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Abstract: This paper is concerned with the construction and convergence analysis of novel implicit
Peer triplets of two-step nature with four stages for nonlinear ODE constrained optimal control
problems. We combine the property of superconvergence of some standard Peer method for inner
grid points with carefully designed starting and end methods to achieve order four for the state
variables and order three for the adjoint variables in a first-discretize-then-optimize approach together
with A-stability. The notion triplets emphasize that these three different Peer methods have to satisfy
additional matching conditions. Four such Peer triplets of practical interest are constructed. In
addition, as a benchmark method, the well-known backward differentiation formula BDF4, which is
only A(73.35◦)-stable, is extended to a special Peer triplet to supply an adjoint consistent method
of higher order and BDF type with equidistant nodes. Within the class of Peer triplets, we found a
diagonally implicit A(84◦)-stable method with nodes symmetric in [0, 1] to a common center that
performs equally well. Numerical tests with four well established optimal control problems confirm
the theoretical findings also concerning A-stability.

Keywords: implicit Peer two-step methods; BDF-methods; nonlinear optimal control; first-discretize-
then-optimize; discrete adjoints

MSC: 34H05; 49J15; 65L05; 65L06

1. Introduction

The design of efficient time integrators for the numerical solution of optimal control
problems constrained by systems of ordinary differential equations (ODEs) is still an ac-
tive research field. Such systems typically arise from semi-discretized partial differential
equations describing, e.g., the dynamics of heat and mass transfer or fluid flow in complex
physical systems. Symplectic one-step Runge–Kutta methods [1,2] exploit the Hamilto-
nian structure of the first-order optimality system—the necessary conditions to find an
optimizer—and automatically yield a consistent approximation of the adjoint equations,
which can be used to compute the gradient of the objective function. The first-order sym-
plectic Euler, second-order Störmer–Verlet and higher-order Gauss methods are prominent
representatives of this class, which are all implicit for general Hamiltonian systems, see
the monograph [3]. Moreover, compositions of basic integrators with different steps sizes
and splitting methods have been investigated. Generalized partitioned Runge–Kutta meth-
ods which allow one to compute exact gradients with respect to the initial condition are
studied in [4]. To avoid the solution of large systems of nonlinear equations, semi-explicit
W-methods [5] and stabilized explicit Runge–Kutta–Chebyshev methods [6] have been
proposed, too. However, as all one-step methods, also symplectic Runge–Kutta schemes
join the structural suffering of order reductions, which may lead to poor results in their
application, e.g., to boundary control problems such as external cooling and heating in a
manufacturing process; see [7,8] for a detailed study of this behaviour.
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In contrast, multistep methods including Peer two-step methods avoid order reduc-
tions and allow a simple implementation [9,10]. However, the discrete adjoint schemes
of linear multistep methods are in general not consistent or show a significant decrease
of their approximation order [11,12]. Recently, we have developed implicit Peer two-step
methods [13] with three stages to solve ODE constrained optimal control problems of
the form

minimize C
(
y(T)

)
(1)

subject to y′(t) = f
(
y(t), u(t)

)
, u(t) ∈ Uad, t ∈ (0, T], (2)

y(0) = y0, (3)

with the state y(t) ∈ Rm, the control u(t) ∈ Rd, f : Rm×Rd 7→ Rm, the objective function C :
Rm 7→ R, where the set of admissible controls Uad ⊂ Rd is closed and convex. Introducing
for any u ∈ Uad the normal cone mapping

NU(u) = {w ∈ Rd : wT(v− u) ≤ 0 for all v ∈ Uad}, (4)

the first-order Karush–Kuhn–Tucker (KKT) optimality system [14,15] reads

y′(t) = f
(
y(t), u(t)

)
, t ∈ (0, T], y(0) = y0, (5)

p′(t) = −∇y f
(
y(t), u(t)

)Tp(t), t ∈ [0, T), p(T) = ∇yC
(
y(T)

)T, (6)

−∇u f
(
y(t), u(t)

)Tp(t) ∈ NU
(
u(t)

)
, t ∈ [0, T]. (7)

In this paper, we assume the existence of a unique local solution (y?, p?, u?) of the
KKT system with sufficient regularity properties to justify the use of higher order Peer
triplets, see, e.g., the smoothness assumption in Section 2 of [14].

Remark 1. The objective function C(y(T)) in (1) is specified in the so-called Mayer form using
terminal solution values only. Terms given in the Lagrange form

Cl(y, u) :=
∫ T

0
l(y(t), u(t)) dt (8)

can be equivalently reduced to the Mayer form by introducing an additional state ym+1 , the new state
vector ỹ := (y1, . . . , ym, ym+1)

T, and an additional differential equation y′m+1(t) = l(y(t), u(t))
with initial values ym+1(0) = 0. Then, the Lagrange term (8) simply reduces to ym+1(T).

Following a first-discretize-and-then-optimize approach, we apply an s-stage implicit Peer
two-step method to (2) and (3) with approximations Yni ≈ y(tn + cih) and Uni ≈ u(tn + cih),
i = 1, . . . , s, on an equi-spaced time grid {t0, . . . , tN+1} ⊂ [0, T] with step size
h = (T − t0)/(N + 1) and nodes c1, . . . , cs, which are fixed for all time steps, to get
the discrete constraint nonlinear optimal control problem

minimize C
(
yh(T)

)
(9)

subject to A0Y0 = a⊗ y0 + hb⊗ f (y0, u0) + hK0F(Y0, U0), (10)

AnYn = BnYn−1 + hKnF(Yn, Un), n = 1, . . . , N, (11)

yh(T) = (wT ⊗ I)YN , (12)

with long vectors Yn =(Yni)
s
i=1∈ Rsm, Un =(Uni)

s
i=1∈ Rsd, and F(Yn, Un)=

(
f (Yni, Uni)

)s
i=1.

Further, yh(T) ≈ y(T), u0 ≈ u(0), and a, b, w ∈ Rs are additional parameter vectors at both
interval ends, An, Bn, Kn ∈ Rs×s, and I ∈ Rm×m being the identity matrix. We will use the
same symbol for a coefficient matrix like A and its Kronecker product A⊗ I as a mapping
from the space Rsm to itself. In contrast to one-step methods, Peer two-step methods com-
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pute Yn from the previous stage vector Yn−1. Hence, also a starting method, given in (10),
for the first time interval [t0, t1] is required. On each subinterval, Peer methods may be
defined by three coefficient matrices An, Bn, Kn, where An and Kn are assumed to be nonsin-
gular. For practical reasons, this general version will not be used, the coefficients in the inner
grid points will belong to a fixed Peer method (An, Bn, Kn) ≡ (A, B, K), n = 1, . . . , N − 1.
The last forward step has the same form as the standard steps but uses exceptional coeffi-
cients (AN , BN , KN) to allow for a better approximation of the end conditions.

The KKT conditions (5)–(7) for ODE-constrained optimal control problems on a time
interval [0, T] lead to a boundary value problem for a system of two differential equations,
see Section 2.1. The first one corresponds to the original forward ODE for the state solution
y(t) and the second one is a linear, adjoint ODE for a Lagrange multiplier p(t). It is well
known that numerical methods for such problems may have to satisfy additional order
conditions for the adjoint equation [2,5,14,16–18]. While these additional conditions are
rather mild for one-step methods they may lead to severe restrictions for other types of
methods such as multistep and Peer methods, especially at the right-hand boundary at the
end point T. Here, the order for the approximation of the adjoint equation may be limited
to one.

For Peer methods, this question was discussed first in [19] and the adjoint boundary
condition at T was identified as the most critical point. In a more recent article [13], these
bottlenecks could be circumvented by two measures. First, equivalent formulations of
the forward method are not equivalent for the adjoint formulation and using a redundant
formulation of Peer methods with three coefficient matrices (A, B, K) adds additional free
parameters. The second measure is to consider different methods for the first and last
time interval. Hence, instead of one single Peer method (which will be called the standard
method) we discuss triplets of Peer methods consisting of a common standard method
(A, B, K) for all subintervals of the grid from the interior of [0, T], plus a starting method
(A0, K0) for the first subinterval and an end method (AN , BN , KN) for the last one. These
two boundary methods may have lower order than the standard method since they are
used only once.

The present work extends the results from [13] which considered methods with s = 3
stages only, in two ways. We will now concentrate on methods with four stages and better
stability properties such as A-stability. The purpose of an accurate solution of the adjoint
equation increases the number of conditions on the parameters of the method. Requiring
high order of convergence s for the state variable y(t) and order s− 1 for the adjoint variable
p(t)—which we combine to the pair (s, s− 1) from now on—a variant of the method BDF3
was identified in [13] as the most attractive standard method. However, this method is not
A-stable, with a stability angle of α = 86◦. In order to obtain A-stability, we will reduce the
required orders by one. Still, we will show that convergence with the orders (s, s− 1) can
be regained by a superconvergence property.

The paper is organized as follows: In Section 2.1, the boundary value problem arising
from the KKT system by eliminating the control and its discretization by means of discrete
adjoint Peer two-step triplets are formulated. An extensive error analysis concentrating on
the superconvergence effect is presented in Section 2.2. The restrictions imposed by the
starting and end method on the standard Peer two-step method is studied in Section 2.3.
The following Section 2.4 describes the actual construction principles of Peer triplets.
Numerical tests are undertaken in Section 3. The paper concludes with a discussion in
Section 4.

2. Materials and Methods
2.1. The Boundary Value Problem

Following the usual Lagrangian approach applied in [13], the first order discrete
optimality conditions now consist of the forward Equations (10)–(12), the discrete adjoint
equations, acting backwards in time,
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AT
N PN =w⊗ ph(T) + h∇Y F(YN , UN)

TKT
N PN , (13)

AT
n Pn = BT

n+1Pn+1 + h∇Y F(Yn, Un)
TKT

n Pn, N − 1 ≥ n ≥ 0, (14)

and the control conditions

− h∇U F(Yn, Un)
TKT

n Pn ∈ NUs
(
Un
)
, 0 ≤ n ≤ N, (15)

− h∇u0 f (y0, u0)
T(bT ⊗ I)P0 ∈ NU

(
u0
)
. (16)

Here, ph(T) = ∇yC
(
yh(T)

)T and the Jacobians of F are block diagonal matrices
∇Y F(Yn, Un)= diagi

(
∇Yni f (Yni, Uni)

)
and∇U F(Yn, Un)= diagi

(
∇Uni f (Yni, Uni)

)
. The gen-

eralized normal cone mapping NUs
(
Un
)

is defined by

NUs(u) =
{

w ∈ Rsd : wT(v− u) ≤ 0 for all v ∈ Us
ad ⊂ Rsd

}
. (17)

The discrete KKT conditions (10)–(16) should be good approximations to the continu-
ous ones (5)–(7). In what follows, we assume sufficient smoothness of the optimal control
problem such that a local solution (y?, u?, p?) of the KKT system (1)–(3) exists. Further-
more, let the Hamiltonian H(y, u, p) := pT f (y, u) satisfy a coercivity assumption, which is
a strong form of a second-order condition. Then the first-order optimality conditions are
also sufficient [14]. If (y, p) is sufficiently close to (y?, p?), the control uniqueness property
introduced in [14] yields the existence of a locally unique minimizer u = u(y, p) of the
Hamiltonian over all u ∈ Uad. Substituting u in terms of (y, p) in (5) and (6), gives then the
two-point boundary value problem

y′(t) = g
(
y(t), p(t)

)
, y(0) = y0, (18)

p′(t) = φ
(
y(t), p(t)

)
, p(T) = ∇yC

(
y(T)

)T, (19)

with the source functions defined by

g(y, p) := f
(
y, u(y, p)

)
, φ(y, p) := −∇y f

(
y, u(y, p)

)Tp. (20)

The same arguments apply to the discrete first-order optimality system (10)–(16).
Substituting the discrete controls Un = Un(Yn, Pn) in terms of (Yn, Pn) and defining

Φ(Yn, KT
n Pn) :=

(
φ(Yni, (KT

n Pn)i)
)s

i=1
, G(Yn, Pn) := (g(Yni, Pni))

s
i=1, (21)

the approximations for the forward and adjoint differential equations read in a compact form

A0Y0 = a⊗ y0 + hb⊗ g
(
y0, ph(0)

)
+ hK0G(Y0, P0), (22)

AnYn = BnYn−1 + hKnG(Yn, Pn), 1 ≤ n ≤ N, (23)

yh(T) = (wT ⊗ I)YN , (24)

ph(0) = (vT ⊗ I)P0, (25)

AT
n Pn = BT

n+1Pn+1 − hΦ(Yn, KT
n Pn), 0 ≤ n ≤ N − 1, (26)

AT
N PN =w⊗ ph(T)− hΦ(YN , KT

N PN), n = N. (27)

Here, the value of ph(0) is determined by an interpolant ph(0) = (vT ⊗ I)P0 ≈ p(0)
with v ∈ Rs of appropriate order. In a next step, these discrete equations are now treated
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as a discretization of the two-point boundary value problem (18) and (19). We will derive
order conditions and give bounds for the global error.

2.2. Error Analysis
2.2.1. Order Conditions

The local error of the standard Peer method and the starting method is easily analyzed
by Taylor expansion of the stage residuals, if the exact ODE solutions are used as stages.
Hence, defining y(k)

n (hc) :=
(
y(k)(tn + hci)

)s
i=1, k = 0, 1, for the forward Peer method,

where c = (c1, . . . , cs)T, local order q1 means that

Anyn(hc)− Bnyn−1(hc)− hKny′(hc) = O(hq1). (28)

In all steps of the Peer triplet, requiring local order q1 for the state variable and order
q2 for the adjoint solution leads to the following algebraic conditions from [13]. These
conditions depend on the Vandermonde matrix Vq =

(
1l, c, c2, . . . , cq−1) ∈ Rs×q, the Pascal

matrix Pq =
(
(j−1

i−1)
)q

i,j=1
and the nilpotent matrix Ẽq =

(
iδi+1,j

)q
i,j=1 which commutes with

Pq = exp(Ẽq). For the different steps (22)–(24) and (25)–(27), and in the same succession we
write down the order conditions from [13] when Kn is diagonal. The forward conditions are

A0Vq1 =aeT1 + beT2 + K0Vq1 Ẽq1 , n = 0, (29)

AnVq1 =BnVq1P
−1
q1

+ KnVq1 Ẽq1 , 1 ≤ n ≤ N, (30)

wTVq1 =1lT, (31)

with the cardinal basis vectors ei ∈ Rs, i = 1, . . . , s. The conditions for the adjoint methods
are given by

vTVq2 =eT1 , (32)

AT
n Vq2 =BT

n+1Vq2Pq2 − KnVq2 Ẽq2 , 0 ≤ n ≤ N − 1, (33)

AT
NVq2 =w1lT − KNVq2 Ẽq2 , n = N. (34)

2.2.2. Bounds for the Global Error

In this section, the errors Y̌nj := y(tnj) − Ynj, P̌nj := p(tnj) − Pnj, n = 0, . . . , N,
j = 1, . . . , s, are analyzed. According to [13], the equation for the errors Y̌T = (Y̌T

0 , . . . , Y̌T
N )

and P̌T = (P̌T
0 , . . . , P̌T

N) is a linear system of the form

MhŽ = τ, Ž =

(
Y̌
P̌

)
, τ =

(
τY

τP

)
, (35)

where the matrix Mh has a 2× 2-block structure and (τY, τP) denote the corresponding
truncation errors. Deleting all h-depending terms from Mh, the block structure of the
remaining matrix M0 is given by

M0 =

(
M11 ⊗ Im 0

M21 ⊗∇yyCN M22 ⊗ Im

)
(36)

with M11, M21, M22 ∈ Rs(N+1)×s(N+1) and a mean value ∇yyCN ∈ Rm×m of the symmetric
Hessian matrix of C. The index ranges of all three matrices are copied from the numbering
of the grid, 0, . . . , N, for convenience. In fact, M21 = (eN ⊗ 1l)(eN ⊗ w)T has rank one only
with eN = (δNj)

N
j=0. The diagonal blocks of M0 are nonsingular and its inverse has the form

M−1
0 =

(
M−1

11 ⊗ Im 0
−(M−1

22 M21M−1
11 )⊗∇yyCN M−1

22 ⊗ Im

)
. (37)
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The diagonal blocks M11, M22 have a bi-diagonal block structure with identity matrices
Is in the diagonal. The individual s× s-blocks of their inverses are easily computed with
M−1

11 having lower triangular block form and M−1
22 upper triangular block form, with blocks

(M−1
11 )nk = B̄n · · · B̄k+1, k ≤ n, (M−1

22 )nk = B̄T
n+1 · · · B̄T

k , k ≥ n, (38)

with the abbreviations B̄n := A−1
n Bn, 1 ≤ n ≤ N and B̃T

n+1 := (Bn+1 A−1
n )T, 0 ≤ n < N.

Empty products for k = n mean the identity Is.
Defining U := h−1(Mh −M0) and rewriting (35) in fixed-point form

Ž = hM−1
0 UŽ +M−1

0 τ , (39)

it has been shown in the proof of Theorem 4.1 of [13] for smooth right hand sides f and
h ≤ h0 that

‖Ž‖ ≤ 2 max{‖M−1
11 τY‖, ‖M−1

22 τP‖} (40)

in suitable norms, where these norms are discussed in more detail in Section 2.2.3 below.
Moreover, due to the lower triangular block structure of M0 the estimate for the error in
the state variable may be refined (Lemma 4.2 in [13]) to

‖Y̌‖ ≤ ‖M−1
11 τY‖+ hL‖Ž‖ (41)

with some constant L. Without additional conditions, estimates of the terms on the right-
hand side of (40) in the form ‖Ž‖ = O(h−1‖τ‖) lead to the loss of one order in the global
error. However, this loss may be avoided by one additional superconvergence condition on
the forward and the adjoint method each, which will be considered next.

In our convergence result Theorem 1 below, we will assume the existence of the
discrete solution satisfying (22)–(27), for simplicity. However, at least for quadratic ob-
jective functions C, this existence follows quite simply along the same lines used in this
paragraph here.

Lemma 1. Let the right-hand side f of (2) be smooth with bounded second derivatives and let the
function C be a polynomial of degree two, at most. Let the coefficients of the standard scheme satisfy

A1l = B1l, 1lTA = 1lTB, |λ2(A−1B)| < 1, (42)

where λ2 denotes the absolutely second largest eigenvalue of the matrix A−1B. Then, there exists a
unique solution Y, P of the system (22)–(27) for small enough stepsizes h.

Proof. Since ∇yyC is constant, M−1
0 in (37) is a fixed matrix and similar to (39) the

Equations (22)–(27) may be written as a fixed-point problem

Z = hM−1
0 U(Z), Z =

(
Y
P

)
, (43)

where the function U(Z) is also smooth, having the Jacobian U considered in (39). Due
to (42) there exist norms such that ‖B̄‖ ≤ 1, ‖B̃T‖ ≤ 1 hold. In this case, the proof of
Theorem 4.1 in [13] shows the bound ‖M−1

0 U‖ ≤ L with a constant L depending on the
derivatives of g and φ. Hence, by the mean value theorem, the right-hand side of (43) has hL
as a Lipschitz constant and the map Z 7→ hM−1

0 U(Z) is a contraction for h ≤ h0 := 1/(2L),
establishing the existence of a unique fixed point solution.

2.2.3. Superconvergence of the Standard Method

For s-stage Peer methods, global order s may be attained in many cases if other
properties of the method have lower priority. For optimal stiff stability properties like
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A-stability, however, it may be necessary to sacrifice one order of consistency as in [20,21].
Accordingly, in this paper the order conditions for the standard method are lowered by
one compared to the requirements in the recent paper [13] to local orders (s, s− 1), see
Table 1. Still, the higher global orders may be preserved to some extent by the concept of
superconvergence which prevents the order reduction in the global error by cancellation of
the leading error term.

Table 1. Combined order conditions for the Peer triplet, including the compatibility condition (67)
and the condition (61) for full matrices KN .

Steps Forward: q1 = s Adjoint: q2 = s− 1

Start, n = 0 (29) (33),(61),β = 0

Standard, 1 ≤ n < N (30) (33)
Superconvergence (52) (53)

Compatibility (67) (67)

Last step (30), n = N (33), n = N − 1
End point (31) (34),(61),β = N

Superconvergence is essentially based on the observation that the powers of the
forward stability matrix B̄ := A−1B may converge to a rank-one matrix which maps the
leading error term of τY to zero. This is the case if the eigenvalue 1 of B̄ is isolated. Indeed,
if the eigenvalues λj, j = 1, . . . , s, of the stability matrix B̄ satisfy

1 = λ1 > |λ2| ≥ . . . |λs|, (44)

then its powers B̄n converge to the rank-one matrix 1l1lTA since 1l and 1lTA are the right and
left eigenvectors having unit inner product 1lTA1l = 1 due to the preconsistency conditions
A−1B1l = 1l and A−TBT1l = 1l of the forward and backward standard Peer method, see (30)
and (33). The convergence is geometric, i.e.,

‖B̄n − 1l1lTA‖ = ‖
(

B̄− 1l1lTA
)n‖ = O(γn)→ 0, n→ ∞, (45)

for any γ ∈ (|λ2|, 1). Some care has to be taken here since the error estimate (40) depends
on the existence of special norms satisfying ‖B̄‖X1 := ‖X−1

1 B̄X1‖∞ =1, resp. ‖B̃T‖X2 =1.
Concentrating on the forward error ‖M−1

11 τY‖, a first transformation of B̄ is considered
with the matrix

X =

(
1 −βT

1ls−1 Is−1 − 1ls−1βT

)
, X−1 =

(
β1 βT

−1ls−1 Is−1

)
, (46)

where (β1, βT) = 1lTA. Since Xe1 = 1l and eT1 X−1 = 1lTA, the matrix X−1B̄X is block-
diagonal with the dominating eigenvalue 1 in the first diagonal entry. Due to (44) there
exists an additional nonsingular matrix Ξ ∈ R(s−1)×(s−1) such that the lower diagonal
block of X−1BX has norm smaller one, i.e.

‖Ξ−1(− 1ls−1, Is−1
)

B̄
(

−βT

Is−1 − 1ls−1βT

)
Ξ‖∞ = γ < 1. (47)

Hence, with the matrix

X1 := X
(

1
Ξ

)
(48)
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the required norm is found, satisfying ‖B̄‖X1 := ‖X−1
1 B̄X1‖∞ = max{1, γ} = 1 and

‖B̄− 1l1lTA‖X1 = γ < 1 in (45). Using this norm in (40) and (41) for εY := M−1
11 τY, it is

seen with (38) that

εY
n =

n

∑
k=0

1l(1lTAτY
n−k) +

n

∑
k=0

(
B̄− 1l1lTA

)k
τY

n−k︸ ︷︷ ︸
=O(hs)

, 0 ≤ n < N. (49)

Only for εY
N a slight modification is required and the factors in the second sum have

to be replaced by (B̄N − 1l1lTA)(B̄ − 1l1lTA)k−1 for k > 1 with norms still of size O(γk).
Now, in all cases the loss of one order in the first sum in (49) may be avoided if the
leading O(hs)-term of τY

n−k is canceled in the product with the left eigenvector, i.e., if
1lTAτY

n−k = O(hs+1). An analogous argument may be applied to the second term ‖M−1
22 τP‖

in (40). The adjoint stability matrix B̃T = (BA−1)T possesses the same eigenvalues as B̄
and its leading eigenvectors are also known: B̃T1l = 1l and (A1l)TB̃T = 1lTBT = (A1l)T by
preconsistency and an analogous construction applies.

Under the conditions corresponding to local orders (s, s− 1) the leading error terms
in τY

n = 1
s! h

sηs ⊗ y(s)(tn) + O(hs+1) and τP
n = 1

(s−1)! η
∗
s−1 ⊗ p(s−1)(tn) + O(hs) are given by

ηs = cs − A−1B(c− 1l)s − sA−1Kcs−1, (50)

η∗s−1 = cs−1 − A−T BT(c + 1l)s−1 + (s− 1)A−TKcs−2. (51)

Considering now (1lTA)ηs in (49) and similarly (A1l)Tη∗s−1 the following result
is obtained.

Theorem 1. Let the Peer triplet with s > 1 stages satisfy the order conditions collected in Table 1
and let the solutions satisfy y ∈ Cs+1[0, T], p ∈ Cs[0, T]. Let the coefficients of the standard Peer
method satisfy the conditions

1lT
(

Acs − B(c− 1l)s − sKcs−1) = 0, (52)

1lT
(

ATcs−1 − BT(c + 1l)s−1 + (s− 1)Kcs−2) = 0, (53)

and let (44) be satisfied. Assume, that a Peer solution (YT, PT)T exists and that f and C have
bounded second derivatives. Then, for stepsizes h ≤ h0 the error of these solutions is bounded by

‖Ynj − y(tnj)‖∞ + h‖Pnj − p(tnj)‖∞ = O(hs), (54)

n = 0, . . . , N, j = 1, . . . , s.

Proof. Under condition (52) the representation (49) shows that ‖M−1
11 τY‖ = O(hs). In

the same way follows ‖M−1
22 τP‖ = O(hs−1) from condition (53). In (40) this leads to a

common error ‖Ž‖ = O(hs−1) which may be refined for the state variable with (41) to
‖Y̌‖ = O(hs).

Remark 2. The estimate (49) shows that superconvergence may be a fragile property and may be
impaired if |λ2| is too close to one, leading to very large values in the bound

n

∑
k=0
‖
(

B̄− 1l1lTA
)k‖X1 ≤

1
1− γ

for the second term in (49). In fact, numerical tests showed that the value γ ∼= |λ2| plays a crucial
role. While |λ2|

.
= 0.9 was appropriate for the three-stage method AP3o32f which shows order 3 in

the tests in Section 3, for two four-stage methods with |λ2|
.
= 0.9 superconvergence was not seen in
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any of our three test problems below. Reducing |λ2| farther with additional searches we found that a
value below γ = 0.8 may be safe to achieve order 4 in practice. Hence, the value |λ2| will be one of
the data listed in the properties of the Peer methods developed below.

Remark 3. By Theorem 1, weakening the order conditions from the local order pair (s + 1, s) to
the present pair (s, s− 1) combined with fewer conditions for superconvergence preserves global
order hs for the state variable. However, it also leads to a more complicated structure of the leading
error. Extending the Taylor expansion for τY, τP and applying the different bounds, a more detailed
representation of the state error may be derived,

‖Y̌‖ ≤hs( ‖ηs‖
(1− γ)s!

‖y(s)‖+ |1l
TAηs+1|
(s + 1)!

‖y(s+1)‖
)

+ hs(L̂‖p(s)‖+ L̂‖p(s−1)‖
)
+ O(hs+1) (55)

with some modified constant L̂. Obviously, the leading error depends on four different derivatives
of the solutions. Since the dependence on p is rather indirect, we may concentrate on the first line
in (55). Both derivatives there may not be correlated and it may be difficult to choose a reasonable
combination of both error constants as objective function in the construction of efficient methods.
Still, in the local error the leading term is obviously τY .

= hs 1
s! ηs ⊗ y(s), with ηs defined in

(50), and it may be propagated through non-linearity and rounding errors. Hence, in the search
for methods,

errs :=
1
s!
‖ηs‖∞ =

1
s!
‖cs − A−1B(c− 1l)s − sA−1Kcs−1‖∞ (56)

is used as the leading error constant.

2.2.4. Adjoint Order Conditions for General Matrices Kn

The number of order conditions for the boundary methods is so large that they may
not be fulfilled with the restriction to diagonal coefficient matrices K0, KN for s ≥ 3. Hence,
it is convenient to make the step to full matrices K0, KN in the boundary methods and the
order conditions for the adjoint schemes have to be derived for this case. Unfortunately,
for such matrices the adjoint schemes (27) and (26) for n = 0 have a rather unfamiliar form.
Luckily, the adjoint differential equation p′ = −∇y f (y, u)Tp is linear. We abbreviate the
initial value problem for this equation as

p′(t) = −J(t)p(t), p(T) = pT , (57)

with J(t) = ∇y f
(
y(t), u(t)

)T and for some boundary index β ∈ {0, N}, we consider the

matrices Aβ = (a(β)
ij ), Kβ = (κ

(β)
ij ). Starting the analysis with the simpler end step (27),

we have

s

∑
j=1

a(N)
ji PNj =wi ph(T) + hJ(tNi)

s

∑
j=1

κ
(N)
ji PNj, i = 1, . . . , s, (58)

which is some kind of half-one-leg form since it evaluates the Jacobian J and the solution
p at different time points. This step must be analyzed for the linear Equation (57) only.
Expressions for the higher derivatives of the solution p follow easily:

p′′ = (J2 − J′)p, p′′′ = (−J3 + 2J′ J + J J′ − J′′)p. (59)

Lemma 2. For a smooth coefficient matrix J(t), the scheme (58) for the linear differential Equation (57)
has local order 3 under the conditions

AT
NV3 + KT

NV3Ẽ3 = w1lT (60)



Algorithms 2022, 15, 310 10 of 30

and with β = N

s

∑
i=1
i 6=j

(ci − cj)κ
(β)
ij = 0, j = 1, . . . , s. (61)

Proof. Considering the residual of the scheme with the exact solution p(t), Taylor expan-
sion at tN and the Leibniz rule yield

∆i =
s

∑
j=1

a(N)
ji p(tNj)− wi p(T)− hJ(tNi)

s

∑
j=1

κ
(N)
ji p(tNj)

=
q−1

∑
k=0

hk

k!
( s

∑
j=1

a(N)
ji ck

j − wi
)

p(k) − h
q−2

∑
k=0

hk

k!
ck

i J(k)
s

∑
j=1

κ
(N)
ji

q−2

∑
`=0

h`

`!
c`j p(`)︸ ︷︷ ︸

:=δ

+O(hq)

where all derivatives are evaluated at tN . The second term can be further reformulated as

δ =
q−1

∑
k=1

hk
k−1

∑
`=0

s

∑
j=1

κ
(N)
ji

c`i ck−`−1
j

`!(k− `− 1)!
J(`)p(k−`−1)

=
q−1

∑
k=1

hk
k

∑
`=1

s

∑
j=1

κ
(N)
ji

c`−1
i ck−`

j

(`− 1)!(k− `)!
J(`−1)p(k−`).

Looking at the factors of h0, h1, h2 separately leads to the order conditions

h0 : 0 = AT
N1l− w,

h1 : 0 = (
s

∑
j=1

a(N)
ji cj − wi)p′ −

s

∑
j=1

κ
(N)
ji Jp = (−

s

∑
j=1

a(N)
ji cj + wi −

s

∑
j=1

κ
(N)
ji )Jp, i.e.

0 = AT
Nc + KT

N1l− w,

h2 : 0 =
1
2
(∑

j
a(N)

ji c2
j − wi)p′′ −

s

∑
j=1

κ
(N)
ji
(
cj Jp′ + ci J′p

)
=

1
2
(

s

∑
j=1

c2
j a(N)

ji − wi + 2
s

∑
j=1

cjκ
(N)
ji )J2 p− 1

2
(

s

∑
j=1

c2
j a(N)

ji − wi + 2
s

∑
j=1

κ
(N)
ji ci)J′p.

Cancellation of the factor of J2 requires the condition 0 = AT
Nc2 + 2KT

Nc− w, which
combines with the h0, h1-conditions to (60). The factor of J′, however, requires
0 = AT

Nc2 + 2DcKT
N1l− w with Dc = diag(ci). Subtracting this expression from the factor

of J2 leaves 0 = KT
Nc− DcKT

N1l, which corresponds to (61).

Remark 4. Condition (60) is the standard version for diagonal KN from [13]. Hence, the half-
one-leg form of (58) introduces s additional conditions (61), only, for order 3 while the boundary
coefficients Kβ, β = 0, N, may now contain s(s− 1) additional elements. In fact, a similar analysis
for step (26) with n = β = 0 reveals again (61) as the only condition in addition to (33).

2.3. Existence of Boundary Methods Imposes Restrictions on the Standard Method

In the previous paper [13], the combination of forward and adjoint order conditions for
the standard method (A, B, K) into one set of equations relating only A and K already gave
insight on some background of these methods such as the advantages of using symmetric
nodes. It also simplifies the actual construction of methods leading to shorter expressions
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during the elimination process with algebraic software tools. For ease of reference, this
singular Sylvester type equation is reproduced here,

(Vq2Pq2)
TA(Vq1Pq1)−VT

q2
AVq1 = (Vq2Pq2)

TKVq1Pq1 Ẽq1 + (Vq2 Ẽq2)
TKVq1 . (62)

A similar combination of the order conditions for the boundary methods, however,
reveals crucial restrictions: the triplet of methods (A0, K0), (A, B, K), (AN , BN , KN) has to
be discussed together since boundary methods of an appropriate order may not exist for
any standard method (A, B, K), only for those satisfying certain compatibility conditions
required by the boundary methods. Knowing these conditions allows one to design the
standard method alone without the ballast of two more methods with many additional
unknowns. This decoupled construction also greatly reduces the dimension of the search
space if methods are optimized by automated search routines. We start with the discussion
of the end method.

2.3.1. Combined Conditions for the End Method

We remind that we now are looking for methods having local order q1 = s and
q2 = s− 1 everywhere, which we abbreviate from now on as (q1, q2) = (s, q). In particular
this means that ATVq + KTVqẼq = BTVqPq for the standard method. Looking for bottle-
necks in the design of these methods, we try to identify crucial necessary conditions and
consider the three order conditions for the end method (AN , BN , KN) in combination

ANVs − BNVsP−1
s − KNVsẼs = 0,

BT
NVqPq = ATVq + KTVqẼq = BTVqPq,

AT
NVq + KT

NVqẼq = w1lTq .

(63)

From these conditions the matrices AN , BN may be eliminated, revealing the first
restrictions on B. Here, the singular matrix map

Lq,s : Rq×s → Rq×s, X 7→ ẼT
q X + XẼs (64)

plays a crucial role.

Lemma 3. A necessary condition for a boundary method (AN , BN , KN) to satisfy (63) is

Lq,s
(
VT

q KNVs
)
=1lq1lTs −VT

q BVsP−1
s . (65)

Proof. The second condition, VT
q BN = VT

q B, in (63) leads to the necessary equation

VT
q ANVs −VT

q KNVsẼs = VT
q BVsP−1

s

due to the first condition. The transposed third condition

VT
q ANVs + ẼT

q VT
q KNVs = 1lqwTVs = 1lq1lTs

multiplied by the nonsingular matrix Vs may be used to eliminate AN and leads to

ẼT
q VT

q KNVs + VT
q KNVsẼs = 1lq1lTs −VT

q BVsP−1
s

which is the equation (65) from the statement.

Unfortunately, this lemma leads to several restrictions on the design of the meth-
ods due to the properties of the map Lq,s. Firstly, for diagonal matrices KN the image
Lq,s

(
VT

q KNVs
)

has a very restricted shape.
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Lemma 4. If K ∈ Rs×s is a diagonal matrix, then VT
q KVs and Lq,s

(
VT

q KVs
)

are Hankel matrices
with constant entries along anti-diagonals.

Proof. With K = diag(κi), we have xij := eTi (V
T
q KVs)ej = ∑s

k=1 κkci+j−2
k , showing Hankel

form of X = (xij) =: (ξi+j−1) for i = 1, . . . , s− 1, j = 1, . . . , s. Now, eTi (ẼT
q X + XẼs)ej =

(i− 1)xi−1,j + xi,j−1(j− 1) = (i + j− 2)ξi+j−2, which shows again Hankel form.

This lemma means that an end method with diagonal KN only exists if also VT
q BVsP−1

s
on the right-hand side of (65) has Hankel structure. Unfortunately it was observed that for
standard methods with definite K this is the case for q2 ≤ 2 only (there exist methods with
an explicit stage κ33 = 0).

Remark 5. Trying to overcome this bottleneck with diagonal matrices KN , one might consider
adding additional stages of the end method. However, using general end nodes (ĉ1, . . . , ĉŝ) with
ŝ ≥ s does not remove this obstacle. The corresponding matrix Lq,s(V̂T

q KNV̂s) with appropriate
Vandermonde matrices V̂ still has Hankel form.

However, even with a full end matrix KN , Lemma 3 and the Fredholm alternative
enforce restrictions on the standard method (A, B, K) due to the singularity of Lq,s. This
is discussed for the present situation with s = 4, q = 3, only. The matrix belonging to the
map Lq,s is Is ⊗ ẼT

q + ẼT
s ⊗ Iq and its transpose is Is ⊗ Ẽq + Ẽs ⊗ Iq. Hence, the adjoint of

the map Lq,s is given by

LTq,s : Rq×s → Rq×s, X 7→ ẼqX + XẼT
s .

Component-wise the map acts as

LTq,s : (xij) 7→
(
ixi+1,j + jxi,j+1

)
with elements having indices i > q or j > s being zero. For q = 3, s = 4, one gets

L3,4(X)T =

 x12 + x21 2x13 + x22 3x14 + x23 x24
x22 + 2x31 2x23 + 2x32 3x24 + 2x33 2x34

x32 2x33 3x34 0

.

It is seen that the kernel of LT3,4 has dimension 3 and is given by

X =

 ξ1 ξ2 ξ3 0
−ξ2 −2ξ3 0 0
ξ3 0 0 0

. (66)

In (65), the Fredholm condition leads to restrictions on the matrix B from the standard
scheme. However, since the matrix A should have triangular form, it is the more natural
variable in the search for good methods and an equivalent reformulation of these conditions
for A is of practical interest.

Lemma 5. Assume that the standard method (A, B, K) has local order (s, q) = (4, 3). Then, end
methods (AN , BN , KN) of order (s, q) = (4, 3) only exist if the standard method (A, B, K) satisfies
the following set of three conditions, either for B or for A,

1lTB1l = 1

1lTBc− cTB1l = 1

1lTBc2 − 2cTBc + (c2)TB1l = 1




1 = 1lTA1l

1 = 1lTAc− cTA1l

0 = 1lTAc2 − 2cTAc + (c2)TA1l.

(67)

Proof. Multiplying equation (65) by Ps from the right and using ẼsPs = PsẼs, an equiva-
lent form is
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Lq,s(VT
q KNVsPs) = 1lq1lTs Ps −VT

q BVs =: R,

with 1lTs Ps = (1, 2, 4, 8, . . .) by the binomial formula. The Fredholm alternative requires that
tr(XTR) = 0 for all X from (66). We now frequently use the identities tr

(
(vuT)R

)
= uTRv

and Vei = ci−1 with ei ∈ Rs. The kernel in (66) is spanned by three basis elements. The
first, X1 = ē1eT1 (with the convention ēi ∈ Rq) leads to

0 !
= tr(XT

1 R) = ēT1 1lq1lTs e1 − ēT1 VT
q BVse1 = 1− 1lTs B1ls.

The second basis element is X2 = ē1eT2 − ē2eT1 . Here tr(XT
2 1lq1lTs Ps) = 1lTs Pse2 −

1lTs Pse1 = 1 and

tr(XT
2 VT

q BVs) = ēT1 VqBVse2 − ēT2 VqBVse1 = 1lTs Bc− cTB1ls.

For the third element, X3 = ē1eT3 − 2ē2eT2 + ē3eT1 , one gets tr(XT
3 1lq1lTs Ps) = 1lTs Ps(e3 −

2e2 + e1) = 4− 4 + 1 = 1.
The third condition on B is

tr(XT
3 VT

q BVs) = 1lTs Bc2 − 2cTBc + (c2)TB1ls.

The versions for A follow from the order conditions. Let again 1l := 1ls. The first columns
of (30) and (33) show B1l = A1l and 1lTB = 1lTA, which gives 1lTB1l = 1lTA1l = 1. The second
column of (30) reads Bc = Ac + A1l− K1l and leads to 1lTAc = 1lTBc + 1lTA1l− 1lTK1l
showing also 1lTK1l = 1lTA1l = 1. Hence, the second condition in (67) is equivalent with

1 !
= 1lT(Bc)− cT(B1l) = 1lT(Ac + A1l− K1l)− cTA1l = 1lTAc− cTA1l.

In order to show the last equivalence in (67), we have to look ahead at the forward
condition (30) for order 3, which is Bc2 = A(c2 + 2c + 1l) − 2K(c + 1l). This leads to
1lTAc2 = 1lTBc2 = 1lTA(c2 + 2c + 1l) − 21lTK(c + 1l), which is equivalent to 2(1lTAc −
1lTKc) = 1. Now, this expression is required in the last reformulation which also uses the
second adjoint order condition BTc = ATc− AT1l + KT1l, yielding

1 !
= (1lTB)c2 + (c2)T(B1l)− 2cT(BTc)

= 1lTAc2 + (c2)TA1l− 2cTATc + 2(cTAT1l− cTKT1l)︸ ︷︷ ︸
=1

.

Remark 6. It can be shown that only the first condition 1lTA1l = 1 in (67) is required if the matrix
K is diagonal. This first condition is merely a normalization fixing the free common factor in the
class {α · (A, B, K) : α 6= 0} of equivalent methods. The other two conditions are consequences
of the order conditions on the standard method (A, B, K) with diagonal K. However, the proof is
rather lengthy and very technical and is omitted.

The restrictions (67) on the standard method also seem to be sufficient with (61) posing no
further restrictions. In fact, with (67) the construction of boundary methods was always possible in
Section 2.4.

2.3.2. Combined Conditions for the Starting Method

The starting method has to satisfy only two conditions

A0Vs = aeT1 + beT2 + K0VsẼs,

AT
0 Vq = BTVqPq − KT

0 VqẼq.
(68)
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The first two columns of the first equation may be solved for a = A0Vse1 and b =
(A0Vs − K0VsẼs)e2 leading to the reduced conditions

(A0Vs − K0VsẼs)Q3 = 0, Q3 := Is − e1eT1 − e2eT2 .

The presence of the projection Q3 leads to changes in the condition compared to the
end method.

Lemma 6. A necessary condition for the starting method (A0, K0) to satisfy (68) is(
Lq,s

(
P−T

q VT
q K0Vs

)
−VT

q BVs

)
Q3 = 0. (69)

Proof. Transposing the second condition from (68) and multiplying with VsQ3 gives

(VT
q A0Vs + ẼT

q VT
q K0Vs −PT

q VT
q BVs)Q3 = 0,

and VT
q A0VsQ3 may now be eliminated from both equations, yielding

(ẼT
q VT

q K0Vs + VT
q K0VsẼs)Q3 = PT

q VT
q BVsQ3.

Again, PT
q may be moved to the left side and leads to (69) since it commutes with ẼT

q .

The situation is now similar to the one for the end method (also concerning a di-
agonal form of K0) and we consider again the Fredholm condition. The matrix belong-
ing to the matrix product Lq,s() · Q3 is Q3 ⊗ ẼT

q + (ẼsQ3)
T ⊗ Iq and it has the transpose

Q3 ⊗ Ẽq + (ẼsQ3)⊗ Iq. This matrix belongs to the map

X 7→ Ẽq(XQ3) + (XQ3)ẼT
s = LTq,s(XQ3). (70)

For q = 3, s = 4, images of this map are given by

LT3,4(XQ3) =

0 2x13 x23 + 3x14 x24
0 2x23 2x33 + 3x24 2x34
0 2x33 3x34 0

.

Here, the map LT3,4 alone introduces no new kernel elements, the kernel of (70) coincides
with that of the map X 7→ XQ3 given by matrices of the form X = X̃(I − Q3), X̃ ∈ Rq×s.
Since the right-hand side of (69) is VT

q BVsQ3, the condition for solvability

tr
(
XTVT

q BVsQ3
)
= tr

(
X̃TVT

q BVsQ3(I −Q3)
)
= 0

is always satisfied since Q3(I −Q3) = 0. Hence, no additional restrictions on the standard
method are introduced by requiring the existence of starting methods.

2.4. Construction of Peer Triplets

The construction of Peer triplets requires the solution of the collected order conditions
from Table 1 and additional optimization of stability and error properties. However, it
has been observed that some of these conditions may be related in non-obvious ways, see
e.g., Remark 6. This means that the accuracy of numerical solutions may be quite poor due
to large and unknown rank deficiencies. Instead, all order conditions were solved here
exactly by algebraic manipulation with rational coefficients as far as possible.

The construction of the triplets was simplified by the compatibility conditions (67)
allowing the isolated construction of the standard method (A, B, K) without the many
additional parameters of the boundary methods. Furthermore, an elimination of the matrix
B from forward and adjoint conditions derived in [13], see (62), reduces the number of
parameters in A, K to s(s + 3)/2 elements with s− 1 additional parameters from the nodes.
This is so since (A, B, K) is invariant under a common shift of nodes and we chose the
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increments d1 = c2 − c1, dj = cj − c2, j = 3, . . . , s as parameters. Still, due to the mentioned
dependencies between conditions, for s = 4 a six-parameter family of methods exists which
has been derived explicitly (with quite bulky expressions).

However, optimization of stability properties such as A(α)-stability or error constants
errs from (56) was not possible in Maple with six free parameters. Instead, the algebraic
expressions were copied to Matlab scripts for some Monte-Carlo-type search routines.
The resulting coefficients of the standard method were finally approximated by rational
expressions and brought back to Maple for the construction of the two boundary methods.

At first glance, having the full six-parameter family of standard methods at hand
may seem to be a good work base. However, the large dimension of the search space may
prevent optimal results with reasonable effort. This can be seen below, where the restriction
to symmetric nodes or singly-implicit methods yielded methods with smaller err4 than
automated global searches.

A(α)-stability of the method may be checked [13] by considering the eigenvalue
problem for the stability matrix (A− zK)−1B, i.e.,

Bx = λ(A− zK)x ⇐⇒ K−1(A− λ−1B)x = zx. (71)

as an eigenvalue problem for z ∈ C where |λ−1| = 1 runs along the unit circle. Since we
focus on A-stable methods, exact verification of this property would have been preferable,
of course, but an algebraic proof of A-stability seemed to be out of reach. It turned out that
the algebraic criterion of the second author [22] is rather restrictive (often corresponding
to norm estimates, Lemma 2.8 ibd). On the other hand, application of the exact Schur
criterion [20,23] is not straight-forward and hardly feasible, since the (rational) coefficients
of the stability polynomial are prohibitively large for optimized parameters (dozens of
decimal places of the numerators).

2.4.1. Requirements for the Boundary Methods

Since Lemma 5 guarantees the existence of the two boundary methods (A0, K0) and
(AN , BN , KN), their construction can follow after that of the standard method. Requirements
for these two members of the triplet may also be weakened since they are applied once
only. This relaxation applies to the order conditions as shown in Table 1, but also to stability
requirements. Still, the number of conditions at the boundaries is so large that the diagonal
triangular forms of K0, KN and A0, AN respectively have to be sacrificed and replaced by
some triangular block structure. Compared to the computational effort of the complete
boundary value problem, the additional complexity of the two boundary steps should not
be an issue. However, for non-diagonal matrices K0, KN and s = 4, the four additional
one-leg-conditions (61) have to be obeyed.

Weakened stability requirements mean that the last forward Peer step (23) for n = N
and the two adjoint Peer steps (26) for n = N − 1 and n = 0 need not be A-stable and
only nearly zero stable if the corresponding stability matrices have moderate norms. This
argument also applies to the two Runge–Kutta steps without solution output (22) and (27).
However, the implementation of these steps should be numerically safe for stiff problems
and arbitrary step sizes. These steps require the solution of two linear systems with the
matrices A0 − hK0 J0, AT

N − hJTNKT
N or, rather

K−1
0 A0 − hJ0, (K−1

N AN)
T − hJTN , (72)

where J0, JN are block diagonal matrices of Jacobians. These Jacobians are expected to
have absolutely large eigenvalues in the left complex half-plane. For such eigenvalues,
non-singularity of the matrices (72) is assured under the following eigenvalue condition:

µ0 := min
j

Reλj(K−1
0 A0) > 0, µN := min

j
Reλj(K−1

N AN) > 0. (73)
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In Table 2 the constants µ0, µN are displayed for all designed Peer triplets as well as
the spectral radii $(A−1

N BN) and $(BA−1
0 ), $(BN A−1) for the boundary steps of the Peer

triplet. In the search for the boundary methods with their exact algebraic parameterizations,
these spectral radii were minimized, and if they were close to one the values µ0, µN > 0
were maximized.

2.4.2. A(α)-Stable Four-Stage Methods

Although our focus is on A-stable methods, we also shortly consider A(α)-stable
methods. We like to consider BDF4 (backward differentiation formulas) as a benchmark,
since triplets based on BDF3 were the most efficient ones in [13]. In order to distinguish the
different methods, we denote them in the form APsoq1q2aaa, where AP stands for Adjoint
Peer method followed by the stage number and the smallest forward and adjoint orders q1
and q2 in the triplet. The trailing letters are related to properties of the method like diagonal
or singly diagonal implicitness.

The Peer triplet AP4o43bdf based on BDF4 has equi-spaced nodes ci = i/4, i = 1, . . . , 4,
yielding w = e4. The coefficients of the full triplet are given in Appendix A.1. Obviously
the method is singly-implicit and its well-known stability angle is α = 73.35◦. We also
monitor the norm of the zero-stability matrix ‖A−1B‖∞, which may be a measure for the
propagation of rounding errors. Its value is ‖A−1B‖∞ ≤ 5.80. Since BDF4 has full global
order 4, the error constant from (56) is err4 = 0. Still, the end methods were constructed
with the local orders (4, 3) according to Table 1. The matrices of the corresponding starting
method have a leading 3× 3 block and a separated last stage. We abbreviate this as block
structure (3 + 1). All characteristics of the boundary method are given in Table 2.

Motivated by the beneficial properties of Peer methods with symmetric nodes seen
in [13,19], the nodes of the next triplet with the diagonally-implicit standard method were
chosen symmetric to a common center, i.e., c1 + c4 = c2 + c3. Unfortunately, searches for
large stability angles with such nodes in the interval [0, 1] did not find A-stable methods,
but the following method AP4o43dif with flip symmetric nodes and α = 84.00◦, which
is an improvement of 10 degrees over BDF4. Its coefficients are given in Appendix A.2.
Although there exist A-stable methods with other nodes in [0, 1], this method is of its own
interest since its error constant err4

.
= 2.5× 10−3 is surprisingly small. The node vector

of AP4o43dif includes c4 = 1, leading again to w = e4. Further properties of the standard
method (A, B, K) are ‖A−1B‖∞ ≤ 2.01 and the damping factor |λ2| = 0.26. See Table 2 for
the boundary methods.

2.4.3. A-Stable Methods

By extensive searches with the full six-parameter family of diagonally-implicit four-
stage methods many A-stable methods were found even with nodes in [0, 1]. In fact,
regions with A-stable methods exist in at least three of the eight octants in (d1, d3, d4)-space.
Surprisingly, however, for none of these methods the last node c4 was the rightmost one.
In addition, it may be unexpected that some of the diagonal elements of A and K have
negative signs. This does not cause stability problems if aiiκii > 0, i = 1, . . . , s, see also
(72). A-stability assured, the search procedure tried to minimize a linear combination
errs + δ‖A−1B‖∞ of the error constant and the norm of the stability matrix with small
δ < 10−3 to account for the different magnitudes of these data. As mentioned in Remark 2,
it was also necessary to include the damping factor |λ2| in the minimization process. One
of the best A-stable standard methods with general nodes was named AP4o43dig. Its
coefficients are given in Appendix A.3. It has an error constant err4 ≤ 0.0260 and damping
factor |λ2|

.
= 0.798, see Table 3. No block structure was chosen in the boundary methods

in order to avoid large norms of the mixed stability matrices BA−1
0 , BN A−1, A−1

N BN , see
Table 2.

It was observed that properties of the methods may improve, if the nodes have a
wider spread than the standard interval [0, 1]. In our setting, the general vector w allows
for an end evaluation yh(T) at any place between the nodes. Since an evaluation roughly
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in the middle of all nodes may have good properties, in a further search the nodes were
restricted to the interval [0, 2]. Indeed, all characteristic data of the method AP4o43die
with extended nodes presented in Appendix A.4 have improved. As mentioned before,
the standard method is invariant under a common node-shift and a nearly minimal error
constant was obtained with the node increments d1 = 10

11 , d3 = −1 and d4 = 2
3 . Then,

the additional freedom in the choice of c2 was needed for the boundary methods, since
the conditions (73) could only be satisfied in a small interval around c2 = 5

4 . The full
node vector with this choice has alternating node increments since c3 < c1 < c2 < c4. The
method is A-stable, its error constant err4 ≤ 0.0136 is almost half as large as for the method
AP4o43dig, and ‖A−1B‖∞ ≤ 6.1 and |λ2| ≤ 2

3 are smaller, too. The data of the boundary
methods can be found in Table 2.

Table 2. Properties of the boundary methods of Peer triplets.

Starting Method End Method

Triplet Blocks µ0 $(BA−1
0 ) Blocks µN $(A−1

N BN) $(BN A−1)

AP4o43bdf 3+1 5.47 1 1+3 3.81 1 1.15
AP4o43dif 3+1 6.27 1 1+3 4.40 1 1.03
AP4o43dig 4 0.99 1 4 0.89 1.001 1
AP4o43sil 3+1 1.88 1 4 0.72 1 1.03
AP4o43die 3+1 3.80 1 1+3 0.66 2.6 1.98

AP3o32f 1+1+1 1.50 1.02 1+2 0.94 1 1

Table 3. Properties of the standard methods of Peer triplets.

s Triplet Nodes α ‖A−1B‖∞ |λ2| errs Remarks

4 AP4o43bdf BDF4 73.35◦ 5.79 0.099 0 singly-implicit
AP4o43dif [0, 1] 84.0◦ 2.01 0.26 0.0025 diag.-implicit
AP4o43dig [0, 1] 90◦ 24.5 0.798 0.0260 c3 = 1
AP4o43sil [0, 1] 90◦ 32.2 0.60 0.0230 c3 = 1, sing.impl.
AP4o43die [0, 2] 90◦ 6.08 0.66 0.0135 nodes alternate

3 AP3o32f [0, 1] 90◦ 15.3 0.91 0.0170 nodes alternate

For medium-sized ODE problems, where direct solvers for the stage equations may be
used, an additional helpful feature is diagonal singly-implicitness of the standard method.
In our context this means that the triangular matrices K−1 A and AK−1 have a constant
value θ in the main diagonal. Using the ansatz

aii = θκii, i = 1, . . . , s,

for A = (aij) and K = (κij), the order conditions from Table 1 lead to a cubic equation
for θ with no rational solutions, in general. In order to avoid pollution of the algebraic
elimination through superfluous terms caused by rounding errors, numerical solutions
for this cubic equations were not used until the very end. This means that also the order
conditions for the boundary methods were solved with θ as a free parameter, only the final
evaluation of the coefficients in Appendix A.5 was performed with its numerical value.
In addition, in the Matlab-search for A-stable methods, the cubic equation was solved
numerically and it turned out that the largest positive solution gave the best properties.
Hence, this Peer triplet was named AP4o43sil. For a first candidate with nearly minimal
errs + δ‖A−1B‖∞, the damping factor γ

.
= 0.89 was again too close to one to ensure

superconvergence in numerical tests, see Remark 2. However, further searches nearby
minimizing the damping factor found a better standard method with |λ2| = 0.60. Its nodes
are cT =

(
1

50 , 3
5 , 1, 41

85

)
, the diagonal parameter θ = 3.34552931287687520 is the largest zero

of the cubic equation
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112673616 θ3 + 106686908 θ2 − 2102637319 θ + 1621264295 = 0.

Further properties of the standard method are A-stability, nodes in (0, 1] with c3 = 1, norm
‖A−1B‖∞ = 32.2, and an error constant err4 = 0.0230. The end method (AN , BN , KN) has
full matrices AN , KN , see Table 2.

For the sake of completeness, we also present an A-stable diagonally-implicit three-
stage method, since in the previous paper [13] we could not find such methods with
reasonable parameters. After relaxing the order conditions by using superconvergence,
such methods exist. Applying all conditions for forward order s = 3 and adjoint order
s − 1 = 2, there remains a five-parameter family depending on the node differences
d1 = c2 − c1, d3 = c3 − c2 and three elements of A or K. A-stable methods exist in all four
corners of the square [− 1

2 , 1
2 ]

2 in the (d1, d3)-plane, the smallest errors err3 were observed
in the second quadrant. The method AP3o32f with (d1, d3) = (− 5

27 , 2
5 ) has a node vector

with c3 = 1. The coefficients can be found in Appendix A.6. The characteristic data are
err3 ≤ 0.017, ‖A−1B‖∞ ≤ 15.3, |λ2| = 0.91. The starting method is of standard form with
lower triangular A0 and diagonal K0.

The main properties of the newly developed Peer triplets are summarized in Table 3
for the standard methods and Table 2 for the boundary methods.

3. Results

We present numerical results for all Peer triplets listed in Table 3 and compare them
with those obtained for the third-order four-stage one-step W-method Ros3wo proposed
in [5] which is linearly implicit (often called semi-explicit in the literature) and also A-stable.
All calculations have been carried out with Matlab-Version R2019a, using the nonlinear
solver fsolve to approximate the overall coupled scheme (22)–(27) with a tolerance 10−14. To
illustrate the rates of convergence, we consider three nonlinear optimal control problems,
the Rayleigh problem, the van der Pol oscillator, and a controlled motion problem. A linear
wave problem is studied to demonstrate the practical importance of A-stability for larger
time steps.

3.1. The Rayleigh Problem

The first problem is taken from [24] and describes the behaviour of a tunnel-diode
oscillator. With the electric current y1(t) and the transformed voltage at the generator u(t),
the Rayleigh problem reads

Minimize
∫ 2.5

0

(
u(t)2 + y1(t)2

)
dt (74)

subject to y′′1 (t)− y′1
(

1.4− 0.14y′1(t)
2
)
+ y1(t) = 4u(t), t ∈ (0, 2.5], (75)

y1(0) = y′1(0) = −5. (76)

Introducing y2(t) = y′1(t) and eliminating the control u(t) yields the following nonlin-
ear boundary value problem (see [5] for more details):

y′1(t) = y2(t), (77)

y′2(t) = − y1(t) + y2(t)
(

1.4− 0.14y2(t)2
)
− 8p2(t), (78)

y1(0) = −5, y2(0) = −5, (79)

p′1(t) = p2(t)− 2y1(t), (80)

p′2(t) = − p1(t)− (1.4− 0.42y2(t)2)p2(t), (81)

p1(2.5) = 0, p2(2.5) = 0. (82)

To study convergence orders of our new methods, we compute a reference solu-
tion at the discrete time points t = tn by applying the classical fourth-order RK4 with
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N=1280 steps. Numerical results for the maximum state and adjoint errors are presented
in Figure 1 for N+1=20, 40, 80, 160, 320. AP3o32f and Ros3wo show their expected orders
(3, 2) and (3, 3) for state and adjoint solutions, respectively. Order three for the adjoint
solutions is achieved by all new four-stage Peer methods. The smaller error constants of
AP4o43bdf, AP4o43dif and Ros3wo are clearly visible. The additional superconvergence
order four for the state solutions shows up for AP4o43die and AP4o43sil and nearly for
AP4o43dif and AP4o43dig. AP4o43bdf does not reach its full order four here, too.
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Figure 1. Rayleigh Problem: Convergence of the maximal state errors ‖(wT ⊗ I)Yn−y(tn+1)‖∞ (left)
and adjoint errors ‖(vT ⊗ I)Pn−p(tn)‖∞ (right), n = 0, . . . , N.

3.2. The van der Pol Oscillator

Our second problem is the following optimal control problem for the van der Pol oscillator:

Minimize
∫ 2

0

(
u(t)2 + y(t)2 + y′(t)2

)
dt (83)

subject to εy′′(t)−
(

1− y(t)2
)

y′(t) + y(t) = u(t), t ∈ (0, 2], (84)

y(0) = 0, y′(0) = 2. (85)

Introducing Lienhardt’s coordinates y2(t) = y(t), y1(t) = εy′(t) + y(t)3/3− y(t), and
eliminating the control u(t), we finally get the following nonlinear boundary value problem
in [0, 2] (see again [5] for more details):

y′1(t) = − y2(t)−
p1(t)

2
, (86)

y′2(t) =
1
ε

(
y1(t) + y2(t)−

y2(t)3

3

)
, (87)

y1(0) = 2ε, y2(0) = 0, (88)

p′1(t) = −
1
ε

p2(t)−
1
ε2

(
y1(t) + y2(t)−

y2(t)3

3

)
, (89)

p′2(t) = p1(t)−
1
ε

(
1− y2(t)2

)
p2(t) (90)

− 2
ε2

(
y1(t) + y2(t)−

y2(t)3

3

)(
1− y2(t)2

)
− 2y2(t), (91)

p1(2) = 0, p2(2) = 0. (92)

The van der Pol equation with small positive values of ε gives rise to very steep profiles
in y(t), requiring variable step sizes for an efficient numerical approximation. Since the
factor ε−2 appears in the adjoint equations, the boundary value problem is even harder to
solve. In order to apply constant step sizes with N+1=20, 40, 80, 160, 320, we consider the
mildly stiff case with ε = 0.1 for our convergence study.
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Numerical results for the maximum state and adjoint errors are presented in Figure 2,
where a reference solution is computed with AP4o43bdf for N=1279. Order three for the ad-
joint solutions is achieved by all new four-stage Peer methods and also by Ros3wo. The three-
stage Peer method AP3o32f drops down to order 1.3. For AP4o43dig and AP4o43sil applied
with N=19, Matlab’s fsolve was not able to deliver a solution. The additional superconver-
gence order four for the state solutions is visible for AP4o43die and nearly for AP4o43dif
which performs best and beats AP4o43bdf by a factor five. AP4o43bdf does not reach its full
order four here. The methods AP4o43sil and AP4o43dig show order three only, whereas
AP3o32f and Ros3wo reach their theoretical order three.
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Figure 2. Van der Pol Problem: Convergence of the maximal state errors ‖(wT ⊗ I)Yn−y(tn+1)‖∞

(left) and adjoint errors ‖(vT ⊗ I)Pn−p(tn)‖∞ (right), n = 0, . . . , N.

3.3. A Controlled Motion Problem

This problem was studied in [1]. The motion of a damped oscillator is controlled in a
double-well potential, where the control u(t) acts only on the velocity y2(t). The optimal
control problem reads

Minimize
α

2
‖y(6)− y f ‖2 +

1
2

∫ 6

0
u(t)2 dt (93)

subject to y′1(t)− y2(t) = 0, (94)

y′2(t)− y1(t) + y1(t)3 + νy2(t) = u(t), t ∈ (0, 6], (95)

y1(0) = −1, y2(0) = 0, (96)

where ν > 0 is the damping parameter and y f the target final position. As in [1], we set
ν = 1, y f = (1, 0)T, and α = 10.

Eliminating the scalar control u(t) yields the following nonlinear boundary value problem:

y′1(t) = y2(t), (97)

y′2(t) = y1(t)− y1(t)3 − νy2(t)− p2(t), (98)

y1(0) = −1, y2(0) = 0, (99)

p′1(t) = (3y1(t)2 − 1)p2(t), (100)

p′2(t) = − p1(t) + νp2(t), (101)

p1(6) = α(y1(6)− 1), p2(6) = αy2(6). (102)

The optimal control u? = −p?2 must accelerate the motion of the particle to follow
an optimal path (y?1 , y?2) through the total energy field E = 1

2 y2
2 +

1
4 y4

1 −
1
2 y2

1, shown in
Figure 3 on the top, in order to reach the final target y f behind the saddle point. The cost
obtained from a reference solution with N=1279 is C(y(6)) = 0.77674, which is in good
agreement with the lower order approximation in [1]. Numerical results for the maximum
state and adjoint errors are presented in Figure 3 for N+1=10, 20, 40, 80, 160. Worthy of
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mentioning is the repeated excellent performance of AP4o43bdf and AP4o43dif, but also
the convincing results achieved by the third-order method Ros3wo. All theoretical orders
are well observable, except for AP4o43dig, which tends to order three for the state solutions.
A closer inspection reveals that this is caused by the second state y2, while the first one
asymptotically converges with fourth order. However, the three methods AP4o43die,
AP4o43dig, and AP4o43sil perform quite similar. Observe that AP3o32f has convergence
problems for N=9.

The stagnation of the state errors for the finest step sizes is due to the limited accuracy
of Matlab’s fsolve—a fact which was already reported in [17].

Controlled Motion Problem
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Figure 3. Controlled Motion Problem: optimal path (y?1 , y?2) through the total energy field E =
1
2 y2

2+
1
4 y4

1−
1
2 y2

1 visualized by isolines and exhibiting a saddle point structure (top). Convergence of the
maximal state errors ‖(wT ⊗ I)Yn−y(tn+1)‖∞ (bottom left) and adjoint errors ‖(vT ⊗ I)Pn−p(tn)‖∞

(bottom right), n = 0, . . . , N.

3.4. A Wave Problem

The fourth problem is taken from [25] and demonstrates the practical importance of
A-stability. We consider the optimal control problem

Minimize y1(1) +
1
2

∫ 1

0
u(t)2 dt (103)

subject to y′′1 (t) + (2πκ)2y1(t) = u(t), t ∈ (0, 1], (104)

y1(0) = y′1(0) = 0, (105)

where κ = 16 is used. Introducing y2(t) = y′1(t) and eliminating the control u(t) yields the
following linear boundary value problem:
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y′1(t) = y2(t), (106)

y′2(t) = − (2πκ)2y1(t)− p2(t), (107)

y1(0) = 0, y2(0) = 0, (108)

p′1(t) = (2πκ)2 p2(t), (109)

p′2(t) = − p1(t), (110)

p1(1) = 1, p2(1) = 0. (111)

The exact solutions are given by

y∗1(t) =
1

2(2πκ)3 sin(2πκt)− t
2(2πκ)2 cos(2πκt), (112)

y∗2(t) =
t

2(2πκ)
sin(2πκt), (113)

p∗1(t) = cos(2πκt), p∗2(t) =
1

2πκ
sin(2πκt), (114)

and the optimal control is u∗(t) = −p∗2(t). The key observation here is that the eigenvalues
of the Jacobian of the right-hand side in (106)–(111) are λ1/2 = 2πκi and λ3/4 = −2πκi,
which requests appropriate step sizes for only the A(α)-stable methods AP4o43bdf and
AP4o34dif due to their stability restrictions along the imaginary axis. Indeed, a closer
inspection of the stability region of the (multistep) BDF4 method near the origin reveals that
|λhbd f 4| ≤ 0.3 is a minimum requirement to achieve acceptable approximations for prob-
lems with imaginary eigenvalues and moderate time horizon. For the four-stage AP4o43bdf
with step size h = 4hbd f 4, this yields |λh| ≤ 1.2 and hence h ≤ 1/(32π) ≈ 0.02 for the wave
problem considered. A similar argument applies to AP4o34dif, too. Numerical results for
the maximum state and adjoint errors are plotted in Figure 4 for N+1=20, 40, 80, 160, 320.
They clearly show that both methods deliver first feasible results for h = 1/80 and be-
low only, but then again outperform the other Peer methods. Once again, Ros3wo per-
forms remarkably well. The orders of convergence for the adjoint solutions are one better
than the theoretical values, possibly due to the overall linear structure of the boundary
value problem.
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Figure 4. Wave Problem: Convergence of the maximal state errors ‖(wT ⊗ I)Yn−y(tn+1)‖∞ (left)
and adjoint errors ‖(vT ⊗ I)Pn−p(tn)‖∞ (right), n = 0, . . . , N.

4. Discussion

We have extended our three-stage adjoint Peer two-step methods constructed in [13] to
four stages to not only improve the convergence order of the methods but also their stability.
Combining superconvergence of a standard Peer method with a careful design of starting
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and end Peer methods with appropriately enhanced structure, discrete adjoint A-stable Peer
methods of order (4,3) could be found. Still, new requirements had to be dealt with for the
higher order pair (4,3). The property of A-stability comes with larger error constants and a
few other minor structural disadvantages. As long as A-stability is not an issue to solve
the boundary value problem arising from eliminating the control from the system of KKT
conditions, a Peer variant AP4o43bdf of the A(73.35◦)-stable BDF4 and the A(84◦)-stable
AP4o43dif are the most attractive methods, which perform equally well depending on the
problem type. The A-stable methods AP4o43dig and AP4o43die with diagonally implicit
standard Peer methods are very good alternatives if eigenvalues close or on the imaginary
axis are existent. We have also constructed the A-stable method AP4o43sil with a singly-
diagonal main part as an additional option if large linear systems can be still solved by a
direct solver and hence the property of requesting one LU-decomposition only is highly
valuable. In future work, we plan to train our novel methods in a projected gradient
approach to also tackle large-scale PDE constrained optimal control problems with semi-
discretizations in space. In these applications, Peer triplets may have to satisfy even more
severe requirements.
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Appendix A

In what follows, we will give the coefficient matrices which define the Peer triplets
discussed above. We have used the symbolic option in Maple as long as possible to
avoid any roundoff errors which would pollute the symbolic manipulations by a great
number of superfluous terms. If possible, we provide exact rational numbers for the
coefficients and give numbers with 16 digits otherwise. It is sufficient to only show pairs
(An, Kn) and the node vector c, since all other parameters can be easily computed from the
following relations:

Bn = (AnVs − KnVsẼs)PsV−1
s ,

a = A01l, b = A0c− K01l, w = V−Ts 1l, v = V−Ts e1, s = 3, 4,

with e1 = (1, 0, . . . , 0)T ∈ Rs and the special matrices

Vs =
(
1l, c, c2, . . . , cs−1), Pq =

((j− 1
i− 1

))s

i,j=1
, Ẽs =

(
iδi+1,j

)s
i,j=1 .

Appendix A.1. Coefficients of AP4o54bdf

cT =

(
1
4

,
1
2

,
3
4

, 1
)
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A0 =



2
1
2

−265
96

17
96

11
288

7
6

−47
24

25
12

−21
32

227
96

−1163
288

25
12


, K0 =



1
2

− 77
192

3
32

67
192

17
96

155
576

− 19
192

− 17
192

0
1
4



A =



25
12

−4
25
12

3 −4
25
12

−4
3

3 −4
25
12


, K =



1
4

1
4

1
4

1
4



AN =



635
96

−1235
72

35
32

67
96

− 43
288

4475
288

−35
24

0
43
72

−5
35
96

−67
96

53
96


, KN =



25
32

−5
3

61
192

− 1
192

115
64

−13
48

23
64

−185
288

13
96

− 1
192

43
576


Appendix A.2. Coefficients of AP4o43dif

cT =

(
3

22
,

53
132

,
97
132

, 1
)

A0 =


1.1582197171362010 0.04624378638947835

−0.7020381998219871 1.55936795391810600 0.02624560436867219

−0.5084723270832399 −3.71639374160988500 2.21790664582949000

2.30412222276248700 −2.66055187655540200 1.275350214666080



K0 =


0.10630513138050800

0.39188176473763570 0.18135555683856680

−0.05671611789968874 0.06216151000641002 0.3773797141792473

−0.08101130220826174 −0.03462160050989925 0.1300000000000000


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A =


2.713996187194519

−5.753019558612675 2.063116456071261

5.300000000000000 −4.392801539381829 2.202673482804081

−2.313267438350870 2.523025304770754 −2.619073109161321 1.275350214666080



K = diag(0.2212740342685062, 0.2910929443629617, 0.3576330213685321, 0.13)

AN =


3.321208926131899

−6.825690771130220 1.096545539465253 0.5537291752348234 −0.08772005153993665

5.504481844998321 −1.589672639210835 0.3213889335444567 0.44690680951897520

−2.000000000000000 0.493127099745582 −0.8751181087792801 0.64081324202096150



KN =


0.4780945554021703

−0.7500000000000000 0.3443968810148793 0.03064999258349816

0.9263584006629529 −0.2474620802680682 0.34743387239297130

−0.4116869618629235 0.1378269814151266 0.03853141924782626 0.06599889592052376


Appendix A.3. Coefficients of AP4o43dig

cT =

(
139
1159

,
11
19

, 1,
1375
2014

)

A0 =


−482.1874750642102 4.750000000000000 −5.916666666666667 −6.500000000000000

5295.612100386801 78.73229010791468 60.16394904407432 7.222222222222222

893.8003010294580 −4.061724320422766 9.736228361340601 19.67879886925837

−5707.694317901957 −68.66254446706468 −58.05689396607474 −35.61626763467349



K0 =


−49.91295086094522 0.5250000000000000 −3.439024390243902 2.894736842105263

405.5730073881453 49.31516975831240 8.193548387096774 −3.428571428571429

53.62032171809015 12.67084977396168 −1.304859285573478 4.013292871986014

−414.6382351541371 −49.08870633833948 −1.334271117642095 −15.23643896150272



A =


−2.604429828805958

6.603320924494022 11.44234275562775

0.5317173544040980 −2.710438820206414 3.550000000000000

−5.000000000000000 2.026117385005894 2.376616772673509 −15.21524654319290



K = diag(−0.8973222553064913, 3.337407156628221, 1.164566261468968,−2.604651162790698)
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AN =


−3.754385964912281 0.01222493887530562 1.014925373134328 −0.1403508771929825

11.35280296428295e 45.64990373363066 −15.17493010383148 −20.79910559459065

0.03205698176794144 2.937595714981687 −3.756123160591242 2.666624105937791

−7.630473981138614 −48.59972438748765 18.91612789128839 18.27283236584584



KN =


−0.9578456075353955 −0.3387096774193548 0.1194029850746269 0.8045112781954887

11.57142857142857 −96.60667975350700 −20.12500000000000 102.4846028390543

3.761888534906390 −33.44512959236514 −5.865106921633463 34.94704625261853

−15.32045224098695 134.2026156894527 26.37615509001594 −141.3196101415549


Appendix A.4. Coefficients of AP4o43die

cT =

(
15
44

,
5
4

,
1
4

,
23
12

)

A0 =



1573
27

−29140496694667
1728480384000

37071572404007
69715375488000

37246788257
8450348544

−98934973036237
2160600480000

−59311823623513
87144219360000

−51770824817
13203669600

7653678714559
1387052160000

− 7872573544487
38730764160000

−32557703329
23473190400

18014543
144484600



K0 =



110
9
4
5

168095353644187
920242956441600

−136571614975979
36809718257664

−9857504559041
1080300240000

398472962076949
11503036955520000

−18235836500357
18404859128832

−1423069729157
1440400320000

398472962076949
7668691303680000

136571614975979
61349530429440

2
61



A =



45808744223
19505421000

−279428522
187552125

3
4

285647
15004170

22704013
125034750

−11
10

1
4

−11824391
41678250

832579
4167825

18014543
144484600



K = diag
(

35085281
25006950

,
2300653
8335650

,−1780019
2500695

,
2

61

)
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AN =



46268635184890481
6231747944448000

−843924159892681
239682613248000

2095498352743
2535104563200

240331128931
253510456320

− 10279031063
122060590080

−4
3733202770769

25351045632000
−8883867896017

6337761408000
− 192302368031

24412118016000
39222471881369
27696657530880

− 637146509711
2816782848000

−191242568381
352097856000

175009899277
8137372672000



KN =



95205971609617
35952391987200

28298016708823
167316901171200

−1296366536717
4182922529280

−958020525197
864240192000

− 2425439590003
104573063232000

−27877023310129
41829225292800

− 958020525197
14980163328000

− 2425439590003
69715375488000

1296366536717
6971537548800

− 22310489177
4882423603200


Appendix A.5. Coefficients of AP4o43sil

cT =

(
1

50
,

3
5

, 1,
41
85

)

A0 =


−18.6770976012982273 −1.15212718448036531 −0.684527356670693701

30.2098963703001422 −19.0677876392318276 −7.55433120044842482

−9.81986015015644262 −2.15227598175855777 4.86425591259034856

−57
25

695
72

8.28572795643498617 9.37534909694128499



K0 =



−11.4061014637853601 −0.0776818914116313719 −0.278650826939386227

59
28

−13.9738118565057040 1.13881886074868390

−2498819
583100

2.75133184568842863 0.477663277652266390

161
25

779
80

−0.352459713213735910 2.80235150260251923



A =


−3.40824065799546119

−10.5240959029253065 −6.21116392867196304

1.24215119761892880 −3.47742608697035235 3.58958480260299081

12.1231239821473188 −3.03082301205062472 1.32154050930321039 9.37534909694123776



K = diag(−1.01874482010281778,−1.85655642136068493, 1.07294973886097804, 2.80235150260250919)
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AN =



−3.93487127199009570
75
26

−7
8

−4.71932036763822580 42.7928650670737006 −3.60582429888170880 −36.9240613682294166

− 71
202

−2.31371287972058488 0.191639567731266976 1.90723457480523846

9.00567678814317298 −43.3637675719685003 5.28918473115044182 35.0168267934241781



KN =



−0.687420439097535868

247
72

24.5972883813771674 −2.02081177860650990 −24.7095335501766993

−0.427115478996059306 −1780
289

0.897376604330415086 5.61580307958561348

−3.39815952896990200 −356
17

1.56153637437775765 22.4504633222483055


Appendix A.6. Coefficients of AP3o32f

cT =

(
106
135

,
3
5

, 1
)

A0 =



−13474483
2809000

2765681
1404500

753641
273375

−48583191
81461000

−1538339
1093500

1783
580



K0 = diag
(
−13474483

7155000
,

2513302
1366875

,
11
10

)

A =



−11
2

6493
2700

64
25

−25757
78300

−121
100

1783
580



K = diag
(
−93

50
,

44
25

,
11
10

)
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AN =


−3

−559409
391500

5418793
1458000

2257039
1691280

1733909
391500

−5418793
1458000

− 565759
1691280



KN = diag
(
−1190159

978750
,

5418793
3645000

,
2257039
4228200

)
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