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In the near term, programming quantum computers will remain severely limited by low quantum
volumes. Therefore, it is desirable to implement quantum circuits with the fewest resources possible.
For the common Clifford+T circuits, most research is focused on reducing the number of T gates,
since they are an order of magnitude more expensive than Clifford gates in quantum error corrected
encoding schemes. However, this optimization sometimes leads to more 2-qubit gates, which, even
though they are less expensive in terms of fault-tolerance, contribute significantly to the overall circuit
cost. Approaches based on the ZX-calculus have recently gained some popularity in the field, but
reduction of 2-qubit gates is not their focus. In this work, we present an alternative for improving
2-qubit gate count of a quantum circuit with the ZX-calculus by using heuristics in ZX-diagram
simplification. Our approach maintains the good reduction of the T gate count provided by other
strategies based on ZX-calculus, thus serving as an extension for other optimization algorithms. Our
results show that combining the available ZX-calculus-based optimizations with our algorithms can
reduce the number of 2-qubit gates by as much as 40 % compared to current approaches using ZX-
calculus. Additionally, we improve the results of the best currently available optimization technique
of Nam et. al [22] for some circuits by up to 15 %.

1 Introduction

Many famous quantum algorithms, like Shor [26], HHL [13] or Grover [12], base upon techniques like
Quantum Fourier Transformation, Quantum Phase Estimation or Amplification, respectively. Although
these algorithms provide significant (sometimes even exponential) speed-ups, current quantum chips
can only execute toy problems, mostly due to the low gate fidelity. Even for problems that can be easily
solved on a state-of-the-art desktop PC, those algorithms require tens of thousands of gates, and are there-
fore infeasible to run on near-term quantum devices. However, applications in quantum simulation are
supposed to achieve significant improvements in quantum chemistry, material sciences, or high-energy
physics on near-term devices. With variational algorithms (e.g., QAOA [10] or VQE [25]), real-world
applications like optimization problems on real quantum chips may become feasible. While the associ-
ated speed-up is unknown for many use cases, they require only few qubits and quantum gates to achieve
promising results. Quantum Machine Learning (QML) is such an example: Here, the combination of
clever encoding strategies, variational algorithms, and classical pre- and post-processing achieves high
accurate classification rates with fewer qubits compared to classical bits.
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Still, even algorithms with smaller circuits cannot be executed on current devices and gate optimiza-
tion is a vibrant research topic. While global optimization of arbitrary quantum circuits is generally
QMA-hard [16], different algorithms like quantum optimal control [18] have been proposed to reduce
the size of a quantum circuit. In this context the so-called ZX-calculus [6] is considered a promising
tool. It provides an abstract graphical language for describing quantum systems and can be seen as an
alternative to the predominant description in the Hilbert space. We can transform any quantum circuit
into a ZX-diagram equivalent, apply the rules of the ZX-calculus to simplify the diagram, and re-extract
a quantum circuit from it.

Scope of this work

Our work is based on optimizing circuits with ZX-calculus, where several optimization strategies have
been proposed recently [9, 20, 27]. Currently, these strategies yield very good results for pure Clifford
circuits, as well as for T gate elimination in Clifford+T circuits, which is worthwhile for fault-tolerant
quantum computers with error-corrected gates. For such devices, the cost of a T gate is sometimes
estimated to be up to a hundred times higher than the cost of a CNOT gate [24] (even though recent
studies suggest lower rates [21]).

However, reducing 2-qubit gates is generally of interest for quantum hardware that is not error cor-
rected (e.g., NISQ devices) or in which quantum states do not tend to interact easily, e.g., in Photonic
Quantum computing [3]. A major drawback of the current ZX-calculus based strategies is that these
gates in particular are not optimized very well; in fact, for many large Clifford+T circuits, the 2-qubit
gate count even increases when using algorithms like the one in [9].

We propose new optimization approaches especially for reducing 2-qubit gates. To do so, we use
heuristics for estimating the 2-qubit gate count in ZX-diagrams as cost functions for classical search
algorithms like I.) random selection and II.) greedy algorithm. By combining them with existing opti-
mization approaches, we maintain the T gate count reduction rate and improve the total gate count and
the 2-qubit gate count for most given circuits. We evaluate the performance on circuits from the Tpar
benchmark [1]. We find that our optimizations can outperform existing ZX-based approaches and can
additionally be used to further improve already optimized circuits.

2 Background

Throughout this paper, we use the notation from [23] for quantum gates; the most essential ones are
detailed in Table 1 by name and matrix-, gate- and ZX-calculus-representation. Every unitary operation
can be decomposed into a combination of CNOTs and single-qubit gates [23]. A well-studied example
for a minimal gate set with which to approximate any unitary operation is the so-called Clifford+T set,
i.e., the gate set generated by {H,T,CNOT}. That is why many optimization algorithms target circuits
generated with the Clifford+T set. The Clifford set generated by {H,S,CNOT} is also well-known and
useful for quantum circuit simulations on classical computers, but not every unitary operation can be
represented with it. For convenience, we abbreviate some gates in the Clifford+T set, namely X ,Y,Z,S,
and CZ (instead of writing, for example, Z = T ·T ·T ·T ).

2.1 ZX-Calculus

Since ZX-calculus and its optimization strategies rely on graph theory, we provide some background
in Appendix B. The ZX-calculus [7, 8] is a graphical language for expressing linear maps on qubits as
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Table 1: Overview of important quantum gates and the respective ZX-Spiders.

Name Iden-
tity Z Z-Phase T X X-Phase H CNOT

Matrix (
1 0
0 1

) (
1 0
0 −1

) (
1 0
0 eiα

) (
1 0
0 e

iπ
4

) (
0 1
1 0

)
1
2

(
1+ eiα 1− eiα

1− eiα 1+ eiα

)
1√
2

(
1 1
1 −1

) 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Gate I Z Rz(α) T X Rx(α) H •

Spider/
Wire π α

π

4 π α or

ZX-diagrams. Relations in multi-qubit systems are often difficult to understand in Dirac notation, since
the matrix size doubles with every qubit and the complex number space quickly becomes confusing.

α

. . .

. . .n

m

α

. . .

. . .n

m
Z-Spider X-Spider

(1)

ZX-calculus provides a way to represent quantum circuits as 2-
dimensional diagrams where nodes (spiders) and edges (wires) form an
undirected graph. In contrast to quantum circuits, the number of input-
and output wires does not have to match, hence the resulting transforma-
tions are not necessarily unitary. However, many important concepts in
quantum mechanics follow very intuitively from this representation and we will briefly introduce the
main principles.

2.1.1 Representing Quantum Circuits

•

Z • Z = π π (2)

Any transformation on a single qubit can be described as a
rotation around the X and Z axes. Further, we can represent
any quantum gate as a combination of X- (red) and Z-spiders
(green) in ZX-diagrams (c.f. Eq. 1), of which the most im-
portant are shown in Table 1. We call the wires on the left- and rightmost the input and output of the
graph, respectively. The three generators of the universal Clifford+T set are constructed with the H-wire,
the Z-spider with phase π/4, and a combination of an empty X- and Z-spiders (phase α = 0) represent-
ing a CNOT. In general, we can read a ZX-diagram in any direction since only the connectivity of the
spiders matters, but for comparison with common quantum circuits it is convenient to read ZX-diagrams
horizontally as shown in Eq. 2.

2.1.2 Basic Rules

We introduce the most important transformation rules in the ZX language that are useful for optimiza-
tion [6] in Figure 1. All ZX-rules can be applied in both directions and also apply with inverted colors.

Any two Clifford diagrams (i.e., diagrams only containing spiders with a Clifford phase α = k · π

2 ;k ∈
Z) that represent the same linear map can be transformed into each other by some combination of those
rules. Recent developments have introduced rule sets where this is also possible for Clifford+T diagrams
and for all ZX-diagrams [17, 28].
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Figure 1: The important rules in ZX-Calculus that can be used for optimization are: Identity- (i1,i2),
Fusion- (f), Hadamard- (h), Bialgebra- (b), Pi- (π), Copy- (c) and Hadamard-Decomposition (hd) rule.
Each holds for all α,β ∈ [0,2π]. Due to (h) and (i2), all rules hold with the colours interchanged.

3 Circuit optimization with ZX-calculus

With the rules of ZX-calculus, the optimization of quantum circuits becomes a simplification problem
on the ZX-diagram. By simplification we mean reducing the total number of either spiders or wires in a
diagram in order to obtain a smaller diagram. The general process is as follows:

1.) Transform the circuit to a ZX-diagram

2.) (optional:) transform to a graph-like diagram, i.e.:
• All spiders are Z-spiders.
• All connections are Hadamard wires.
• There are no loops.
• Inputs and outputs are the only non-Hadamard

wires and are connected to at most one spider.
Every spider has at most one input and one out-
put.

3.) Simplify the diagram using ZX-rules.

4.) Extract a quantum circuit out of the ZX-diagram.
This allows powerful optimization of circuits, which are not obvious at a first glance (we provide an
intuitive example in Appendix C).

3.1 Diagram simplification

The presented ZX-rules allow many degrees of freedom, hence, simplification is still a difficult problem.
The term “simplification of diagrams” has to be taken with a grain of salt since decreasing the number
of spiders in a diagram can also lead to more complex extracted circuits. Since rules can be applied
in both directions it is important to find terminating algorithms for diagram simplification. A common
approach has been to only use ZX-rules which decrease the total number of spiders in a diagram with
every application, thus ensuring termination. We present some common approaches, many of which are
implemented in the PyZX-library [19].

3.1.1 Clifford spider simplification

The core of most strategies are two rules from graph theory – namely local complementation and pivot-
ing – which work on diagrams that are graph-like. Both rules allow the elimination of interior Clifford
spiders (phase 0,π/2,π, or −π/2; not connected to an input or output) from ZX-diagrams.
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α1± π

2

α2 α3

=
α1∓ π

2

α2∓ π

2 α3∓ π

2

a
(lc)

(3)

Local complementation (lc) In ZX-calculus, local complementa-
tion from Section B.1 is applicable on graph-like diagrams. If the
spider a in G ⋆ a has a phase of ±π/2, the phase is subtracted from
those of the neighboring spiders and the spider is eliminated for sim-
plification of the diagram as shown in Eq. 3.

Pivoting (p) Similarly we can eliminate a pair of spiders uv with phase 0 or π by applying a graph-
theoretic pivot G∧uv (c.f. Section B.2) on the diagram as in the following example ( j,k ∈ Z):

α2

α1 jπ kπ γ1

β1 γ2

(p)
=

α ′1

α ′2 γ ′2

β ′1

γ ′1
α ′i = αi + kπu v

β ′i = βi +( j+ k+1)π
γ ′i = γi + jπ

(4)

3.1.2 Clifford simplification algorithm

These rules allow constructing an algorithm for graph-like diagrams which removes most interior Clif-
ford spiders [9]. The procedure is as follows:

1. Eliminate empty spiders with two wires using the identity rule and subsequently fuse the adjacent
spiders in order to maintain a graph-like diagram.

2. Apply local complementation on every spider of phase ±π/2 and pivoting on every pair of con-
nected spiders of phase 0 or π as often as possible.

3. If step 2 modified the diagram, start again with step 1, else stop the iteration.

That allows us to remove every interior spider with phase±π/2 and every pair of connected spiders with
phase 0 or π . However, after simplification some interior Clifford spiders with phase 0 or π may remain.

3.1.3 Phase gadget simplification (p2)

α . . .

phase gadget

(5)

We can use phase gadgets to apply pivoting on a pair of spiders where one spider
has a non-Clifford phase (̸= 0,π/2,π,−π/2). A phase gadget as defined in [20]
is a parameterized spider with only one wire connected via Hadamard edge to a
phaseless spider as in Eq. 5.

We can modify pivoting (Eq. 4) to exchange the spider with a non-Clifford phase to a phase gadget:

α2

α1 jπ σ γ1

β1 γ2

(p2)
=

u v
β ′i = βi +( j+1)π
γ ′i = γi + jπ

σ ′ = (−1) jσ
α1

α2 γ ′2

β ′1

γ ′1

σ ′ ← phase gadget

(6)

With the additional rules in Appendix A, we can eliminate every interior Clifford spider in a diagram [20].

3.2 Circuit extraction

Extracting a quantum circuit from a simplified diagram can be challenging, since spiders with an arbi-
trary number of wires have no direct gate representation [2]. The most general circuit extraction rou-
tine makes use of so called “flow properties” originating in measurement-based quantum computing
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(MBQC). Graph-like ZX-diagrams can be seen as an extension of MBQC graph states where the phases
of spiders represent measurements in either the XY, XZ or YZ plane of the Bloch sphere:

meas. plane XY XZ YZ

meas. effect α α
π

2 = α
π

2 α = α

(7)

Diagrams simplified with the Clifford simplification algorithm from [9] only contain spiders in the XY
measurement plane and preserve a flow property called focused generalized flow (gflow). Those diagrams
can be extracted by converting every spider with phase α to an Rz (α) gate and a Hadamard wire as either
a H or CZ gate or a combination of CNOT gates. As an example consider the diagrams from Eq. 4.
Extracting the diagram on the left hand side yields the following circuit:

RZ(α1) H • • RZ( jπ) H • • RZ(kπ) H RZ(γ1)

• RZ(α2) H • • RZ(β1) H • RZ(γ2)

(8)

whereas extracting the diagram after rule application yields the equivalent smaller circuit:

• RZ(α
′
1) H RZ(β

′
1) H • RZ(γ

′
1)

RZ(α
′
2) H • RZ(γ

′
2)

(9)

However, ZX-diagrams simplified with Eq. 6 may contain spiders in XZ and Y Z plane as well. While it
has been shown that those diagrams still preserve generalized flow (gflow), the circuit extraction routine
has to convert those spiders back into XY spiders using either pivoting (Y Z) or a combination of local
complementation and pivoting (XZ) before extracting the diagram [2]. An algorithm to efficiently extract
diagrams that do not admit the gflow property is yet to be discovered; however, recent findings suggest
that such an algorithm may not exist for general ZX-diagrams [4]. Hence, even though the diagram may
represent a unitary matrix, we cannot extract a quantum circuit from the diagram efficiently.

4 Enhancing reduction of 2-qubit gates

As seen in Eq. 8 and 9, a Hadamard wire gets extracted to H, CNOT or CZ gates. The number of
Hadamard wires in a graph-like ZX-diagram therefore correlates with the number of 2-qubit gates in the
extracted circuit. The diagram simplification algorithms shown in Section 3 focus on eliminating spiders
while neglecting – or even increasing – the number of Hadamard wires. Hence, this section introduces
methods which additionally minimize the amount of Hadamard wires (ref. as #wires in the following).

π

π

2

- π

2

π

4

π

4

π

- π

2

π

4

(lc)
=

π

2

π

π

4

π

4

- π

2

- π

2

π

2

- π

2

π

π

4

- π

2 (10)

To do so, it is crucial to examine where and when
local complementation and pivoting are applied. Both
rules can either increase or decrease #wires, depend-
ing on the connectivity of the relevant neighbors. Eq. 3
and 4 show examples in which #wires decreases. How-
ever, as Eq. 6 shows it can also increase #wires and we easily construct extreme cases like the one
shown in Eq. 10. Applying local complementation to the central spider with phase π/2 yields a diagram
containing one spider less but a significantly higher #wires. Extracting the left diagram with the current
version of the PyZX-library produces a circuit with six 2-qubit gates, while the diagram on the right gets
extracted as a circuit with 21 2-qubit gates. Generally, applying local complementation on a spider with



Staudacher K., Guggemos T., Gehrke W., Grundner-Culemann S. 7

n unconnected neighbors leads to n(n+1)
2 −n new wires. As pivoting involves local complementation on

two spiders, the effect usually even worsens for this rule.
To prevent such cases and to guide the simplification process towards a minimal #wires, we intro-

duce cost functions for local complementation and pivoting allowing us to calculate #wires after rule
applications. We take those as a heuristic for estimating how rule applications change the number of
2-qubit gates and implement decision strategies for diagram simpliciation based on the heuristics.

4.1 Pivoting and local complementation on spiders with arbitrary phases

α3

± π

2 α1

α2

(lc)
=

α1∓ π

2

α2∓ π

2α3∓ π

2

β ∓ π

2

∓ π

2
α1β

α2 α3

( f ,i2,i1)
=

β ∓ π

2

(11)

In contrast to the Clifford simplification algorithm from Sec-
tion 3, we can apply local complementation and pivoting on
spiders with arbitrary phases. Similar to the Pivot Phase
Gadget (p2) rule, we can change a spider with non-Clifford
phase by a combination of the rules ( f , i2, i1) as in Eq. 11.
With that we can apply local complementation on spiders with phase different from ±π/2 (this intro-
duces one XZ-spider) and pivoting on pairs of spiders where one/no spider has a phase of 0 or π (this
introduces one/two Y Z-spiders). Note that this does not change the gflow property (c.f. [2, Lemma 3.1]).

4.2 Local Complementation Heuristic (LCH)

The costs for local complementation are calculated on the following proposition:

Proposition 4.1 Let G = (V,E) be an open graph; u ∈V an arbitrary vertex with neighbors N (u)⊂V ;
n = |N (u)| the number of neighbors; and m the number of edges between the neighbors, i.e.,

m = |{(a,b) ∈ E|a,b ∈ N (u)}| .

For G⋆u, n remains the same, but m changes to m′ =△n−1−m, where△n−1 =
n(n−1)

2 .

Hence, the difference in the number of wires after application of the local complementation rule is:

(n+m)− (n+(△n−1−m)) = 2m−△n−1 (12)

With respect to the phase ϕ(u) of the spider u, the graph changes as follows:

• If ϕ (u) =±π/2: Remove u from the graph and eliminate all wires between u and N(u).

• If ϕ (u) is non-Clifford: All wires between u and N (u) remain and we get an additional wire for
the phase gadget.

• If ϕ (u) is 0 or π: No phase gadget is needed and we can use the π-copy rule.

The LCH is calculated as follows:

LCH (u) =


2m−△n−1 +n if ϕ (u) =±π

2

2m−△n−1 if ϕ (u) = k ·π,k ∈ Z
2m−△n−1−1 otherwise

(13)
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4.3 Pivoting Heuristic (PH)

We calculate the upper bound of new connections with the sets A,B,C (see Appendix B):

Cmax = |A| · |B|+ |A| · |C|+ |B| · |C| (14)

We denote the number of neighbors of u and v by nu = |N(u)| and nv = |N(v)|, respectively, and the
number of edges between neighbors of different sets as m.

The changes of the graph G to G∧uv have the following cases ( j,k ∈ Z):

(C1) ϕ (u) = j ·π,ϕ (v) = k ·π: If both spiders have a phase of 0 or π , all connections between {u,v}
and N (u)∪N (v) are eliminated.

(C2) ϕ (u) = j ·π,ϕ (v) ̸= k ·π: If v becomes a phase gadget and u gets eliminated, all neighbors of u
get connected to v and we have an additional wire for the phase gadget.

(C3) ϕ (u) ̸= j ·π,ϕ (v) = k ·π: If u becomes a phase gadget and v gets eliminated, all neighbors of v
get connected to u and we have an additional wire for the phase gadget.

(C4) ϕ (u) ̸= j ·π,ϕ (v) ̸= k ·π: If both spiders become phase gadgets, all neighbors of u get connected
to v and all neighbors of v get connected to u. Furthermore, u gets connected to v again and we
have two more wires for the phase gadgets.

With these conditions, the PH is calculated as follows:

PH (u,v) =


2m−Cmax +nu +nv−1 for (C1)
2m−Cmax +nv−1 for (C2)
2m−Cmax +nu−1 for (C3)
2m−Cmax−2 for (C4)

(15)

4.4 Decision strategies

With the two heuristics (LCH,PH) at hand we can now implement different strategies to decide where
and when local complementation or pivoting are applied during the simplification. A single simplification
step in our procedure consists of the following actions:

1. Filter all possible rule applications of the current ZX-diagram.

2. Select rule according to selection strategy (see below).

3. Apply rule on the ZX-diagram.

For filtering rule applications we can specify a lower bound for the heuristic, e.g., LCH or PH = −5
says that we do not consider rule applications which increase #wires by more than five. We can also
specify whether rule applications are allowed on boundary spiders (c.f. Appendix A) and whether rules
are allowed on arbitrary phased spiders. For selecting a rule we implemented two different strategies:

• Random selection: Rules are chosen by a random coin flip.

• Greedy selection: Chooses the rule application which maximally decreases #wires.

Each algorithm terminates if we allow only rule applications with a LCH/PH > 0 and when there is
no rule left that decreases #wires. They also terminate if we allow negative gains (LCH/PH ≤ 0) and
restrict the matches to interior spiders that do not generate new spiders. This is the case in standard local
complementation on a spider with phase ±π/2 and pivoting on a pair of spiders with phase 0 or π . The
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algorithm eliminates at least one spider in every step and terminates when neither interior spiders with
phase ±π/2 nor pairs with phase 0 or π are left.

On the other hand, allowing rule applications on spiders of arbitrary phases which increase #wires
may result in loops and therefore no termination. For such cases we only allow rule applications which
increase #wires on spiders present since the very beginning of our simplification procedure. On newly
generated spiders only rules which decrease #wires are allowed.

5 New optimization rule: Neighbor Unfusion

As shown in Eq. 6, the application of local complementation (lc) and pivoting (p) on spiders with many
neighbors can not only decrease but also increase #wires. The heuristics shown in Section 4 may help to
identify and prevent extreme cases as in Eq. 10. However, spiders that are measured in Y Z- or XZ-plane
(c.f. Section 3.2) require special attention: When extracting a spider in Y Z-plane (e.g., the empty spider
of the phase gadget in Eq. 5 and 6), pivoting has to be applied to maintain the focused gflow property.
The same happens for spiders in XZ-plane, but they are resolved by local complementation [2]. This
affects #wires after the simplification and a simplified diagram containing some spiders in Y Z- and
XZ-plane may result in an expensive circuit.

However, when applying either rule on diagrams with arbitrary spiders as discussed in Section 4.1),
spiders in Y Z- or XZ-plane are generated. We introduce the neighbor unfusion (nu) rule, which allows
lc and p on such arbitrary-phase spiders without introducing spiders in Y Z- or XZ-plane.

α β

. . . . . .

. . .. . .

(nu)
= γ β

. . . . . .

. . .. . .
α− γ (16)

Neighbor unfusion combines the fusion ( f ) and iden-
tity rules (i1, i2) as shown in Eq. 16. If a spider with phase
α is connected to a neighbor, we change its phase to an
arbitrary phase γ by inserting an empty spider and a spider with phase α− γ between the spider and its
neighbor. It allows changing the phase of an arbitrary spider to γ =±π

2 and thus local complementation
and removal of spiders with arbitrary phases.

α3

± π

2

α2

(lc)
=

β ∓ π

2α1β

α2 α3

(nu)
=

α1

α3∓ π

2 α2∓ π

2

β ∓ π

2 α1∓ π

2

(17)For illustration, we apply neighbor unfusion (nu)
to the example of Eq. 11. We can move the β spider to
any direction (in Eq. 17 towards α1), so it is then not
affected by the application of local complementation (lc). Comparing Eq. 11 and Eq. 17 we see that we
not only reduce #wires, but also prevent the generation of a spider in XZ-plane. However, the neighbor
unfusion rule sometimes leads to diagrams which do not have focused gflow property. This is due to
the insertion of the empty spider and the spider with phase α − γ in 16. We observed that this problem
does not occur if the spiders with phase α and β get extracted to the same qubit. Currently, we find
such pairs of spiders by using the flow hierarchy of the maximally delayed gflow of the diagram (c.f. [2]),
which is quite costly, because we need to recalculate the gflow at each simplification step. Therefore,
diagram simplification with neighbor unfusion has a much higher runtime than the other simplification
procedures. It is an open question whether neighbour unfusion can only destroy the focused gflow
property, or also more general flow properties like gflow or Pauli flow.

6 Evaluation

We evaluate our heuristic-based simplification algorithms on a set of circuits first used in [1]. They
implement various arithmetic problems as quantum circuits and were used as a benchmark set for com-
paring different optimization strategies [20, 22]. We use it to compare our heuristic-based approaches
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Table 2: Circuit metrics for original benchmark circuits, Post-optimization metrics of the standard Clif-
ford simplification [9], PyZX [20], Nam et al. [22], our heuristic-based simplification method, and the
combined approach of Nam et al. and our heuristic-based methods. Only our best optimization is pre-
sented: 1) Greedy, 2) Random, 3) Greedy with neighbor unfusion, 4) Random with neighbor unfusion,
the lower bound for the heuristics is denoted in brackets. If the best PyZX result is achieved by the t|ket⟩-
library, the respective cell is marked with ⋆. The best results of each metric in each row are marked.

Circuit Original Clifford algorithm PyZX/t|ket⟩⋆ Nam et al. Heuristic algorithm Nam+Heuristic
Σ 2Q Σ 2Q Σ 2Q Σ 2Q Σ 2Q Alg. Σ 2Q Alg.

Mod 54 63 28 36 21 24⋆ 12⋆ 51 28 41 23 2(-20) 38 23 3(1)
VBE-Adder3 150 70 116 59 101 54 89 50 87 42 3(1) 87 42 4(1)
CSLA-MUX3 170 80 177 97 156 75 155 70 155 74 3(-5) 156 67 3(1)
CSUM-MUX3 420 168 455 271 327⋆ 158⋆ 266 140 303 150 3(1) 266 140 1(1)
QCLA-Com7 443 186 397 223 316 148 284 132 295 138 4(-5) 275 132 1(1)
QCLA-Mod7 884 382 903 475 717 324 - - 705 311 4(-20) - - -
QCLA-Adder10 521 233 562 305 435 199 399 183 417 193 4(-20) 398 182 4(1)
Adder8 900 409 779 429 675 339 606 291 597 295 4(1) 514 256 4(1)
RC-Adder6 200 93 206 113 393⋆ 164⋆ 140 71 159 71 1(1) 152 71 1(1)
Mod-Red21 278 105 260 130 217 93 180 77 196 85 3(1) 179 76 1(1)
Mod-Mult55 119 48 124 74 91 42 91 40 90 40 1(1) 90 41 1(1)
Toff-Barenco3 58 24 50 26 59⋆ 18⋆ 40 18 46 21 1(1) 40 18 3(-5)
Toff-NC3 45 18 41 20 40 16 35 14 36 15 3(1) 35 14 1(1)
Toff-Barenco4 114 48 117 60 95 44 72 34 88 40 4(1) 72 34 3(1)
Toff-NC4 75 30 86 43 65 26 55 22 57 24 3(1) 55 22 1(1)
Toff-Barenco5 170 72 149 86 140 66 104 50 122 57 4(1) 102 48 3(1)
Toff-NC5 105 42 92 42 90 36 75 30 78 33 3(1) 75 30 1(1)
Toff-Barenco10 450 192 392 196 365 176 264 130 325 151 4(1) 252 118 3(1)
Toff-NC10 255 102 237 100 215 86 175 70 183 78 3(1) 175 70 1(1)
GF(24)-Mult 225 99 245 140 193 99 187 99 195 101 2(1) 180 98 3(-5)
GF(25)-Mult 347 154 351 197 304 154 296 154 306 156 1(1) 289 155 4(-20)
GF(26)-Mult 495 221 545 308 422 221 403 221 418 217 4(-5) 390 218 3(-5)
GF(27)-Mult 669 300 736 417 573 300 555 300 572 299 4(-5) 535 292 4(-20)
GF(28)-Mult 883 405 1015 606 745 405 712 405 745 405 1(1) 691 399 1(1)

Avg. reduction ∼ 3% ∼−22% ∼ 14% ∼ 9% ∼ 27% ∼ 19% ∼ 23% ∼ 16% ∼ 29% ∼ 21%

with the Clifford simplification algorithm described in [9], and some of the best results reported for cir-
cuit optimizations with [20] and without using ZX-calculus [22]. We also investigate how ZX-calculus
based approaches perform when using the TODD-algorithm [14] for additional T gate reduction.

6.1 Implementation

With the exception of [20] – which omits simplifying the diagram (step 3) and extraction (step 4) – we
use the following pipeline for ZX-calculus based optimization algorithms:

1. Optimize circuit using gate cancellation and commutation.

2. Transform circuit to ZX-diagram and apply phase teleportation to reduce T-count (as in [20]).

3. Simplify ZX-diagram (standard Clifford or heuristic-based simplification).

4. Extract circuit from ZX-diagram.

5. Optimize circuit as in step 1.
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Since our heuristic-based algorithms do not reduce T gates, we always apply the phase teleportation in
step 2 since this reduces T gates as far as currently possible with ZX-calculus. This ensures comparable
results regarding the 2-qubit gate count against non-ZX-calculus based approaches that optimize all
types of gates. We implemented our algorithms in a clone of the PyZX library which also contains our
optimized circuits in the OpenQASM format1. All results were proven to be correct by checking whether
the optimized circuit together with the adjoint of the original circuit can be reduced to the identity.

6.2 Results

Table 3: Circuit metrics for the original bench-
mark circuits, Post-optimization metrics for
PyZX+TODD and of our heuristic-based algo-
rithms+TODD.

Circuit Original PyZX+TODD Heuristic+TODD
Σ 2Q T Σ 2Q T Σ 2Q T Alg.

CSLA-MUX3 170 80 70 262 175 43 257 169 43 2(1)
CSUM-MUX3 420 168 196 575 428 74 411 261 74 4(-5)
QCLA-Com7 443 186 203 454 274 93 389 211 93 4(1)
QCLA-Adder10 521 233 238 800 517 143 677 391 143 4(-20)
Mod-Mult55 119 48 49 107 56 27 104 55 27 4(-5)
GF(24)-Mult 225 99 112 298 221 52 295 220 52 1(-5)
GF(25)-Mult 347 154 175 538 420 88 524 403 88 3(1)
GF(26)-Mult 495 221 252 943 764 134 933 750 134 3(1)
GF(27)-Mult 669 300 343 1253 1036 180 1223 993 180 4(1)
GF(28)-Mult 883 405 448 1791 1521 224 1780 1507 224 3(1)

For each circuit we compare the total gate count
Σ and the 2-qubit gate count 2Q. The results are
summarized in Table 2 and 3: Their columns show
circuit name, metrics of the original circuit of the
benchmark, metrics of one (or more) existing op-
timization algorithms and the metrics of the best
performing heuristic-based algorithm. For the lat-
ter, we denote the simplification strategy achiev-
ing the best result in the last column: 1. Greedy,
2. Random, 3. Greedy with neighbor unfusion,
4. Random with neighbor unfusion.

As a very first result, the last column in the
“Heuristic Algorithm” section of Table 2 promi-
nently indicates the great value of neighbor unfu-
sion (Alg. 3 and 4), as it achieves the best performance of our heuristics in > 70% of the cases.

We now compare our heuristic-based simplifications following against other ZX-calculus based opti-
mizations in Table 2. For most circuits our heuristic-based simplification clearly outperforms the standard
Clifford simplification [9], both in total and 2-qubit gate reduction. Moreover, while our approaches al-
most always decrease circuit metrics, the standard approach often yields circuits with higher metrics than
the original circuit (e.g.,“CSLA-MUX3”, “GF(26)-Mult”). Especially for 2-qubit gates our approaches
decrease 2-qubit gate count by 16%, while the standard approach even increases the count by 22%. In
a direct comparison our approaches have up to 33% (“Toff-NC4”) fewer total and 47% (“Mod-Mult55”)
fewer 2-qubit gates than the standard Clifford approach.

Second, we compare against the best available PyZX implementation [20] and the recommended op-
timization pipeline of the t|ket⟩-library [27] with the routines PauliSimp and FullPeepholeOptimize,
which use similar strategies. The column “PyZX/t|ket⟩” in Table 2 shows the best optimization results
for both implementations and ⋆ indicates results from t|ket⟩. Except for two circuits (“Mod 54” and
“Toff-Barenco3”), our algorithms outperform all ZX-calculus based algorithms in terms of total gate
count and 2-qubit gate count.

Third, Table 2 also shows our result in comparison to the cutting-edge non-ZX-calculus based algo-
rithm from Nam et al. [22]. It can be seen that the algorithm from [22] outperforms any ZX-calculus
based algorithm for most circuits. Still, we were able to achieve better results for the circuits “VBE-
Adder3” and “Mod-Mult55”. Note that we did not compare for the “QCLA-Mod7” circuit, because [15]
reports that the optimized circuit from [22] does not correspond to the original.

Last, the rightmost columns of Table 2 show a combination of Nam et al’s approach with ours. We

1https://github.com/mnm-team/pyzx-heuristics

https://github.com/mnm-team/pyzx-heuristics
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use the output circuits from the Nam et al. optimization as input for our algorithms and observe that we
achieve equally good or better results for almost all circuits. The larger the circuit, the more significantly
this combination improves the previous best known results. Most notably, we improve the total count of
the “Adder8” circuit by more than 15% and the 2-qubit gate count by more than 12%.

Apart from the 2-qubit gate count, the T gate count of a quantum circuit is an important metric,
since T-gates are more complex to implement for an error-corrected quantum computer. Therefore, we
compare our algorithms to the other ZX-calculus based approaches using the TODD algorithm as opti-
mization step 1). It is designed to reduce T gate count by introducing ancilla qubits, but sometimes also
reduces T-gates in the ancilla-free case. Table 3 shows those benchmarks circuits where the combination
of TODD and a ZX-calculus based algorithm reduces T gate count even more compared to the best result
in Table 2. We compare the best combination of our heuristic-based algorithm and TODD against the
best combination of an existing ZX-calculus based algorithm and TODD.

While we observe a general increase in 2-qubit and total gates using TODD algorithm, our best
algorithm yields better results than the existing ZX-calculus based algorithms in every case.

7 Conclusions and Future Work

In this work we introduce two functions, namely the Local Complementation Heuristic LCH (for the
local complementation rule) and the Pivot Heuristic PH (for the pivot rule). The functions calculate the
number of Hadamard wires that would be added or removed by applying the respective rule, thus serving
as a heuristic for estimating the 2-qubit gate count of the underlying circuit. This allows us to develop
a more sophisticated strategy for ZX-diagram simplification: First, dismiss the applicable rules that cost
too much and then either select a rule randomly or select the rule with the best wire count decrease.

Notably, the T gate count remains unchanged throughout this process, which is why our approach
and others that mainly decrease the T gate count complement each other well. Further, we introduce
the new Neighbor Unfusion rule which combines the established fusion and identity rules. This rule
allows introducing spiders with arbitrary phases into the circuit if needed, for example when the local
complementation or pivot rule would be useful to reduce Hadamard wires. As a side note, we also
formally describe how to use the local complementation and the pivoting rule on spiders with non-
Clifford phases, which is a common implementation practice but has never been mentioned in theory.

We measure the impact of aligning the optimization strategy with the heuristics and adding the neigh-
bor unfusion rule by comparing our algorithm to four other approaches, some based on ZX-calculus and
some not, on a set of 24 well-established benchmark circuits. Our approaches show significant improve-
ments compared to all other ZX-based approaches, especially in 2-qubit gate reduction. On their own,
non-ZX-based approaches still yield slightly better results than our ZX-based approaches. However,
when combining both we are able optimize circuits better than the previously best known result, which
seems to be a promising field for further research.

Using heuristics for ZX-diagram simplification also provides many possibilities for future improve-
ment. Regarding the selection of rules, both random and greedy strategy are non-optimal for finding a
ZX-diagram with minimal number of wires. Instead, we propose using a metaheuristic selection strategy
like simulated annealing for escaping local minima during simplification. Furthermore, since simplifica-
tion with neighbor unfusion tends to yield the best results, we think it is important to further investigate
in which cases neighbor unfusion generates XY spiders and if we can preserve valid ZX-diagrams when
allowing unfusion on spiders which get extracted on different qubits.
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A Further rules

In addition to the rules in Section 3, additional rules have been developed to eliminate every interior
Clifford spider.

A.1 Pivoting Boundary Spiders (p1)

The pivoting rule can also be applied if one of the spiders is a boundary spider, i.e., connected to an input
or output, using the following transformation:

jπ kπ =
(i1, i2)

jπ kπ

. . . . . . . . . . . .

u v u v

. . . . . .

=
(p)

(18)

Here v gets transformed to an interior spider and both u and v can be removed using the pivoting rule.

A.2 Gadget Fusion (gf):

α

β

α1

αn

α +β...

α1

αn

...
(g f )
= (19)

An important feature of phase gadgets is that we can fuse two
phase gadgets connected to the same neighbors by summing
up their phases.

This rule is used for eliminating non-Clifford spiders in
a diagram, for instance, two phase gadgets with phase π/4 connected to the same set of neighbours can
be fused into a single phase gadget with phase π/2. Combining the Clifford simplification algorithm
with those extended rules we can eliminate all interior Clifford spiders (in exchange for phase gadgets)
and some interior non-Clifford spiders.
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B Graph Theory

Since ZX-calculus and its optimization strategies rely on graph operations on undirected graphs, we
provide some background on it: An undirected graph is a tuple G = (V,E) with vertices (or “nodes”) V
and edges E ⊆V ×V .

B.1 Local Complementation

The local complementation ⋆ [5] of an undirected graph G = (V,E) about a vertex u is defined as follows
(∆ is the symmetric set difference: A ∆ B := (A∪B)\(A∩B)):

G⋆u := (V,E ∆ {(a,b) |(a,u) ,(b,u) ∈ E,a ̸= b}) (20)

The following example shows a graph G and its local complementation about a. Intuitively, local
complementation connects two neighbours of a if they are not connected (e.g., b,c) and disconnects
them otherwise (e.g., c,d).

G = (G⋆a) =

a b

c d

a b

c d (21)

B.2 Pivoting [11]

Pivoting ∧ rewrites an edge (u,v) ∈ E by triple local complementation:

G∧uv := ((G⋆u)⋆ v)⋆u (22)

To derive the new graph, we consider three disjoint sets (where the neighborhood of vertex x is defined
as N(x) = {y ∈V |(x,y) ∈ E}):

• A := N(u)∩N(v): Vertices connected to u and v.

• B := N(u)\N(v): Vertices connected to u and not to v.

• C := N(v)\N(u): Vertices connected to v and not to u.

In a pivoted graph G∧ uv, two vertices from different sets A,B or C are connected if, and only if, the
two are not connected in G. Connections between vertices of the same set are not modified. As an
example, consider the following graphs G (left) and G∧uv (right), where A= {b},B= {a,d},C = {c,e}.
Intuitively, pivoting connects all vertices between A,B,C that are not connected in G (e.g., a,b) and
disconnects them otherwise (e.g., b,d):

a

d

u v

c

e

b
G∧uv−−−→

a

d

v u

c

e

b

(23)
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C Example for ZX optimization

The following circuit can be optimized as follows:

• Z • Z

• X

X

=

•

X • (24)

We use the following rules2 (the affected spiders/wires to which a rule is applied are framed):

1) Eliminate the two Z-gates using spider fusion (f):
π

π π

π

(f)−→ π

π

2) Reduce from 3 to 2 CNOTs with fusion (f) and bial-
gebra rule (b):

(f)−→ π

π

(f)−→ π

π

(b)−→ π

π

3) Eliminate one X by the π copy rule:
(π)−−→ π

π

π

(f)−→ π

2The example is inspired by a talk of Russ Duncan “Quantum Formal Methods” from 2021 (1h 35min) which is publicly
available.
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