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Abstract: Passengers commute between different modes of transportation in traffic hubs, and the 1

passenger localization is a key component for the well-funtioning of these spaces. The smartphone- 2

based localization system presented in this work is based on the 3D step&heading approach, which 3

is adapted depending on the position of the smartphone, i.e. held in the hand or in the front pocket 4

of the trousers. We use the accelerometer, gyroscope and barometer embedded in the smartphone to 5

detect the steps and the direction of movement of the passenger. To correct the accumulated error, we 6

detect landmarks, particularly staircases and elevators. To test our localization algorithm, we have 7

recorded real-world mobility data in out test station in Munich city center where we have ground 8

truth points. We achieve a 3D position accuracy of 12 meters for a smartphone held in the hand and 9

10 meters when the phone is placed in the front pocket of the trousers. 10

Keywords: Indoor navigation; pedestrian dead-reckoning; urban navigation; indoor landmark 11

detection; 12

1. Introduction 13

Traffic hubs are dedicated public spaces, such as train stations or airports, where 14

passengers commute from one mean of transport to another. The localization of passengers 15

in traffic hubs is a key aspect to the well-functioning of these spaces. 16

In most of the cases traffic hubs are roofed or underground and the use of Global 17

Navigation Satellite Systems (GNSS) is not possible. Nontheless, passenger localization 18

can be performed by means of infrastructure-dependent technologies, such as WiFi [1,2], 19

Bluetooth [3] or Ultra-Wideband (UWB) [4]. In these cases, a number of access points need 20

to be deployed along the traffic hub. 21

Furthermore, infrastructure-free technologies are also a suitable solution for indoor 22

positioning. Pedestrian dead-reckoning performed with inertial sensors is of high interest 23

because of the possibility of providing localization without violating privacy, unlike camera- 24

based systems [5,6]. Suitable locations of the inertial sensors are the torso [7], the shoe [8,9] 25

or the pocket [10,11], while the inertial sensors embedded in the passenger’s smartphone 26

can be also used. 27

Nevertheless, smartphone-based localization of passengers in traffic hubs is challeng- 28

ing because the smartphone is not attached to the body and different carrying modes are 29

possible, such as handheld, in the pocket or in a backpack [12]. Moreover, the sensors 30

embedded in smartphones usually have low-quality. 31

Information from maps can be used to reduce position error [13,14]. The main inconve- 32

nient of this method is that accurate maps of traffic hubs are usually not publicly available. 33

Another approach to reduce the error is using landmarks. These are recognizable and 34

observable characteristic elements present in the environment. An example of landmarks 35

used to correct position error are corridors, corners and stairs [15–17]. The authors in [18] 36

detect escalators and lifts, which can be used as well as landmarks. 37

The main contribution of this work is an infrastructure-free indoor localization system 38

based on pedestrian dead-reckoning using the sensors embedded in a smartphone. In 39

addition, we propose the use of staircases and lifts in the traffic hub as landmarks to reduce 40
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position error and the use of ground truth points measured in a real station to evaluate the 41

localization system. 42

This paper is organized as follows: The data collection campaign performed to evaluate 43

the system is introduced in Section 2. Section 3 presents the proposed smartphone-based 44

passenger localization system. The evaluation of the system is presented in Section 4. 45

Finally, conclusions are drawn in Section 5. 46

2. Data collection 47

We have developed a smartphone app to record and label mobility data. We record the 48

data from the accelerometer, gyroscope, magnetometer and barometer of the smartphone 49

at a sampling frequency of 100 Hz. Figure 1 shows an screenshot of the smartphone app 50

that has been used to gather the mobility data. 51

Figure 1. Screenshot of the smartphone app used to record the mobility data.

With the smartphone app, we indicate with different labels the mean of transport the 52

passenger is using at each moment, i.e. if the passenger is walking, riding a bike or an 53

e-scooter or using a bus, tram, subway or train. To further analyze the use of infrastructure 54

in a traffic hub, we also indicate the use of staircases, escalators, elevators, benches, shops 55

and restrooms, as well as activities related to the use of infrastructure, such as waiting in a 56

queue. Our app also includes a button to mark Ground Truth Points (GTP). These points 57

are used to compute the accuracy of the localization system presented in this work. 58

The data collection campaign has taken place during four months and six different 59

volunteers have been involved taking measurements twice a week. During the experiments, 60

the volunteers carried a total of two smartphones, which were located in the trousers 61

front pocket and held in the hand. The smartphones used were a Google Pixel 4 and a 62

Samsung Galaxy S20, respectively. The volunteers have labeled the mobility data with the 63

smartphone held in the hand. Both smartphones are synchronized to record data and the 64

labels are transfered to the pocket smartphone. The set-up of the smartphones is shown in 65

Figure 2. 66

A total of four different trips have been designed so the volunteers arrive at our test 67

station with one mean of transport, make use of the infrastructure of the test station and 68

leave the station with a different mean of transport. 69
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Figure 2. Experimental set-up. The volunteers carry two smartphones in different positions: in the
front pocket of the trousers and held in the hand.

In this work, we only make use of the parts of the trips that take place inside the test 70

station, where we have recorded a total of 30 hours of data. Figure 3 depicts the walks that 71

the volunteers have recorded inside the test underground station. 72

Thanks to our collaboration with the local mobility provider of the city of Munich, we 73

have measured with centimeter accuracy eight different reference points in our test station. 74

Each of these points is used as GTP. The GTPs are distributed in the station among all floors: 75

one in the platform floor, five in the main floor and two in the upper floor; as shown in 76

Figure 4. The position of each GTP has been measured with a Leica tachymeter, model TPS 77

1200 [19]. During the data collection, the GTPs are visited and marked over 3000 times. 78

Figure 5 shows an example of the measurement of a GTP position inside the station. 79

The Leica tachymeter measures the distance to the prism, which is positioned at the GTP 80

and estimates its coordinates. As Figure 5 shows, the GTP and the prism are not at the 81

same height. Nonetheless, the height difference is compensated by the Leica tachymeter 82

when estimating the position of the GTP. 83

We assume that the volunteer’s heading is the same as the smartphone’s heading. We 84

align the GTP coordinate system and the passenger trajectory coordinate system by placing 85

the origin of the walk in a known GTP used as starting point of the walk. In addition, the 86

walks start with a known heading of the passenger. 87

We define the error, e, as the Euclidean distance between the estimated position
(pe = (xe, ye, ze)) and reference position (pr = (xr, yr, zr)) of the GTP.

e =
√
(xr − xe)2 + (yr − ye)2 + (zr − ze)2 (1)

In addition, we have defined a total of nine landmarks in the station, which are all the 88

stairs and lifts used during the walks. These landmarks are visited a total of 338 times and 89

are used to correct the error of the localization system. 90
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Figure 3. Designed 3D trajectories in the test station. The dots indicate where the trajectories start
and the crosses where they end. The dashed lines indicate lower floor; the solid lines indicate main
floor; the dotted lines indicate upper floor.

Figure 4. Map of the Ground Truth Points (GTP) in the test station.

3. Passenger Localization 91

The smartphone-based localization system presented in this work is based on the 3D 92

step&heading approach. This system is valid for two different carrying modes, i.e. the 93

position in which the passenger carries the smartphone: 94

• In the front pocket of the trousers 95

• Held in the hand. 96

In this work, we evaluate separately the pocket and handheld carrying modes, since 97

we do not consider trajectories in which the carrying mode is changed. A block diagram of 98

the localization system is presented in Figure 6. 99

3.1. Step detection 100

The step detection algorithm is adapted depending on the carrying mode. For the 101

pocket, we use the step detection algorithm presented in [20]. This step detection algorithm 102

was first demonstrated with external inertial sensors and it can also be used with the inertial 103

sensors embedded in a smartphone. When the smartphone is introduced in the front pocket 104

of the trousers, the pitch angle mirrors the movement of the leg. A new stride is detected 105

every time a maximum in the pitch angle occurs. Since the smartphone is in the pocket in 106



5 of 16

Ground truth point

Prism

Leica tachymeter

Figure 5. (Left) The Leica tachymeter station which measures the distance to the prism. (Right) The
prism placed at a pre-defined GTP.

Figure 6. Block diagram of the smartphone-based localization system with several possible carrying
modes.

one leg, the pitch angle allows to identify strides, i.e. one every two steps. Figure 7 depicts 107

the described step detection based on the pitch angle and the algorithm to detect steps. 108

When the smartphone is held in the hand, we implement a step detector based on 109

the movement of the hand while walking. In this case, the passenger’s step is detected 110

every time a peak in the acceleration occurs [21]. The acceleration is low-pass filtered with 111

a 5-second moving average window to obtain the peaks of acceleration due to the steps of 112

the passenger. In order to make both step detection algorithms analogous, we also detect 113

one every two steps when the smartphone is held in the hand. Figure 8 shows the step 114

detection based on the norm of acceleration and the algorithm to detect steps. Both walks in 115

Figure 7 and Figure 8 have been recorded simultaneously by the same passenger carrying 116

two phones, in the pocket and held in the hand, respectively. 117

3.2. Step length estimation 118

When the smartphone is placed in the pocket, we estimate the step length based on the
amplitude of the pitch angle. This step length estimation is based on the linear relationship
between the amplitude of the pitch and the step length [10]:

sp = ap · δθ + bp, (2)
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Figure 7. Pitch estimation (blue) and detected strides (black) when the passenger carries the smart-
phone in the front pocket of the trousers and algorithm for step detection.

Figure 8. Norm of acceleration (blue) and detected strides (black) when the passenger carries the
smartphone in the hand and algorithm for step detection.

where sp represents the step length estimation when the phone is in the pocket, δθ represents 119

the amplitude of the estimated pitch angle and ap and bp are two parameters that can be 120

adjusted for every user, as described in [10]. 121

When the smartphone is held in the hand, we implement a step length estimator based
on the amplitude of the norm of acceleration. In this case, the step length can be estimated
based on a linear relationship between the amplitude of the acceleration peaks and the step
length of the passenger:

sh = ah · δA + bh, (3)

where sh represents the step length estimation when the phone is held in the hand, δA 122

represents the amplitude of the recorded acceleration and ah and bh are two parameters 123

that can be adjusted for every user in the same way as the pocket step length estimation. 124

3.3. Vertical displacement estimation 125

Passengers change the floor by using staircases and elevators. In order to perform 3D 126

localization, we implement different methods to estimate the vertical displacement when 127

the passenger carries the smartphone in the front pocket of the trousers and held in the 128

hand. 129

When a passenger carries the smartphone in the front pocket of the trousers, the 130

amplitude of the pitch angle can be used to estimate the vertical displacement of the 131

passenger. This method was presented in [10] and is only to be used when the smartphone 132

is placed in the pocket, since it reflects the movement of the leg. This method allows to 133
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detect all staircases that the passenger walks and also allows differentiating if the passenger 134

is going upstairs or downstairs. Figure 9 shows an example of the pitch estimation when 135

the smartphone is placed in the front pocket of the trousers and the passenger walks a 136

staircase. 137

Figure 9. Detection of vertical displacement in stairs with the pitch angle. The green solid line above
the pitch estimation indicates the moment when the passenger is climbing a staircase.

When a staircase is detected with the smartphone in the pocket, the vertical displace- 138

ment is set to a deterministic value, which corresponds with the height of two steps, since 139

we detect one every two steps. 140

Moreover, the barometric pressure can also be used to detect changes in height. This 141

method can be used when the passenger is carrying the smartphone in the trousers and 142

when the smartphone is held in the hand. 143

However, the barometer also records changes in the barometric pressure due to intense 144

air flows, such as the air flows generated by the trains arriving or leaving the station or 145

near the exits. The variations in barometric pressure due to air flows in the traffic hub 146

have higher frequency components than the variations due to the vertical displacement of 147

the passenger. Therefore, to be able to extract relevant information about the passenger’s 148

vertical displacement, the barometric pressure must be low-pass filtered to discard the 149

variations due to air flows. We filter the barometric pressure with a 2-seconds moving 150

average window. 151

Figure 10 depicts how the raw signal recorded with the barometer changes rapidly 152

due to the air flows in the station and the result after filtering the signal to obtain the 153

information of the vertical displacement. 154

Figure 10. Raw (blue) and filtered (red) barometric pressure recorded while a passenger is climbing a
staircase.

Because of the barometric pressure being low-pass filtered, changes in height smaller 155

than 1.5 m are not detected and, therefore, staircases that are shorter than 1.5 m high are 156

not detectable in this environment using the barometer 157

Figure 11 shows the barometric pressure recorded with a handheld smartphone and 158

Figure 12 the pitch angle recorded with a smartphone in the front pocket of the trousers. In 159

both figures, the passenger is carrying simultaneously both smartphones while walking a 160

staircase smaller than 1.5 m high. In the figures, the green line represents the time when 161

the passenger is walking the staircase. Both walks have been recorded simultaneously 162

by the same passenger carrying both smartphones, held in the hand and in the pocket, 163

respectively. 164
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Figure 11. Barometric pressure when a passenger is walking a 1.2 m-high staircase high with a
handheld smartphone.

Figure 12. Pitch amplitude when a passenger is walking a 1.2 m-high staircase with a smartphone in
the front pocket of the trousers.

The barometric pressure will be greater when the passenger is in a lower floor, and 165

lower when the passenger is in an upper floor. Therefore, this method also allows to 166

determine if the passenger is going upstairs or downstairs. To determine the direction in 167

which the passenger is moving, we observe the sign of the slope of the barometric pressure 168

signal. When the slope is positive, the passenger is going downstairs, whereas the slope 169

being negative means that the passenger is going upstairs. In Figure 13, both the barometric 170

pressure signal when a passenger moves up and downstairs is shown. 171

Figure 13. Barometric pressure when a passenger is going upstairs (blue) and downstairs (red).

The barometer allows to detect both, staircases and elevators. In order to distinguish 172

if a passenger is using a staircase or an elevator, we observe the changing rate over time of 173

the barometric pressure. Assuming that the passenger is moving at walking speed, namely 174

around 3.5 km/h, the barometric pressure will change faster over time while the passenger 175

is using an elevator than when using the staircase. Figure 14 shows how the barometric 176

pressure changes more rapidly when using the elevator than when walking the stairs. 177

When an elevator is detected, the vertical displacement is set to a fixed value according 178

to the average speed of the elevators in the traffic hub. On the contrary, if a stair is detected, 179

the vertical displacement will be set to another deterministic value, which corresponds to 180

the physical height of the steps, every time a step is detected. 181
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Figure 14. Comparison of the recorded barometric pressure when a passenger is using a staircase
(blue) and an elevator (red) at walking speed (around 3.5 km/h).

3.4. Landmark detection and association 182

Landmarks are characteristic elements that remain always in the same position and can 183

always be identified in the same way. In a traffic hub, staircases and elevators are elements 184

that always stay in the same position and can be identified with the aforementioned 185

methods to detect the passenger’s vertical displacement. 186

We have created a map which contains the exact location of every staircase and elevator 187

in the test station. The information of this map is stored in a landmark database. Figure 15 188

shows the location of the staircases (marked in blue) and elevators (marked in red) in the 189

Münchner Freiheit underground station. 190

Figure 15. Landmark position in the Münchner Freiheit underground station. The blue rectangles
indicate the position of staircases. The red rectangles indicate the position of elevators.

Since staircases and elevators are placed in between two different floors, they are 191

represented by two positions in the database, one corresponding to the upper floor and 192

another corresponding to the lower floor. In the case of staircases, their orientation in 193

the map defines the heading, ψ, in which a passenger walks the stairs. Elevators move 194

vertically and, therefore, their orientation cannot define the passenger’s heading. Figure 16 195

depicts the landmarks’ physical parameters that are stored in the database and Table 1 196

shows an example of the information related to each landmark. 197

Name Type Upper position Lower position ψup ψdown
L1 Staircase [10.4,−41.5,−3.6]m [9.8,−47.2,−2.8]m 95◦ 275◦

L2 Elevator [−4.1,−30.1,−2.7]m [−4.1,−30.1,−1.3]m N/A N/A

Table 1. Example of two landmarks stored in the database.

When the landmarks are detected with the algorithms presented in Section 3.3, i.e. 198

detecting that the passenger is using a staircase or an elevator, they are compared with the 199
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Figure 16. Example of the upper and lower parts of a landmark in an underground station.

landmarks stored in the database and associated with the closest one. Once associated, the 200

landmarks can be used to correct the estimated passenger position and heading. 201

First, when the landmark is detected, the vertical position of the passenger is compared 202

with the vertical position of the landmark. By doing this, we only target to associate the 203

landmarks that are in the same floor as the passenger when the landmark is detected. 204

After selecting the landmarks that are placed in the same floor as the passenger, 205

the Euclidean distance between the passenger’s position and the selected landmarks is 206

computed. The associated landmark will be the the closest to the passenger’s position 207

when the landmark is detected. 208

Figure 17 shows the trajectory of a passenger in the main floor of the test station in 209

solid blue. The landmarks’ position is marked with squares: green for the landmarks in 210

the upper floor, blue for the landmarks in the main floor and orange for the landmarks in 211

the lower floor. The point of the trajectory when a landmark is detected in the trajectory is 212

marked with a circle as the landmark detection point. 213

Figure 17. Estimation of a passenger trajectory in a traffic hub while walking through the main
floor of the test station (solid blue) and the position of the landmarks (squares). The green squares
represent the landmarks in the upper floor, the blue squares represent the landmarks in the main
floor and the orange squares represent the landmarks in the lower floor of the test station.

3.5. Orientation and position estimation 214

We estimate the passenger’s orientation and position with the same UKF regardless of 215

the carrying mode. The architecture of the UKF is shown in Figure 18. 216

The state vector, x, is composed of three elements: 217

• the Euler angles Ψ = [ϕ, θ, ψ] 218

• the position vector P = [px, py, pz] 219

• the gyroscope bias b = [bx, by, bz] 220

x = [ϕ, θ, ψ, px, py, pz, bx, by, bz] (4)
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Figure 18. Architecture of the UKF used for orientation estimation.

For the initialization of the state vector, the volunteers stand still for 5 seconds, where 221

the initial roll and pitch are computed using the Zero Acceleration Assumption (ZAA), 222

described in Equation (11). The initial gyroscope biases are extracted from the datasheet 223

[22]. The initial position and heading are initialized for each walk taking into account the 224

GTP where the walk starts. 225

In the prediction phase, the Euler angles prediction is based on the integration of the
measured rotation of the smartphone, ω:

Ψk = Ψk−1 + ∆t · (ωk−1 − bk−1), (5)

where ω = [ωx, ωy, ωz] represents the turn rate and ∆t represents the sampling period. 226

The passenger’s position prediction is based on the step&heading algorithm, which 227

follows: 228

pk
x = pk−1

x + ∆sk−1
h · cos(ψk−1) (6)

pk
y = pk−1

y + ∆sk−1
h · sin(ψk−1) (7)

pk
z = pk−1

z + ∆sv, (8)

where px and py represent the passenger’s position in X and Y, respectively, and ∆sh 229

represents the estimated step length of the passenger. 3D positioning is solved with the 230

information of the vertical displacement, ∆sv. 231

The gyroscope bias is modelled as constant between two consecutive instants since
the sampling frequency of the system is high (100 Hz):

bk = bk−1 (9)

The direction of movement of the passenger is considered in this work to be the 232

heading of the smartphone. 233

Figure 19 shows the estimated heading for pocket and handheld carrying modes over 234

a square-like trajectory. In this case, the same passenger is carrying both smartphones 235

simultaneously. The ripple in the heading estimation of the pocket carrying mode cor- 236

responds to the movement of the hip. This movement is not noticeable in the handheld 237

carrying mode. 238

Figure 20 shows the estimated position for pocket and handheld carrying modes 239

over the same square-like trajectory. Again, the passenger is carrying both smartphones 240

simultaneously. 241

In the update stage, we implement three different updates in the UKF: 242
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Figure 19. Estimation of heading in a square-like trajectory for two smartphone carrying modes:
pocket (blue) and handheld (red). The walk has been recorded by using simultaneously two smart-
phones.

Figure 20. Estimation of position in a square-like trajectory for two smartphone carrying modes:
pocket (blue) and handheld (red). The walk has been recorded by using simultaneously two smart-
phones.

• Zero Acceleration Assumption update (ZAA): This update is based on the detection of
periods when the acceleration is zero or quasi-zero. During these periods of time, the
accelerometers only measure gravity and the roll and pitch angles can be estimated as:

ϕk
z = arctan

(
αk

y

αk
z

)
(10)

θk
z = arctan

 −αk
x√

αk
y

2
+ αk

z
2

 (11)

where ϕk
z and θk

z are the roll and pitch angles, respectively, with which to update the 243

UKF and αk
x,y,z is the acceleration measured in the smartphone in X, Y and Z directions 244

at instant k. 245

• Landmark based passenger’s position update: This update is based on the detection 246

of landmarks in a traffic hub described in Section 3.4. Once a landmark is detected, 247

its position is associated to the passenger’s position. The position of the landmark is 248

taken from the landmark database and it is used to update the passenger’s position as 249

follows: 250

Pk
l = PDB

Rl
, (12)
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where Pk
l represents the position that will be used to update the UKF and PDB

Rl
is 251

the reference position of the associated landmark that is taken from the landmark 252

database. 253

The positon is updated only once when the passenger walks out of the landmark, i.e. 254

when the passenger reaches the upper or lower part of a staircase or when walking 255

out of an elevator, since the landmark database describes the landmark only with their 256

upper and lower positions. 257

The position update is performed towards the position in the database. However, there 258

is an uncertainty in this update related to the physical dimensions of the landmark. 259

In this case, we consider the landmark width as the uncertainty for updating the 260

passenger’s position in X and Y coordinates, and the step height as the uncertainty for 261

updating the passenger’s position in Z coordinate. 262

• Landmark based passenger’s heading update: This update is also based on the de-
tection of landmarks described in Section 3.4. When a passenger walks a staircase,
the passenger’s heading is bounded by the direction in which the staircase is ori-
ented. Therefore, the physical orientation of the staircase can be used to update the
passenger’s heading as follows:

ψk
l = ψDB

Rl
, (13)

where ψk
l represents the heading that will be used to update the UKF and ψDB

Rl
is the 263

reference heading of the associated landmark. 264

The heading update is performed constantly while climbing the stairs. This update also 265

has an uncertainty related to the physical width of the staircase, since the passenger can 266

walk the staircase diagonally from one side to the other. We consider the uncertainty 267

of the heading update to be the difference between the heading of a passenger walking 268

the stairs diagonally and the heading when walking the stairs in a straight line. 269

Figures 21 and 22 show the estimation of a passenger’s trajectory in a traffic hub with 270

the described UKF for pocket and handheld carrying modes, respectively. Both trajectories 271

have been recorded simultaneously. 272

Figure 21. Estimation of a trajectory in a traffic hub with the smartphone in the front pocket of the
trousers. The green and black dots represent, respectively, the points where heading and position
updates are applied.

The trajectory is walked over three different floors of the test underground station 273

using three different staircases. In the trajectory, a staircase smaller than 1.5 m is climbed at 274

coordinates [East, North, Up] = [48.2, 49.5,−3.1]m. This staircase is detected and used for 275

correcting when the smartphone is placed in the pocket. However, the staircase smaller 276

than 1.5 m is not detected with the handheld smartphone. Nevertheless, for the handheld 277

smartphone, the accumulated error in height is corrected when the next staircase is detected. 278
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Figure 22. Estimation of a passenger’s trajectory in a traffic hub with a handheld smartphone. The
green and black dots represent, respectively, the points where heading and position updates are
applied.

4. Evaluation 279

In this section, we will evaluate the accuracy of the localization system, which will be 280

done in two main parts. First, the localization algorithms based on the pocket smartphone 281

and handheld smartphone will be evaluated without the landmark-based error correc- 282

tion. Secondly, the same evaluation will be made but including the landmark-based error 283

correction. 284

For the evaluation we use 30 hours of walking labeled data in the database presented 285

in Section 2. The average length of the walks is 20 minutes and we use data from six 286

different volunteers. Throughout the walks, the different GTPs used for computing the 287

error are visited over 3000 times. The average time between two consecutive GTPs is 30 288

seconds. 289

The error is computed at each of the visited GTP in the walks, and it is defined as 290

the Euclidean distance between the estimated position and the real position of the GTP, as 291

introduced in Equation 1 in Section 2. 292

Figures 23 and 24 show the cumulative distribution functions (CDFs) of the error for 293

pocket and handheld smartphones without and with landmark-based correction, respec- 294

tively. These CDFs have a minimum value that corresponds to the error at the first GTP of 295

the walk. 296

We take as a reference the 1-σ value of the CDF to compare the position error between 297

pocket and handheld carrying modes. The 1-σ value means that the error is bounded below 298

a certain value in the 68% of the time. 299

In comparing the error between both carrying modes, the CDFs show that the pocket 300

carrying mode is more accurate than the handheld carrying mode with and without 301

landmark-based position correction. Table 2 summarizes the 1-σ error for both carrying 302

modes. 303

Table 2. Performance metrics of the smartphone localization systems for the pocket and handheld
carrying modes before and after incorporating the landmark correction.

No landmark correction Landmark correction
Pocket σ = 13.5 m σ = 10.5 m
Handheld σ = 14.7 m σ = 12 m

The results show that there is approximately 23% reduction in the positioning error for 304

the pocket carrying mode and 19% reduction for the handheld carrying mode. Therefore, 305

the error reduction is more effective in the pocket carrying mode than in the handheld 306
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Figure 23. Cumulative density functions of the accumulated error for pocket (blue) and handheld
(red) carrying modes without landmark-based position correction.

Figure 24. Cumulative density functions of the accumulated error for pocket (blue) and handheld
(red) carrying modes with landmark-based position correction.

carrying mode. The results show that the smartphone in pocket carrying mode accumulates 307

less error. Furthermore, the landmark-based position correction is more effective in the 308

pocket carrying mode. This is due to the more effective detection of stairs in the pocket 309

carrying mode, since the barometer-based detection of stairs misses some staircases that 310

are 1.5 meter high or lower. 311

5. Conclusions 312

In this work we propose a smartphone-based localization system for passengers 313

commuting in traffic hubs. We evaluate our system with more than 30 hours of real 314

measurements using mm-accuracy ground truth points measured in our test station in 315

Munich city center. These ground truth points were visited over 3000 times to create the 316

presented error curves. We demonstrate that it is possible to perform passenger localization 317

in real-world stations with an average 3D accuracy of 11 m. These results are obtained 318

without satellite aid, only using inertial and barometric sensors embedded in commercial 319

smartphones. 320

We propose the use of stairs and lifts as landmarks to aid positioning in stations. We 321

demonstrate that the proposed landmarks can be seamlessly detected with the smartphone 322

while the passenger walks, and this reduces the positioning error in average 21%. 323
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