Committee for inclusion in a future C++ standard revision.

6.2 Fixed Size Limitations
The design decision of the library to not allow dynamically changing the mode sizes
of a tensor but fix all mode sizes at compile time imposes some limitations on the
implementation of the Tensor Train format. Put simply, this means that all mode sizes
and ranks, and hence the number of dimensions, of a TT tensor have to be set at compile
time. In the case of MHN, determining the mode sizes and dimensions at compile time
is not a big issue. All mode sizes are two and the number of dimensions is fixed for
a particular data set. However, the requirement to also fix the ranks at compile time
means that these can not be adapted dynamically. In particular this affects the rounding
algorithm presented in Sec. 4.10 and all rank adaptive variants of the ALS algorithm
presented in Sec. 4.11 and their adapted versions for fast approximated linear algebra
outlined in Sec. 4.12.

For the rounding algorithm we need to modify the truncation part, see Alg. 4.4. In
addition to an accuracy 𝜀 we have to set the ranks 𝑟𝑘 of the truncated TT tensor as
input. Usually we only set the maximum rank 𝑟 instead of all individual ranks as this
is desired in almost all cases anyway. Having to specify each rank 𝑟𝑘 only makes the
applications unnecessarily complicated. All ranks 𝑟𝑘 of the resulting TT tensor are then
either set to 𝑟 or lower due to the conditions imposed on the ranks by the left-to-right
(𝑟𝑘 ≤ 𝑟𝑘−1𝑛𝑘) and right-to-left (𝑟𝑘 ≤ 𝑟𝑘+1𝑛𝑘+1) orthogonalization or truncation. We
use the given or determined ranks 𝑟𝑘 to set the number of singular values kept in the
truncated SVD, i.e, we replace all 𝛿-truncated SVDs by 𝑟𝑘-truncated SVDs. The given

5For parameter pack Offsets we also need to check the length but not the type.
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accuracy 𝜀, respectively 𝛿, is used to emit a warning, including the actual error, if the
desired accuracy is not met. However, it has no effect on the actual ranks. In contrast
to the accuracy 𝜀, which is a function argument, the rank 𝑟 has to be specified as
a template argument in C++. Accordingly, for all algorithms which use the rounding
operation internally, a maximum rank must be specified in addition to the accuracy.
This applies, for example, to Alg. 4.7 and 5.2.

All rank adaptive variants of the ALS algorithm use 𝛿-truncated SVDs with a given
accuracy 𝛿 internally. As with the rounding method, all 𝛿-truncated SVDs have to be
replaced by 𝑟𝑘-truncated SVDs. Again, we only set a maximum rank 𝑟 and determine
the ranks 𝑟𝑘 according to the rank conditions imposed by the orthogonalization. This
means that the ranks of the solution 𝑥 have to be set a priori for all variants of ALS.

The requirement to set all ranks a priori can lead to ranks either being set too low or
too high. If we underestimate the ranks we may not maintain the desired accuracy. If
we overestimate the ranks the required computational effort will be higher than actually
necessary. These disadvantages come with a potential benefit in performance. In addi-
tion, there is a proposal to add just-in-time (JIT) compilation to C++ [96] which could
help to at least mitigate some of these drawbacks.

6.3 Lazy Evaluation
To motivate lazy evaluation, let’s consider a simple example in tensor arithmetics: Given
tensors 𝑎 and 𝑏 of same shape the sum 𝑑 = 𝑎 + 𝑏 is defined by element-wise addition,
i.e., in C++ we would implement an overloaded operator+ which returns a new object
of type tensor. This function involves a loop over all indices of 𝑑. However, when we
consider the more complex, but still simple, expression 𝑑 = 𝑎 + 𝑏 + 𝑐 the overloaded
operator+ returning a tensor object has to be called twice: The implementation first
creates a new temporary tensor 𝑡 = 𝑎 + 𝑏 which is then summed up with 𝑐 to form 𝑑
calling operator+ a second time. This is obviously not efficient as it involves two loops
over the same indices and an unnecessary temporary object. The obvious optimization
is to fuse the two loops and directly form 𝑑. However, the question is how to implement
this in a generic way without having to define a function for every possible expression.

Delayed, or lazy evaluation solves this optimization problem. In C++ this can be imple-
mented by having the operator+, or any other arithmetic operator, return an object of
a class which represents the unevaluated operation of two, or any number of, tensors.
Objects of classes representing unevaluated operations on tensors can themselves be used
in expressions. This effectively leads to the construction of expression trees in case of
compound expressions. These expression trees are only evaluated once assigned to an
actual tensor object or evaluation is explicitly requested. An exception are expressions
containing temporary objects. These must be evaluated immediately since the tempo-
rary objects are no longer available after the expression. This points to a pitfall of this
concept: The user must ensure that all objects referenced in an expression tree still
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exist at the time of evaluation. Lazy evaluation is particularly efficient for element-wise
operations. Expression templates [97] are a reasonable implementation of this concept
in C++. These are, for example, used in the two probably most well-known libraries for
Lattice QCD, Chroma [98] and Grid [99].

In our library we go one step further and not only delay the evaluation, but also allow
partial evaluation of expressions. This means that if only individual entries of a tensor are
required, only these are actually evaluated. Which entries are to be computed can either
be determined by using functions which change the view on the tensor, e.g., reducing
the dimension of the tensor by fixing the index of a particular mode, or access individual
entries manually. Hence, we refer to classes representing unevaluated expressions as
views. A very similar approach is used in Eigen [87].

This concept has been applied to tensors in our library as described above and addition-
ally to TT tensors and operators. In case of TT tensors or operators, lazy evaluation
is based on the loop over its cores instead of entries. This works very well for many
basic arithmetic operations in the TT format as they are computed core-wise. When
calculating the individual cores, the lazy evaluation of tensors comes into play.

6.4 Function Template Specialization

Dealing with many different class templates we need a way to define template functions
depending on the arguments’ type properties. In C++ properties of types are queried
using type traits.6 Basic type traits, e.g., to query whether a basic type is signed or
unsigned, are provided by the metaprogramming library part of the C++ standard library.
Additional type traits, especially to query properties of user-defined types, can be defined
as required. This section is called “function template specialization”, but actually we
will technically not specialize any function template. In C++ only explicit (full) function
template specializations are allowed. However, these are of low interest since we usually
want to define functions for a group of types with certain properties and not a for
a specific instantiation of a class template. Instead, we define function templates as
needed and then conditionally disable these in function overloading based on type traits.
This allows separate function overloads, in other words specializations, based on type
properties.

Since C++117, this can be implemented by exploiting the “Substitution Failure Is Not
An Error” (SFINAE) rule, see Code 6.4.8 This rule applies during overload resolution of
function templates and states that if substitution of the explicitly specified or deduced
type for a template parameter fails, then the function template is ignored in overload
resolution rather than resulting in an error.

6Other type traits can be used to modify types, e.g., to remove const specifier from a given type.
7Strictly speaking this was already possible in C++98, but was much more cumbersome to implement.
8The alias template If is only used to improve readability.
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Code 6.4: Conditional function template overloading using SFINAE [C++11]

1 template <class B>
2 using If = typename std::enable_if <B{}, int>::type;
3
4 template <class T, If<std::is_signed <T>> = 0>
5 T abs(T const &);
6
7 template <class T, If<std::is_unsigned <T>> = 0>
8 T abs(T const &);

Code 6.5: Template function specialization using compile time conditions [C++17]

1 template <class> constexpr bool dependentFalse = false;
2
3 template <class T>
4 T abs(T const &) {
5 if constexpr (std::is_signed_v <T>) {...}
6 else if constexpr(std::is_unsigned_v <T>) {...}
7 else static_assert(dependentFalse <T>, "Unsupported type.");
8 }

Another approach is to use compile time conditions [92], also known as constexpr if,
introduced in C++17. However, this means that either all function definitions or at least
references to other function templates, with different names, for all possible types need
to be part of a single function template definition. This quickly leads to very messy
code. Hence it is only recommended to use compile time conditions for this purpose if
the number of case distinctions is very small.

Code 6.6: Conditioal function template overloading using constraints [C++20]

1 template <class T> requires std::is_signed_v <T>
2 T abs(T const &);
3
4 template <class T> requires std::unsigned_integral <T>
5 T abs(T const &);
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Constraints [100] were introduced in C++20 as a proper alternative to SFINAE. We may
associate function (or class) templates with a constraint which specifies requirements on
template arguments. These requirements are then used to select the most appropriate
function overload. This means that constraints are actually designed for conditional
function template overloading and are not abused for an unintended purpose. Accord-
ingly, the syntax is very clean and easy to read, see Code 6.6. A big advantage of using
constraints instead of SFINAE is that violations are detected early in the template in-
stantiation process which allows for easy to follow compiler diagnostics in case of an error.
Very often the term concepts is used instead of constraints. However, a concept is actu-
ally a named set of requirements which can be used in constraints, i.e., concepts are the
equivalent of type traits while constraints are the equivalent of SFINAE in this context.
Indeed, both concepts and type traits can be used with constraints to specify require-
ments. In Code 6.6, std::is_signed9 is a type trait and std::unsigned_integral is
a concept. As of writing this work, concepts and constraints are not yet being used in
our library, but it is planned to use both. However, this means a lot of code changes in
the entire library and raising compiler requirements. Accordingly, a wide availability of
compilers supporting concepts and constraints should be awaited.

9std::is_signed_v, which is identical to std::is_signed<T>::value, is a helper variable template
to simplify the syntax. Such helpers with suffix _v are defined for all type traits in the standard library.
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Numerical results

In the previous chapters we have seen that we have to solve the linear systems

[Id − 𝑄Θ] pΘ = p∅ and [Id − 𝑄Θ]𝑇 qx = ex ∀x ∈ 𝒟 (5.3 & 5.12)

in order to calculate the marginal log-likelihood score and its gradient, respectively,
which are required for the optimization of Θ. Solving these linear systems of equations
is indeed the greatest challenge we face in the MHN model. Once these are solved, all
other calculations are relatively easy to deal with.

In this chapter we show numerical results1 solving (5.3) using the algorithms presented in
Sec. 4.11 and 5.3. We limit ourselves to showing results for (5.3) only as the difficulty to
solve (5.12) varies a lot depending on ex, but is often similar to that of (5.3). In addition,
a worse accuracy is often sufficient for the gradient, in contrast to the marginal log-
likelihood score. We first show results of the uniformization method since this method
exploits the structure of the system and hence might be a good candidate. Next we
move on to GMRES before we finally compare different variants of ALS.

Instead of choosing a particular data set we use random values for Θ. This allows us
to set 𝑑 to any desired number independent of available data sets. The random values
are chosen such that their logarithmic values are normally distributed with mean 𝜇 = 0
and standard deviation 𝜎 = 0.125 or 𝜎 = 0.25 for off-diagonal or diagonal elements of
Θ, respectively. Note that while for real data sets it is assumed that many values of Θ
are equal to one, we have not taken this into account. This assumption actually only
applies for the global optimum, but the optimizer may choose arbitrary values for Θ in
search of the optimum. Hence we only assumed that all values are around one. Note
that a Θ chosen in this way represents one of the more difficult cases.

1All measurements were performed on an AMD Epyc 7543P using the GNU Compiler Collection’s
(GCC) C++ compiler version 11 with optimization level 3 and targeting the native architecture.
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Figure 7.1: Progress of the uniformization method for 𝑑 = 20 and different ranks 𝑟 of
the solution. The reference denoted by 𝑟 = ∞ is not using the TT format.

7.1 Uniformization method
The uniformization method, see Alg. 5.2, exploits the specific structure of the MHN
operator. Thus, one might assume that this is a competitive method to solve the linear
system. However, the convergence rate of the method highly depends on the quality of
the upper bound 𝛾. In Fig. 7.1 the progress of the method for 𝑑 = 20 and different
ranks 𝑟 of the solution is depicted. Note that the error is calculated without correcting
the 1-norm of the solution or any other interim object. Remember that our software
implementation requires fixed ranks, i.e., the rank 𝑟 is used for approximating 𝑞 and
𝑝𝑘+1, i.e., it determines the maximum rank of both. For reference the progress of the
uniformization method not using the TT format is plotted as well. The shape of the
reference curve, which appears strange at the beginning, can be explained by the usage of
the 2-norm to calculate the relative error, although the uniformization method optimizes
the 1-norm. The direct dependency between the maximum rank 𝑟 and the maximum
achievable accuracy of the solution is clearly visible.

The lowest relative error that can be achieved can be reduced further by increasing the
maximum rank 𝑟 at the expense of a longer running time. The required runtime of the
uniformization method for a fixed number of terms plotted against the maximum rank 𝑟
is shown in Fig. 7.2.2 The time is normalized by a theoretically calculated execution time
for 𝑟 = 1. This is done by taking the time needed for 𝑟 = 32 and scaling it according to
the theoretical scaling in 𝑟. Since the method for fast calculation of approximated results
of sums, described in Sec. 4.12, is not used for the calculation of 𝑞, the computational
complexity for extending the series by one term is given by 𝒪(𝑑4𝑟3), i.e., the theoretically
expected runtime scaling in 𝑟 is 𝑟3. The time measurements confirm this.

2Runtime measurements should always be carried out several times and the corresponding deviations
should be indicated. In this case, however, the error bars are so small that they are not visible anyway.
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Figure 7.2: Runtime scaling of the uniformization method calculating solution pΘ with
rank 𝑟 and a fixed number of terms for 𝑑 = 20.

Although the focus here is on the uniformization method adapted for the TT format, it
is certainly necessary to point out the very slow progress of the method, regardless of
the TT format. For example, to achieve an accuracy of 10−5, the series may only be
stopped after approximately 600 steps. An explanation for this very slow progress can
be found in the upper bound 𝛾. The rate of convergence of the uniformization method
is given by the rate of convergence of the series

1
1 + 𝛾

∞
∑
𝑘=0

( 𝛾
1 + 𝛾 )

𝑘
= 1. (7.1)

For larger 𝛾 this series converges more slowly. For the given randomized Θ with 𝑑 = 20,
maxx∈𝑆 |𝑄Θ[x, x]| ≈ 20. But the exactly calculated value is usually not being used
for 𝛾 as the required computational effort is of 𝒪(𝑑2𝑑), i.e., too expensive for practical
applications. Instead, we use an upper bound calculated according to (5.8), which has
a lower computational complexity of 𝒪(𝑑2), but tends to overestimate the actual value.
In this particular case the upper bound is given by 𝛾 ≈ 50. Unfortunately, a better
estimation does not exist.

7.2 Generalized Minimal Residual
The GMRES adaptation for the TT format, see Alg. 4.7, allows to set different accuracies
for the approximation of the Krylov tensors and the solution. It even allows to further
relax the accuracy for some operations on the Krylov tensors. Since we have to set fixed
ranks for all TT tensors a priori we use the same maximum rank for all Krylov tensors,
i.e., we do not use the relaxed accuracy 𝛿𝑗, but always use 𝛿. While this still allows us
to set different maximum ranks for the Krylov tensors and the solution, we have used
the same maximum rank 𝑟 for both in the following numerical results.
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Figure 7.3: Progress of GMRES(8) for 𝑑 = 20 and different ranks 𝑟 of the solution and
Krylov tensors. Both CGS (dotted lines) and MGS (solid lines) variants are shown. The
reference denoted by 𝑟 = ∞ is not using the TT format.

In Fig. 7.3 no further progress of GMRES(8) can be seen after a few iterations. This
is independent of the chosen maximum rank and also affects the variant without using
the TT format, i.e., further increasing the ranks is of no use as the method itself is the
limit. Already starting from rank 𝑟 = 32 there is no noticeable difference anymore to
the reference. Also note that there is practically no difference between the variant using
CGS and the variant using MGS for the orthogonalization. The short restart length of
𝑚 = 8 is intentionally chosen to reduce the required computational effort required for
each iteration, which when using MGS is given by 𝒪(𝑑4𝑟3 + 𝑑𝑟3𝑚2) when using MGS
and increases to 𝒪(𝑑4𝑟3 + 𝑑𝑟3𝑚3) when using CGS. However, a longer restart length is
needed to allow further progress of the method. The effects of the restart length 𝑚 on
the progress of the method for different dimensions 𝑑 are shown in Fig. 7.4. The TT
format was intentionally not used here to rule out possible side effects. Although no
general statement can be derived from these results, a clear dependence of the minimum
required restart length to ensure convergence on the dimension can be seen and setting
𝑚 ⪆ 𝑑 seems to be a reasonable recommendation.

Fig. 7.5 repeats Fig. 7.3 with an increased restart length of 𝑚 = 32. Note that for 𝑟 > 16
we do not calculate the sum required in the correction explicitly and only approximate
once afterwards, but instead also approximate interim results of the sum to speed up
the calculation. In order to keep the resulting errors as small as possible we calculate
the sum using a binary tree with the summands on the leaves. In fact, this has no
influence on the behavior of GMRES which we would like to point out here. Looking at
the reference curve we see that the relative error of the solution decreases right before
and after a restart and otherwise remains almost constant. When using the TT format
there is no drop before the restart, instead the relative error often even increases. The
decrease before the restart can be explained by the basis of the Krylov subspace which
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increases with each inner iteration and seems to be sufficiently large at this point. This
clearly indicates that the Krylov tensors are calculated too imprecisely, i.e., the error
introduced by the approximations is too large. This behavior when ranks are too low,
i.e., when errors due to approximations are too high, is different from what has been
seen before. So far, this has only restricted the best possible achievable relative error,
but in this case the method simply no longer works. Hence, it is of utmost importance
to choose the ranks of the Krylov tensors high enough to always ensure that their error
is small enough. Note that while using CGS can reduce the error of the Krylov tensors,
the method still suffers from the same problem, i.e., the only real solution to the problem
is to increase the maximum rank 𝑟. In the case shown in Fig. 7.5 there is a noticeable
difference between using CGS and MGS, but we only show the variant using MGS for
the sake of clarity.

7.3 Alternating Linearized Scheme
The ALS method, unlike the other methods, is not a classical method adapted for the
TT format, but is specifically designed for this format.3 In Sec. 4.11 we have introduced
two types of modifications that aim to improve the convergence rate and stability of the
original variant. In Fig. 7.6 we compare six variants for a given dimension 𝑑 = 20. In
order to be able to compare the variants independently of the quality of the implementa-
tion, the relative error was deliberately plotted against the number of iterations and not
against the runtime. The variants are ordered such that when going from left to right
we add random enrichment in the first step and enrichment based on the residual in the
second. Moving from the first to the second row these are then combined with using
two consecutive cores to build the local systems instead of a single core. Consequently,
it could be assumed that the lower right the variant is placed, the faster it converges. In
any case, however, the required computational effort increases in this direction, in par-
ticular due to the composition of two cores and the additional effort required to calculate
the residual. Random enrichment requires little extra computational effort.

In Fig. 7.6 improvements through enrichment and the combination of two cores are no-
ticeable, but have limited effects. ALS without any modifications in most cases requires
three left-to-right-to-left sweeps to converge or to be close to the best possible achievable
accuracy for a given rank 𝑟. In comparison, some of the other variants only need two
sweeps, i.e., one sweep can be saved. However, this certainly does not make up for the
additional required computational effort. With MALS, compared to ALS, the estimated
size of the local linear systems is by a factor of 𝑛 larger. Hence the computational effort
to construct and solve these is at least 𝑛2 times higher, and thus also the estimated
computational effort for one sweep according to theoretical considerations, see Sec. 4.11.
In addition, there does not seem to be any problem with local minima either, i.e., one
of the main reasons to introduce these modifications in the first place does not apply
in case of the MHN operator. The modifications of the ALS method are therefore sim-

3ALS has only been derived for hermitian positive definite operators, but we apply it to (5.3) directly.
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Figure 7.6: Progress of several variants of ALS for 𝑑 = 20 and different ranks 𝑟 of the
solution and enrichment rank ̂𝑟 = 4, if applicable.

ply not necessary. Again, the maximum achievable accuracy improves with increasing
ranks. Unfortunately, a further increase in ranks costs a lot of computing power. On
the positive side, the number of required sweeps to reach the best possible accuracy for
a given maximum rank does not increase with the maximum rank.

In Fig. 7.7 we see that ALS works pretty well regardless of the number of dimensions. In
order to better recognize the dependency of the best achievable relative error on 𝑑 and
𝑟, we also plotted the relative error against the dimension 𝑑 for different ranks 𝑟 of the
solution in Fig. 7.8. Here we see, on the left, that from 𝑑 = 20 to approximately 32 or 36,
the best achievable relative error gets even better with higher dimensions. For dimensions
𝑑 > 36 the best achievable error is almost constant for a given 𝑟 in most cases, except for
𝑟 = 16, in which case it deteriorates slightly in higher dimensions. Nevertheless, one can
say that to a good approximation the maximum achievable accuracy depends only on the
rank 𝑟 and not on the dimension 𝑑. Unfortunately, sometimes instabilities occur after
convergence has apparently already been achieved as can be seen in Fig. 7.7. Fortunately,
these are mostly corrected again after a few sweeps. Hence it is very important to stop
the method at the right time, i.e., one shall not simply stop after a pre-defined number of
sweeps as the right-hand side of Fig. 7.8 also suggests. These degradations in the relative
error are very difficult to detect without calculating the exact relative error after each
sweep, which should be avoided since it can be very computationally expensive.
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Figure 7.7: Progress of ALS for different dimensions 𝑑 and ranks 𝑟 of the solution.
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Figure 7.8: Best achieved relative error after six sweeps (left) or relative error after five
sweeps (right) of ALS depending on dimension 𝑑 for different ranks 𝑟 of the solution.

The computational complexity of one ALS sweep is of 𝒪(𝑑3𝑟2 + 𝑑2𝑟4 + 𝑐𝑑𝑟4) where 𝑐 is
the average amount of matrix-by-vector products 𝐴𝑘 𝑣 required to solve a local linear
system. In case of using GMRES as a local solver, 𝑐 approximately corresponds to
the number of iterations required. The computational complexity can be reduced to
𝒪(𝑑3𝑟2 + 𝑐𝑑2𝑟3) by not explicitly evaluating 𝐴𝑘, but explicitly using the auxiliary objects
Ψ𝐴,𝑘−1 and Φ𝐴,𝑘 and the core 𝐴(𝑘) to compute 𝐴𝑘 𝑣. Together with the knowledge from
Fig. 7.8 that, to a good approximation the maximum achievable accuracy depends only
on the rank 𝑟 and not on the dimension 𝑑, it follows that the complexity in 𝑑 for the
calculation of the marginal log-likelihood score is reduced from 𝒪(2𝑑) to 𝒪(𝑑3) by using
the TT decomposition together with ALS. The best achievable accuracy of the solution
is indirectly set as desired by the rank 𝑟. An increased rank 𝑟 also increases the required
computational effort, but is sufficiently independent of the dimension 𝑑. This is the
essential step to enable the MHN model to be applied to larger data sets than ever
before.
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Chapter 8

Conclusion

In this thesis we briefly introduced the MHN model which mitigates the state space ex-
plosion by describing the transition rate matrix 𝑄Θ ∈ ℝ2𝑑 × 2𝑑 using only 𝑑2 parameter
Θ𝑖𝑗. However, the computational effort required to obtain these parameters by opti-
mization of the marginal log-likelihood score still scales exponentially in 𝑑 when using
classical methods, i.e., the model is limited to relatively small data sets. The aim of this
work was to remove this limitation by using the TT decomposition which allows us to
approximate high dimensional tensors with lower storage requirements. We described
required operations to be performed in the TT format and presented different methods
to solve systems of linear equations in this format. We then applied this to the MHN
model and pointed out existing problems and possible solutions.

In the numerical results we focused on solving the linear system (5.3) required to compute
the marginal log-likelihood score as it is the most crucial part in solving the MHN model.
We presented results of all methods we have introduced in the previous chapters to solve
this kind of linear systems, namely the uniformization method, GMRES, ALS, and
variants thereof. As long as a method works, the lowest relative error that can be
achieved for a given rank 𝑟 is approximately the same for all methods.

The uniformization method exploits the specific form of the linear system and hence is
expected to show good results. However, its convergence rate highly depends on finding
an upper bound of the absolute diagonal entries of 𝑄Θ which is close to the actual
value. It is not feasible to calculate the exact value as it requires 𝒪(𝑑2𝑑) arithmetic
operations. A possible approximation of an upper bound, which requires only 𝒪(𝑑2)
arithmetic operations, is given by (5.8). Unfortunately this approximation easily tends
to be an overestimation of the actual value leading to slow convergence. An advantage
of the uniformization method is that it, with a small correction, takes into account
that the result is a probability distribution. The other methods do not preserve this
condition. However, this is only true if not using the TT format, or at least never using
any approximation. Apparently this is not possible, approximations are necessary to
keep the computational effort in check.
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The GMRES algorithm on the other hand is often used as a black box solver as it works
for many different linear systems. We have shown how to adapt this algorithm for the TT
format. Both this algorithm and the uniformization method suffer from similar issues
when being adapted for the TT format. A particular severe issue is error propagation.
This actually applies to any method recursively calculating quantities and relying on
approximating interim results to keep the ranks, and thus the computational complexity,
in check. Errors introduced to a recursively calculated quantity by an approximation
in one step can never be corrected in the following steps. In case of the uniformization
method the solution itself and each new term are calculated recursively. In each step
both are approximated introducing errors which propagate further in all of the following
steps. For GMRES the same applies to the calculation of the Krylov tensors. In this case
choosing a short restart length would help to mitigate this issue. Unfortunately, we have
seen that when using GMRES to compute the marginal log-likelihood score a minimum
restart length, which increases with the dimension, is required to ensure convergence.
The results of GMRES can be improved by utilizing ALS to compute an approximate
solution of required sums. However, it does not seem reasonable to use ALS to improve
GMRES if ALS can also be used directly as a solver.

The ALS method has been specifically designed for the TT format, i.e., it exploits
specific properties of the TT format. In particular, there is no noticeable dependency
of the rank, which is used to set the maximum achievable accuracy, on the dimension
of the problem. In addition it does not suffer from the error propagation issue. The
suggested modifications of ALS to improve the convergence rate and reduce the risk to
get stuck in a local minima show only little benefits in this case. The fact that the plain
ALS method usually only requires three left-to-right-to-left sweeps simply leaves little
room for improvement. Still, these variants can be advantageous in particularly difficult
cases. For solving the marginal log-likelihood score, ALS, or a variant thereof, is clearly
preferable to the other two methods.

In summary, the essential building blocks required to enable the MHN model to be
applied to larger data sets than ever before by using the TT decomposition have been
shown. The computational complexity – in particular that to calculate the marginal
log-likelihood score – has been reduced from 𝒪(2𝑑) to 𝒪(𝑑3𝑟2 + 𝑐𝑑2𝑟3), i.e., the curse of
dimensionalty has been overcome and thus the set goal of this thesis has been achieved.

The next step is to put these building blocks together in such a way that they can be
applied to existing data sets. Depending on the data set, some preprocessing of the data,
which requires specific expertise in bioinformatics, might be necessary. This expertise
is brought in by project partners, who should be able to run the provided software
without any specific expertise about its implementation. In addition, there is room
for improvements and extensions, some of which are already being worked on within
the working group. For example, Johannes Schuster is currently working, among other
things, on an efficient implementation of the algorithms for fast approximate solution of
linear algebra problems, depicted in Sec. 4.12, as part of his master’s thesis. Extensions of
the MHN model are also being considered. These may require mathematical operations
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which can not be computed directly in the TT format, e.g., possible implementations
of the matrix exponential in the TT format have been developed in [101]. Apart from
the TT format, the choice of the optimizer offers further potential for enhancements as
outlined in Sec. 5.5. And last but not least, the library itself offers opportunities for
performance optimizations. While it was designed with high efficiency in mind, there is
definitely room for improvements here. Initial work in this direction was done in [102]
with a performance analysis of the two probably most relevant reoccurring functions in
terms of performance, QR and SVD.
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Algorithm A.1: TT-MALS with normalization

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿 ≤ −2√𝑑 𝜀, and 𝛾 ≤ 𝜀

Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖

1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1, 𝜆𝑥 ≔ 0
2 for 𝑘 = 𝑑 to 2 by −1 do
3 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ (‖𝐿‖−1 𝐿) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝐿‖)
4 Form Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)
5 𝜆𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥ , Φ𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥−1 Φ𝐴,𝑘−1

6 𝜆𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥ , Φ𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥−1 Φ𝑏,𝑘−1

7 𝜆𝑥 ≔ 𝜆𝑥 + log(∥𝑥(1)∥) , 𝑥(1) ≔ ∥𝑥(1)∥−1 𝑥(1)

8 do
9 for 𝑘 = 1 to 𝑑 − 1 do

10 Form 𝐴𝑘∶𝑘+1 and 𝑏𝑘∶𝑘+1 folowing (4.55) and (4.56)
11 𝜆 ≔ exp(∑𝑑−1

𝑖=1,𝑖≠𝑘 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
12 Solve 𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] = 𝜆 𝑏𝑘∶𝑘+1 with accuracy 𝛾 and initial guess 𝑥[𝑘∶𝑘+1]

13 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘∶𝑘+1|) // Orthogonalize 𝑥!(𝑘+1)

14 𝑥⟨𝑘+1| ≔ (‖𝑆‖−1 𝑆) 𝑉 , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑆‖) // ∥𝑥⟨𝑘+1|∥ = 1
15 Update Ψ𝐴,𝑘 and Ψ𝑏,𝑘 following (4.47) and (4.50)
16 𝜆𝐴,𝑘 ≔ ∥Ψ𝐴,𝑘∥ , Ψ𝐴,𝑘 ≔ 𝜆−1

𝐴,𝑘 Ψ𝐴,𝑘
17 𝜆𝑏,𝑘 ≔ ∥Ψ𝑏,𝑘∥ , Ψ𝑏,𝑘 ≔ 𝜆−1

𝑏,𝑘 Ψ𝑏,𝑘

18 for 𝑘 = 𝑑 to 2 by −1 do
19 Form 𝐴𝑘−1∶𝑘 and 𝑏𝑘−1∶𝑘 folowing (4.55) and (4.56)
20 𝜆 ≔ exp(∑𝑑−1

𝑖=1 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
21 Solve 𝐴𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] = 𝜆 𝑏𝑘−1∶𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘−1∶𝑘]

22 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥|𝑘−1∶𝑘|) // Orthogonalize 𝑥!(𝑘−1)

23 𝑥|𝑘−1⟩ ≔ 𝑈 (‖𝑆‖−1 𝑆) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑆‖) // ∥𝑥|𝑘−1⟩∥ = 1
24 Update Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)
25 𝜆𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥ , Φ𝐴,𝑘−1 ≔ 𝜆−1

𝐴,𝑘−1 Φ𝐴,𝑘−1
26 𝜆𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥ , Φ𝑏,𝑘−1 ≔ 𝜆−1

𝑏,𝑘−1 Φ𝑏,𝑘−1

27 while ‖𝑏 − exp(𝜆𝑥) 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
28 𝑥 ≔ exp(𝜆𝑥) 𝑥
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Algorithm A.2: TT-MALS with random enrichment

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿 ≤ −2√𝑑 𝜀, and 𝛾 ≤ 𝜀,

enrichment rank ̂𝑟
Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖
1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1
2 for 𝑘 = 𝑑 to 2 by −1 do
3 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|)
4 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
5 Form Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

6 do
7 for 𝑘 = 1 to 𝑑 − 1 do
8 Form 𝐴𝑘∶𝑘+1 and 𝑏𝑘∶𝑘+1 folowing (4.55) and (4.56)
9 Solve 𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] = 𝑏𝑘∶𝑘+1 with accuracy 𝛾 and initial guess 𝑥[𝑘∶𝑘+1]

10 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘∶𝑘+1|) // Orthogonalize 𝑥!(𝑘+1)

11 𝑥⟨𝑘+1| ≔ 𝑆 𝑉
12 Enrich 𝑥|𝑘⟩ by random 𝜂|𝑘⟩ and update 𝑥⟨𝑘+1| according to (4.61)
13 [𝑥|𝑘⟩, 𝑅] ≔ QR(𝑥|𝑘⟩) // Re-orthogonalize 𝑥!(𝑘+1)

14 𝑥⟨𝑘+1| ≔ 𝑅 𝑥⟨𝑘+1|

15 Update Ψ𝐴,𝑘 and Ψ𝑏,𝑘 following (4.47) and (4.50)

16 for 𝑘 = 𝑑 to 2 by −1 do
17 Form 𝐴𝑘−1∶𝑘 and 𝑏𝑘−1∶𝑘 folowing (4.55) and (4.56)
18 Solve 𝐴𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] = 𝑏𝑘−1∶𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘−1∶𝑘]

19 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥|𝑘−1∶𝑘|) // Orthogonalize 𝑥!(𝑘−1)

20 𝑥|𝑘−1⟩ ≔ 𝑈 𝑆
21 Enrich 𝑥⟨𝑘| by random 𝜂⟨𝑘| and update 𝑥|𝑘−1⟩ according to (4.62)
22 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) // Re-orthogonalize 𝑥!(𝑘−1)

23 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
24 Update Φ𝐴,𝑘−1 and Φ𝑏,𝑘−1 following (4.48) and (4.51)

25 while ‖𝑏 − 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
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Algorithm A.3: TT-MAMEn

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿 ≤ −2√𝑑 𝜀, and 𝛾 ≤ 𝜀,

enrichment rank ̂𝑟
Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖
1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1
2 Initialize: Ψ̂𝐴,0 = Φ̂𝐴,𝑑 = 1, Ψ̂𝑏,0 = Φ̂𝑏,𝑑 = 1, randomized tensor 𝑧
3 for 𝑘 = 𝑑 to 2 by −1 do
4 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
5 [_, 𝑧⟨𝑘|] ≔ LQ(𝑧⟨𝑘|)
6 Form Φ𝐴,𝑘−1, Φ𝑏,𝑘−1, Φ̂𝐴,𝑘−1, Φ̂𝑏,𝑘−1 following (4.48), (4.51), (4.67), (4.70)

7 do
8 for 𝑘 = 1 to 𝑑 − 1 do
9 Form 𝐴𝑘∶𝑘+1, 𝑏𝑘∶𝑘+1, ̂𝐴𝑘∶𝑘+1, ̂𝑏𝑘∶𝑘+1, ⃗𝐴𝑘∶𝑘+1, ⃗𝑏𝑘∶𝑘+1 by (4.55), (4.56), etc.

10 Solve 𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] = 𝑏𝑘∶𝑘+1 with accuracy 𝛾 and initial guess 𝑥[𝑘∶𝑘+1]

11 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘∶𝑘+1|) , 𝑥⟨𝑘+1| ≔ 𝑆 𝑉
12 ̃𝑧[𝑘∶𝑘+1] ≔ 𝑏̂𝑘∶𝑘+1 − ̂𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] , [𝑧|𝑘⟩, _, _] ≔ SVD ̂𝑟( ̃𝑧|𝑘∶𝑘+1|)
13 ̃𝜂[𝑘∶𝑘+1] ≔ 𝑏⃗𝑘∶𝑘+1 − ⃗𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] , [𝜂|𝑘⟩, _, _] ≔ SVD ̂𝑟( ̃𝜂|𝑘∶𝑘+1|)
14 Enrich 𝑥|𝑘⟩ by 𝜂|𝑘⟩ and update 𝑥⟨𝑘+1| according to (4.61)
15 [𝑥|𝑘⟩, 𝑅] ≔ QR(𝑥|𝑘⟩) , 𝑥⟨𝑘+1| ≔ 𝑅 𝑥⟨𝑘+1|

16 Update Ψ𝐴,𝑘, Ψ𝑏,𝑘, Ψ̂𝐴,𝑘, Ψ̂𝑏,𝑘 following (4.47), (4.50), (4.66), (4.69)

17 for 𝑘 = 𝑑 to 2 by −1 do
18 Form 𝐴𝑘−1∶𝑘, 𝑏𝑘−1∶𝑘, ̂𝐴𝑘−1∶𝑘, ̂𝑏𝑘−1∶𝑘, 𝐴⃗𝑘−1∶𝑘, 𝑏⃗𝑘−1∶𝑘 by (4.55), (4.56), etc.
19 Solve 𝐴𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] = 𝑏𝑘−1∶𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘−1∶𝑘]

20 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥|𝑘−1∶𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑈 𝑆
21 ̃𝑧[𝑘−1∶𝑘] ≔ 𝑏̂𝑘−1∶𝑘 − ̂𝐴𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] , [_, _, 𝑧⟨𝑘|] ≔ SVD ̂𝑟( ̃𝑧|𝑘−1∶𝑘|)
22 ̃𝜂[𝑘−1∶𝑘] ≔ 𝑏⃗𝑘−1∶𝑘 − 𝐴⃗𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] , [_, _, 𝜂⟨𝑘|] ≔ SVD ̂𝑟( ̃𝜂|𝑘−1∶𝑘|)
23 Enrich 𝑥⟨𝑘| by 𝜂⟨𝑘| and update 𝑥|𝑘−1⟩ according to (4.62)
24 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝐿
25 Update Φ𝐴,𝑘−1, Φ𝑏,𝑘−1, Φ̂𝐴,𝑘−1, Φ̂𝑏,𝑘−1 following (4.48), (4.51), (4.67), (4.70)

26 while ‖𝑏 − 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
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Algorithm A.4: TT-(M)AMEn with normalization (Part 1 of 2)

Input: TT operator 𝐴 ∈ ℂ(×𝑑
𝑘 𝑛𝑘) ×(×𝑑

𝑘 𝑛𝑘), TT tensor 𝑏 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (right-hand side),

TT tensor 𝑥0 ∈ ℂ×𝑑
𝑘 𝑛𝑘 (initial guess), accuracies 𝜀, 𝛿 ≤ −2√𝑑 𝜀, and 𝛾 ≤ 𝜀,

enrichment rank ̂𝑟
Output: Solution TT tensor 𝑥 ∈ ℂ×𝑑

𝑘 𝑛𝑘 with ‖𝑏 − 𝐴 𝑥‖ ≤ 𝜀 ‖𝑏‖
1 Initialize: 𝑥 ≔ 𝑥0, Ψ𝐴,0 = Φ𝐴,𝑑 = 1, Ψ𝑏,0 = Φ𝑏,𝑑 = 1, 𝜆𝑥 ≔ 0
2 Initialize: Ψ̂𝐴,0 = Φ̂𝐴,𝑑 = 1, Ψ̂𝑏,0 = Φ̂𝑏,𝑑 = 1, randomized tensor 𝑧
3 for 𝑘 = 𝑑 to 2 by −1 do
4 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ (‖𝐿‖−1 𝐿) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝐿‖)
5 [_, 𝑧⟨𝑘|] ≔ LQ(𝑧⟨𝑘|)
6 Form Φ𝐴,𝑘−1, Φ𝑏,𝑘−1, Φ̂𝐴,𝑘−1, Φ̂𝑏,𝑘−1 following (4.48), (4.51), (4.67), (4.70)
7 𝜆𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥ , Φ𝐴,𝑘−1 ≔ 𝜆−1

𝐴,𝑘−1 Φ𝐴,𝑘−1 , Φ̂𝐴,𝑘−1 ≔ 𝜆−1
𝐴,𝑘−1 Φ𝐴,𝑘−1

8 𝜆𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥ , Φ𝑏,𝑘−1 ≔ 𝜆−1
𝑏,𝑘−1 Φ𝑏,𝑘−1 , Φ̂𝑏,𝑘−1 ≔ 𝜆−1

𝑏,𝑘−1 Φ𝑏,𝑘−1

9 𝜆𝑥 ≔ 𝜆𝑥 + log(∥𝑥(1)∥) , 𝑥(1) ≔ ∥𝑥(1)∥−1 𝑥(1)
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Chapter A – Additional Algorithms

Algorithm A.5: TT-AMEn with normalization (Part 2 of 2)

10 do
11 for 𝑘 = 1 to 𝑑 − 1 do
12 Form 𝐴𝑘, 𝑏𝑘, ̂𝐴𝑘, 𝑏̂𝑘, ⃗𝐴𝑘, ⃗𝑏𝑘 by (4.46), (4.49), (4.65), (4.68), (4.74), (4.75)
13 𝜆 ≔ exp(∑𝑑−1

𝑖=1 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
14 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝜆 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

15 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘⟩) , 𝑥⟨𝑘+1| ≔ (‖𝑆‖−1 𝑆) 𝑉 𝑥⟨𝑘+1| , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑆‖)
16 𝑧[𝑘] ≔ 𝜆 ̂𝑏𝑘 − ̂𝐴𝑘 ̃𝑥[𝑘] , 𝜂[𝑘] ≔ 𝜆 𝑏⃗𝑘 − ⃗𝐴𝑘 ̃𝑥[𝑘]

17 Enrich 𝑥|𝑘⟩ by 𝜂|𝑘⟩ and update 𝑥⟨𝑘+1| according to (4.61)
18 [𝑥|𝑘⟩, 𝑅] ≔ QR(𝑥|𝑘⟩) , 𝑥⟨𝑘+1| ≔ (‖𝑅‖−1 𝑅) 𝑥⟨𝑘+1| , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑅‖)
19 [𝑧|𝑘⟩, 𝑅] ≔ QR(𝑧|𝑘⟩)
20 Update Ψ𝐴,𝑘, Ψ𝑏,𝑘, Ψ̂𝐴,𝑘, Ψ̂𝑏,𝑘 following (4.47), (4.50), (4.66), (4.69)
21 𝜆𝐴,𝑘 ≔ ∥Ψ𝐴,𝑘∥ , Ψ𝐴,𝑘 ≔ 𝜆−1

𝐴,𝑘 Ψ𝐴,𝑘 , Ψ̂𝐴,𝑘 ≔ 𝜆−1
𝐴,𝑘 Ψ𝐴,𝑘

22 𝜆𝑏,𝑘 ≔ ∥Ψ𝑏,𝑘∥ , Ψ𝑏,𝑘 ≔ 𝜆−1
𝑏,𝑘 Ψ𝑏,𝑘 , Ψ̂𝑏,𝑘 ≔ 𝜆−1

𝑏,𝑘 Ψ𝑏,𝑘

23 for 𝑘 = 𝑑 to 2 by −1 do
24 Form 𝐴𝑘, 𝑏𝑘, ̂𝐴𝑘, 𝑏̂𝑘, 𝐴⃗𝑘, 𝑏⃗𝑘 by (4.46), (4.49), (4.65), (4.68), (4.77), (4.78)
25 𝜆 ≔ exp(∑𝑑−1

𝑖=1 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
26 Solve 𝐴𝑘 ̃𝑥[𝑘] = 𝜆 𝑏𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘]

27 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ 𝑈 (‖𝑆‖−1 𝑆) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑆‖)
28 𝑧[𝑘] ≔ 𝜆 ̂𝑏𝑘 − ̂𝐴𝑘 ̃𝑥[𝑘] , 𝜂[𝑘] ≔ 𝜆 𝑏⃗𝑘 − 𝐴⃗𝑘 ̃𝑥[𝑘]

29 Enrich 𝑥⟨𝑘| by 𝜂⟨𝑘| and update 𝑥|𝑘−1⟩ according to (4.62)
30 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ (‖𝐿‖−1 𝐿) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝐿‖)
31 [𝐿, 𝑧⟨𝑘|] ≔ LQ(𝑧⟨𝑘|)
32 Update Φ𝐴,𝑘−1, Φ𝑏,𝑘−1, Φ̂𝐴,𝑘−1, Φ̂𝑏,𝑘−1 following (4.48), (4.51), (4.67), (4.70)
33 𝜆𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥ , Φ𝐴,𝑘−1 ≔ 𝜆−1

𝐴,𝑘−1 Φ𝐴,𝑘−1 , Φ̂𝐴,𝑘−1 ≔ 𝜆−1
𝐴,𝑘−1 Φ𝐴,𝑘−1

34 𝜆𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥ , Φ𝑏,𝑘−1 ≔ 𝜆−1
𝑏,𝑘−1 Φ𝑏,𝑘−1 , Φ̂𝑏,𝑘−1 ≔ 𝜆−1

𝑏,𝑘−1 Φ𝑏,𝑘−1

35 while ‖𝑏 − exp(𝜆𝑥) 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
36 𝑥 ≔ exp(𝜆𝑥) 𝑥
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Algorithm A.6: TT-MAMEn with normalization (Part 2 of 2)

10 do
11 for 𝑘 = 1 to 𝑑 − 1 do
12 Form 𝐴𝑘∶𝑘+1, 𝑏𝑘∶𝑘+1, ̂𝐴𝑘∶𝑘+1, 𝑏̂𝑘∶𝑘+1, ⃗𝐴𝑘∶𝑘+1, 𝑏⃗𝑘∶𝑘+1 by (4.55), (4.56), etc.
13 𝜆 ≔ exp(∑𝑑−1

𝑖=1,𝑖≠𝑘 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
14 Solve 𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] = 𝜆 𝑏𝑘∶𝑘+1 with accuracy 𝛾 and initial guess 𝑥[𝑘∶𝑘+1]

15 [𝑥|𝑘⟩, 𝑆, 𝑉 ] ≔ SVD𝛿( ̃𝑥|𝑘∶𝑘+1|) , 𝑥⟨𝑘+1| ≔ (‖𝑆‖−1 𝑆) 𝑉 , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑆‖)
16 ̃𝑧[𝑘∶𝑘+1] ≔ 𝜆 ̂𝑏𝑘∶𝑘+1 − ̂𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] , [𝑧|𝑘⟩, _, _] ≔ SVD ̂𝑟( ̃𝑧|𝑘∶𝑘+1|)
17 ̃𝜂[𝑘∶𝑘+1] ≔ 𝜆 ⃗𝑏𝑘∶𝑘+1 − ⃗𝐴𝑘∶𝑘+1 ̃𝑥[𝑘∶𝑘+1] , [𝜂|𝑘⟩, _, _] ≔ SVD ̂𝑟( ̃𝜂|𝑘∶𝑘+1|)
18 Enrich 𝑥|𝑘⟩ by 𝜂|𝑘⟩ and update 𝑥⟨𝑘+1| according to (4.61)
19 [𝑥|𝑘⟩, 𝑅] ≔ QR(𝑥|𝑘⟩) , 𝑥⟨𝑘+1| ≔ (‖𝑅‖−1 𝑅) 𝑥⟨𝑘+1| , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑅‖)
20 Update Ψ𝐴,𝑘, Ψ𝑏,𝑘, Ψ̂𝐴,𝑘, Ψ̂𝑏,𝑘 following (4.47), (4.50), (4.66), (4.69)
21 𝜆𝐴,𝑘 ≔ ∥Ψ𝐴,𝑘∥ , Ψ𝐴,𝑘 ≔ 𝜆−1

𝐴,𝑘 Ψ𝐴,𝑘 , Ψ̂𝐴,𝑘 ≔ 𝜆−1
𝐴,𝑘 Ψ𝐴,𝑘

22 𝜆𝑏,𝑘 ≔ ∥Ψ𝑏,𝑘∥ , Ψ𝑏,𝑘 ≔ 𝜆−1
𝑏,𝑘 Ψ𝑏,𝑘 , Ψ̂𝑏,𝑘 ≔ 𝜆−1

𝑏,𝑘 Ψ𝑏,𝑘

23 for 𝑘 = 𝑑 to 2 by −1 do
24 Form 𝐴𝑘−1∶𝑘, 𝑏𝑘−1∶𝑘, ̂𝐴𝑘−1∶𝑘, 𝑏̂𝑘−1∶𝑘, 𝐴⃗𝑘−1∶𝑘, 𝑏⃗𝑘−1∶𝑘 by (4.55), (4.56), etc.
25 𝜆 ≔ exp(∑𝑑−1

𝑖=1,𝑖≠𝑘 (log(𝜆𝑏,𝑖) − log(𝜆𝐴,𝑖)) − 𝜆𝑥)
26 Solve 𝐴𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] = 𝜆 𝑏𝑘−1∶𝑘 with accuracy 𝛾 and initial guess 𝑥[𝑘−1∶𝑘]

27 [𝑈, 𝑆, 𝑥⟨𝑘|] ≔ SVD𝛿( ̃𝑥|𝑘−1∶𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑈 (‖𝑆‖−1 𝑆) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝑆‖)
28 ̃𝑧[𝑘−1∶𝑘] ≔ 𝜆 ̂𝑏𝑘−1∶𝑘 − ̂𝐴𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] , [_, _, 𝑧⟨𝑘|] ≔ SVD ̂𝑟( ̃𝑧|𝑘−1∶𝑘|)
29 ̃𝜂[𝑘−1∶𝑘] ≔ 𝜆 𝑏⃗𝑘−1∶𝑘 − 𝐴⃗𝑘−1∶𝑘 ̃𝑥[𝑘−1∶𝑘] , [_, _, 𝜂⟨𝑘|] ≔ SVD ̂𝑟( ̃𝜂|𝑘−1∶𝑘|)
30 Enrich 𝑥⟨𝑘| by 𝜂⟨𝑘| and update 𝑥|𝑘−1⟩ according to (4.62)
31 [𝐿, 𝑥⟨𝑘|] ≔ LQ(𝑥⟨𝑘|) , 𝑥|𝑘−1⟩ ≔ 𝑥|𝑘−1⟩ (‖𝐿‖−1 𝐿) , 𝜆𝑥 ≔ 𝜆𝑥 + log(‖𝐿‖)
32 Update Φ𝐴,𝑘−1, Φ𝑏,𝑘−1, Φ̂𝐴,𝑘−1, Φ̂𝑏,𝑘−1 following (4.48), (4.51), (4.67), (4.70)
33 𝜆𝐴,𝑘−1 ≔ ∥Φ𝐴,𝑘−1∥ , Φ𝐴,𝑘−1 ≔ 𝜆−1

𝐴,𝑘−1 Φ𝐴,𝑘−1 , Φ̂𝐴,𝑘−1 ≔ 𝜆−1
𝐴,𝑘−1 Φ𝐴,𝑘−1

34 𝜆𝑏,𝑘−1 ≔ ∥Φ𝑏,𝑘−1∥ , Φ𝑏,𝑘−1 ≔ 𝜆−1
𝑏,𝑘−1 Φ𝑏,𝑘−1 , Φ̂𝑏,𝑘−1 ≔ 𝜆−1

𝑏,𝑘−1 Φ𝑏,𝑘−1

35 while ‖𝑏 − exp(𝜆𝑥) 𝐴 𝑥‖ > 𝜀 ‖𝑏‖
36 𝑥 ≔ exp(𝜆𝑥) 𝑥
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Chapter B – Derivations

B.1 Tensor Train: Motivation for optimized calculation of
inner product

The algorithm shown in Alg. 4.1 to compute the inner product of two TT tensors with re-
duced computational complexity can be motivated by the following mathematical trans-
formations:

⟨𝑎, 𝑏⟩ =
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[(𝑎∗ ⊙ 𝑏)(𝑖1, … , 𝑖𝑑)]

=
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[(
𝑑

∏
𝑘=1

𝑎(𝑘)∗⟨𝑖𝑘⟩) (
𝑑

∏
𝑘=1

𝑏(𝑘)⟨𝑖𝑘⟩)]

=
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

⎡⎢
⎣

(
𝑑

∏
𝑘=1

𝑎(𝑑−𝑘+1)⟨𝑖𝑑−𝑘+1⟩†)
𝑇

⋅ (
𝑑

∏
𝑘=1

𝑏(𝑘)⟨𝑖𝑘⟩)⎤⎥
⎦

=
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[(
𝑑

∏
𝑘=1

𝑎(𝑑−𝑘+1)⟨𝑖𝑑−𝑘+1⟩†) ⋅ (
𝑑

∏
𝑘=1

𝑏(𝑘)⟨𝑖𝑘⟩)]

=
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[𝑎(1∶𝑑)⟨𝑖1, … , 𝑖𝑑⟩† ⋅ 𝑏(1∶𝑑)⟨𝑖1, … , 𝑖𝑑⟩]

=
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[𝑎(2∶𝑑)⟨𝑖2, … , 𝑖𝑑⟩† ⋅ 𝑎(1)⟨𝑖1⟩† ⋅ 𝑏(1)⟨𝑖1⟩ ⋅ 𝑏(1∶𝑑)⟨𝑖1, … , 𝑖𝑑⟩]

=
𝑛2

∑
𝑖2=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[ 𝑎(2∶𝑑)⟨𝑖2, … , 𝑖𝑑⟩† ⋅ {
𝑛1

∑
𝑖1=1

𝑎(1)⟨𝑖1⟩† ⋅ 𝑏(1)⟨𝑖1⟩}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑠1

⋅𝑏(2∶𝑑)⟨𝑖2, … , 𝑖𝑑⟩ ]
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B.2 Tensor Train: Orthogonality of subtrain

Given a TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with cores 𝑥(𝑘) left-orthogonal ∀𝑘 = 1, … , 𝑝 its subtrains

𝑥(1∶𝑞) with 1 ≤ 𝑞 ≤ 𝑝 are called left-orthogonal and it can be shown that

𝑥|1∶𝑞⟩† 𝑥|1∶𝑞⟩ = Id𝑟𝑞
∀𝑞 = 1, … , 𝑝. (4.23)

Proof:

𝑥|1∶𝑞⟩† 𝑥|1∶𝑞⟩ =
𝑛1

∑
𝑖1=1

⋯
𝑛𝑞

∑
𝑖𝑞=1

[𝑥(1∶𝑞)†⟨𝑖1, … , 𝑖𝑞⟩ ⋅ 𝑥(1∶𝑞)⟨𝑖1, … , 𝑖𝑞⟩]

=
𝑛1

∑
𝑖1=1

⋯
𝑛𝑞

∑
𝑖𝑞=1

[𝑥(2∶𝑞)†⟨𝑖2, … , 𝑖𝑞⟩ ⋅ 𝑥(1)†⟨𝑖1⟩ ⋅ 𝑥(1)⟨𝑖1⟩ ⋅ 𝑥(2∶𝑞)⟨𝑖2, … , 𝑖𝑞⟩]

=
𝑛2

∑
𝑖2=1

⋯
𝑛𝑞

∑
𝑖𝑞=1

[ 𝑥(2∶𝑞)†⟨𝑖2, … , 𝑖𝑞⟩ ⋅ {
𝑛1

∑
𝑖1=1

𝑥(1)†⟨𝑖1⟩ ⋅ 𝑥(1)⟨𝑖1⟩}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Id𝑟1 by Eq. 4.22

⋅𝑥(2∶𝑞)⟨𝑖2, … , 𝑖𝑞⟩ ]

=
𝑛2

∑
𝑖2=1

⋯
𝑛𝑞

∑
𝑖𝑞=1

[𝑥(2∶𝑞)†⟨𝑖2, … , 𝑖𝑞⟩ ⋅ 𝑥(2∶𝑞)⟨𝑖2, … , 𝑖𝑞⟩]

⋮

=
𝑛𝑞

∑
𝑖𝑞=1

[𝑥(𝑞∶𝑞)†⟨𝑖𝑞⟩ ⋅ 𝑥(𝑞∶𝑞)⟨𝑖𝑞⟩] = Id𝑟𝑞

□
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B.3 Tensor Train: Norm exploiting orthogonality

Given a TT tensor 𝑥 ∈ ℂ×𝑑
𝑘 𝑛𝑘 with orthogonal frame matrix 𝑥!(𝑝), its norm is given by

‖𝑥‖ = ∥𝑥(𝑝)∥ . (4.28)

Proof:

‖𝑥‖2 = ⟨𝑥, 𝑥⟩ =
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[𝑥(1∶𝑑)†⟨𝑖1, … , 𝑖𝑑⟩ ⋅ 𝑥(1∶𝑑)⟨𝑖1, … , 𝑖𝑑⟩]

=
𝑛𝑝

∑
𝑖𝑝=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

⎡⎢
⎣

𝑥(𝑝∶𝑑)†⟨𝑖𝑝, … , 𝑖𝑑⟩ ⋅

⋅
⎧{
⎨{⎩

𝑛1

∑
𝑖1=1

⋯
𝑛𝑝−1

∑
𝑖𝑝−1=1

𝑥(1∶𝑝−1)†⟨𝑖1, … , 𝑖𝑝−1⟩ ⋅ 𝑥(1∶𝑝−1)⟨𝑖1, … , 𝑖𝑝−1⟩
⎫}
⎬}⎭⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Id𝑟𝑝−1 by Eq. 4.23

⋅ 𝑥(𝑝∶𝑑)⟨𝑖𝑝, … , 𝑖𝑑⟩⎤⎥
⎦

=
𝑛𝑝

∑
𝑖𝑝=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

[𝑥(𝑝∶𝑑)†⟨𝑖𝑝, … , 𝑖𝑑⟩ ⋅ 𝑥(𝑝∶𝑑)⟨𝑖𝑝, … , 𝑖𝑑⟩]

=
𝑛𝑝

∑
𝑖𝑝=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

tr [𝑥(𝑝∶𝑑)†⟨𝑖𝑝, … , 𝑖𝑑⟩ ⋅ 𝑥(𝑝∶𝑑)⟨𝑖𝑝, … , 𝑖𝑑⟩]

=
𝑛𝑝

∑
𝑖𝑝=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

tr [𝑥(𝑝+1∶𝑑)†⟨𝑖𝑝+1, … , 𝑖𝑑⟩ ⋅ 𝑥(𝑝)†⟨𝑖𝑝⟩ ⋅ 𝑥(𝑝)⟨𝑖𝑝⟩ ⋅ 𝑥(𝑝+1∶𝑑)⟨𝑖𝑝+1, … , 𝑖𝑑⟩]

=
𝑛𝑝

∑
𝑖𝑝=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

tr [𝑥(𝑝)†⟨𝑖𝑝⟩ ⋅ 𝑥(𝑝)⟨𝑖𝑝⟩ ⋅ 𝑥(𝑝+1∶𝑑)⟨𝑖𝑝+1, … , 𝑖𝑑⟩ ⋅ 𝑥(𝑝+1∶𝑑)†⟨𝑖𝑝+1, … , 𝑖𝑑⟩]

=
𝑛𝑝

∑
𝑖𝑝=1

tr⎡⎢
⎣

𝑥(𝑝)†⟨𝑖𝑝⟩ ⋅ 𝑥(𝑝)⟨𝑖𝑝⟩ ⋅

⋅
⎧{
⎨{⎩

𝑛𝑝+1

∑
𝑖𝑝+1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

𝑥(𝑝+1∶𝑑)⟨𝑖𝑝+1, … , 𝑖𝑑⟩ ⋅ 𝑥(𝑝+1∶𝑑)†⟨𝑖𝑝+1, … , 𝑖𝑑⟩
⎫}
⎬}⎭⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Id𝑟𝑝 by Eq. 4.25

⎤⎥
⎦

=
𝑛𝑝

∑
𝑖𝑝=1

tr [𝑥(𝑝)†⟨𝑖𝑝⟩ ⋅ 𝑥(𝑝)⟨𝑖𝑝⟩] = ∥𝑥(𝑝)∥2

□
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