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Abstract
We present a model for conducting dynamic treatment unit (DTU) forest planning using a heuristic cellular automata (CA) 
approach. The clustering of DTUs is driven by entry costs associated with treatments, thus we directly model the economic 
incentive to cluster. The model is based on the work presented in the literature but enhanced by adding a third phase to the 
CA algorithm where DTUs are mapped in high detail. The model allows separate but nearby forest areas to be included in the 
same DTU and shares the entry cost if they are within a defined distance. The model is applied to a typical long-term forest 
planning problem for a 1 182 ha landscape in northern Sweden, represented by 4 218 microsegments with an average size of 
0.28 ha. The added phase increased the utility by 1.5–32.2%. The model produced consistent solutions—more than half of all 
microsegments were managed with the same treatment program in 95% of all solutions when multiple solutions were found.

Keywords Entry cost · Forest planning · High-resolution data · Spatial optimization

Introduction

Forest management planning aims at efficient and sustain-
able use of the forest resource over time, whether it be for 
economical, social, biological, or other purposes. In this 
pursuit, the concept of stands has been used in even-aged 
forest management planning for a very long time (see, e.g., 
af Ström 1822; Faustmann 1849; Nilsson et al. 2012). A 
stand is a delimited area where the forest is homogeneous in 
some regard, making the whole stand suitable for the same 
forest management. Stands are typically used as descrip-
tion units (DUs), which we define as the smallest unit for 
collection and storage of data, and modeling of ecosystem 

processes. Moreover, stands also act as treatment units as it 
is the unit used for modeling and planning treatments which 
on holding level are aligned to fullfil stakeholder goals. An 
important property of the traditional stand approach is that 
the stand borders are usually fixed and permanent during the 
planning horizon in planning processes (Nelson and Brodie 
1990; Davis et al. 2001). Furthermore, stands are generally 
large enough and delineated such that they may be treated 
individually; spatial clustering of stand management activi-
ties is not a prerequisite for practical forestry. This makes 
linear programming (LP) a suitable and powerful method for 
solving the resulting optimization problem in forest manage-
ment planning using the stand approach (see, e.g., Johnson 
and Scheurman 1977).

The development of remote sensing techniques for data 
collection has changed and enhanced the conditions for 
forestry and forest planning (Maltamo et al. 2014). Objec-
tive wall-to-wall data with high spatial resolution based on 
combinations of remote sensing and field surveys are com-
piled nationwide in, e.g., Finland (Kotivuori et al. 2016) 
and Sweden (Nilsson et al. 2017). Even if such data may be 
useful, transforming fine-grained data into stand-wise data 
will result in loss of information and consequently subop-
timal use of the forest resource (Holmgren and Thuresson 
1997). An alternative approach to planning forestry based 
on the stand-wise approach is therefore to utilize dynamic 
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treatment units (DTU). DTU planning aims at more efficient 
use of the forest resource by maintaining high spatial reso-
lution in both the forest data and throughout the planning 
process. This is attempted by using DUs much smaller than 
traditional stands and forming DTUs in the planning pro-
cess by clustering DUs into larger areas in the optimization. 
Treatments in specific DTUs do not necessarily reoccur. 
Thus, DTU are dynamic and exist only momentarily in time.

Previous research has studied the concept and perfor-
mance of DTUs and presented various models for conduct-
ing this type of forest planning (e.g., Pascual et al. 2018; 
Heinonen et al. 2018; Wilhelmsson et al. 2021). The eco-
nomic incentive to cluster treatments lies in the entry cost for 
forest operations. The entry cost is defined as the fixed cost 
associated with a contiguous cluster scheduled for treatment 
at a specific time point and includes costs for preparatory 
fieldwork, road maintenance, moving machinery or person-
nel to the site, and administrative work (Borges et al. 2017). 
Borges et al. (2017) showed that the entry cost influences 
the optimal treatment unit size, which has been a concern 
for past studies concerned with DTU. However, instead of 
directly modeling the entry cost, most DTU studies have 
used proxy variables such as conditional common borders 
in combination with distance from the nearest road (Pascual 
et al. 2018). Their model tracked the cut-to-cut and cut-to-
uncut borders, and metrics were included in the utility func-
tion to drive the clustering of treatments.

Forest planning problems with a DTU approach have sel-
dom been solved with exact solution methods (Wilhelmsson 
et al. 2021), but due to the combinatorial and complex nature 
of DTU planning, most often solved with heuristics. Puk-
kala (2009) showed that heuristic methods can successfully 
handle large spatial problems. This was shown for DTU pur-
poses by Heinonen et al. (2007) and was further highlighted 
by Pascual et al. (2018). Noteworthy heuristics applied to 
DTU problems are threshold accepting (Heinonen et al. 
2007), reduced cost (Heinonen et al. 2018; Packalén et al. 
2011; Pukkala et al. 2009), genetic algorithm (Lu and Eriks-
son 2000) and simulated annealing (de Miguel and Pukkala 
2013; Öhman 2001). One heuristic that has been argued 
to be particularly well suited for solving forest planning 
problems in general, and forest planning problems using a 
DTU approach in particular, is cellular automata (CA). CA 
was first presented by von Neumann (1966) and introduced 
in forest planning contexts by Strange et al. (2002). It has 
been used to solve forest planning problems with a DTU 
approach in several studies (Heinonen and Pukkala 2007; 
Mathey et al. 2007; Pascual et al. 2018; Pukkala 2019). In 
the general form, a CA is constituted of a lattice of cells 
where each cell may take on a finite set of states. Rules 
decide how cells may change states, which is dependent on 
a utility function and spatial relations between the given cell 
and a subset of the other cells (neighbors). In a DTU forest 

planning context, a cell in the lattice represents a DU. A 
state is equivalent to a treatment program (TP), which is 
a sequence of treatments over the entire planning horizon 
and the resulting development of the forest. Thus, a CA 
algorithm forms DTUs by swapping TPs for segments of 
forest with regard to treatments planned in spatially nearby 
DUs, clustering treatments in space and time. Mathey et al. 
(2007) argued that two properties make CA particularly well 
suited for solving forest planning problems: (1) the way that 
different spatial scales can be integrated into a CA model, 
and (2) the way that landscape scale patterns emerge due 
to local spatial rules determining the change in DU state. 
While in-depth comparisons with other heuristics are lack-
ing, previous studies have shown potential in CA compared 
to simulated annealing in computational speed, the number 
of iterations needed when using stop criteria, and solution 
quality (Mathey et al. 2007; Heinonen and Pukkala 2007).

This study aims to improve long-term forest planning 
with a DTU approach using CA by introducing explicit 
entry costs. The first and second phase of the algorithm is 
inspired by the literature. However, a third phase is added 
to the CA algorithm where the economic incentive to clus-
ter treatments is modeled directly by calculating entry costs 
in high detail for potential DTUs. The approach is applied 
in a planning problem for a 1 192 ha landscape in north-
ern Sweden where the forest is described with high spatial 
resolution data using DUs much smaller than the area of 
traditional stands.

Method

Overview of the cellular automata algorithm

Our approach is based on the CA model presented by 
Strange et al. (2002), which was improved by Mathey et al. 
(2007) and Heinonen and Pukkala (2007). The CA evaluated 
here is a set of DUs representing a forest. The states are (DU 
specific) TPs. The CA algorithm consists of three phases: 
local, global and final, each with a number of iterations. The 
algorithm starts by randomly selecting a TP for all DUs. All 
phases follow a similar procedure. In each iteration, a ran-
dom number is drawn from a uniform distribution between 
0 and 1 for each DU. Depending on the number, one of three 
things occur in accordance to probabilities set by the user. 
The DU is either mutated, innovated, or remain unchanged. 
A DU being unchanged means that the current TP remains 
the same. If a mutation occurs, the TP is swapped for a ran-
domly selected one. If innovation occurs, all potential TPs 
for the DU are evaluated, and the model swaps to the best 
TP with regard to a utility function stated by the user. DUs 
are processed in this manner one at a time until all DUs have 
been processed, at which point the iteration is completed 
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and the next iteration begins by starting over from the first 
DU. When the predefined number of iterations is done, the 
phase is completed and the next phase is initiated by start-
ing over from the first DU, meaning that the output plan 
from a phase acts as starting point for the next phase. What 
separates the phases from each other is the utility function. 
This is elaborated below. All DUs are processed until the 
last DU of the last iteration of the last phase is processed, at 
which point all DU are innovated one last time. When this is 
done, the algorithm is complete and the solution exported. A 
conceptual visualization of the algorithm is shown in Fig. 1.

An essential component of the utility function used here 
is the net present value (NPV) of a TP, which is calculated 
by discounting income and costs from different management 
activities, both within the planning horizon and beyond for 
an infinite time horizon (Faustmann 1849). In addition to the 
productivity-based costs for treating a DU, the fixed entry 
cost is applied to all DTUs within the planning horizon and 
included in the calculation of NPV. The calculation of entry 
cost is one of two properties that changes over the phases 
of the CA algorithm (see Table 1), thus affecting the NPV. 
A simplified entry cost calculation is conducted in the local 
and global phases, whereas a higher detail mapping of the 
DTUs and calculation of entry cost are carried out in the 
final phase. The other property that changes over the phases 
is the inclusion of a harvest coefficient. This coefficient is 
excluded in the local phase but included in the global and 
final phases. The purpose of the harvest coefficient is to 
prevent the model from overharvesting, which is a concern 
when spatiotemporal clustering is beneficial, and the use of 
NPV may drive the model to harvest large volumes in early 
periods.

The mapping of DTUs is based on the concept of 
neighbors. DUs are considered neighbors if the minimum 
distance between their edges is below a specified distance 
(neighborhood distance), i.e., neighbors are not neces-
sarily immediately adjacent. In the local phase, the fixed 
entry cost is calculated using a local scope (see Fig. 2). 
The entry cost used here is scaled down from a realistic 
value by multiplying it by 0.02. The local phase is fol-
lowed by the global phase, which uses the output plan 
from the local phase as input. Here, the same local scope 
is used for calculating entry cost, but the utility function 
is changed to account for harvested volume over time by 
introducing the harvest coefficient (Fig. 3). coefficient is 
period-specific and punishes solutions with harvest vol-
umes larger than the harvest target. The resulting plan 
from the global phase is used as input in the final phase. 
The final phase, introduced in the current study, main-
tains consideration to forest level goals using the harvest 
coefficient but the calculation of NPV changes, as the 
DTUs are fully mapped in each iteration (see Fig. 4). The 
complete mapping means that the potential number of 

Fig. 1  Conceptual flowchart of the cellular automata approach used 
in the study

Table 1  How input, output, spatial scope and forest level goals 
change over the phases over the CA algorithm

Phase Local Global Final

Input Random start Plan L Plan G
Entry cost Simplified Simplified High detail
Harvest coefficient Not included Included Included
Output Plan L Plan G Plan F
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DUs that constitute the DTU and share the entry cost is 
increased manyfold. The entry cost is therefore increased 
to a realistic value to model the true costs as accurately 
as possible and let that cost drive the clustering. Each 
phase ends after the predefined number of iterations is 
completed. In one final iteration, all DUs are innovated 
in order to remove isolated and small DTUs, which may 
be the result of chance via mutation. The resulting plan 
is exported as the solution.

Phases and the spatial rule

Here follows a model formulation for the cellular autom-
ata as it progresses over the three phases, as shown in 
Fig. 1.

Local phase: forming simple DTUs

All phases aim to maximize the value of the utility func-
tion. In the local phase, it is defined as follows:

where xi,j = {0,1}, the share of DU i managed with TP j; 
mp = midperiod year of period p; gi,j,p = gross revenue in 
period p of TP j in DU i; ci,j,p = spatially independent cost 
in period p of TP j in DU i; ni,j,p = entry cost in period p 
of TP j in DU i; r = discount rate; vi,j = terminal value; the 
discounted value of the forest management beyond the last 
planning period; I = set of DUs; Ji = set of TPs for DU i.

The definition of  ni,j,p changes over the phases. In the 
local and global phases, it is defined as

where e = fixed entry cost; di,j,p = number of DUs in DU i’s 
neighborhood treated with the same treatment in period p as 
DU i in TP j in period p.

The variable di,j,p is visualized in Fig. 2. This is what 
drives clustering in the local and global phase of the CA.

(1)MaxZ =

I
∑

i=1

Ji
∑

j=1

zi,j ∗ xi,j

(2)zi,j =
∑P

p=1

gi,j,p −
(

ci,j,p + ni,j,p
)

(1 + r)mp
+ vi,j

(3)

ni,j,p =

(

e

di,j,p

)

if DU i has a treatment in period p, TPj, otherwise 0

Fig. 2  Consider the lattice a representation of a forest. Treatments in 
period p is shown, where c represents cutting. The red square marks 
the neighborhood of the blue DU. In the local and global phases, di,j,p 
represents the number of DUs in the neighborhood of DU i (blue) 
prescribed for the same treatment in period p of treatment program 
j as the blue DU (including the centering DU itself, here 5). The 
entry cost ni,j,p is shared equally among the DUs marked with cutting 
within the neighborhood (see Eq. 3)

Fig. 3  Graphical representation of the relation between ui,j,p, tp and 
bp. The utility coefficient ui,j,p will have a value of 1 between 0 and 
tp  m3 harvested volume, at which point it linearly declines toward 0, 
which it reaches at bp  m3 harvested volume. For harvests levels even 
higher, ui,j,p will have a value of 0, considering attempted contribu-
tions to the utility function from such harvests as worthless

Fig. 4  Consider the lattice a representation of a forest. The lattice 
shows the treatments in a time period p, where “C” represents cut-
ting. The red shape shows the DTU. In the final phase, the variable D 
represents the total area of DUs included in the DTU (red area) and  ai 
represents the area of DU I (blue). The entry cost ni,j,p is distributed 
among the DUs constituting the DTU in proportion to their area (see 
Eq. 5)
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Global phase: introduction of forest level goals

Optimizing the utility function with a local scope does not 
always lead to solutions that satisfy forest level goals and 
constraints. Hence, Mathey et al. (2007) introduced the 
inclusion of forest level goals in a CA model. The present 
study deals with the flow of harvested volumes over time. 
In the global phase, the utility function is therefore defined 
as follows:

where zi,j = utility of TP j for DU i; gi,j,p = gross income in 
period p of TP j in DU i; ci,j,p = spatially independent cost in 
period p of TP j in DU i; ni,j,p = entry cost in period p of TP 
j in DU i; r = discount rate; vi,j = present value of net revenue 
from beyond the last planning period (P) to infinity of TP j 
for DU i; tp = harvest target in period p; bp = upper harvest 
bound in period p; ui,j,p = utility coefficient in period p of TP 
j of DU i. The parameter takes the value

where hp is harvested volume in period p; wi,j = min{ui,j,p} 
of any period p for the given DU i and TP j; mp = midperiod 
year of period p.

The inclusion of the harvest coefficient, ui,j,p, in the model 
means that the utility of a TP is lowered if that TP results in 
overharvesting within the planning period. Thus, while there 
are no constraints (besides the decision variable xi,j being 
binary), the inclusion of the harvest coefficient will effec-
tively constrain harvest levels. The parameter wi,j is included 
since the harvest in each period is connected to the net rev-
enue in each period using the harvest coefficient (ui,j,p), when 
meantime, the NPV from beyond the planning horizon is 
not connected to any harvest level. wi,j prevents the model 
from selecting solutions leading to overharvest within the 
planning horizon in the search for NPV from beyond the 
planning horizon (terminal value vij). In such solutions, wi,j 
will assume the value of 0, which is multiplied with the 
NPV from beyond the planning horizon. If all TPs available 
in a DU have the utility of 0, the model will choose the TP 
without treatments, and overharvest is avoided.

The entry cost is estimated in the global phase using the 
same spatial scope as the local phase (see Fig. 2).

Final phase: high detail mapping of DTUs

The final phase of the algorithm will maintain the consid-
eration of harvested volumes introduced in the global phase 
as defined by Eq. 4. What changes is the spatial scope of 

(4)zi,j =
∑P

p=1

gi,j,p −
(

ci,j,p + ni,j,p
)

(1 + r)mp
∗ ui,j,p + vi,j ∗ wi,j

1 if hp ≤ tp,

1 −
(

hp−tp
)

∕
(

tp−bp
)

if tp < hp ≤ bp, and

0 if bp < hp,

the calculation of entry cost. Instead of looking only at the 
window defined by the neighborhood distance around the 
DU, the model checks if simultaneous treatments are found 
in a neighboring DU and if so, looks onward into the neigh-
bor’s neighbors and so on (into infinity, in theory). Thus, 
complete mapping of the DTU is conducted, and the entry 
cost is divided among the DUs constituting the DTU. Step-
ping stone effects may appear as the model allows separate 
(non-adjacent) areas to be part of the same DTU as long as 
all subareas are connected to another subarea according to 
the definition of neighbor. This change in the definition of 
entry cost is stated in Eq. 5 and visualized in Fig. 4. Each 
DU is charged with a share of the entry cost in proportion to 
its share of the total area of the DTU.

if DU i has a treatment in period p in TP j, otherwise 0.
where E = constant representing the entry cost; ai = area 

of DU i; D = area of the DTU, which DU i is part of in 
period p for TP j (according to principle shown in Fig. 4).

Note that, the value of D may be high, as the model maps 
the full area constituting the DTU.

Analysis area, segmentation of DUs, and simulation 
of treatment programs

The model was evaluated by developing long term plans for 
a forest of 1192 ha located northwest of Sundsvall, Sweden. 
The forest is represented by 4218 microsegments, where 
each microsegment represents a DU with an average size 
of 0.28 ha. The microsegments are derived from remote 
sensing data in a two-step process. First, a region growing 
expansion model (Grilli et al. 2017) merges adjacent and 
similar 12.5 × 12.5  m2 raster elements into possible DUs. 
Similarity is measured as distance in a 5D space with basal 
area, Lorey’s mean height, proportion of pine, proportion 
of spruce, and proportion of broadleaves as dimensions. 
Merging is repeated until the smallest difference between 
neighboring microsegments is higher than a user defined 
level. This does not limit the size of segments, however, and 
they may become very large. Therefore, the second step is 
carried out using mixed integer programming (MIP). The 
MIP model selects microsegments from a large set of pos-
sible ones generated with the region growing method. The 
goal function of the MIP model is to minimize the sum of 
standard deviation within segments. The constraints are (1) 
each raster element must be assigned to a microsegment and 
(2) the maximum size of microsegments must not exceed 
a user defined limit. The MIP solution is the final spatial 
layout for microsegments (DUs). The wall-to-wall ALS data 

(5)ni,j,p =

(

E
ai

D

)
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used for the segmentation were provided by the Swedish 
Forest Agency and were described by Nilsson et al. (2017).

Initial state

The analysis area forest is comprised mainly of Norway 
spruce (Picea abies, 49% of the standing volume), but also 
of Scots pine (Pinus sylvestris, 30%) and birch (Betula pube-
scens and Betula pendula, 19%). The mean productivity is 
4.9  m3  ha−1  year−1 in the initial state, and the mean age is 
58 years. The distribution between age classes is shown in 
Fig. 5. The case study area was chosen from a larger area, 
and a reasonably even age distribution was sought after.

Generation of TPs

The generation of TPs for each DU over the 50 years plan-
ning horizon was conducted with the PlanWise application 
in the Heureka decision support system (Wikström et al. 
2011). Associated with each TP is a projected state of the 
DU in each period, including, e.g., growing stock and har-
vested volume. The core of the Heureka system is a col-
lection of empirical models for projecting stand dynamics, 
e.g., growth, mortality and yield, in 5 year time steps. Heu-
reka PlanWise generates a set of TPs for each DU within a 

user-defined forest management framework. The manage-
ment system was set to even-aged silviculture for all DUs, 
and the TPs differ with regard to the timing and manner of 
soil preparation, planting, pre-commercial thinning, thin-
nings, and final felling. A TP without any treatments was 
also generated for all DUs. On average, 12.7 potential TPs 
were generated for each of the 4218 DUs, that is, a total of 
53 473 TPs.

Model settings and hardware

The cellular automata algorithm for solving the management 
problem was written in the programming language Python 
v3.8 using the IDE IntelliJ Pycharm v2019.3.3. The model 
was run on a Intel Core i7 2.8 GHz computer with 32 GB 
RAM and 64-bit Windows 10 as operating system. The 
model was run using three different neighborhood distances; 
1 m, 50 m, and 200 m. These are henceforth called “cases.” 
Because of the stochastic nature of the cellular automata 
algorithm, where optimal solutions are not guaranteed, the 
solving procedure was repeated 40 times for the 1 m and 
50 m neighborhood cases and 20 times for the 200 m neigh-
borhood case. These sets of solutions are henceforth called 
“analyses.”

All cases and analyses used the following parameter set-
tings. Each phase included 50 iterations. The harvest target, 
i.e., tp, was set to 50,000  m3 and the harvest bound, i.e., bp, 
was set to 55 000  m3. The probability of mutation and inno-
vation was set to 5% and 90%, respectively, leaving a 5% 
probability that the TP for a given DU remains unchanged in 
an iteration. A discount rate of 3.0% was used for calculating 
the NPV, i.e., r was set to 0.03.

Model stability

There is an element of chance in the solutions produced since 
mutation means that a TP is randomly drawn from the set of 
available ones for a given DU. We investigated the impact 
of said chance on final plans by studying how consistently 
the model selected TPs for each DU when the model is run 
repeatedly. We call the consistency in TP selection “stabil-
ity” and Table 2 shows how this was investigated.

We describe model stability by reporting descriptive sta-
tistics from the column named Stability in Table 6.Fig. 5  Initial age class distribution of the analysis area

Table 2  Example of how 
stability is measured for three 
DUs given six repetitions and 
the selected TPs

DU Repetition Most frequent TP Stability (%)

1 2 3 4 5 6

1 TP12 TP12 TP13 TP12 TP13 TP12 TP12 67
2 TP25 TP23 TP24 TP23 TP21 TP24 TP23,  TP24 33
3 TP34 TP31 TP34 TP34 TP34 TP34 TP34 83

Average 61



893European Journal of Forest Research (2022) 141:887–900 

1 3

Stand‑based planning with linear programming

The CA solutions were compared with the outcome of 
long-term planning problems based on the traditional stand 
approach and solved by LP (Johnson and Scheurman 1977). 
The same DUs were used in the LP planning problem. 
Maximum NPV was used as objective function, and the LP 
problem was solved using the optimization tool available in 
Heureka PlanWise. Four different solutions were produced 
using different constraints on harvested volume. One solu-
tion had no constraints, and the other three were forced to 
follow the period-specific harvest profile of each of the three 
corresponding solutions found with the CA. Note that, the 
LP solutions do not include entry fixed costs in the manner 
that the CA does, therefore no clustering is conducted here.

Results

Cases

Table 3 show how utility and NPV increased with higher 
neighborhood distance. Harvested volume followed the 
same pattern. The different cases also resulted in different 
spatial layouts of treatments. The final plans from each 
case are visualized by showing the treatments and DTUs 
in the northeast corner of the analysis area in period 2 
(Figs. 6, 7, 8). With an increase in the neighborhood dis-
tance, the DTUs became larger and fewer but were also 
more dispersed over the landscape. An example of this 
can be seen when comparing Figs. 6, 7, 8: The striped 

Table 3  Summary of results for 
the three cases

Neighborhood 
distance (m)

Utility (million) NPV (mil-
lion SEK)

Average DTU 
size (ha)

No. of DTUs 
per period

Harvested 
volume  (m3 
 ha−1  year−1)

1 50.3 50.9 2.04 49.6 7.4
50 51.2 53.4 5.90 19.4 8.1
200 53.9 54.4 12.7 9.8 8.3

Fig. 6  Spatial layout of DTUs in the second five-year period in the 
northeast corner of the analysis area, using 1  m neighborhood dis-
tance. Filled DUs are scheduled for final felling, striped DUs are 

scheduled for thinning and dotted DUs are scheduled for pre-com-
mercial thinning (PCT). Individual DTUs are colored the same and 
non-marked polygons are micro sements (DUs) or non-forest
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thinnings in the middle of Fig. 6 are considered separate 
DTUs when using 1 m neighborhood distance (Fig. 6), 
whereas the cases with 50 and 200 m, respectively, mapped 
this area as a single, but dispersed DTU (Figs. 7 and 8). 
Small, isolated DTUs did occur in all cases (see Fig. 6).

Analysis of the cellular automata algorithm

The final phase contributed to both utility and NPV (see 
Table  4). Utility increased with 1.5–32.2% and NPV 
increased with 3.6–33.8% depending on neighborhood 
distance. The coefficient of variation (standard deviation 
divided by the mean) varied with neighborhood distance 
but was 0.0161 or lower for the utility function and 0.0013 
or lower for the NPV.

Utility and NPV increased in only the few first iterations 
of each phase, see Figs. 9, 10, 11, 12. The overall trends 
were the same for all analyses. Improvements in later itera-
tions were very small. The last iteration of the final phase 
(innovation of all DUs) made noticeable contributions to 
both the NPV and the utility function.

Local phase solutions showed clear overharvest in the 
first period (see Fig. 12, line P1) and a shortage of harvests 
in the following couple of periods. The introduction of 

the harvest coefficient in the global phase mitigated this, 
but the final phase further decreased harvests, i.e., after 
introducing full entry costs, in some periods (see Fig. 13, 
lines P2 and P4).

Model runtime

Runtimes increased with longer neighborhood distances, 
which is logical since the computational burden increases 
for our model when mapping DTUs that are large in terms 
of the number of included DUs. The final phase was com-
putationally time demanding, especially so when using 50 
and 200 m neighborhoods. The model needed 800–6500 s 
per plan (repetition) depending on neighborhood distance 
(Table 5).

Model stability

We investigated the stability of each analysis. On average, 
the model selected the same TP in ~ 87% of solutions for 
any neighborhood distance (see Table 6).

Fig. 7  Spatial layout of DTUs in the second five-year period in the 
northeast corner of the analysis area, using 50 m neighborhood dis-
tance. Filled DUs are scheduled for final felling, striped DUs are 

scheduled for thinning and dotted DUs are scheduled for pre-com-
mercial thinning (PCT). Individual DTUs are colored the same and 
non-marked polygons are micro sements (DUs) or non-forest
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Comparison with linear programming

Table 7 shows the NPV and harvested volume when using 
the heuristic and a traditional LP approach to solve similar 
planning problems. The relative NPV in solutions found 
by the CA algorithm (including entry costs) were within 
91.4–97.5% of the theoretical maximum found using LP 
(including neither entry costs nor harvest constraints). Three 
LP solutions were also found including a constraint stating 
that the harvest profile had to match the harvest profile from 

each CA solution. When comparing solutions produced by 
CA to these LP solutions, the relative NPV from CA then 
rose to 94.3–98.1%.

Discussion

This study is an attempt to improve forest planning with 
a DTU approach using a cellular automata algorithm. 
Clustering treatments is necessary for forest management 

Fig. 8  Spatial layout of DTUs in the second five-year period in the 
northeast corner of the analysis area, using 200  m neighborhood 
distance. Filled DUs are scheduled for final felling, striped DUs are 

scheduled for thinning and dotted DUs are scheduled for pre-com-
mercial thinning (PCT). Individual DTUs are colored the same and 
non-marked polygons are micro sements (DUs) or non-forest

Table 4  Utility and NPV in the analyses (20–40 solutions). Delta represents changes in solutions achieved by the final phase

1 40 solutions; 220 solutions

Global phase Final phase

Neighborhood 
distance (m)

Utility or NPV 
(SEK)

Average value Average value Delta SD Coeff of variation

11 Utility 37.3 M 49.9 M 32.2% 804 936 0.0161
NPV 38.5 M 51.0 M 33.8% 65 129 0.0013

501 Utility 47.5 M 53.1 M 11.7% 156 174 0.0029
NPV 48.9 M 53.5 M 9.2% 60 844 0.0011

2002 Utility 51.0 M 51.7 M 1.5% 611,017 0.0118
NPV 5.25 M 54.4 M 3.6% 45 424 0.0008
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planning when using DUs of high spatial resolution 
(Heinonen et al. 2018). From an economic standpoint, 
clustering is needed due to the fixed costs associated with 
treatments, e.g., for moving harvest machinery. In contrast 
to comparable studies in the literature, this study explic-
itly modeled the economic incentive to cluster harvest 

activities, in a high-detail manner in the final phase of the 
algorithm.

The model successfully solved the planning problem 
using different parameter settings and neighborhood dis-
tances. The model succeeded in the sense that (i) the plans 
had clustered treatments (ii) overharvesting did not occur, 
and (iii) all CA-produced plans (including entry cost) were 
within 5.7% of the comparable plans found with LP (exclud-
ing entry costs). The final phase improved the solutions in 
terms of both utility function value (1.5–32.2%) and NPV 
(3.8–32.4%), see Table 4. The model was successful in pre-
venting overharvests compared to the harvest level set by the 
harvest coefficient. Thus, the effect of including the harvest 
coefficient was similar to inclusion of a constraint limiting 
harvest. However, the model did not result in even harvest 
flow in all periods (Fig. 13), which may be a concern for 
some forest owners. This may be achieved by decreasing 
the target volume (variable tp), possibly in combination with 
increasing the upper bound (bp).

A high number of iterations in each phase do not seem to 
be necessary since the culmination of NPV and utility func-
tion values were observed after only a few iterations. Past 
studies using cellular automata models have had utility cul-
minate later during the iterations (e.g., Pascual et al. 2019), 
possibly because those models shifted utility weighting lin-
early over the iterations, whereas our model changes the 
utility function abruptly when a new phase starts. The final 
phase was the most time-consuming. The presented model 
solved the planning problem for 1 192 ha (4218 DUs) in 

Fig. 9  Utility function values in the local phase, relative to the maxi-
mum value in the displayed dataset, for the 50 m neighborhood dis-
tance case. Boxplots representing results from the 40 repetitions of 
the CA algorithm. The utility function changes over phases, hence 
values are not comparable between Figs.  9, 10, and 11. Iteration 0 
showing data from the randomly selected initial plan

Fig. 10  Utility function values in the global phase, relative to the 
maximum value in the displayed dataset, for the 50 m neighborhood 
distance case. Boxplots representing results from the 40 repetitions of 
the CA algorithm. Utility function changes over phases, hence values 
are not comparable between Figs. 9, 10, and 11. Iteration 0 showing 
the solutions produced by the local phase as evaluated by the global 
utility function

Fig. 11  Utility function values in the final phase, relative to the maxi-
mum value in the displayed dataset, for the 50 m neighborhood dis-
tance case. Boxplots representing results from the 40 repetitions of 
the CA algorithm. Utility function changes over the phases, hence 
values are not comparable between Figs.  9, 10, and 11. Iteration 0 
showing the solutions produced by the global phase as evaluated by 
the final utility function



897European Journal of Forest Research (2022) 141:887–900 

1 3

830–6510 s (Table 5), depending on neighborhood distance. 
Unfortunately, computation time is not always reported in 
the literature. Comparisons are possible with the reduced 
cost model of Heinonen et al. (2018). Their model solved 
DTU planning problems for a 13 805 ha area (42,606 DUs) 

with solution times of ~ 2000s (Table 5). Note that, the 
complexity and computational cost is a result not only of 
analysis area size and spatial resolution, but also tempo-
ral solution, planning horizon, number of treatment units, 
neighborhood distance, etc. If short solution times is of great 

Fig. 12  NPV over all three phases for the 50  m neighborhood dis-
tance analysis. Boxplots representing results from 40 repetitions of 
the CA algorithm. Iteration 0 in the local phase graph marks the NPV 

of the randomly selected initial plans. Iteration 0 in the global and 
final phase marks the NPV of the input solution in each phase

Fig. 13  Harvest profiles for the 50  m neighborhood distance case. 
Average values for 40 solutions. Global phase introduces the harvest 
coefficient and the final phase charges each DTU by the full entry 

cost. Iteration number within each phase on the x axis. P1 – P10 are 
the ten five year periods over the planning horizon

Table 5  Average values 
of runtime for different 
neighborhood distances

Neighborhood 
distance (m)

Runtime per iteration Iterations 
per phase

Repetitions Avg runtime 
per repetition 
(s)Local (s) Global (s) Final (s)

1 4.3 4.4 7.9 50 40 830
50 4.4 4.6 29.6 50 40 1855
200 4.5 4.5 121.2 50 20 6510
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importance, our model may be improved by adding stopping 
criteria based on specific utility function values, possibly 
allowing for finding good solutions in fewer iterations and 
hence shorter solution times. Regarding runtimes, it has to 
be stressed that code was not optimized for solution time.

Heuristic models may not guarantee optimal solutions 
and solutions produced are to some degree the product of 
chance. Bettinger et al. (2009) suggest a six-level framework 
for validation of forest planning heuristics, where level six 
is the highest. Corresponding to level two in this piece of 
literature, we solve problems repeatedly and report spread in 
utility function value and in NPV. We also report the model’s 
tendency to select the same TP for an individual DU over a 
set of solutions. We repeated the solving procedure 40 times 
for the 1 m and 50 m neighborhood distance and 20 times 
for the 200 m dito. The coefficient of variation for the utility 
function value was 0.0161 or lower for all analyses and for 
NPV the same was true for a value of 0.0013. The stability 
in TP selection was very similar in the different analyses 

regardless of neighborhood distance and was relatively high 
in all analyses—all analyses had an average stability of 87% 
and a median of 95%. This indicates that the model produces 
similar solutions over and over when using the same param-
eters for the same analysis area. This is a mark of quality for 
the model when nuanced by the comparisons with solutions 
from LP. Compared to solutions found using LP, the CA 
produced solutions with relative NPV of 94.3% or higher 
(Table 7). Bettinger et al. (2009) considers comparisons with 
optimal solutions generated for similar problems as a high 
level (five out of six) of validation but our comparison is 
vague since entry costs play a significant role in the CA but 
may not be included in the LP. Therefore, we do not consider 
our analysis as a level five validation. Furthermore, the har-
vest constraints also differ between the two. The relevance of 
the comparison lies in the fact that solutions found by LP are 
always the theoretical optima. Consequently, if the solution 
found by the CA is close to the solution found by the LP, 
it indicates that the CA produces high-quality forest plans. 
Therefore, the comparison was included.

Allowing for longer distances between separate areas within 
the same DTU increased NPV and utility function value. This 
is logical since increasing the distance has similarities with the 
relaxation of a constraint when using an exact solution method 
and matches the literature (Borges et al. 2017; Heinonen et al. 
2018). A wider neighborhood distance allows the model to 
form more scattered DTU and results in fewer entry costs for 
a given distribution of treatments in the geography. What the 
appropriate neighborhood distance is, is however not obvi-
ous. The distance should reflect the point at which harvest 
machinery can no longer move within a harvest area without 
having transportation assistance by a trailer or similar. This 
distance is in practice dependent on several factors, many of 
which were neglected in this study (e.g., water courses, ground 
conditions, topography, roads). If a very short distance is used, 
the model will consider many treatments as isolated cuttings, 

Table 6  For each DU, we investigated which TP occurred the most 
often in the analyses. The frequency (in percent) of this TP results 
in a value between 0 and 100 for each DU. This frequency describes 
the stability in TP assignment, since a value of 100 for a DU shows 
that the model selected the same TP in 100% of all repetitions for that 
DU. The table shows descriptive statistics for this frequency for all 
DUs of the three analyses

1 Average values over 40 repetitions; 2Average values over 20 repeti-
tions

Percentile Stability (%)

1  m1 50  m1 200  m2

Min 25 23 25
Median 95 95 95
Max 100 100 100
Average 87 87 87

Table 7  Comparisons of 
NPV and harvested volume in 
different CA, and LP solutions. 
Note that, the LP solutions do 
not include entry costs in the 
calculation of NPV. Therefore, 
even if the selection of TPs was 
exactly the same in a plan found 
using LP and a plan found using 
CA, the CA solution would have 
lower NPV due to higher costs

1) Using a constraint stating that the harvested volume in each period must equal the harvested volume from 
the cellular automata solution with the corresponding neighborhood distance
2) Using a utility function promoting even flow of harvested volumes (Fig. 3)

Solution NPV (SEK  ha−1) NPV (rel.) NPV (rel. to correspond-
ing LP solution)

Avg har-
vest  (m3 
 ha−1  year−1)

Linear programming
No constraints 46 849 100.0 n/a 7.6
11 45 411 96.9 n/a 6.8
501 46 298 98.8 n/a 7.4
2001 46 567 99.4 n/a 7.5
Cellular automata
12 42 804 91.4 94.3 6.8
502 44 851 95.7 96.9 7.4
2002 45 699 97.5 98.1 7.5
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and thereby as non-profitable. If a very long distance is used, 
DTUs are to a more significant extent constituted by small 
and scattered areas, which the underlying harvest productivity 
models used in Heureka (Eriksson and Lindroos 2014) are not 
validated against.

The entry cost is a main component in the model and it was 
scaled down in the local and global phases. The aim here was 
that (while a lower detail mapping is conducted in the local 
and global phases) the effective entry cost charged from single 
DU would approximately correspond to the effective entry cost 
charged in the final phase. Furthermore, consideration was 
taken to the fact that a full entry cost would far exceed the 
income from thinning very small DU (a single 12.5 × 12.5m2 
grid cell). Using a full entry cost, the model might consider 
all small DTU as unprofitable, not allowing small DTU to 
establish in the local and global phase, thus potentially getting 
stuck in local optima. After reasoning and brief testing, the 
entry cost was therefore scaled down in the local and global 
phases by multiplying it by 0.02.

Small DTU occurred in all cases, even though an impor-
tant aim of the model is to avoid these. The fact that TPs 
(a sequence of treatments) are evaluated here, rather than 
individual treatments, is a possible explanation for this. A 
TP may be considered viable to the model, even though an 
individual treatment at a specific timepoint in the TP is not. 
Hence, the model may not guarantee that all treatment in all 
DUs in a solution are economically profitable, even though 
NPV was a component in the utility function.

Finally, delineation of forests into microsegments, i.e., the 
DUs in this study, may be of varying quality and is a source 
of error for forest planners using such data. Furthermore, 
the microsegments used here consists of sets of squares, 
forming straight and perpendicular patterns which in prin-
ciple is a poor representation of the gradual variations that 
occur in real forests. As an alternative, remote sensing tech-
niques allow for single tree identification and segmentation 
algorithms can be employed on such tree level data to form 
microsegments with more fine tuned borders (e.g., Olofs-
son and Holmgren 2014). Yet another alternative would 
have been to use the underlying cells as DUs, at the cost of 
an even more complex planning problem with many more 
decision variables. After all, the model for carrying out the 
segmentation and the model for conducting forest planning 
are two separate things. The former is not the focus of the 
study, and therefore, no investigation was conducted on the 
quality of the microsegmentation.

Conclusions

We conclude that the presented approach is an addition 
to the set of heuristics applicable to forest planning with 
DTU. The main contribution of the study is the final phase 

of the algorithm where the economic incentive to cluster 
treatments is modeled by calculating entry costs in high 
detail. The analyses showed that the final phase improves 
goal function value in solutions. While the magnitude of 
improvement appears dependent on parameterization in ear-
lier phases of the algorithm and data, modeling a realistic 
entry cost, instead of using proxy variables, decreases the 
need for parameterization and expert-usage of decision sup-
port systems. While the final phase improved solutions, the 
phase was also computationally costly. In addition, early cul-
mination of goal function value was observed, which leads 
us to reason that inclusion of stop criteria may be advisable 
to reduce solution times. The results also showed that the 
model produces consistent solutions when a given planning 
problem is solved repeatedly.
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