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Endemic vertebrates are a crucial component of biodiversity, yet face

disproportionally high extinction risk as climate and land-use changes drive

habitat loss. Large protected areas are therefore deemed necessary to

mitigate biodiversity loss. In 2021, China’s Giant Panda National Park (GPNP,

27,134 km2) was established in one of the global endemism hotspots. In

this study we ask the question whether this large national park is able to

conserve the many threatened endemic vertebrates occurring in the region

in the face of climate and land-use changes, in order to assess the long-term

effectiveness of the GPNP. We used species distribution modeling techniques

to project the distributions of 40 threatened terrestrial (and freshwater)

endemic vertebrates under land-use and climate change scenarios SSP2–

4.5, SSP3–7.0 and SSP5–8.5 in 2081–2100, and assessed the extent to which

their distributions are covered by the GPNP, now and in the future. We found

that by 2081–2100, two thirds of the threatened endemic vertebrates are

predicted to lose part (15–79%, N = 4) of or (nearly) their entire (80–100%

loss, N = 23) range under all three climate and land-use change scenarios.

Consequently, fewer species are predicted to occur in the GPNP than at

present. Our findings confirm the high vulnerability of threatened endemic

species to climate and land-use changes, despite protected areas. Habitat

loss due to climate and land-use changes elevate extinction risk of species

in endemism hotspots across the globe. Urgent, widespread and intensified

mitigation measures and adaptation measures are required at a landscape

scale for effective conservation efforts in the future.
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Introduction

Endemism hotpots are valuable in biography as they
represent unique aspects of biodiversity (Purvis and Hector,
2000; Isaac et al., 2007; Daru et al., 2020; Murali et al., 2021).
They are mostly found on oceanic islands (Kier et al., 2009)
and in mountain ranges (Noroozi et al., 2018). Unfortunately,
the biophysical features of islands and mountains also make
these endemic hotspots highly vulnerable to climate change.
Because of spatial isolation and limited surface area of islands
and mountain tops, species specialized on these habitat types
are constrained in their migration to track their climate
envelope, and are confined to smaller and often higher elevation
(Dirnböck et al., 2011; Kidane et al., 2019; Veron et al., 2019;
Hoffmann et al., 2020). These endemic species therefore face
high extinction risks in the face of climate change (Malcolm
et al., 2006; Manes et al., 2021). In addition, human activities
are projected to substantially alter land cover and pose high
extinction risks on endemic species (Kier et al., 2009; Bellard
et al., 2014; Jantz et al., 2015; Li et al., 2017; Chaudhary et al.,
2018). Endemic species that are already threatened are facing
an even higher extinction risk due to expected habitat loss;
they are predicted to lose relatively more habitats than non-
endemic and non-threatened species (Li et al., 2013). It is
therefore important to understand and anticipate the impacts of
environmental change on the spatial distributions of threatened
endemic species if we want to conserve them and to mitigate
biodiversity loss effectively.

Despite the uniqueness of endemic species and the
vulnerability of endemic centers to global change, protected
areas are not sufficient to conserve the habitats of endemic
species (Rodrigues et al., 2004). Not only have endemic species
lost major parts of their historical ranges (Brooks et al.,
2002), but also remaining endemic centers are in present
times largely left unprotected and exposed to high extinction
risks (Gonçalves-Souza et al., 2020; Murali et al., 2021).
Furthermore, climate change exacerbates the negative impact of
habitat destruction and fragmentation on biodiversity, lowering
extinction thresholds (Travis, 2003; Mantyka-pringle et al.,
2012). Climate change will further reduce the effectiveness of
existing protected areas as climatic niches are shifting (Barredoa
et al., 2016) and extreme events will be more common. This is
especially problematic at high elevations and at locations that
provide irreplaceable habitats for threatened species (Hoffmann
and Beierkuhnlein, 2020). Protected areas should therefore take
the impact of global change into account to effectively conserve
biodiversity.

Considerably increasing the acreage of protected areas has
been put forward as an integrated solution for climate change
mitigation and nature conservation (CBD, 2020; Roberts et al.,
2020; Allan et al., 2021). In 2019, China announced a plan
to establish ten terrestrial national parks covering a total area
of 222,900 km2 (State Forestry and Grassland Administration,

2019). The second largest national park, Giant Panda National
Park (GPNP) is officially established in 2021 (Huang et al.,
2020; The People’s Government of Sichuan Province, 2021). It
covers an area of 27,134 km2, three times the size of Yellow
Stone National Park (United States) (Huang et al., 2020).
Although the main goal of GPNG is to connect the suitable
habitat of the giant panda (Ailuropoda melanoleuca) (Huang
et al., 2020), the large surface area of the GPNP harbors at
least 3,446 plant and 641 vertebrate species, including large
carnivores and many rare and threatened species, and a variety
of ecosystems (National Forestry Grassland Administration
and National Park Administration, 2019; Tian et al., 2021).
Furthermore, the GPNP is located in the northeast of the
Hengduan Mountains, one of the global phylogenetic endemism
hotspots (Murali et al., 2021). In China, all endemic centers
are located in mountainous areas (Tang et al., 2006), where the
mammal, bird and seed plant endemism peaks in Hengduan
Mountains (Huang et al., 2016; Li and Pimm, 2016; Wu et al.,
2017). Based on the International Union for Conservation of
Nature’s Red List of Threatened Species (IUCN Red List) (IUCN,
2021b), out of in total 528 endemic terrestrial (and freshwater)
vertebrates in China, 183 species (34.7%) are threatened with
extinction to a certain extent (i.e., IUCN red list categories
critically endangered [CR], endangered [EN], and vulnerable
[VU]) (IUCN, 2021a). 40 of these 183 threatened endemic
vertebrates (21.9%) live in this area. Thanks to its size, the
GPNP might contribute to the conservation of both endemic
and endangered species, whose spatial ranges rarely overlap
and therefore necessitate large protected areas to protect them
(Orme et al., 2005; Tang et al., 2006). In addition, the high
topographic complexity in the area of the GPNP might make
it a suitable location for biodiversity conservation considering
climate change adaptation (Lu et al., 2020).

However, the suitability of the newly established GPNP to
conserve threatened endemic species is potentially uncertain in
the face of climate change. The focal species of the GPNP, the
giant panda, is predicted to face further habitat fragmentation
under climate change (Kong et al., 2021), where 26 out of 56
isolated populations would not be protected by the GPNP, and
41 of these 56 populations would face an extinction risk >50%
in 100 years (Kong et al., 2021). In the same area, alpine plants
are projected to shift upslope and contract their distribution
ranges (Ying et al., 2016; He et al., 2019a,b, 2020; Li et al.,
2019, but see Liang et al., 2018). For vertebrates, the pattern
in distribution range changes is not identical across species (Li
et al., 2013; Chen, 2017; Hu et al., 2020; Lu et al., 2020). Several
studies assessed the impact of climate change on a number of
vertebrates in the region, predicting range loss, range reduction,
habitat fragmentation or degradation with a few exceptions of
range expansion (Lu et al., 2012; Li et al., 2013, 2021; Lei et al.,
2014; Feng et al., 2015; Xu et al., 2020). These studies, however,
only considered the possible effect of climate change and not
of land-use change. On top of the projected negative impact of
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climate change on biodiversity, human land-use is expected to
further reduce natural vegetation in biodiversity hotspots (Jantz
et al., 2015) and compromise the protective effects of protected
areas (Montesino Pouzols et al., 2014). Accounting for land use
change in predictive studies is therefore essential (Jetz et al.,
2007; Tingley et al., 2013). Furthermore, the potential range
shifts of many rare vertebrates are understudied, possibly due
to data deficiency. The impact of climate and land-use changes
on the spatial distributions of threatened endemic vertebrates
thus needs to be better understood to assess the conservation
effectiveness of protected areas such as the GPNP. This study
therefore assesses the impact of climate and land-use changes
on the potential spatial distributions of threatened terrestrial
(and freshwater) endemic vertebrates in northeast Hengduan
Mountains using species distribution modeling techniques, in
order to locate the current and future endemism hotspots and
to assess the extent to which the GPNP overlaps with (future)
hotspots. In doing so, we aim to provide insights in the (future)
vulnerability of these species to inform conservation efforts.

Materials and methods

Study area

The study area spans from 100◦50′00′′E, 27◦00′00′′N to
110◦00′00′′E, 36◦00′00′′N (Figure 1), in the northeast of
Hengduan Mountains, a chain of mountains bordering Qinghai-
Tibetan Plateau and Myanmar to its west and Sichuan Basin
and Yunnan-Guizhou Plateau to its east. The annual mean
temperature ranged from about 5 to 13◦C in the start of the
2000s and the annual precipitation ranges from 500 to 1000 mm
(Li et al., 2010). More than half of the area is covered by
coniferous forests, meadows and steppes, and there are dramatic
variations in topography with elevation differences over 6,000 m
(Ye et al., 2015). Within the study area, the GPNP is located on
the mountain edge northwest to the Sichuan Basin, covering an
area of 27,134 km2 (Huang et al., 2020).

Species and occurrence data

We selected a set of terrestrial (and freshwater) vertebrates
which fulfilled the following criteria: (1) endemic to China;
(2) the conservation status was critically endangered (CR),
endangered (EN) or vulnerable (VU) according to the IUCN
Red List; (3) the study area covered at least 30% of the
species’ current range or the species’ current range covered at
least 30% of the study area; (4) occurrence data were either
available, or could be geographically referenced from published
maps/sightings, or the IUCN published range was available.
A total of 40 species fulfilled all four criteria according to the
IUCN Red List (IUCN, 2021b) and literature review (Figure 2

and Table 1) and were thus included in our study for further
assessment.

The occurrence data were coordinates either directly
obtained or georeferenced from published maps, or sampled
(following complete spatial randomness, sampling 1,200 points
per species to provide sufficient information about its presence)
from published polygons of species ranges (Table 1). The Global
Biodiversity Information Facility (GBIF1) provided coordinates
for six bird species and five amphibian species, using all available
data due to scarcity of records. Coordinates were also found for
one bird species from literature (Lu et al., 2012). Georeferenced
locations were used for one mammal (Li et al., 2018, 2021).
Furthermore, distribution ranges published by the IUCN were
downloaded for all 40 species. As a result, there were in total 52
occurrence datasets for 40 species.

The sample size of occurrence data was set to be at least
11, as this was found to be the minimum needed to generate
accurate distributions for species of low prevalence (i.e., 5% of
raster cells where the species is present) (van Proosdij et al.,
2016). The directly obtained and georeferenced coordinates for
studied species were all below 5% prevalence in the study area,
which was as expected considering they were both endemic and
threatened.

Environmental variables

Previous studies revealed important environmental
variables for 23 of the 40 species and distribution range
predictions for 24 species which were, when possible, included
in this study (Supplementary Appendix I). For the other
species, no earlier study was found. In spite of the fact that
for species with a narrow niche, microhabitat conditions
could be of vital importance [i.e., water velocity for Scutiger
liupanensis (Zuo et al., 2017)], this study focused on generic
bioclimatic, land-use, topographic and lithological variables
due to constraints on data accessibility. In addition, including
microhabitat variables would require a finer scale which was
not possibly due to unavailability of fine scale bioclimatic and
land-use variables. 19 bioclimatic variables were obtained from
WorldClim version 22, 14 land-use variables were obtained
from Land-Use Harmonization2 (LUH23), three topographic
factors were calculated based on a digital elevation model
downloaded from DIVA-GIS4, namely slope, aspect, and
normalized topographic position index (Normalized TPI).
Normalized topographic index measures the difference between
elevation at the central point and the average elevation within
a predetermined radius surrounding it (de Reu et al., 2013).

1 www.gbif.org

2 https://www.worldclim.org/

3 https://luh.umd.edu/

4 http://diva-gis.org/

Frontiers in Ecology and Evolution 03 frontiersin.org

https://doi.org/10.3389/fevo.2022.984842
http://www.gbif.org
https://www.worldclim.org/
https://luh.umd.edu/
http://diva-gis.org/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-984842 September 5, 2022 Time: 14:54 # 4

Wang et al. 10.3389/fevo.2022.984842

FIGURE 1

Study area and its relative position in China (Hijmans, 2021) (inset). The red contour is the GPNP (Huang et al., 2020).

FIGURE 2

Selection process and the number of studied species. Selection based on type and conservation status was done using information from the
IUCN; overlap with the study area was checked either via online available occurrence data, published maps, or the IUCN published range.
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TABLE 1 Species list and summary of occurrence data.

Class Common name Scientific name IUCN Cat. Data type NO. Occ. Source

Amphibia Lolokou Sucker Frog Am olops loloensis coordinates 23 GBIF.org, 2021d

VU polygon 1188 IUCN, 2021d

Batrachuperus londongensis VU polygon 999 IUCN, 2021d

Stream Salamander Batrachuperus pinchonii VU coordinates 58 GBIF.org, 2021b

polygon 1193 IUCN, 2021d

Alpine Stream
Salamander

Batrachuperus tibetanus VU coordinates 70 GBIF.org, 2021e

polygon 1197 IUCN, 2021d

Taos ze Spiny Toad Lep tobrachium boringii E coordinates 11 GBIF.org, 2021i

N polygon 1192 IUCN, 2021d

Nankiang Horned
Toad

Megophrys nankiangensis VU polygon 1107 IUCN, 2021d

Kuang-wu Shan Frog Odorrana kuangwuensis VU polygon 930 IUCN, 2021d

Chuanbei Toothed
Toad

Oreolalax chuanbeiensis EN polygon 1078 IUCN, 2021d

Liangbei Toothed
Toad

Oreolalax liangbeiensis CR polygon 15 IUCN, 2021d

Spotted Toothed
Toad

Oreolalax multipunctatus EN polygon 1080 IUCN, 2021d

Nanjiang Toothed
Toad

Oreolalax nanjiangensis VU polygon 76 IUCN, 2021d

Omei Lazy Toad Oreolalax omeimontis EN polygon 1023 IUCN, 2021d

Pingi’s Toothed
Toad

Oreolalax pingii EN polygon 982 IUCN, 2021d

Puxiong Toothed
Toad

Oreolalax puxiongensis EN polygon 872 IUCN, 2021d

Puxiong Salamander Pseudohynobius puxiongensis CR polygon 23 IUCN, 2021d

Chinting Alpine
Toad

Scutiger chintingensis VU polygon 1092 IUCN, 2021d

Jiulong Cat-eyed
Toad

Scutiger jiulongensis EN polygon 996 IUCN, 2021d

Liupan Alpine Toad Scutiger liupanensis EN polygon 1003 IUCN, 2021d

Muli Cat-eyed Toad Scutiger muliensis EN polygon 1034 IUCN, 2021d

Pingwu Alpine Toad Scutiger pingwuensis EN polygon 1071 IUCN, 2021d

Rou nd-tubercled
Cat-eyed Toad

Scu tiger tuberculatus coordinates 11 GBIF.org, 2021k

VU polygon 1157 IUCN, 2021d

Wanglang Alpine
Toad

Scutiger wanglangensis VU polygon 1051 IUCN, 2021d

Southern Sichuan
Crocodile Newt

Tylototriton pseudoverrucosus EN polygon 480 IUCN, 2021d

Taliang Knobby
Newt

Tylototriton taliangensis VU polygon 1185 IUCN, 2021d

Wenxian Knobby
Salamander

Tylototriton wenxianensis VU polygon 1190 IUCN, 2021d

Aves Sich uan Partridge Arb orophila rufipectus E coordinates 42 GBIF.org, 2021h

N polygon 1131 IUCN, 2022

Sno wy-cheeked
Laughingthrush

Gar rulax sukatschewi coordinates 52 GBIF.org, 2021j

VU polygon 1183 IUCN, 2022

Emei Shan Liocichla Liocichla omeiensis VU polygon 1141 IUCN, 2021d

(Continued)
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TABLE 1 (Continued)

Class Common name Scientific name IUCN Cat. Data type NO. Occ. Source

Chinese Monal Lophophorus lhuysii VU coordinates 59 GBIF.org, 2021g

polygon 1194 IUCN, 2022

Sich uan Jay Peri soreus internigrans coordinates 66 Lu et al., 2012;
GBIF.org, 2021a

VU polygon 1195 IUCN, 2022

Golden-fronted
Fulvetta

Schoeniparus variegaticeps VU polygon 1191 IUCN, 2021d

Gray-hooded
Parrotbill

Sin osuthora zappeyi coordinates 40 GBIF.org, 2021f

VU polygon 1175 IUCN, 2022

Rusty-throated
Parrotbill

Suthora przewalskii VU polygon 1185 IUCN, 2021d

Reeves’s Pheasant Syrmaticus reevesii VU coordinates 42 GBIF.org, 2021c

polygon 1199 IUCN, 2021d

Mammalia Giant Panda Ailuropoda melanoleuca VU polygon 1181 IUCN, 2021d

Duke Of Bedford’s
Vole

Proedromys bedfordi VU polygon 1121 IUCN, 2021c

King Horseshoe Bat Rhinolophus rex EN polygon 1199 IUCN, 2021d

Gold en Snub-nosed
Monkey

Rhi nopithecus roxellana E georeferenced coordinates 426 Li et al., 2018; Li
et al., 2021

N polygon 1198 IUCN, 2021d

Reptilia Sichuan Rat Snake Euprepiophis perlacea EN polygon 1192 IUCN, 2021c

Wa Shan Keelback Hebius metusium EN polygon 993 IUCN, 2021c

IUCN Cat., IUCN Red List category; VU, vulnerable; EN, endangered; CR, critically endangered. Data Type are either coordinates or polygons. Coordinates were downloaded from GBIF
and georeferenced from published maps, and polygons were downloaded from IUCN published ranges. NO. Occ., Number of Occurrences.

Normalized TPI measures the topographic position as a fraction
of local relief normalized to the standard deviation of the
elevation (de Reu et al., 2013). Another three topographic
factors were computed from inland water (rivers and lakes)
and road maps obtained from DIVA-GIS and converted to
distance maps, and lithology was sourced from literature
(Hartmann and Moosdorf, 2012a; Table 2). Lithology describes
the geochemical, mineralogical, and physical properties of rocks
(Hartmann and Moosdorf, 2012b). It is a key factor in fields
like landscape evolution, river chemical composition, matter
supply to ecosystems, etc. (Hartmann and Moosdorf, 2012b)
and was therefore included as a potential predictor variable in
the models. The lithological variable contained 13 rock types in
the study area ranked by ascending resistance to weathering and
erosion (Dürr et al., 2005). It was used as a continuous variable
representing the gradient of rocks’ sensitivity to weathering and
erosion.

To identify the current (near historic) distribution ranges,
we used bioclimatic and land-use variables from the period
of 1970–2000, both available at a resolution of 30 arcseconds
(approximately 0.8 km by 0.8 km in the study area). The future
period under consideration was 2081–2100 for bioclimatic and
land-use predictor variables, at a resolution of 2.5 arcminute
(approximately 4 km by 4 km in the study area) and 30
arcseconds respectively. Unfortunately, 30 arcsecond data were

not available for future bioclimatic variables. We therefore
downscaled the data from 2.5 arcminutes to 30 arcseconds to
match the resolution of the other variables. Because the land-
use projections were available for each year in each period, we
averaged the grid-cell values across years to match the averages
as provided for the same periods for the bioclimatic variables.
Topographic (available at a resolution of 30 arcseconds) and
lithological variables (available at a resolution of 30 arcminutes)
were kept constant between current and future periods.

Three scenarios of bioclimatic variables were used from the
general circulation model The Beijing Climate Center Climate
System Model (BCC-CSM2-MR), since its focus is on East Asia
(Wu et al., 2019), namely the Shared Socioeconomic Pathways
(SSP) 2–4.5, SSP3–7.0 and SSP5–8.5 (IPCC, 2021). Under SSP2–
4.5, the most optimistic scenario in this study, CO2 emission will
be around the current level until 2050 after which it declines to
net zero by 2100. Compared to 1850–1900, the global annual
mean temperature is estimated to be between 2.1 to 3.5◦C
higher in 2081–2100 (IPCC, 2021). The average annual global
land precipitation is projected to increase with 1.5–8% relative
to 1995–2014, with stronger seasonality in more areas (IPCC,
2021). An important feature in global land-use change is the
initial decrease in forest with about 43 million ha from 2000
to 2050, with a subsequent increase in forest with about 331
million ha from 2050 to 2100, resulting in a positive forest cover
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TABLE 2 Environmental variables used in the model fitting.

Variables Code Description

Bioclimatic (Fick and Hijmans, 2017) bio1 Annual Mean Temperature

bio2 Mean Diurnal Range (Mean of monthly (max temp—min temp))

bio3 Isothermality (bio2/bio7) (×100)

bio4 Temperature Seasonality (standard deviation×100)

bio5 Max Temperature of Warmest Month

bio6 Min Temperature of Coldest Month

bio7 Temperature Annual Range (bio5–bio6)

bio8 Mean Temperature of Wettest Quarter

bio9 Mean Temperature of Driest Quarter

bio10 Mean Temperature of Warmest Quarter

bio11 Mean Temperature of Coldest Quarter

bio12 Annual Precipitation

bio13 Precipitation of Wettest Month

bio14 Precipitation of Driest Month

bio15 Precipitation Seasonality (Coefficient of Variation)

bio16 Precipitation of Wettest Quarter

bio17 Precipitation of Driest Quarter

bio18 Precipitation of Warmest Quarter

bio19 Precipitation of Coldest Quarter

Land-use (Hurtt et al., 2020) primf Forested primary land

primn Non-forested primary land

secdf Potentially forested secondary land

secdn Potentially non-forested secondary land

pastr Managed pasture

range Rangeland

urban Urban land

c3ann C3 annual crops

c3per C3 perennial crops

c4ann C4 annual crops

c4per C4 perennial crops

c3nfx C3 nitrogen-fixing crops

secma Secondary land mean age (units: years)

secmb Secondary land mean biomass density (units: kg C/m2)

Topographical aspect Aspect (Fleming and Hoffer, 1979; Ritter, 1987) direction. Calculated from
dem (Hijmans, 2021) and converted to cos (aspect)

slope Slope (Fleming and Hoffer, 1979; Ritter, 1987). Calculated from dem
(Hijmans, 2021)

tpi Normalized Topographic Position Index (de Reu et al., 2013). Calculated
from dem (Hijmans, 2021).

distance2river Distance to the nearest river. Calculated from river map (Hijmans, 2021)

distance2lake Distance to the nearest lake. Calculated from lake map (Hijmans, 2021)

distance2road Distance to the nearest road. Calculated from road map (Hijmans, 2021)

Lithological lith Lithology (Hartmann and Moosdorf, 2012a)

dem, digital elevation model Sources are in brackets.

gain by 2100 (Hurtt et al., 2020). Under SSP3–7.0, CO2 emission
will double by 2100 and global annual mean temperature in the
years 2081–2100 is estimated to be about 2.8 to 4.6◦C higher
compared to the years 1850–1900 (IPCC, 2021). The SSP3–7.0
scenario features the highest rate of net land transition globally,

with a strong expansion of crop and pasture land and large-
scale deforestation (Hurtt et al., 2020). Under the SSP5–8.5, the
worst emission scenario in this study, CO2 emission will triple
by 2075 and the global annual mean temperature is estimated to
be 3.3 to 5.7◦C higher by the end of this century compared to
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1850–1900 (IPCC, 2021). Precipitation is projected to increase
with 1–13% by 2081–2100 relative to 1995–2014 with stronger
seasonality in more areas (IPCC, 2021). This scenario predicts
a strong expansion of cropland on the expense of pasture and
forest land and large increases in irrigated area (Hurtt et al.,
2020).

Data analysis

Data analysis was conducted in three phases (Figure 3).
In the pre-processing phase, occurrence data were set to
coordinate system (WSG84). For the 12 species for which we
were able to obtain GBIF data or (georeferenced) occurrences
from literatures, the spatial extents for generating the random
pseudo-absences were the intersections of the study area and the
concave shapes which enclosed all sample points, calculated in
R studio (RStudio Team, 2021) using packages ‘sf ’ (Pebesma,
2018) and ’concaveman’ (Gombin et al., 2020). The spatial
extents for pseudo-absence data that were extracted from IUCN
ranges for all 40 species were the intersections of the study
area and the occurrence ranges plus buffer zones which were
calculated in the ’rgeos’ package (Bivand and Rundel, 2021).
The width of the buffer zone equaled the diameter of a circle
which had the same surface area as the occurrence range. The
sizes of the buffer zones were therefore species-dependent. They
were designed to create adequate contrast between presence
and pseudo-absence locations, i.e., areas in which species may
be present and in which pseudo-absences are meaningful. This
allows Maxent to better determine variable importance and
relation with species presence, while avoiding AUC inflation
(Barve et al., 2011; Barbet-Massin et al., 2012).

After the occurrence and random pseudo-presence data
were collected, all coordinates (those obtained from the IUCN
ranges as well as those from GBIF data and [georeferenced]
occurrences from literatures) were cleaned by removing
duplicates and records with little accuracy (i.e., fewer than two
decimal places), and thinned to a 30 arcsecond resolution grid.
The remaining number of occurrences per species is the sample
size. Afterward, the pseudo-absence points were sampled within
the above-described spatial extents and in the same sample size
as the occurrences for each species.

Environmental variables were first set to the same temporal
(Current = 1970–2000, future = 2081–2100) and, species specific
spatial extents (see above), and then standardized to zero
mean and unit variance. Topographical predictor variables were
calculated in R studio (RStudio Team, 2021) using packages
‘raster’ (Hijmans, 2022), ’spatialEco’ (Evans, 2021), and ’sf ’
(Pebesma, 2018). To shorten computation time, distances to
road, river and lake were calculated in 2.5 arcminute resolution,
which was aggregated and then rescaled to 30 arcsecond via
bilinear interpolation after the calculation. Afterward, to reduce
the multicollinearity among predictor variables, a number of

environmental variables were selected per species within its
spatial extent. Variable selection was based on the variance
inflation factor (VIF) they expressed. The predictor variable that
had the highest VIF was chosen from a cluster of correlated
predictor variables (correlation coefficient > | 0.5|), as variable
representing the group of correlated variables. The remaining
level of multicollinearity between kept predictors was assess
using VIF as calculated with the ’usdm’ package (Naimi et al.,
2014) in R studio (RStudio Team, 2021). The choice of
correlation coefficient | 0.5| as threshold for predictor variable
clustering was motivated by otherwise serious multicollinearity
issues which would be encountered in the processing phase and
the resulted indeterministic models.

In the processing phase, the maximum entropy algorithm
(Maxent) (Phillips et al., 2006) was fitted to relate species
occurrences to a selection of environmental variables, where
we used the implementation of the ’sdm’ package (Naimi and
Araújo, 2016) in R studio (RStudio Team, 2021). Compared
to other species distribution modeling algorithms, Maxent has
shown good performance across sample sizes including small
data sets (Wisz et al., 2008). Ten-fold cross-validation was
used for occurrence datasets with more than 100 occurrence
points (Naimi et al., 2014). For samples that were smaller
than 100 points (in practice less than 77 points), leave-one-out
cross-validation was used since ten-fold cross validation is less
appropriate for datasets with limited occurrences (Pearson et al.,
2007). Using leave-one-out cross-validation maximizes the use
of limited data for training and equalizes the contribution of
each point in testing.

For model fitting we used the ‘sdm’ function from the ’sdm’
package (Naimi and Araújo, 2016) in R studio (RStudio Team,
2021). The model fitting started with all predictor variables.
Then, variable importance and exclusion was evaluated based
on Pearson correlation between the fitted values and the
predictions when the focal variable was randomly permutated
5 times using the ’getVarImp’ function from the ’sdm’ package
in R (Thuiller et al., 2009; Naimi and Araújo, 2016). The
lower the correlation, and thus the higher “1-correlation,”
the more important the variable was to the model (Thuiller
et al., 2009; Naimi and Araújo, 2016). Changing the values
of an independent variable and assessing the sensitivity of
the predictions using a correlation based variable importance
metric may highlight more transferable variables, which are
important for the purpose of distribution projection under
future environmental conditions (Phillips, 2017). Using a large
range of variables that may show high collinearity in models
requires a priori variable selection (Braunisch et al., 2013;
Muscatello et al., 2021). We therefore implemented the model
fitting process as an iteration which removed the least relevant
variable(s) from the fitted model and then repeated model
fitting until only two predictor variables were left in the model
following methods proposed by Zeng et al. (2016). This process
therefore yielded a series of models with a different number of
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FIGURE 3

Illustration of data analysis process.

explanatory variables, of which the first model always included
all predictor variables and the last model only included two
predictor variables. The models were subsequently assessed
in the post-processing phases to determine the best model
for each species. The model fitting and modification process
was repeated three times with different random realizations to
permutate variable importance for each occurrence dataset. We
repeated the model fitting and modification process to assess
the robustness of the results, assuming robustness if the three
series of models that were generated produced similar results.
As a result, for each occurrence dataset, the processing phase
produced three sets of fitted models.

Model fitting was proceeded by model selection, prediction
of current and future species distributions, and computation of
the fraction of species ranges that were covered by the GPNP.
Model selection was based on two criteria. First, the three fitted
models from three model modification runs had to consist
of the same explanatory variables. Secondly, the AUC score
evaluated on the test datasets and the number of predictors in
a model had to fulfill the requirement of model parsimony. In
practice, models with AUC value +0.2 per additional predictor
were selected, i.e., if, for a particular species, model 1 had 4
predictor variables and an AUC of 0.80 and model 2 had 5
predictor variables and an AUC of 0.82, we would select model
2 to be the better model. If for a species all models had AUC
values <0.7, the projections made by this model were considered
with low confidence. Because predictor variable elimination
in the pre-processing phase was likely to capture the major
variances in the environmental conditions but not necessarily

the required niche by the species, models for species with
small occurrence record datasets (<100) were indeterministic
where each model modification process generated models with
different predictors. For this reason, model selection was based
on the consistency of models besides AUC scores and the
number of predictors.

Finally, after the best model was selected for each species
(given the above-listed criteria), probability maps of species
presence were generated for the present time and for the future
under three climate and land-use scenarios. For each species we
thus had three probability maps for the present time and nine
probability maps for the future (three times three scenarios).
These maps were converted to binomial habitat suitability maps
with a threshold value specified per model [i.e., Maximized sum
of sensitivity and specificity (Nenzén and Araújo, 2011; Liu
et al., 2016)]. We therefore generated three presence-absence
maps from three simulation runs per species. Then, these three
binary maps were overlayed and the intersection became the
presence in a combined presence-absence map for each species.
The approach we took was that if a grid-cell had a value of 1 in
all three probability maps, that particular grid-cell would receive
a 1 in the final suitability map. If on the other hand it only
had a 1 in two out of three probability maps, it would receive
a 0 in the final suitability map. A Pairwise Wilcoxon Rank Sum
Test in R studio (RStudio Team, 2021) was used to assess if
species range sizes changed significantly. Afterward, 40 binomial
maps were summed up to produce a set of congruent suitability
maps for the present and under each future scenario, where the
value of a grid cell can range between 0 to 40, indicating the
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number of species which may occur in each cell. The current
and future maps were compared to assess species distribution
range changes and changes in endemism hotspots. Finally, the
congruent suitability maps were overlayed with the GPNP to
assess conservation coverage for now and for the future. QGIS
(QGIS.org, 2022) and R studio (RStudio Team, 2021) were used
for analyses.

Results

Models and model statistics

The remaining environmental variables kept for prediction
all had a VIF < 2, thus the kept predictors had very low
levels of multicollinearity. Out of the 40 selected models,
31 models generated species presence-absence maps with a
high confidence level (average AUC ≥ 0.7 and comparable
projections across three simulation runs). The other 9 models
generated species distribution projections with a low confidence
level either because of low average AUC scores (<0.7) and/or
because of less similar projections from three simulation runs
(see Supplementary Appendix II for model per species and
model statistics).

Important environmental variables

A range of variables were important in explaining
the distribution ranges of the species assessed and the
most important explanatory variable was generally species
specific (see Supplementary Appendix II). Regarding all
species together, the explanatory variable that most frequently
explaining their geographic distribution was a land-use variable:
the mean age of secondary land. It was one of the most
important explanatory variables for 8 out of 40 species. The
mean age of secondary land is predicted to decrease in most
areas in and around the Sichuan Basin except for in the north
where it is predicted to increase. The precipitation of the driest
quarter was one of the most important explanatory variables
for 7 out of 40 species. The precipitation of the driest quarter
is predicted to increase in the southeast of the study area
in future and decrease in the rest of the region. The species
distributions mostly responded to both variables unimodally
with a species-specific threshold. Furthermore, distance to
the nearest lake (negative relationship with area suitability)
and lithology also both appeared as in the most important
explanatory variables for 6 species.

For most amphibians (6 out of 24), the mean age of
secondary land was one of the most important explanatory
predictor variables in which the response was usually
unimodally and varied per species. For most birds (3 out
of 13) the precipitation of the driest quarter was one of the most

important predictor variables in which suitability increased
with an increasing amount of precipitation during the driest
quarter of the year until a species specific optimum after
which suitability declined again. Mammals’ distributions were
predicted by different environmental variables per species.
Lithology was an important predictor for the distribution
ranges of both reptiles; the suitability for both species to
occur was highest in areas with rock types that were medium
resistant to weathering and erosion. Precipitation seasonality
was an important predictor variable for the Sichuan rat snake
(Euprepiophis perlacea), in which probability of its occurrence
first increased with increasing precipitation seasonality until a
peak at 0.75 (coefficient of variation) after which it declined.
Distance to the nearest lake was important for the Wa
Shan Keelback (Hebius metusium) in which the probability
of its occurrence declined with an increasing distance to
the nearest lake.

Range size changes per species

At present, 37 out of 40 threatened endemic vertebrates in
the region are present in the GPNP. However, climate and land
use change is predicted to significantly alter the range size of
the species assessed in future (Pairwise Wilcoxon rank sum test
p < 0.001 for all scenarios [SSP2–4.5, SSP3–7.0, and SSP5–8.5]).
More than half of the evaluated species (23 out of 40 species,
57.5%) is projected to lose between 80 to 100% of their current
range under all three future scenarios. 78.0% of evaluated birds,
more than half of the evaluated amphibians, and half of the
evaluated mammals and reptiles are predicted to lose more than
80% of their suitable ranges (Supplementary Appendix III).
Four species (10.0%) are predicted to lose between 15 and 80%
of their ranges (Figure 4 and Supplementary Appendix III).
Depending on the climate change scenario either only 17 or
only 18 of these species can still occur in the GPNP. Three
species are expected to maintain their current ranges (7.5%, i.e.,
range changes between −15 and 15%), and six species (15.0%,
all amphibians) are projected to expand their distribution ranges
(i.e., range changes >15%).

The impact of climate change on the extent of range size
change of the species assessed is generally consistent across the
three different future scenarios (Pairwise Wilcoxon rank sum
test p > 0.950).

Species co-occurrence

Since it is predicted that most species will contract their
ranges in future, the hotspots of threatened endemic species in
the study area, and in the GPNP, will also contract. Currently,
the hotspots are located in the mountain ranges to the northwest
and the southwest of the Sichuan basin, where a maximum of 18
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FIGURE 4

Percentage change in suitable habitat size per species under (A) SSP2–4.5, (B) SSP3–7.0, and (C) SSP5–8.5. The species are 1, O. multipunctatus;
2, S. liupanensis; 3, O. omeimontis; 4, A. loloensis; 5, S. wanglangensis; 6, S. muliensis; 7, S. chintingensis; 8, S. tuberculatus; 9, H. metusium; 10,
G. sukatschewi; 11, T. wenxianensis; 12, T. pseudoverrucosus; 13, P. puxiongensis; 14, P. bedfordi; 15, L. omeiensis; 16, T. taliangensis; 17, R. rex;
18, O. puxiongensis; 19, L. boringii; 20, S. zappeyi; 21, O. chuanbeiensis; 22, A. rufipectus; 23, O. kuangwuensis; 24, P. internigrans; 25,
B. londongensis; 26, A. melanoleuca; 27, B. pinchonii; 28, B. tibetanus; 29, E. perlacea; 30, L. lhuysii; 31, O. liangbeiensis; 32, O. nanjiangensis; 33,
O. pingii; 34, R. roxellana; 35, S. variegaticeps; 36, S. jiulongensis; 37, S. pingwuensis; 38, S. reevesii; 39, S. przewalskii; 40, M. nankiangensis.

evaluated species can co-occur (Figure 5A). By the end of this
century, no region in the study area would possess the climatic
and land-use conditions to support more than 10 threatened
endemic vertebrates to occur simultaneously (Figures 5B–D).
Regarding the GPNP, about 70% of the area is currently suitable
to simultaneously host five to ten of the species included in our
study (Figure 6A). In 2081–2100 this number is predicted to
have been reduced to one to three species regardless the future
scenario (Figures 6B–D).

Discussion

Endemic vertebrates are a crucial component of biodiversity
because of their unique and sometimes long evolutional

histories (Purvis and Hector, 2000; Isaac et al., 2007; Murali
et al., 2021). Unfortunately, endemic vertebrates are facing
disproportionally high extinction risks due to climate and land-
use change related habitat loss (Kier et al., 2009; Dirnböck
et al., 2011; Bellard et al., 2014; Manes et al., 2021). Large
protected areas are deemed necessary to halt biodiversity loss
(CBD, 2020; Allan et al., 2021), however, their effectiveness in
biodiversity conservation is uncertain because of global change
(Hoffmann and Beierkuhnlein, 2020) and the subsequent
biodiversity redistribution (Pecl et al., 2017). To enhance
long-term conservation effectiveness of protected areas it is
important to get a better understanding of the impact of
future environmental change on the distribution of threatened
endemic species. In this paper, we quantified the extent with
which a large protected area (Giant Panda National Park,
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FIGURE 5

Projections of suitable habitats for 40 threatened endemic species (A) at present (i.e., 1970–2000) and in 2081–2100 under climatic and
land-use scenario (B) SSP3–4.5, (C) SSP3–7.0, and (D) SSP5–8.5, in overlap with the GPNP. Each map is an overlay of 40 presence-absence
maps of 40 species. The color scale indicates the number of species that is expected to (co-)occur in the region. The blue contour indicates the
borders of the GPNP.

GPNP, part of the Hengduan Mountains, China) in a global
endemism hotspot (Murali et al., 2021) will cover (part of) the
future distribution ranges of 40 threatened endemic vertebrates.
At present, the GPNP covers part of the endemism hotspot
located in the northwest of the Sichuan Basin, and covers (part
of) the distribution ranges of 37 out of the 40 threatened
endemic vertebrates included in our study. This is because
the distribution range of the Giant panda overlaps with the
distribution ranges of a high portion of endemic vertebrates in
China (Li and Pimm, 2016). The conservation of the pandas’
habitat thus provides umbrella protection to the species that
co-occur in the area (Li and Pimm, 2016).

We found that by 2081–2100, more than half of the studied
species is projected to lose 80 to 100% of their current range
due to climate and land use changes. Range loss was generally
associated with a combination of a predicted reduction of
precipitation in the driest quarter in large parts of the study
region and the predicted declining mean age of secondary
land in future. Changes in the mean age of secondary land
appeared to be the most important driver of range loss for

amphibians, closely followed by changes in the precipitation
regime during the driest quarter of the year. Amphibians
are declining worldwide due to a variety of reasons (Beebee
and Griffiths, 2005). Secondary land has more often been
found to support high numbers of amphibians (Thompson and
Donnelly, 2018); destruction of and changes to secondary land
are therefore likely to cause changes in geographic ranges of
amphibians. Furthermore, changes in the precipitation regime
have also been mentioned as likely having large impacts on
amphibians. The Sichuan rat snake was predicted to lose its
entire range, likely due to shifts in precipitation seasonality. The
Wa Shan Keelback on the other hand was predicted to maintain
its entire range.

Also other studies suggest that climate and non-climate
threats threaten amphibians and birds in the Hengduan
Mountains (Foden et al., 2013), and that habitat alteration is
the foremost driver of extinction risk for threatened terrestrial
vertebrates (Ducatez and Shine, 2016). We for instance predict
that the suitable range from a species like the Kuang-wu Shan
frog (Odorrana kuangwuensis) will (nearly) entirely disappear
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FIGURE 6

Density plot of number of co-occurring species in GPNP (A) at present and under scenario (B) SSP2–4.5, (C) SSP3–7.0, and (D) SSP5–8.5 in
2018–2100.

in future. Suitability for the species to occur was predicted
by, amongst others a positive relationship with the mean age
of secondary land. The species’ habitat, mountain streams
and their surroundings, is currently mostly threatened by
the removal of large rocks and boulders that are used for
construction purposes (Fei et al., 2012). Based on our results,
added land use changes will likely form an additional threat
to the species persistence. Another species that is likely to lose
large parts of its range in future based on our results is the
Sichuan partridge (Arborophila rufipectus). Areas it currently
inhibits are, amongst others, associated with, for the area,
medium to large amounts of precipitation during the driest
quarter of the year. Climate change is thus expected to negatively
affect the species if it is not able to disperse or adapt [also
see Lei et al. (2014)]. The extinction risk for such species
is therefore high and our analyses suggests that the current
endemic vertebrate hotspot may disappear in 60–80 years’
time. Few species (all amphibians) were expected to increase
their range in future. However, other aspects not taken into
account may still negatively affect species. For instance, a species

like the Lolokou sucker frog (Amolops loloensis), which has
shown adaptability to past climatic changes, may be negatively
impacted by hydropower development in the region (Gong
et al., 2020). Considering the predicted fate of all species assessed
together, the conservation effectiveness of the GPNP is expected
to decrease over time as the endemism hotspot disappears in
future, with only a maximum of 18 assessed species being
predicted to still occur in the GPNP by the end of the century.
The diminishing conservation effectiveness of the GPNP is not
surprising considering the fact that the primary objective of the
GPNP is to improve the connectivity of current habitats for the
Giant panda (Huang et al., 2020), which may not be aligned
with facilitating species conservation in general. The role of the
Giant panda as umbrella species and the justification for placing
a disproportionally high conservation effort on the species may
need re-evaluation in the face of global change.

That the effectiveness of the GPNP, a large protected
area for biodiversity conservation, is forecasted to decline
is consistent with findings for other protected areas in
Europe (Araújo et al., 2011), but in contrast with findings

Frontiers in Ecology and Evolution 13 frontiersin.org

https://doi.org/10.3389/fevo.2022.984842
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-984842 September 5, 2022 Time: 14:54 # 14

Wang et al. 10.3389/fevo.2022.984842

in southern Africa (Thuiller et al., 2006; Hoveka et al.,
2022). This may be explained by species’ exposure to hazards
(i.e., extrinsic factors such as climate change and human
disturbances) rather than by species’ sensitivity and adaptive
capacity to hazards (i.e., intrinsic factors of vulnerability)
(Foden et al., 2013, 2019). Although the Hengduan Mountains
likely served as a refugium during climatic changes in the
past and maintained high diversity and endemism, this
region is predicted to experience large changes in climatic
conditions and land use (Wu et al., 2017; Enquist et al., 2019;
Brown et al., 2020). The protected areas in the Hengduan
Mountains and in Europe are projected to experience larger
climate anomalies compared to protected areas in southern
Africa (Hoffmann and Beierkuhnlein, 2020). In addition, both
our study area and Europe have a relatively high human
footprint index compared to southern Africa (Venter et al.,
2016).

Due to the rarity of the species included in this study,
one major challenge we encountered was that little data
and information were available and accessible regarding these
species. Few to no studies could be found for more than one
third of the species studied. We therefore deliberately chose
to use all available sources for species occurrences (i.e., IUCN,
GBIF, georeferencing), and to select the most performant model
from models generated from these different datasets. GBIF
data were available for only 11 out of 40 species considered,
but occurrences were limited (<70). The uncertainty in these
datasets was therefore high as occurrence records in GBIF are
likely to be spatially biased toward better-surveyed areas which
may lead to inaccurate models (Tessarolo et al., 2021). As a
result, only for one species the best performing model was based
on the GBIF dataset. Similarly, also the dataset constructed
from georeferenced coordinates yielded the best performing
model for only one species. For all the other species the best
performing model was based on occurrences extracted from
IUCN ranges. Lack of sufficient trustworthy occurrence data
may thus undermine efforts to identify ecologically meaningful
variables and predict distribution ranges. However, even though
we focused on rare species with only scare data, our models had
a high confidence for 31 out of 40 species. Four of the nine
species for which we were unable to generate a decent model
have small distribution ranges. We were unable to extract a
sufficient amount of occurrence records from their ranges and
their models thus all suffered from low AUC scores (<0.7). This
outcome illustrates that adequate survey data can be crucial for
reliably modeling species distributions [but see Pearson et al.
(2007)], especially when the study landscape is complex and
heterogenous. Alternatively, besides the inadequacy of survey
data, this finding may indicate that the processes behind these
species’ distributions were not captured faithfully by our models,
for example because we did not explicitly account for functional
connectivity and thus reachability of habitat (Kool et al., 2012;
Villard and Metzger, 2014; Brennan et al., 2022).

Despite the uncertainty in the occurrence data and the
scarce species-specific information, the results of our study
are consistent with global evaluations (Foden et al., 2013;
Manes et al., 2021). Our findings highlight the vulnerability of
threatened endemic vertebrates to environmental change in an
important biodiversity hotspot, and this hotspot is predicted
to disappear in future, despite a large protected area. These
results suggest that protected areas alone will not be able
to counter-balance human-induced species extinctions (Pimm
et al., 2014; Ceballos et al., 2020). Indeed, human pressures
have increased inside protected areas worldwide (Geldmann
et al., 2019). In that light, our study also illustrates the
importance of taking potential land-use changes into account
next to climate change when modeling species distributions
(Wisz et al., 2008). Land-use change and intensification
can aggravate the negative impacts of climate change on
biodiversity conservation as human activities compete for
suitable habitat, reduce migration connectivity, and intensify
the impacts of extreme climate events and disturbance
regimes (de Chazal and Rounsevell, 2009; Gimona et al.,
2012; Oliver and Morecroft, 2014; Jantz et al., 2015; Tang
et al., 2020). While human land-use intensifies, adaptive
measures require a landscape approach which engages multiple
stakeholders, reconciles competing ecosystem services, and
enables participatory and adaptive management to be successful
(Sayer et al., 2013). Multiple techniques can assist its spatial
design (e.g., Moilanen et al., 2011; Mastrantonis et al., 2022),
but more importantly, the paradigm shift from project-
oriented to process-oriented, from top-down to bottom-up
approaches can only take place if it is supported by the
local social and political context (Biesbroek et al., 2010;
Voß and Bornemann, 2011; Patrick Bixler et al., 2015).
Conservation measures targeted at individual species such as
captive breeding and assisted migration, although successful
on project level, will not effectively mitigate global biodiversity
loss given the rapid deteriorating status of vertebrates
(Butchart et al., 2006; Hoffmann et al., 2010; Ceballos et al.,
2020). If we want to save at least some of the threatened
endemic vertebrates, prompt, widespread and throughout
mitigation measures must considerably reduce the exposure
of endemism hotspots to both climate change as well as
land-use change within this century. Urgent intensification
of (inter)national climate change policies are necessary to
lessen climate anomalies, and land-use policies on a much
larger scale than protected areas are required to curb human
disturbances.
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