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Adaptive Tracking Control with Uncertainty-aware
and State-dependent Feedback Action Blending
for Robot Manipulators

Xuwei Wu, Annika Kirner, Gianluca Garofalo, Christian Ott, Paul Kotyczka, and Alexander Dietrich

Abstract—Adaptive control can significantly improve tracking
performance of robot manipulators subject to modeling errors in
dynamics. In this letter, we propose a new framework combining
the composite adaptive controller using a natural adaptation law
and an extension of the adaptive variance algorithm (AVA) for
controller blending. The proposed approach not only automati-
cally adjusts the feedback action to reduce the risk of violating
actuator constraints but also anticipates substantial modeling
errors by means of an uncertainty measure, thus preventing
severe performance deterioration. A formal stability analysis
of the closed-loop system is conducted. The control scheme is
experimentally validated and directly compared with baseline
methods on a torque-controlled KUKA LWR IV+.

Index Terms—Adaptive control, motion control, automatic
feedback action blending, uncertainty measure.

I. INTRODUCTION

UTONOMOUSLY and appropriately adapting the behav-

ior to internal parameter variations and unforeseeable
external contacts is an essential feature for a robot that needs to
perform versatile manipulation in unknown and unstructured
environments. To attain high tracking accuracy under model
uncertainties at run-time, e.g., due to manipulation of an
unknown object, it is common to use model-based adaptive
control, which performs online parameter adaptation driven
by tracking errors [1], prediction errors [2], or both error
sources in a composite manner [3]. Recently, Lee er al. [4]
proposed a natural adaptation law that guarantees the physical
consistency [5], [6] of the estimated inertial parameters, with
additional advantages of improved transient performance and
less laborious gain selection; a recent application can be found
in [7]. However, these adaptive control schemes only adapt
the feedforward term but do not adjust the feedback term
according to model uncertainties. In fact, a high-gain feedback
action is particularly needed to compensate for substantial
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Fig. 1. Block diagram of the proposed adaptive control framework.

modeling errors during the initial phase of parameter adapta-
tion. The saturation-based robust controller [8] can effectively
handle this issue but requires an a priori uncertainty bound
and only achieves ultimate boundedness of the tracking error.
For nonlinear systems transformable into the parametric strict
feedback form, backstepping adaptive control [9] can improve
the transient performance under large initial estimation errors.

Learning-based [10]-[12] and model-free methods [13]—
[15] have been developed to overcome the model discrep-
ancy problem while achieving uncertainty-aware control action
adjustment. In [10]-[12], Gaussian process regression (GPR)
is applied to approximate the errors between the nominal
and actual dynamics. The variance of the Gaussian processes
(GPs) indicates the confidence of the predicted error model. It
is thus utilized to directly modify the proportional-derivative
(PD) gains [10], [11] or, together with the predicted mean
of the GPs, to compute a robustness term [12]. The methods
[13]-[15] completely cancel nonlinearities and unmodeled
dynamics by using the time-delay estimation (TDE) technique.
As the inertia-related gain matrix adapts, the effective PD gains
are modified accordingly; however, the TDE error cannot influ-
ence the gain adaptation directly. Indeed, both aforementioned
categories of methods are based on inverse dynamics, which
may require excessive actuation to enforce the target linear
dynamics of the closed loop [16].

On the other hand, to automatically achieve a trade-off
between feasible control input and desired tracking perfor-
mance, it is desirable that the feedback term of a controller can
adapt depending on the error variables. This aspect has been
addressed by self-tuning PD controllers based on fuzzy logic
[17], [18], but they have the drawback of discontinuous gain
switches. The adaptive variance algorithm (AVA) proposed in
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[19] achieves a smooth and state-dependent gain transition
by using weighting functions. More specifically, the nominal
feedback gain is multiplied by an unnormalized Gaussian
function of the tracking error, which has an adaptive vari-
ance allowing the modified gain to eventually increase, thus
ensuring the overall error convergence. In [20], AVA has been
further extended for the application on robot manipulators.
Moreover, rather than gain blending, this extension realizes a
smooth controller blending between a global controller, which
yields the desired compliant behavior when the system is far
from the equilibrium point, and a local one, when the system is
in a close neighborhood of the goal. Nevertheless, in both [19],
[20] the precise knowledge of the system dynamics is assumed
available, and AVA cannot modify its strategy accordingly in
the presence of model uncertainties.

In this letter, we propose a novel passivity-based adaptive
control framework, as shown in Fig. 1, to cope with dynamic
parameter variations and to achieve an automatic feedback
action transition depending on both error states and estimated
model uncertainties. The framework uses the composite adap-
tive control scheme together with the natural adaptation law
for parameter estimation. An uncertainty measure is computed
via the prediction error of the composite adaptive controller
and integrated into an extended AVA (eAVA), allowing an
uncertainty-aware variance adaptation. As a result, the pro-
posed control scheme can: 1) reduce the risk of actuator satu-
ration under large tracking errors; 2) retain nominal feedback
action to anticipate substantial modeling errors; 3) alleviate
the parameter drift problem under external disturbances. The
main contributions of this letter are:

« A new framework combining composite adaptive control
and AVA with formally proved global convergence and
boundedness properties.

o An extended AVA that automatically adjusts feedback
action according to estimated model fidelity. A practical
procedure for eAVA parameter tuning is also provided.

« Experimental validation and comparisons with the base-
line schemes on a real robot under different types of
modeling errors and external disturbances.

Notation: Throughout this letter, |-| denotes the absolute
value of a real number and || -|| the Euclidean norm of a
vector. The notation S(p) stands for the space of real symmet-
ric matrices A € RP*P; St (p) C S(p) additionally features
positive definiteness. The operator vech : S(p) — RP(P+1)/2
describes the vectorization of a symmetric matrix by using its
distinctly different entries. For any A € S(p), its minimum
and maximum eigenvalues are represented by A, (A) € R and
AMm(A) € R, respectively. The identity matrix is denoted by
I and the zero vector/matrix by O; their dimensions can be
retrieved from the context. A diagonal matrix with diagonal
entries {A;,...,A,} is denoted by diag{A; ,} € RP*P. A
continuous function a : R>9 = R>¢ is of class K, if it is
strictly increasing and «(0) = 0; € K belongs to class Ko,
if it is also radially unbounded.

II. FUNDAMENTALS AND PRELIMINARIES

In this section we recall the basics of the natural adaptation
law [4] for parameter estimation and AVA [20] for control

action blending depending on tracking error.

A. Linear Parameterization of Robot Dynamics

The rigid-body dynamics of a fully-actuated robot with n
degrees of freedom (DOF) can be written as

M(q)g+C(q,q)q+g(q) =7, )

where g € R™ denotes the joint positions; the inertia ma-
trix M(q) € ST(n) and the Coriolis/centrifugal matrix
C(q,q) € R™*™ are assumed to satisfy the passivity property
[21]; g(qg) € R™ is the generalized gravitational force, and
T € R" the motor input. In this work, we assume!:

Assumption 1: M(q) and C(q, q) are uniformly bounded
for all possible g, and C(q, q) is linear in q.

The dynamics (1) are known to be linearly parameterizable
[21], i.e., T =Y (q,q,4)m, where Y(q,q,q) € R"*0" ig
the regressor matrix, and w = [} ... w1]T € R!°" stacks
the inertial parameter vectors of all links. Given the mass m;,
the center of mass ¢;, and the inertia tensor ®; € S (3) of
the i-th link, 7; € R' is defined as

T
vech(@;)T| . )

T, = [y miciT

B. Natural Adaptation Law

The elements of 7; must satisfy a set of constraints such
that the underlying mass distribution of the rigid link is
physically realizable [5], [6], which is referred to as the
physical-consistency condition. These constraints on 7r; are
equivalent to requiring the positive definiteness of the so-called
pseudo-inertia matrix [24]

[ m; m; C;r

I, = o(m;) = €ST(4), 3)

m;cC; Ez
where 3; = %tr(@i)I — ©; € §(3). The inverse of the linear
map ¢ : R — S(4) is given by

o Y(IL;) = {mi micl  vech(tr(X;) I — Ei)T}T )]

i
The geometric structure of IT; has been exploited in [4] to
develop a pseudo-distance metric

det(l’[iyb)

Daalmsvmin) = 1og (S

> —i—tr(H;;Hi,a) —4 (5
on M C R, which represents the manifold of all possible
physically consistent 7r; for a single link. This new metric
leads to the natural adaptation law given by [4]

ﬁi = —AIL LTI, (6)

for i =1,...,n, where II; € St(4) is the current estimate
of IL;; v > 0 is the adaptation gain; L; € S(4) is the unique
solution of tr(IT;L;) = wZX'l; [7], [25]. The concrete expres-
sion of I; € R% will be shown for the proposed controller in
Section III. As proved in [4], starting with a valid initial esti-
mate II;(ty) € ST(4), or equivalently, with #;(to) € M, the

IThis is satisfied, e.g., for all robots that feature only revolute or only
prismatic joints [22], [23].
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adaptation law (6) can ensure that 7;(t) = ¢~ }(IL;(t)) € M
for all time ¢ > ¢y. Compared to conventional adaptation laws
[21] based on a quadratic error term, (6) requires only a
scalar gain instead of a gain matrix, without suffering from
possible scaling problems. Moreover, as shown in [4], it can
largely improve the transient performance and provide better
generalizability to varied reference trajectories.

C. Adaptive Variance Algorithm

When the precise knowledge of (1) is available, AVA can
be integrated into the passivity-based controller [1] at position
level, leading to [20]

T =M(q)§, +C(q,4)q, +g(q) — Hs , (7
in which s = g — g, is the sliding variable, and
4, = q4(t) - EKq + (I — E)vg(q) (®)

is the modified reference velocity. The vector ¢ = q — q4(t)
contains the joint position errors, and the desired tra-
jectory q4(t) has continuous and bounded time deriva-
tives g4(t),g4(t). The gain matrices H € R™*™ and
K = diag{K;. ,} are positive definite. The so-called global
controller v, (q) € R™ is written as [20]

T
’Ug(f]) = [Ug,l(QI) Ug,n(dn) ) (9)

and it satisfies ¢;vg;(¢;) <0, Vi =1,...,n. This global con-
troller, in comparison with the local one —K¢q, aims at
avoiding unfeasible control action for large tracking errors.
The blending of the local and global controllers is realized in
(8) through the weighting matrix

E =diag{E1. n}; B =exp(=U;) , (10)
where the scalar function U; : R x R — R3¢ is given by
2(07 +07)
with &; > 0 being a constant parameter. In view of (11), each
FE; represents an unnormalized, unimodal Gaussian function
with zero mean. When ¢; largely deviates from its desired
trajectory, i.e., (ji? > c‘rf + 01.2, the function E; will decrease,
leading to the dominance of vg;(g;) in (8). Moreover, the
variance of E; can be adjusted by the internal state o;. The
dynamic equations of o = [0y ... 0,]T € R™ are defined as

¢ = (K, - EKy)o (12)

where K\ = diag;{K}T’lmn},}“(L1 = diag{K~, .} are posi-
tive definite, and K ; < K2, Vi=1,...,n. If ¢; remains
large, o; will increase exponentially due to K}m > EZ—K(];"Z..
Consequently, the variance of F; expands, thereby triggering
a control action transition towards —K;g;. Otherwise, when

@i ~ 0, the variance converges exponentially to 2.

Ui(Gi,oi) = (11)

III. CONTROL DESIGN

In this section, we present a novel adaptive control frame-
work combining the composite adaptive controller, the natural
parameter adaptation, and the AVA-based feedback action
blending. Furthermore, we propose an extended AVA that
allows an variance adaptation according to estimated model
uncertainties.

A. Combining Composite Adaptive Controller with AVA

The control design starts with replacing the ideal dynamic
matrices in (7) by the respective estimates, denoted by (-),
leading to the control law

T = M(q)4, +C(q,@)q, + g(q) — Hs

—Y., 7 Hs, (13)

where Y, =Y (q,q,q,,q,), and g, is obtained by differenti-
ating (8) with respect to time:

@, = d4a(t) — E(Kq +v5(q)) - EKq+ (I - E)g . (14)

In (13), H is required to be uniformly continuous if it is time-
varying [21]. Moreover, an additional assumption about v, (q),
compared to [20], is made as follows?:

Assumption 2: For i = 1,...,n, 0vg ;(g;)/0q; is uniformly
bounded; dvg;(q;)/0G; < —Kg,; holds with some K, ; > 0.

Here, the former condition implies that vg ;(g;) is locally
Lipschitz continuous, and the latter ensures that when lin-
earized, vy ;(G;) has a negative gradient everywhere on R.

For the parameter adaptation, we adopt the composite
adaptive controller [3] instead of the direct scheme [1] for
two main reasons: 1) as shown in [21], smoother and faster
parameter convergence can be achieved through the use of
both the prediction and the tracking error in adaptation laws;
2) the prediction error is needed to compute an uncertainty
measure, which is integrated in our proposed eAVA, as will be
shown in Section III-B. Let W (q, ¢) and y be the first-order
low-pass filtered version of Y (q,q,q) and T, respectively.
The prediction error is defined as y = Wa — y = W with
7w =17 — . The matrix L; in (6) is then determined by
solving [7]

Ztr(HiLi) =Y s+rW'y),

i=1

5)

where the gain parameter x > 0 weights the contributions of
the prediction errors to the adaptation law.

B. Extending AVA with Uncertainty Measure

The original variance adaptation of [19], [20], as explained
in Section II-C, is governed by the internal states o, whose
dynamics (12) depend implicitly on the tracking errors via
the Gaussian functions. Nevertheless, this strategy does not
consider the critical influence of the modeling errors on track-
ing performance. Indeed, the feedforward-like compensation
Y .7 in (13) relies on an accurate estimation of 7. If the
parameter estimation errors are considerably large, e.g., when
the parameter adaptation just begins, the tracking performance
may be severely degraded. Moreover, the low-gain nature
of AVA under large control errors can further worsen the
performance, at least temporarily. Although the global-to-local
feedback action transition, triggered by an expanded variance,
can eventually improve the performance, this transition only

ZFor example, a simple proportional controller vg,;(§;) = —Kjg,:G; or a
modified sigmoid function vg ;(§;) = —7itanh(Kg :G;/Ti) — Kg,iG; with
Ti,Kgi >0 and Kg; < Kgj < K;, Vi=1,...,n, satisfies Assump-
tion 2.
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happens after large tracking errors have already arisen. To
overcome the above problem, we propose to integrate an
uncertainty measure in the variance adaptation of AVA. The
resulted eAVA allows the Gaussian functions to automatically
expand in order to counteract substantial modeling errors
before the occurrence of large tracking errors. The extension
of (10)—(11) is defined as

E* = diag{E7 ..} ; Ef =exp(=U;),
G?

U* N’Lv iy Wx) — ! )

000 = G ot a)

where a; > 0 is a design parameter, and . € R is the

uncertainty measure computed by

Jo =~ (W~ 6(t,5,9)) ; Galt0) = 0.

In other words, ¥ (t,y,y) is low-pass filtered with the time
constant 7' > 0 to obtain t),. The function ¥ (¢, 4, y) is intro-

duced as o
y Qy

y'Qy+7y
where § > 0 prevents the division by zero; Q € R™"*" is
(uniformly) positive semi-definite. Recall that ¢y describes the
low-pass filtered residual difference between the predicted
output and the measured input of the dynamics (1). Hence,
(19) provides a reasonably normalized measure indicating the
relative impact of the modeling errors on the total system
input. Moreover, the matrix @ can be freely chosen to allow
further modifications, e.g., to only consider the prediction
errors of specific links. Note that (¢,y,y) is uniformly
bounded in y by definition, and the first-order filter (18) is
exponentially stable and strictly proper. Thus, ¢, and 1/1* are
ensured to be bounded if ¢ is bounded [21]. Furthermore,
since ¥ (t, Y, y) is positive semi-definite in g, if § — O then
1 — 0, and consequently, (17) simplifies to (11) of the
original AVA. Fig. 2 illustrates the behaviors of E; and E}.

(16)

a7

(18)

U(t,g,y) = (19)

C. Tuning eAVA Parameters

The variance adaptation mechanism in (10)—(12) and (16)—
(17) involves the design parameters 7, K} ;, K& ;, a; for each
joint. A direct tuning of these parameters is usually not
intuitive and can be challenging for multi-DOF systems.
Therefore, a practical procedure for the eAVA parameter
tuning is introduced here. First, let v; € (0, 1) denote the ratio
K};,i/K(};,r In view of (12), o; will increase when E; < v;.
The boundary value of |g;| when E; =v; and o; =0, is
given by ¢; = d;1/2|In(v;)|. This positive constant represents
a user-defined threshold: if |g;| stays below ¢; throughout the
trajectory tracking, the internal state o; can never increase to
expand the variance of both Gaussian functions F; and E.
Meanwhile, the weighting coefficient of the nominal feedback
action is ensured to be at a minimum of ;. Upon selection of
v; and §;, one obtains

e — 20

" /2] ¢

Second, recall that v, in (17) aims at retaining a certain
amount of nominal feedback action, independently from o, in

A, B
—o; =0 1
a; >0

E; E?

|| |G|

Fig. 2. Tllustration of the Gaussian functions with fixed o;. A: E; of the
original AVA used in [19], [20]. B: E} of the proposed eAVA with the
uncertainty measure 1)x; the semi-transparent surface represents the case
o; > 0.

order to counteract considerable model discrepancies. Hence,
one can select a desired weighting coefficient Ef = v} > v;
of the nominal feedback action, when |g;| = §;, o; = 0, and
1, =1),. The new parameter 1), describes another user-
defined threshold: once 1, exceeds 1., a weighting coefficient
no less than v will be restored even when |g;| < ¢;. Note
that when |g;| < ¢;, the global-to-local control action transition
cannot be started by the internal state. With v} and 1/?*
determined, a; is given by

#2030y G- !

' 2y |In(]) 2 [In(vy)|
Note that the auxiliary parameters v;, ¢;, 1y, and v, are

merely introduced for tuning eAVA, and they do not affect
any conclusions of the following stability analysis.

2y

D. Stability Analysis

The closed-loop system can be obtained as

Ms+(C+ H)s=Y,7x, (22a)
IL = —~IL LT, | (22b)
q=-E'Kq+(I—E")v,(q) +s, (22¢)
o= (K, —-EK"o , (22d)
. 1

T

by applying (13) to (1) and by modifying (8) through (16)—
(17) together with (18)—(19). Note that (22d) is not influenced
by the uncertainty measure, because o and 1, are considered
as independent driving forces for the variance adaptation. The
main results of the stability analysis are summarized in the
following proposition.

Proposition 1: Consider the closed-loop system (22) under
Assumptions 1 and 2. Suppose that the real inertial parameters
7 remain constant during trajectory tracking. Then, the terms
$,4,q,9,0,6 converge to zero; 7 is uniformly globally
bounded on®> M.

Proof: The proof consists of four major steps, in which
the subsequent conclusions will be established:

(D Boundedness of s, 7;

@ Boundedness of q,q,0,5;

(® Boundedness of q,,q,, 9,7, s, s, 8
@ Convergence of s,q,q,y,0,6 — 0.

3For a multi-DOF system with n rigid links, the space of all physically
consistent 7r is denoted by M (™).
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Step (D: As in [4], a continuously differentiable function
V i Rsgy x R x M(™ — Rs can be defined as
Uy

—
TMs+ ZDMTQ,WZ-FTQ), (23)
i=1

V(t,s,7) =

where the latter term, denoted by V,(7), is based on the
pseudo-distance metric (5) on M, and it is positive definite in
7. Moreover, due to Assumption 1, V (¢, s, 7) satisfies

1

1
5Am(M)sTs +V, <V < 5AM(M

Furthermore, one can obtain the time derivative of V' as

)sTs+V, . (24

n

1 A~ =14 A
=3 (I, LT TL)

=—sTHs— x5 <0,

V=s"(Y, 7 — Hs) +

(25)

by using the skew-symmetry of M —2C and applying (15)
together with the symmetry of I1,L;. From (23)—(25), one can
infer the uniform global boundedness of s and 7 [26, Theorem
1]; the uniformity holds because V,,, A (M), and Ay (M) in
(24) are all independent of time.

Step (2): The main results reported in [27], see Theorem 1 in
Appendix, will be used to conclude the input-to-state stability
(ISS) of the subsystem (22c¢)—(22d) with respect to the state
[@",oT]" and the input* s. Due to the diagonal structure of
this subsystem, each DOF of (22¢)—(22d) is an interconnection
(332)—(33b) with 1 = ¢;, 2 =03, U1 = s;, and ug = 0.
Note that the local Lipschitz condition is fulfilled due to As-
sumption 2. For the i-th subsystem of (22c), consider the ISS
Lyapunov function candidate V;(q;) = G7/2. Differentiating
V1 with respect to time yields

Vi = —E;Kiq} + (1 = E))qivg,i(%:) + Gisi
< Givg,i(¢i) + @isi (26)

since Givg,i(¢;) < 0and E} € (0, 1] hold. In view of Assump-
tion 2, it can be shown that ;vg ;(¢;) < —Kg,;G7. Then, using
Young’s inequality, one obtains

~2 2
- 2, A4; Si
i , . 27
Vl, g iq; + 5 +261 Ver >0 27
Let ¢1 € (0,2K,.;), it follows that with 6 € (0, Kz ; — ¢1/2),
82 . — C1
\i J Vi< —(Ky; ———60)3. (28
q; = 2C19 ) 1= ( g, 9 )qz ( )
Let a; € Ko and p; € K be defined as
2
— C1 r
ai(r) = 2(Kg; — 57 Or, p(r)= 100 (29)

In view of (28), one can show that Vi(g;) > p1(|s;|) implies
Vi < —ay(V1), which holds for all possible x; € K, see
condition 2) in Theorem 1. Next, for the i-th subsystem of

“Note that all subsequent statements in step (2) are valid regardless of the
input ¢« (via E*) to the subsystem (22c); thus, this input is not considered
in the analysis of step (@) to simplify the proof without loss of generality.

(22d), an ISS Lyapunov function candidate can be chosen as
Va(o;) = 02/2 [19]. If g and 2 are selected as
r
2K1 +Cg
G

Xa(r) = (30)

az(r) = cor,
2|In(

with 0 < ¢ < 2(K,; — K ;). then V5(o;) > x2(V4) implies
Vy < —ag(V3), see [19, Proof of Theorem 1]. Since x; can be
chosen arbitrarily, it is always possible to find a value that ful-
fills x1 o x2(r) <, Vr > 0. Therefore, based on Theorem 1,
the subsystem (22¢)—(22d) is input-to-state-stable with respect
to the input s. This leads to the uniform global boundedness
of q, f], o, 0 upon that of s, which has already been shown in
step (D.

Step (3): From the results of steps (D-Q), it is clear that
g, =q—s and y =W are bounded; consequently, 1.
and v, are bounded according to (22e). Replacing E, E
with E*,E* in (14), respectively, it remains to show that
all ?g; and Ui* for ¢ =1,...,n are bounded in order to
conclude the boundedness of g,. Based on Assumption 2 and

the boundedness of ¢ and g, Vg = M] is bounded.

Moreover, U;" can be written as

I — 4idi (2000 + ais)

PGt ol taide 257 + 07 + ai)?
whose boundedness can be easily shown. Thus, g, is bounded;
in turn, Y, is bounded. Based on (22a), s is bounded under
Assumption 1 and the established boundedness conditions.
Furthermore, differentiating y with respect to time yields
Yy = W + W, Note that L; is bounded since the right-
hand side of (15) is bounded. Hence, 7r; = gofl(f'yf[iLif[i)
is guaranteed to be bounded. Finally, the boundedness of wW
is obvious due to its stable first-order differential equation [3]
with Y (q, g, q) as input, which is itself bounded’. Hence, y
is bounded.

Step (4): The time derivative of V can be expressed as

3D

V=-s"THs—35"Hs—sTHs -2ty . (32

As all terms on the right-hand side of (32) remain bounded,
V is bounded, which assures the uniform continuity of V.
According to Barbalat’s lemma [21], this implies that V=0
as t — oo; consequently, s,y — 0 as ¢ — oo, as seen from
(25). Due to the ISS of (22c¢)—(22d) with respect to s, one can
further conclude that q,0 — 0 as ¢ — oco. The convergence
of ¢ = & = 0 can be established in view of (22¢)—(22d). ®

Remark 1: The above proof can be straightforwardly ex-
tended for two cases: 1)° when eAVA also modifies the control
action corresponding to s, similarly to [20]; 2) when the
original AVA is combined with a direct [1] or composite
adaptive controller [3].

IV. EXPERIMENTAL VALIDATION

The proposed framework is validated through three exper-
iments on a KUKA LWR IV+ with seven torque-controlled

Note that all ¢ = ¢+ q4(t), ¢ = s + @,, § = 3 + §, are bounded.
Provided that a diagonal H is assigned, and the global controller of s
satisfies Assumption 2.
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TABLE I
CONSTANT CONTROL PARAMETERS
Experiments K; | Kgi | K }7 P ¥ K
#1 Regulation 10 1 5 0.3 0.05
#2 Tracking 20 2 10 | 0.3*/0.05T| 0.05%/0.02f
#3 Ext. Disturb. 10 0.5 5 1.4 0.02

* With an unknown payload at the end-effector
T Under mass parameter variations of all links

DOF (n =7), as shown in Fig. 1. The same nominal pro-
portional gain K is chosen for all joints, and H = K M
is applied to assign higher gains to links with larger inertia,
as recommended in [21]. Note that the positive definite-
ness of M is guaranteed by the natural adaptation law.
As the global controller, vg;(§;) = —Kg;G; is used for all
joints. The control parameters are reported in Table 1. For
all experiments, the auxiliary parameters introduced in Sec-
tion III-C are empirically chosen as ¢; = 0.07, v; = 0.3, and
v =0.7 for ¢ =1,...,7, from which the AVA parameters
K},‘Z and o0; can be derived. Moreover, in order to evaluate
the proposed eAVA, i.e., with (16)—(19), different values of
a; over {0.21, 0.12, 0.08, 0.04} are tested by setting 1> to
{0.15, 0.2, 0.25, 0.35}, respectively. The prediction error of
each joint contributes equally to the uncertainty measure by
selecting @ = I. The time constants of the low-pass filters that
provide ¢ and v, are set to 1/6s and 1/3.14s, respectively.
The regressor matrices, i.e., Y, and W, are computed using
the recursive formulation in [28]. All components of the
proposed framework run at the same sampling rate of 1 kHz.

For comparison, three baseline approaches are considered:
1) the composite adaptive controller with constant gains (CA);
2) the original AVA [20]; 3) the direct combination of CA
with AVA (CA+AVA). The proposed framework is denoted by
CA+eAVA in the following. AVA and CA+AVA are tested us-
ing the same control and auxiliary parameters’ as CA+eAVA.
An accompanying video shows all experiments.

A. Experiment #1: Regulation with an Unknown Payload

The first experiment shows the capability of the proposed
framework to perform a regulation task with an unknown
payload at the end-effector (see Fig. 1) and large initial
position errors. To this end, the joints 1, 2, and 4 have an
absolute, initial deviation of 0.14rad each with respect to
their goal positions. The results are shown in Fig. 3. Without
the feedback action blending of AVA, CA generates excessive
control input (Fig. 3C); the maximum Euclidean norm of the
commanded torques is 114 Nm. In contrast, all approaches
using AVA or eAVA successfully avoid high control input.
The shaded rectangles in Fig. 3 highlight the time period when
1, increases from zero to its maximum during the transient
(Fig. 3F). As expected, the proposed eAVA reacts directly to
the substantial model uncertainties detected by v, (Fig. 3B).
Consequently, the proposed CA+eAVA can partially regain the
nominal feedback action prior to the rise of o; (Fig. 3D) and
achieves a better overall performance compared to CA+AVA

7Except for a;, V;‘, and zZ*, which are only needed in eAVA.

CA — CA+AVA —_— ==
— AVA —— CA+eAVA ‘ ’:CA+AVA ::CA+CAVA
_ 0.3 A 1 B
=02 Steady-state error _
= 0f 0.09 rad *er 0.5 joint 11
= 0.1 t joint 21
- P — 0 1/ joint 41
—120 —
= ~—Peakof 114Nm  C| 0.06 joint 11
Z 90 joint 21
= Pegk of 55 Nm g 0.04 joint 41
EO0L-C A 0.02
* 30 0 D
1.5
=
=
505
&

Time [s]

Fig. 3. Experiment #1: Regulation case with an unknown payload at the end-
effector. Here, 7.,q denotes the commanded torques, and m7 the estimated
mass of the last link. The absolute initial position error on the joints 1, 2, and
4 is 0.14rad each. The total mass of the last link including the payload is
approximated as m7 = 1.44 kg through available CAD data. For CA+eAVA,
a; = 0.21 is selected, and the shaded rectangles highlight the time interval
when v, increases from zero to its maximum value.

(Fig. 3A). On the other hand, the parameter adaptation of
all approaches using CA achieves a good and comparable
estimation accuracy (Fig. 3E), leading to significantly smaller
steady-state errors, as compared to AVA (Fig. 3A). Moreover,
the controller blending of CA+AVA and CA+eAVA does not
have a noticeable influence on the convergence rate of the
parameter errors.

B. Experiment #2: Trajectory Tracking with an Unknown
Payload or under Mass Parameter Variations

The second experiment evaluates the tracking perfor-
mance of the proposed framework in the presence of dif-
ferent types of model uncertainties. The desired trajectory is
q4(t) = g + qey (1 — cos(wt)) with g, the initial configura-
tion, qqe, = [1,—1,—1,1,1,1,—1]" Zrad, and w = 1.57 24,
Similar to Experiment #1, initial position errors are intention-
ally assigned. Fig. 4 shows the results of the tracking case with
the same payload used in Experiment #1. Note that CA will
lead to violation of actuator constraints and cannot be started,
since both a high feedback gain (K; = 20) and large initial
errors (|G;(to)| = 0.21rad) are applied. As seen in Fig. 4 (left),
the proposed CA+eAVA with different a, successfully prevents
the performance degradation caused by the model mismatch,
while preserving the advantageous low-gain behavior of AVA
under large control errors. In comparison, CA+AVA delivers
similar tracking performance only after the first round (i.e.,
4s) of the periodic trajectory, and AVA shows the worst
performance due to the lack of online model corrections. All
approaches with CA can reduce the mass estimation errors
by at least 80 % after finishing the trajectory (Fig. 4B). They
feature small, steady-state prediction errors (Fig. 4E) mainly
attributed to nonparametric uncertainties such as joint friction
and measurement noise.

The results with mass parameter variations of all links are
shown in Fig. 5. The initial estimates of the mass parameters
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[CA — CA+AVA CA+eAVA,a; = 0.08
— AVA — CA+eAVA,q; = 0.04 —— CA+eAVA,aq; = 0.12
ﬁ0‘4 Max. overshoot A| _ 1.5 _
g 03 of 0.25 rad g 1 B B
£ 03 \
B 0.1
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Fig. 4. Experiment #2a: Tracking case with the same payload at the end-
effector as used in Exp. #1. The absolute initial position error on the joints 1,
2, and 4 is 0.21rad each. CA cannot be started due to actuator constraints.

[~ CA — AVA — CA+AVA —- CA+cAVA,a; = 0.12]
0.15 22
= Max. overshoot %52.0 B
g 0l 0f 0.04 rad 2138
X .
x 1074
D
L0 E 5
£ ol = s
40 < 01 23 456 738

2060102 03 04 05 Time [s]

Fig. 5. Experiment #2b: Tracking case under mass parameter variations of
all links. The term 1 denotes the estimation errors of all link masses. Their
initial estimates are set to 50 % of the respective nominal values. The absolute
initial position error on the joints 1, 2, and 4 is 0.07 rad each.

are set to 50% of their nominal values, and the parameter
adaptation is activated for all links. Except for the original
AVA, all controllers achieve similar tracking performance
(Fig. 5A) and comparable error convergence (Fig. 5B, SE).
Although CA can be executed due to the smaller initial
position error (|G;(to)| = 0.07rad), it generates considerably
larger commanded torques (Fig. 5C), of which the maximum
Euclidean norm is around twice that with AVA applied. Note
that the internal states do not grow during the transient
(Fig. 5D, cf. Fig. 4D), since |¢;| < ¢; = 0.07rad is always
satisfied for ¢ = 1,...,7. This exemplifies the practical usage
of the eAVA tuning strategy introduced in Section III-C.

C. Experiment #3: Regulation under External Disturbances

The third experiment verifies that the proposed framework
can generate compliant motions and effectively reduce pa-
rameter drift under external disturbances. Compared to the
previous experiments, a larger « is used to amplify the effects

CA — CA+eAVA,a; = 0.04 —— CA+eAVA,a; = 0.12
— CA+AVA CA+eAVA,a; = 0.08
1.5 ™ . - : - . .
=) A
£ N N i
= ~ N ~<N
> 0.5 T VY| Ny, ]
I: ob—— Ir ‘\-’ \_’ 1.\__ P —
ST ———————
Z 10 Al 1SNm - gsNm o 7.5Nm B
= s Hion]omﬁ i on joint 5 i on joint 6
£ oL-——— | J.‘Il.{____a__ ’ll|_|_____|.____4_____
) %2 External disturbances C]
Z
=10 A by a human operator
= 8 ———1’ ! A M M 3
x10~°
3 T y AT T Tox10¢ " ' ]
s Peak of, Peak of* 3 D
o 2 | 8e-5 3.2e-5 Peak of 2 1
a 1 M 71e6%
ob——_ Ml
0 2 4 6 10

Time [s]

Fig. 6. Experiment #3: Regulation case under external disturbances. The term
A D 5, denotes the computed parameter updates via (5), and T ¢ the artificial
external torques. No initial position and parameter errors are introduced in this
case. For CA+AVA/eAVA, the local-to-global controller transitions caused by
Tart are highlighted by the shaded rectangles. The dashed circles mark the
moments when EZ* of the joints 3, 5, and 6 starts to increase, respectively,
yielding the global-to-local controller transition.

of disturbances on parameter adaptation, while a smaller K ;
is chosen for more compliance. The metric (5) is utilized to
compute the sum of parameter updates of all links at each time
step, i.e., AD(tg) = Zzzl D(mi, o, i, ) The results
are shown in Fig. 6. To provide reproducible test conditions,
artificial external torques are generated on the joints 3, 5, and 6
via additional motor commands (Fig. 6B). These impulse-like
torques approximate the sudden impacts exerted on the robot
due to collisions. Moreover, the robot is pushed by a human
operator at the elbow joint; the resulting disturbance torques
are shown in Fig. 6C. From Fig. 6A and the accompanying
video, it can be observed that with CA+AVA/eAVA the robot
behaves more compliantly under external disturbances, as
compared to using CA only. Furthermore, due to the local-
to-global controller transition, as highlighted by the shaded
rectangles, AVA-based approaches feature less severe param-
eter drift (Fig. 6D). Note that the high-frequency, artificial
external torques are considerably attenuated in the prediction
error due to the low-pass filter (Fig. 6C); thus, they do not
impede the local-to-global controller transition of CA+eAVA
via the uncertainty measure. On the other hand, applying
CA+eAVA with a; = 0.12 results in less compliance under the
low-frequency physical interaction with the human operator.

V. CONCLUSION AND DISCUSSION

This letter presented an adaptive control framework that
incorporates: 1) the composite adaptive control scheme with
the natural adaptation law to effectively handle model un-
certainties, and 2) the AVA technique to smoothly modify
feedback action according to both control errors and system
uncertainties. An extended AVA was proposed involving an
uncertainty measure in the variance adaptation, thereby allow-
ing the proposed framework to anticipate significant model-
ing errors and prevent unnecessary performance degradation.
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The global convergence and boundedness properties of the
closed-loop system have been formally proved. The proposed
framework was validated through experiments on a 7-DOF
torque-controlled robot and comprehensively compared with
several baseline schemes. As demonstrated by the experimen-
tal results, our framework can cope with both large modeling
and control errors simultaneously, while it generally avoids
extreme control commands and improves robustness against
external disturbances. For future work, our approach can be
extended to include nonparametric regression algorithms, sim-
ilarly to semi-parametric learning [29], in order to counteract
nonparametric uncertainties.

APPENDIX

The main results of [27] are recalled here to assist in the
proof of Proposition 1.
Theorem 1: [27] Consider the interconnected system

d';l = fl(wlu $27U1) (333)
@2 = f2(331, o, UQ) (33]3)
where,  for i=1,2, x; € R™, u; € R™, and

it R™ xR™ x R™ — R™ is locally Lipschitz. Assume
that, for © = 1,2, there exists an ISS-Lyapunov function V;
for the x;-subsystem such that the following holds:

1) there exist functions ¢;1, G2 € Koo such that
da(llzill) < Vi(mi) < ga(l|il]), Vs € R™

2) there exist functions «; € Koo, Xi,pi € K, such that
Vi(z1) > max {x1 (Va(z2)) . p1([|lu1ll)} implies

oV;

aimifﬂwl,wz,ul) < —a1(V1),
and Va(x2) > max {x2 (Vi(x1)), p2([luzl))}

ov,

g folxi, @2, u2) < —2(V) ;

3) x1ox2(r) <r,Vr>0,or xaoxi(r) <r, Vr>0.

Then, the system (33) is ISS with respect to the state
[z, 2T]T € R and the input [ul jul]" € R™1+m2,
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