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ABSTRACT

The structural and mechanical properties of open-porous cellular materials are often described in terms of simple beam-based models. A
common assumption in these models is that the pore walls have a constant cross section, which may be in agreement for a vast majority
of such materials. However, for many of those materials that are characterized by a pearl-necklace-like network, this assumption seems
too idealized. Aerogels are perfect examples of such materials. In this paper, we investigate the effect of such pore walls having a string of
pearls-like morphology on the properties of such open-porous materials. First, the pore size is mathematically modeled. Three scenarios
are described, where the pore sizes are calculated for cells in 2D, 3D, and 3D with overlapping particles. The dependency of the skeletal
features on the resulting pore size is investigated. In the second part, pore walls with 3D overlapping spheres are modeled and subjected to
axial stretching, bending, and buckling. The effect of the particle sizes and the amount of overlap between the particles on the mechanical
features is simulated and illustrated. The results are also compared with models that assume a constant cross section of pore-walls. It can
be observed that neglecting the corrugations arising from the pearl-necklace-like morphology in open-porous cellular materials can result
in serious miscalculations of their mechanical behavior. The goal of this paper is not to quantify the bulk mechanical properties of the
materials by accounting for the pearl-necklace-like morphology but rather to demonstrate the significant deviations that may arise when not
accounted for.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0112914

I. INTRODUCTION

The cellular models proposed by Gibson and Ashby"” for 3D
(as well as 2D) open-porous cellular materials can describe the
properties of a large body of data on honeycomb-like structures
and diverse foams. Inspired by natural cellular materials, such as
wood, cork, and bone, many man-made cellular porous materi-
als, e.g., polymeric foams and aerogels, have emerged in the last
decades. To exploit the optimum combination of properties of such
materials, one has to carefully describe the relationship between
the pore-structure and, subsequently, the mechanical and ther-
mal characteristics as functions of their density and pore features,
so that designing specific properties can be realized. The models
proposed by Gibson and Ashby work fine and have contributed

toward the understanding of the relationship between the prop-
erties of foam material and their densities. These were possible
because most materials on which the theory was applied did show a
cellular pore-structure with a constant cross section of pore walls.
Therefore, the pore-walls may be assumed to be quadratic or cylin-
drical. Another interesting feature in many porous materials is their
pore-size distribution. For a vast majority of foams as well as for
honeycomb-like structures, this remains nearly constant. On the
other hand for materials like aerogels, the pore sizes can range from
a few nanometers to hundreds of nanometers or even microme-
ters. Accounting for the pore-sizes and perhaps even harmonizing
them remains an important factor in tailoring the thermal® and
mechanical >’ properties of such materials. Specifically focusing on
the mechanical properties, Rege et al’ have modeled these by
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proposing a micromechanical constitutive model for cellular materi-
als having a wide pore-size distribution. The model accounts for the
variation in the pore sizes, by introducing the distribution function
in the constitutive model. The application of the model to different
aerogels was also shown.”” However, in these models, the pore walls
were assumed to have a constant cross section. This was justified for
the modeled aerogels because they featured a fibrillar morphology
having a more or less constant cross section. However, in the cases
of silica or organic aerogels, this remains far from the truth. There-
fore, the pore walls have the appearance as that of a string of pearls.
However, some models have attempted to describe the mechanical
properties of such materials by using 2D or 3D models where the
pore walls had constant cross sections.” " In particular, models such
as the one proposed by Lei and Liu’ in an attempt to character-
ize silica aerogels, where they account for the dead-ends while still
assuming a cube-shaped unit cell with a constant cross section of
the pore walls, still obtained a scaling exponent of 2.04 in the rela-
tion E o p™. In materials like aerogels, it is not the dead-ends or a
lack of their presence that dictate the unusual mechanical properties,
but it is rather the random connectivity and the effect of the pearl-
necklace-like morphology. While a few authors have investigated the
effect of the random connectivity on the mechanical properties,' '
the effect of the pearl-necklace-like morphology remains nearly
unattended.

There is not a significant amount of literature on the mod-
eling of the mechanics of porous materials by considering the
inter-particle necks. The terminology of pearl-necklace-like struc-
tures arises from polymers'® and proteins.'* However, the use of
this terminology for porous materials like aerogels is now well
established.””™"” The effect of inter-particle necks on the morpho-
logical and elastic properties of porous ceramic films was studied
by Chen et al.'® They investigated the influence of inter-particle
neck sizes on the mechanical properties and the effects arising
from coarsening of the network structure. Therefore, post-processed
tomographic images were used in a finite element program for such
analysis. Colloidal materials generally show such arrays of parti-
cles forming interconnected networks. The mechanical behavior of
such arrays of particles describing the backbone of a colloid has
been described by Dargazany and Itskov.'” They further showed the
possibility to model the arrays of particles as nonlinear springs.”’
Over the validity of modeling inter-particle necks as linear springs,
Dargazany et al.”! reported that for moderately connected bonds,
the assumption may remain valid. In the case of many aerogels, the
arrays of particles consist of moderately connected bonds, which was
the motivation by Aney ef al.'’ to model the arrays of particles in
resorcinol-formaldehyde (RF) aerogels as beams. This was also done
earlier by Schwan et al.® to model the flexibility in RF aerogels. As
seen from both these studies, in the case of most aerogels, the pore
collapse occurs as a result of critical stress arising from buckling or
bending of the pore walls, which leads to subsequent failure of the
arrays of particles, which may then end in crack formation. Since
the kinematics of both these deformation modes is dependent on the
area moment of inertia of the pore walls, the effect of particle necks
must be significant.

This paper attempts to describe and analyze the importance
of considering the pearl-necklace-like pore-wall as against the one
with a constant cross section, for correct interpretation of the pore
sizes and the mechanical properties. To this end, mathematical
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descriptions of the pore space based on simple 2D and 3D models
are presented. Additionally, for the 3D case, the effect of overlap-
ping spheres is also considered. The latter case is also then applied
in a finite element framework to simulate the mechanical behavior
of the pore walls. To this end, the three basic modes of deforma-
tion are studied, such as axial stretching, bending, and buckling. All
results are compared with the case of a constant cross section of
the pore wall.

This paper is organized as follows: In Sec. II, the methods used
for modeling are described. First, the mathematical modeling of
the pore spaces is elucidated, and then, the computational model
for studying the mechanical properties is detailed. In Sec. III, the
results from both, the model for pore sizes and its implementation
in the finite element program, are illustrated and discussed. Finally,
a conclusion is presented in Sec. I'V.

Il. METHODS
A. Mathematical description of the pore sizes

In this section, we present mathematical formulations of the
pore sizes on the basis of simple cubic-shaped lattices, having
particles of diameter d. To estimate the pore sizes, the free space
in the enclosed volume is calculated. In order to model aerogel-like
materials, the eight particles at the vertices of a simple cubic lat-
tice are pushed further away by adding particles on each edge. This
means the distance between the particles at the vertices is extended.
This automatically leads to a reduction of solid fraction and an
increase in pore sizes. We first begin with a simple 2D model and
then move toward the 3D ones.

1. 2D model
The square shaped 2D cell is sketched in Fig. 1. For a simple

cubic lattice, the area fraction of circles within the dashed square
shown in Fig. 1 is
T
F, = Zdz. (1)
The cell area of the square is
F c = d2> (2)

and thus, the solid fraction can be calculated as

oo _ T
é5 =7 (3)

n;=0 ni=1 ni=2 ni=3

FIG. 1. lllustration of 2D cells with increasing n;.
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Whenever we add a particle on the edge, the cell size increases, and
the area fraction of particles within the cell increases too. This can
be calculated for n; inserted particles as

Fo= (2 + 1)%:12, @
and the area of the cell changes to
Fo= (ni+1)*d, (5)
and thus, subsequently, the solid fraction can be calculated as

F. 2n; +1
_F _m 2ni+ ©)

¢2D_ _r
' F 4(m+1)Y

In open-porous materials like aerogels, the solid fraction (equiva-
lent to the envelope density divided by the skeletal density) is fixed
and typically below 10%. We can solve Eq. (6) for n;, since it is a
simple quadratic equation. In reality, for a very small solid fraction,
the number of inserted particles in a cell must be large. For #n; > 1,
we can simplify Eq. (6) to

T
x— P2 7
o5 ” or n; 2¢§D (7)

The pore size can then be roughly estimated as the size of a square
bounded by the particles on the edges, which yields

T

Therefore, for a decreasing solid fraction, the pore size becomes
larger in a hyperbolic manner as long as the particle size remains
fixed. For materials whose pore size is nearly the same as that of
the size of the particles, one could directly use Eq. (6); for example,
for n; = 1, one obtains dj, ~ 2.66d. One could now also calculate the
specific surface area and other properties. However, it is interesting
to analyze the same for the 3D problem, which is more realistic.

2. 3D model

Although in 3D, the idea remains the same, and the resulting
equations look quite different. The idea is sketched in Fig. 2. The
volume of a sphere at each vertex contributes 1/8th to the volume
inside the cell box going through the centers of the spheres. The
volume at each vertex is

1n 3
§gd' 9)

Vvertex =

FIG. 2. lllustration of 3D cells with increasing n;.

scitation.org/journal/adv

Therefore, the contribution to the total solid volume in the box is
1n
Vvertices = 8(§gd3) (10)

The box volume V, = d°; thus, the solid fraction of a simple cubic
lattice is
s
9= (11)
Comparing this to the 2D case as treated above, it is smaller. Each
inserted sphere at the edges adds to the solid fraction of a volume,

1n
Vii = ng3, (12)
and since there are 12 spheres to be added, we have
s
Vi= Ed3. (13)

The box volume increases, since the edge length increases to a
value of 2d, and thus, the solid fraction decreases. If we insert n;,
i=0,1,2,3,..., spheres on the edges, the volume added is

Vi= n,-gd3, (14)

and the edge length increases to dj, = (#; + 1)d, and thus, the volume
increases to

V= (mi+1)°d". (15)

The total volume inside the box is then that of the spheres on the
edges plus that at the vertices,

V= gd3(1 +3m;). (16)

The solid fraction is then

7 (1+3n;)
=230 17
b= (i +1)3 (17)
Again, for materials with d, and d of the same order, one could use
this equation directly. At large n;, we can simplify this expression to
3D w1

N 18

¢~ ” (18)
Now one can compare this result with the one from Eq. (7) and
observe that the dependence is much different from the 2D case,
where it was hyperbolical. If we again simply calculate the pore size

in these open cubes as that of an inserted cube, we get for n; > 1,

T
dp = ﬂid ~ oy / Wd (19)

In contrast to the 2D case, the pore size increases only like the
inverse square root with the volume of the solid fraction (equivalent
to the envelope density). This also sheds some light on the quanti-
tative deviations that may result in modeling 3D porous networks,
assuming merely 2D models.
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3. Overlapping 3D model

In more real aerogel-like materials, the particles do not touch
only at a point, but a neck develops at the point of contact, giv-
ing an impression that the spheres overlap to a certain amount.
One can imagine the following situation: Particles form in the gel
solution, either by nucleation or by phase separation, and move in
the solvent and touch (diffuse). Once they touch, they will imme-
diately establish bonds, either covalent ones, hydrogen, or ionic. In
any case, they then move as dumbbells or later as clusters of many
particles. Since the solvent is still rich in monomers, oligomers,
etc., these will attach to the particles and the dumbbells, and they
would grow. At their area of contact or better at the circular contact
line, they preferably condense since the effect of concave curvature
increases the condensation or attachment rate (since the bond-
ing energy gain becomes larger). Therefore, the particles or their
clusters grow in an onion-like manner, and the necks grow in size
too. After gelation and drying, the aerogel made from them looks
as if the particles just would only overlap, and spheres would have
penetrated into each other. The formation of necks of contacting
particles in a network is a quite general phenomenon of partic-
ulate porous bodies and treated for instance in the literature on
sintering of metals and ceramics.”””’ Neck formation and growth
of a particulate aggregate in a liquid environment are always due
to the dependence of solute solubility on the radius of curvature.
A solute is dissolved at convex parts of a surface and precipitates
at concave parts. This leads to a growth of the neck radius for
particles being in contact. In wet gels, the situation is a bit differ-
ent, as described above, since the pore liquid of a gel network still
contains monomers and oligomers after gelation, which preferably
condense at concave surface areas and thus stiffen the network. In
the sol-gel literature, this phenomenon always is termed aging, and
there exists a huge amount of literature on the effect of aging on
the microstructure of gels and aerogels.”’ "' Detailed mathematical
models of neck formation and growth are not developed for gels,
which can be transformed into aerogels. We, therefore, discuss the
necks between contacting particles, which are simply geometrical as
overlapping spheres.

Figure 3 shows the same arrangement as in Fig. 2, but here, the
overlap is allowed. In principle, spheres that overlap can be treated as
if spherical caps are removed from them. The cap shall have a height
h as shown in Fig. 4. The cap volume of a sphere with radius R can
be calculated as

Vap = S (3R-) = ZER (3-0), (20)

n;=0 n=1 n=2 n=3

FIG. 3. lllustration of 3D cells with overlaps with increasing n;.

scitation.org/journal/adv

FIG. 4. lllustration of the overlap of height h for a particle with radius R.

with the then obvious definition of the overlap as & =h/R. We
calculate again the volume of spheres at the vertices and then that
of spheres inserted at the edges. The volume of a sphere contribut-
ing to the solid fraction inside the cube defined by the centers of the
spheres at the vertices is

4an 3
Viertex = Vsphere - 6Vcap = ?Rs(l - 552(3 - E)) (21)

The volume of a sphere inserted along the edge equals that of a
sphere minus two times a cap, and thus,

4 3 1 2
vi- TR(1-286-9) (22)

Each sphere at the vertex adds only 1/8th of its volume to the solid
fraction inside a cube. We have eight vertices, and thus, the total
volume is already given by the expression of Eq. (21). Along the
12 edges, we can add n; spheres, each adding 1/4th of its volume
to the solid fraction, and thus, we obtain for the total volume inside
the cube as

Viotal = 43—”1?(1 - 252(3 - f)) + 3ni%R3(1 - %52(3 - 5)). (23)

The cube or quadratic box has a side length (with d = 2R) of
dc = (ni+1)d(1-¢), (24)
and thus, a volume of
V. =8R(mi+1)°(1-¢). (25)
The solid fraction is then

(1-38(3-8) +3m(1-18(3-9))

(i + 131 B 09

s =

Y
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where as before, if we only consider n; > 1, the relationship

simplifies to
Con (1-386-9
b5~ Tnf( (21 5 ) (27)

Assuming that the overlap is small, we can develop the fraction
around & = 0 to the second order and yield

n
2n?

s (1 +38+ %fz). (28)

Thus, the pore size can be expressed as

dy = mid(1 - 26) = d(1 - 26) %(1 F3E+ 352). (29)

B. Computational model of the mechanical
properties

To investigate the effect of such pearl-necklace-like networks
on the mechanical properties, we directly use the proposed case
of overlapping spheres. Generally, microstructure-based models on
aerogels studying their mechanical properties assume the cellular
network to be made up of idealized square-shaped 2D cells or cube-
shaped 3D ones."” Rege et al' recently proposed a generalized
micromechanical model for describing the mechanical properties
of cellular materials, either in an elastic or an inelastic setting.
The mode was based on the failure modes proposed by Gibson
and Ashby.” The proposed model accounts for the variation in the
cell sizes but assumes a constant cross section of the pore-walls
while accounting for the axial and bending effects under mechanical
loads. Since the pore sizes show a strong influence on the presence
of spherical particles, it is interesting to understand the influence
of the pearl-necklace-like structure on the mechanical properties.
It should be noted that the goal of this paper is not to quantify
the bulk behavior or properties of open-porous materials exhibit-
ing a pearl-necklace-like morphology but to merely show the local
effects and quantify their significance while describing the pore-wall
kinematics. To this end, the pore walls are modeled for different
& values.

Figure 5 illustrates the considered models. Different values
of & are considered, ranging from 1/8 to 3/4, and are compared

$IIPIIIIVIPIIIIPPRIPHG 1/
19932220200099000000006 =1/
$33320333333200000000000006 17
193333330030330303A0URRHRHRRHRER (=374

I constant

FIG. 5. Simple pore-wall geometries considering the overlapping of particles in a
pearl-necklace-like network.

scitation.org/journal/adv

to the results of the constant cross section. Typically, for aerogel-
like materials, a & value up to 1/4 seems realistic. A & of 1/2 or
3/4 is usually not observed in scanning electron micrographs of
aerogels. However, for the sake of completeness of the study, these
are considered. The presented models are subjected to axial stretch-
ing, bending, and buckling in a finite element setting. The mechan-
ical properties are investigated not only for different & values but
also for three different particle sizes d. Thus, not only the effect
of overlaps but also correspondingly that of the particle sizes is
studied. All simulations were carried out on ABAQUS. A simple
linear elastic model, with a Young’s modulus of 1.5 GPa and a Pois-
son ratio of 0.3, was used for all simulations. Solid element type
C3D8R, which is a general purpose brick element with reduced
integration, was used. The element type with reduced integration
was used to avoid the locking phenomena. The axial stretching
and bending simulations were conducted by means of a general
static step, while buckling was analyzed by means of the linear
perturbation procedure.

lll. RESULTS AND DISCUSSION

The results from the calculations of the pore sizes are first dis-
cussed. Figure 6(a) illustrates the results from the 2D calculations. It
can be seen that the relationship between the pore size and the solid
fraction is of a hyperbolic nature for a constant particle diameter.
Thus, the smaller the solid fraction, the larger the pore size. For solid
fractions <0.2, the pore sizes strongly increase with a minor decrease
in the solid fraction. This change becomes less significant for larger
solid fractions. For aerogel-like materials, the solid fractions are
almost always <0.2, even <0.1 in most cases. With increasing par-
ticle diameters, the pore sizes increase, while retaining the nature
of the curve. Three particle diameters, 4, 8, and 16 units, were con-
sidered. In the case of 3D, however, while the trend can be seen
to be the same, the nature is very different [see Fig. 6(b)]. Due to
the presence of the square-root in the relationship between the pore
size and the solid fraction [eq. (2.19)], the decrease in pore size is
much less stronger with increasing solid fraction. For the same size
of the pore walls, one can also observe that the pore sizes are reduced
by a factor of over five. This emphasizes the need to describe 3D
pore-structured materials using 3D models and not simplify using
2D assumptions. To investigate the effect of the overlap, a constant
diameter of 8 units was considered, and the overlap factor £ was var-
ied from 1/16 to 1/4 [see Fig. 6(c)]. Compared with the no overlap
results for a diameter of 8 units from Fig. 6(b), it can be inferred
that with increasing overlap, the pore size decreases. However, the
nature of the relationship remains the same. Since the length of the
pore walls in a considered 2D or 3D pore remains an important mor-
phological feature for modeling a unit cell, its influence on the solid
fraction remains crucial for pore size estimation. Figure 6(d) shows
the effect of increasing the number of particles in the pore wall on the
solid fraction. While the trend in the 2D and 3D cases seems simi-
lar, the decrease in the solid fraction with an increasing number of
particles for the 3D case is much stronger than that in 2D. For larger
ni, the role of overlaps is minimal in dictating the solid fraction. The
results illustrated in Fig. 6 demonstrate that the morphology of the
pore walls plays an important role in driving the pore space. Fur-
thermore, the influence of the solid fraction on the pore sizes can be
effectively modeled by assuming simple geometric pore shapes. The
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FIG. 6. Effect of a solid fraction on the pore sizes for (a) 2D, (b) 3D, and (c) 3D with overlap models. Here, in sub-figures (a) and (b), particle sizes of 4, 8, and 16 units are
modeled. In sub-figure (c), a particle size of 8 units is modeled with three overlap factors of 1/16, 1/8, and 1/4. (d) The effect of the number of particles in a pore wall on the
solid fraction for all three cases. Note the change in the magnitude of the y axes in sub-figures (a) and (b) as well as (c).

influence of overlaps, which is typical in aerogel-like materials, can
also be captured.

While the presence of a string of pearls and the inter-particle
necks show significant influence on the porous space of the mate-
rials, their effect on the mechanical properties of the pore walls
must be non-negligible. This is because the mechanical properties
of cellular materials are dictated by their skeletal features.” Figure 7
illustrates the effect of considering (overlapping) particles against
the constant cross section on the different modes of deformation
in a typical pore wall of an open-porous cellular material, namely,
axial stretching, bending, and buckling. Four cases of overlaps,
ranging from & = 1/8 to & = 3/4, are considered. Figure 7(a) shows
the deformed pore walls for all £ cases as well as the case with the
pore wall having a constant cross section subjected to axial stretch-
ing. To model axial stretching, the pore-wall was fixed on one end,
and a force was applied on the other. Stress concentrations can
be observed at the inter-particle necks, while most of the particle

volume remains stress free in the rest of the places. Figure 7(b)
shows that assuming a constant cross section of the pore wall
can result in severe underestimation of the maximal axial stress.
This might result in underestimating the failure in the materials
network. It can also be inferred that the smaller the overlap, the
larger the axial stresses. This can be attributed to the smaller particle
necks giving rise to high stress concentrations. Thus, the smaller the
particle necks, the sooner would the pore wall fails under stretch-
ing. The significance of modeling the particles and their necks is
thus demonstrated. This is reflected even in the case of bending.
Figure 7(c) shows the deformed pore walls under bending, while
Fig. 7(d) shows the maximal bending stress vs the overlap. To model
the bending in the wall, a cantilever model was chosen, where one
end of the pore wall was fixed, and the other was subjected to a sin-
gle force. Also in this case, one observes that assuming a constant
cross section severely underpredicts the bending stress in the pore
walls. The factor is much larger than in the case of axial stresses.
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FIG. 7. lllustration of the different deformation scenarios in the pore-walls, with constant as well as overlapping pearl-necklace-like cross sections. Pore-wall under (a) axial
stretching, (c) bending, (e) buckling, and (b), (d), and (f) their corresponding stress/force vs overlap for different particle radii. Each investigated deformation scenario is
modeled for three d values, namely, 4, 8, and 16 units, and with varying overlap factors.

Moreover, as expected from the classical theory, the thinner the behavior is demonstrated. Figure 7(e) shows the pore walls sub-
beam, the larger the deflection and the lower the stresses. Thiscanbe  jected to buckling. Euler’s buckling criteria with the column effective
inferred from the simulations with different particle diameters, while length factor equal to 1 was modeled. It can be inferred from Fig. 7(f)
also from the different constant cross-sectional models with differ- that the smaller the overlap, the smaller the critical buckling load.
ent diameters. In the last case, the effect of particle necks on buckling Thus, assuming a constant cross section would result in a delayed
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FIG. 8. Relative critical buckling force vs overlap for different particle radii.

prediction of pore collapse. The results inferred from Fig. 7(f) were
further handled to check the effect of the particle sizes and the
overlap on the relative critical buckling load. This relative load is
calculated by dividing the critical buckling force in Fig. 7(f) by the
critical load in the case of a constant cross section. The results are
plotted in Fig. 8. It can be realized that all the curves for different
particle sizes coalesce, thus inferring that the critical buckling load
simply scales linearly with &.

The results in Fig. 7 demonstrate the importance of consid-
ering the pearl-necklace-like structure in theoretically describing
the mechanical properties of open-porous materials having a sim-
ilar morphology. While only local effects at the pore-wall level can
be deduced from this analysis, it opens up an important question
on the validity of assuming a constant cross section for the pore
walls while modeling such networks. Considering constant cross
sections in the case of stretching and bending results in model-
ing a sooner failure in the walls, while in the case of buckling, the
pore collapse may be modeled too late. Furthermore, the factor of
differences in the stresses/loads are significantly large, thus mak-
ing their accountability unavoidable. While these presented results
are very promising in describing the necessity of accounting for
such pearl-necklace-like models, e.g., the overlapping sphere model
described in this work, it is also interesting to see the effect on the
bulk elastic properties as functions of the local skeletal features. This
will be investigated in a subsequent study.

IV. CONCLUDING REMARKS

In this paper, the effect of pearl-necklace-like models on the
pore sizes and the mechanical properties of porous materials is
investigated. By means of mathematical relations, it was shown that
the pore sizes decrease in a hyperbolic manner with increasing
solid fractions. This was shown by constructing simple geomet-
ric 2D and 3D unit cells. Furthermore, the inter-particle necks
were modeled by considering the overlap between the particles.

ARTICLE
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It could be shown that with increasing overlaps, the pore sizes
decreased. The overlapping sphere model was used to investi-
gate the effect of considering the string of pearls and the overlap
therein to model the local mechanical properties of the pore walls
against the use of a constant cross section. It could be shown that
assuming the string of pearls as a constant cross section would
result in too sooner prediction of failure due to stretching and
bending, while a delayed prediction of pore collapse due to buck-
ling. It was also shown that the smaller the overlap, on the one
hand, the higher the axial and bending stress, while on the other
hand, the smaller the critical buckling load. Moreover, the criti-
cal buckling load was shown to scale linearly with the amount of
overlap. Thus, accounting for the string of pearls in a pearl-necklace-
like network is significantly more important than previously
considered.
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