
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works. This is the author’s version of an article that has been published in the conference
proceedings. The final version of record is available at https://doi.org/10.1109/ICCWorkshops53468.2022.9814543

https://doi.org/10.1109/ICCWorkshops53468.2022.9814543


Entropy of Transmitter Maps in Cooperative
Multipath Assisted Positioning

Markus Ulmschneider, Christian Gentner and Armin Dammann
German Aerospace Center (DLR), Institute of Communications and Navigation

Muenchner Str. 20, 82334 Wessling, Germany
{markus.ulmschneider,christian.gentner,armin.dammann}@dlr.de

Abstract—In multipath assisted positioning, multipath compo-
nents (MPCs) are regarded as line-of-sight (LoS) signals from
virtual transmitters. The locations of physical and virtual trans-
mitters are typically unknown, but can be estimated jointly with
the location of a mobile terminal using simultaneous localization
and mapping (SLAM). When users cooperate by exchanging
maps of estimated positions of physical and virtual transmitters,
the positioning performance can be improved drastically. Within
this paper, we investigate such transmitter maps that are shared
among users. We derive an approximation of the entropy of
transmitter maps that is based on the unscented transform and
analyze the evolution of this entropy over time. Our simulations
indicate that the transmitter maps converge quickly.

Index Terms—cooperative Channel-SLAM, cooperative posi-
tioning, entropy, maps, simultaneous localization and mapping

I. INTRODUCTION

Multipath propagation has for a long time been regarded
an inhibiting factor in wireless localization systems. Using
standard algorithms based on the time of arrival (ToA) for
example, multipath components (MPCs) tend to bias range
estimates and therefore decrease the localization performance
[1]. In particular in urban canyons and indoors, where much
multipath propagation can be expected, this performance of
wireless localization systems may be degraded crucially.

However, the spatial information contained in MPCs can
be exploited for positioning. In multipath assisted positioning
schemes, MPCs are regarded as line-of-sight (LoS) signals
from virtual transmitters. The generic term transmitter may
refer to either a virtual or physical transmitter in the following.

If the structure of the environment of a mobile terminal,
e.g. from a detailed floor plan, and the location of the
physical transmitter(s) are known, the locations of these virtual
transmitters can be calculated in advance [2]–[4]. The physical
transmitter could be a wireless local area network (WLAN)
router or a base station from any other terrestrial signal of
opportunity (SoO), for example.

In general, though, such information on the environment is
not available. In this case, the location of the transmitters can
be estimated jointly with the location of the mobile terminal
[5]–[8] with simultaneous localization and mapping (SLAM).
One such approach is Channel-SLAM [9], [10], which, in
SLAM terms, simultaneously localizes a mobile terminal
and maps transmitters. A resulting transmitter map contains
posterior probability density functions (PDFs) that describe

the estimated locations of transmitters. In the following, the
term map will denote such a transmitter map.

We have previously extended the single user Channel-
SLAM scheme to cooperative Channel-SLAM in [11], [12],
where users cooperate by sharing maps. In a crowd-sourcing
like scheme, multiple users going through the same scenario
share and constantly improve maps. Maps can be improved
by adding new transmitters to the map and by decreasing the
variance of locations of transmitters that are already in the
map with own observations. We have shown that cooperative
Channel-SLAM outperforms the single user Channel-SLAM
approach significantly [12].

The focus of this paper is an analysis of the maps that
are shared in cooperative Channel-SLAM. In particular, we
have a look at the evolution of the entropy of transmitter
locations in maps. Since the single transmitter locations in a
map are represented by particle clouds, a closed-form solution
to calculate the entropy of a map does not exist. Hence, we
derive an approximation based on sigma point methods. We
evaluate the entropy of maps in cooperative Channel-SLAM
based on simulations in an indoor scenario.

Regarding the notation, the term user may refer to a person
or the radio receiver the person is equipped with, depending
on the context. The variable c0 denotes the speed of light. As
indices, k refers to a time instant, i to a user particle, j to a
transmitter, ℓ to a transmitter particle, and m to a sigma point.
The Dirac delta distribution is denoted by δ (·).

The remainder of the paper is organized as follows. Sec-
tion II introduces cooperative Channel-SLAM. The concept
of entropy and its application in maps are presented in
Section III. Experimental results based on simulations in an
indoor scenario are evaluated and discussed in Section IV.
Finally, Section V concludes the paper.

II. COOPERATIVE CHANNEL-SLAM

A. Virtual Transmitters

Fig. 1 illustrates the idea of virtual transmitters. Neglect-
ing the LoS signal for clarity, the transmit signal from the
physical transmitter Tx arrives at the user via three different
propagation paths.

Along the first propagation path drawn orange, the signal
is reflected at a planar surface represented by the wall. The
respective MPC is regarded by the user as a LoS signal from
the virtual transmitter vTx1, which is located at the location
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Fig. 1. The signal from the physical transmitter Tx arrives at the user via
three different non-line-of-sight propagation paths as it interacts with the two
objects in the environment. Each corresponding signal arriving at the user is
regarded as a LoS signal from a virtual transmitter.

of Tx mirrored at the wall. Since the actual propagation path
and the Euclidean distance between vTx1 and the user are the
same, there is no time offset between Tx and vTx1.

Along the second propagation path drawn red, the signal is
scattered by an object. In our model, we assume a perfect
point scatterer that distributes the energy of the impinging
signal uniformly to all directions. The signal arriving at the
user is interpreted as a LoS signal from the virtual transmitter
vTx2, located at the scatterer’s location. In the case of the
scattered signal, there is a delay offset τ0 between Tx and
vTx2, corresponding to the Euclidean distance τ0c0 between
the two. A delay offset between a physical and a virtual
transmitter can in general be interpreted as a clock offset.

The third propagation path drawn blue involves both the
scatterer and the wall, leading to the virtual transmitter vTx3.
It shows that the concept of single scattering and reflections
can be extended to multiple interactions of the transmit signal
with different objects. The virtual transmitter vTx3 is located
at the scatterer’s location mirrored at the wall, and has a delay
offset τ0 towards the physical transmitter Tx.

If the transmit signal interacts only with static planar
surfaces and point scatterers, the locations of the virtual trans-
mitters are static. Many other structures can be approximated
sufficiently well by planar surfaces and scatterers, though.

B. Single User Channel-SLAM

We regard a mobile user in a static environment with only
one physical transmitter Tx transmitting the signal s(t). The
linear multipath channel is time variant due to the movement
of the user. The jth signal component at time t is characterized
by a complex amplitude aj(t) and a delay, or ToA, τj(t). The
received signal is a sum of signal components,

y(τ, t) =
∑
j

aj(t)s (τ − τj(t)) + n(τ). (1)

The term n(τ) describes colored noise incorporating both
additive white Gaussian noise and dense multipath components
(DMC). At the user, a snapshot of the received signal is

sampled at time instants k, where we assume that the channel
is constant for the length of one snapshot.

Channel-SLAM works in two stages. In the first stage, we
use the Kalman Enhanced Super Resolution Tracking (KEST)
[13] estimator to track the parameters of signal components
over time with parallel Kalman filters. KEST uses the Space-
Alternating Generalized Expectation-Maximization (SAGE)
algorithm [14] for snapshot-wise channel estimation. The
ToA and angle of arrival (AoA) estimates from the channel
estimator at each time instant k are stacked in a vector zk.

In the second stage of Channel-SLAM, these estimates are
used as measurements in a Rao-Blackwellized particle filter to
estimate the state of the user and the states of the transmitters,
as each signal component corresponds to one transmitter. The
user state xu,k at time instant k is characterized by the user
position pu,k and velocity vu,k,

xu,k =
[
pT

u,k vT
u,k

]T
= [xk yk vx,k vy,k]

T
. (2)

The transmitters are assumed static in Channel-SLAM. The
state x<j>

TX,k of the jth transmitter at time instant k includes
its location p<j>

TX,k and its clock offset τ<j>
0,k multiplied by the

speed of light,

x<j>
TX,k =

[
p<j>

TX,k

T
c0τ

<j>
0,k

]T
=

[
x<j>

TX,k y<j>
TX,k c0τ

<j>
0,k

]T
.

(3)
The overall state vector including the user state and the state

of the NTX,k transmitters, corresponding to the NTX,k signal
components detected by the channel estimator, is

xk =
[
xu,k

T x<1>
TX,k

T
. . . x

<NTX,k>
TX,k

T
]T

=
[
xu,k

T xTX,k
T
]T

.

(4)

In Channel-SLAM, we estimate the history of this overall
state x0:k from time instants zero to k based on control inputs
u1:k and measurements z1:k, both from time time instants one
to k. The control input may incorporate measurements from
additional sensors, such as from an inertial measurement unit
(IMU), for example. The state space is split into the user state
and the transmitter space. The posterior PDF for the history
of the state vector x0:k from time instants zero to k is thus
expressed as

p (x0:k|z1:k,u1:k) = p (xTX,0:k,xu,0:k|z1:k,u1:k)

= p (xu,0:k|z1:k,u1:k)

× p (xTX,0:k|xu,0:k, z1:k) .

(5)

The first factor in the second line of Eq. (5) is the posterior
PDF of the user state. In the Rao-Blackwellized particle filter,
it is represented by Np samples in the state space, so called
user particles, where the ith user particle history x<i>

u,0:k is
weighted by w<i>

0:k . Hence we have for the user state

p (xu,0:k|z1:k,u1:k) =

Np∑
i=1

w<i>
0:k δ

(
xu,0:k − x<i>

u,0:k

)
. (6)

In the Rao-Blackwellized particle filter, the states of the
transmitters are estimated for each user particle independently



from the other particles. Following the uncorrelated scatterer
assumption, the estimates from the channel estimator in the
first stage are assumed to be uncorrelated for different trans-
mitters. If some measurements are correlated, then only for
a very short time. Hence, the posterior PDF of the history
x<i,j>

TX,0:k of the jth transmitter’s state conditioned on the ith

user particle from time instants zero to k is given by

p
(
x<i>

TX,0:k|x
<i>
u,0:k, z1:k

)
=

NTX,k∏
j=1

p
(
x<i,j>

TX,0:k|x
<i>
u,0:k, z1:k

)
. (7)

The factors in the product on the right hand side of Eq. (7)
are represented in the Rao-Blackwellized particle filter as a
sum of particle histories, too. The ℓth of the Np,Tx particles
of the jth transmitter and the ith user particle is denoted by
x<i,j,ℓ>

TX,0:k , and its associated weight by w<i,j,ℓ>
0:k . The respective

transmitter’s posterior PDF is

p
(
x<i,j>

TX,0:k|x
<i>
u,0:k, z1:k

)
=

Np,Tx∑
ℓ=1

w<i,j,ℓ>
0:k δ

(
x<i,j>

TX,0:k − x<i,j,ℓ>
TX,0:k

)
.

(8)

Note that the number of transmitter particles Np,Tx may
be different for different time instants, user particles and
transmitters. Nevertheless, we omit the respective indices for
notational brevity. A full derivation of single user Channel-
SLAM can be found in [9].

C. Cooperative Channel-SLAM

In scenarios such as malls, museums or public buildings,
multiple users roam in the same area on different trajecto-
ries. With Channel-SLAM, they estimate not only their own
location, but also create maps of radio transmitter states in
the environment. Such maps can be shared among users and
used as prior information regarding the transmitter states in
the scenario. Other users exploit this prior knowledge in the
map and improve the map with own observations. We have
shown previously that although the users are in different local
coordinate systems, the positioning performance increases
drastically with such a cooperative Channel-SLAM approach
[12]. The estimation of the transformation parameters relating
the coordinate system of the different users and establishing
correspondences among transmitters observed by different
users is denoted by the term map matching [15].

We define a comprehensive map created by a user
in Channel-SLAM as the estimated states of transmitters
marginalized over the user particles. The state x<·,j>

TX,k of the
jth transmitter in such a map is defined as

p
(
x<·,j>

TX,k |z1:k,xu,0:k

)
=

Np∑
i=1

w<i>
k

Np,Tx∑
ℓ=1

w<i,j,ℓ>
k δ

(
x<·,j>

TX,k − x<i,j,ℓ>
TX,k

)
.

(9)

For each comprehensive map, the particles and weights are
stored for each transmitter. Accordingly, the amount of data
necessary to store a comprehensive map can be very high.

III. ENTROPY OF TRANSMITTER MAPS

A. Transmitter State PDFs as Gaussian Mixture Models

To decrease the amount of data to be transmitted when
sharing maps, we approximate the transmitter states’ posterior
PDFs in Eq. (9) with Gaussian mixture models [16]. The
PDF of a Gaussian mixture model is represented by a set
of weighted Gaussian distributions, also called components,
where the weights sum up to one. This PDF for a random
variable x is defined by

p (x) =
NC∑
ℓ=1

wℓN (x;µℓ,Cℓ), (10)

where N (x;µℓ,Cℓ) is the ℓth of the NC components, i.e., a
Gaussian distribution with mean µℓ and covariance matrix Cℓ,
with associated weight wℓ.

To estimate the parameters of the Gaussian mixture com-
ponents that approximate the transmitter state PDFs as repre-
sented in Eq. (9), we use the Expectation-Maximization (EM)
algorithm [17]. The number of components is determined with
the Bayesian information criterion (BIC) [18].

B. Entropy of a Map

Following [19], we aim at finding a measure for the uncer-
tainty of an estimated map. If the uncertainty about a map is
low, the information content is high. One such measure is the
differential entropy of a continuous random variable x, which
is defined as

h (x) = −
∫

p (x) log (p (x)) dx. (11)

Compared to the covariance matrix, the entropy of a contin-
uous random variable is a more adequate description of the
information content for multi-modal distributions, in particular
when the single modes are well separated.

A comprehensive map in cooperative Channel-SLAM con-
sists of the posterior PDFs of the states of all transmitters in
the map. The joint entropy of N independent random variables
x1, . . . ,xN is [20]

h (x1, . . . ,xN ) =

N∑
j=1

h (xj). (12)

Assuming independence among the transmitters in the map,
the entropy of a comprehensive map is the sum of the entropies
of the single transmitters.

Since there is no meaningful and closed-form solution to
calculate the entropy for a particle cloud or a Gaussian mixture
representation of a PDF, we will derive an approximation for
the Gaussian mixture case in the following.



C. Approximation based on the Unscented Transform

To calculate the entropy of a Gaussian mixture model, we
insert Eq. (10) into Eq. (11), yielding

h (x)

= −
∫ NC∑

ℓ=1

wℓN (x;µℓ,Cℓ) log

 NC∑
ℓ̃=1

wℓ̃N
(
x;µℓ̃,Cℓ̃

) dx

= −
NC∑
ℓ=1

wℓ

∫
N (x;µℓ,Cℓ) log

 NC∑
ℓ̃=1

wℓ̃N
(
x;µℓ̃,Cℓ̃

) dx

= −
NC∑
ℓ=1

wℓ

∫
N (x;µℓ,Cℓ) g (x) dx,

(13)
where we define the second factor in the integral of the third
line as g (x). Due to this non-linear function g (x), the integral
in the last line of Eq. (13) can not be calculated in closed form.

However, we can make use of the unscented transform,
which allows to approximate this integral by propagating so
called sigma points through the function g (x). In general, an
integral over the product of a Gaussian PDF N (x;µx,Cx)
and a function g (x) can be approximated by [21]∫

g(x)N (x;µx,Cx) dx ≈
Nsig∑
m=1

ωmg(Xm), (14)

where the mth of the Nsig sigma points is denoted by Xm and
its associated weight by ωm. In contrast to Monte Carlo (MC)
methods, these point are not chosen randomly, but determin-
istically with the goal to preserve the original statistics of x
when being propagated through a nonlinear function. There
are several choices for the sigma points and their weights in
the literature. For example, they are defined in [22] for some
κ ∈ R as

X0 = µx, ω0 =
κ

κ+N
,

Xm = µx +
(√

(N + κ)Cx

)
m
, ωm =

1

2(κ+N)
,

Xm+N = µx −
(√

(N + κ)Cx

)
m
, ωm+N =

1

2(κ+N)
,

(15)
leading to 2N +1 sigma points for m = 1, ..., N . In Eq. (15),
(A)m denotes the mth row or column of the matrix A, and

(N + κ)Cx =
√
(N + κ)Cx

√
(N + κ)Cx

T
. (16)

With Eq. (14), the entropy in Eq. (13) of one transmitter’s
state PDF is approximated by

h (x) ≈ −
NC∑
ℓ=1

wℓ

Nsig∑
m=1

ωℓ,mg(Xℓ,m), (17)

where Xℓ,m is the mth sigma point corresponding to the ℓth

component and ωℓ,m its associated weight. The entropy of a
comprehensive map can be calculated then with Eq. (12).

Fig. 2. Top view of the simulation scenario with 22 user tracks. There is one
physical transmitter labeled Tx. The walls represented by black lines and the
scatterers represented by the black dots reflect and scatter the transmit signal
from Tx.

IV. SIMULATIONS

A. Simulation Scenario

While the concept of single user Channel-SLAM has been
validated with real measurement data in [9], for example,
we performed simulations in an indoor mall to evaluate our
approach. A top view of the simulation scenario is depicted in
Fig. 2. The red triangle labeled Tx represents the only physical
transmitter. The reflecting walls represented by thick black
lines and the point scatterers represented by the black dots
create a multipath environment. There are 22 independent and
random user tracks in the scenario typical for an indoor mall.
The starting point of each track is marked by a circle.

The transmit signal is generic with a bandwidth of 100MHz
and a perfectly constant power spectral density around the
carrier frequency of 1.9GHz. The bandwidth is a crucial
factor of multipath assisted positioning schemes, as they
rely on the ability to resolve MPCs at the receiver. With
a small bandwidth, the channel estimator may not be able
to resolve arriving signal components, leading to undetected
signal components and biased estimates as well as potentially
false association decisions. Nevertheless, the signal bandwidth
in this paper was chosen to be in the order of bandwidths used
in currently used wireless communication systems. Angular
change rates of the receiver are available from a gyroscope
that is rigidly mounted to the receiver. These change rates are
incorporated as control input in Channel-SLAM. Our channel
model for the simulations is a AWGN channel neglecting
DMC. In a real scenario, KEST can deal with DMC when
it is handled in the snapshot-based estimator SAGE.

For each user position, we simulate the band-limited channel
impulse response (CIR) based on the environment with ray-
tracing. The users travel with a constant speed of 1m/s. Every
100ms, a snapshot of the received signal is recorded at the
respective receiver and used for Channel-SLAM. We assume



Fig. 3. MAE versus the distance traveled by the reference user with different
prior knowledge. In the single user case, the reference user has no prior
transmitter map. In the other cases, a number of user have contributed to the
reference user’s prior transmitter map.

that the receivers are equipped with antenna arrays of nine
elements arranged in a uniform 3×3 grid, such that both ToA
and AoA information is available.

B. Evaluations and Discussion

As discussed above, transmitters with a high uncertainty
do not provide much information regarding the user position
and at the same time occupy a lot of memory. In addition,
these transmitters may dilute the map matching performance.
We exclude such transmitters from maps that are exchanged
among users. In particular, we calculate the covariance matrix
of the particles representing a transmitter’s state. If the trace of
this covariance matrix is above a heuristic threshold of 20m2,
the transmitter is excluded from the comprehensive map.

To evaluate the performance of cooperative Channel-SLAM,
a reference user walks on a dedicated trajectory of length
311m in the scenario in Fig. 2. Beforehand, the reference user
receives a prior map to which a number of users have con-
tributed in the cooperative Channel-SLAM scheme described
in Section II-C. For comparison, the reference user also walks
along the trajectory without a prior map, i.e, with single user
Channel-SLAM. The positioning performances in terms of
the mean absolute error (MAE) are presented in Fig. 3. The
different curves correspond to the number of users who have
contributed to the map that the reference user receives. The
results in Fig. 3 and in all other figures in this section are
averaged over 250 Monte-Carlo simulations.

It can be seen from Fig. 3, that the MAE in the single user
case keeps increasing over time. Only in the region around
80m, the MAE decreases, since the user walks in a small
loop and can benefit from loop closure. However, if prior
knowledge in form of a transmitter map is available, the error
is substantially smaller. When many users have contributed
to the map, the error is even bounded in the long run. Only
towards the end, where the reference user experiences an
unfavorable geometrical dilution of precision (GDoP), the
error increases slightly.

While we have published a similar result before in [12], we
have not yet evaluated the evolution of the transmitter maps in

Fig. 4. Average entropy of the transmitters in the map versus the number
of users who have contributed to the map in cooperative Channel-SLAM.

cooperative Channel-SLAM. In particular, we are interested in
the evolution of the information content of these maps and the
single transmitters in the maps. Thus, Fig. 4 shows the average
entropy of a transmitter in the map after each of the 22 users
has contributed to the map by going through the scenario in
Fig. 2 with cooperative Channel-SLAM.

Since the overall entropy of a transmitter map is additive
w.r.t. the single transmitters, it depends on the single entropies
of the transmitter state estimates in the map, and also on
the number of transmitters. In cooperative Channel-SLAM,
a map tends to contain more transmitters the more users
have contributed to a map, since users go through the same
scenario on different trajectories and observe different sets of
transmitters. In addition, inaccurate map matching and false
data association decisions tend to cause an increase of the
transmitter entropies. On the one hand, these effects lead to an
increase of the map entropy over time. On the other hand, the
observations, i.e., measurements, of the users tend to decrease
a transmitter’s entropy in the map. In particular the entropies
of transmitters with a favorable GDoP for multiple users will
decrease over time.

In Fig. 4, the overall entropy of the map divided by
the number of the transmitters in the map is plotted versus
the number of users that have contributed to the map in
cooperative Channel-SLAM. Thus, it is the average entropy
of a transmitter in the map after a number of users have
contributed to the map. The entropy of each transmitter is
approximated by Eq. (17) with the sigma points in Eq. (15)
for κ = 0. We observe that the average entropy per transmitter
decreases over time, especially in the beginning. Thus, the
effect of the decreasing entropy of some transmitters in the
map is stronger than the increase of entropy in the map due to
new transmitters that are added to the map. However, at some
points the average entropy increases, for example if a user
goes along a track where they detect many new transmitters
that are not yet in the map.

Transmitters with a high entropy do not provide the user
with much information regarding the user location. Instead,
the lower the entropy of a transmitter, the more beneficial it
is for positioning. We are therefore not only interested in the



Fig. 5. Entropies of transmitters with least entropy in a map versus the
number of users who have contributed to the map in cooperative Channel-
SLAM. For example, the dark blue curve denotes the entropy of the transmitter
with lowest entropy in the respective map.

average entropy of a transmitter map, but also in the entropies
of the best transmitters in the map, i.e., the transmitters with
lowest entropy.

Fig. 5 presents the entropies of such best transmitters in the
map versus the number of users that have contributed to the
map. For example, the dark blue curve denotes the entropy
of the transmitter with lowest entropy in the map, and the
red curve the entropy of the transmitter with second-lowest
entropy in the respective map. We see that the best transmitter
has converged after only six users that have contributed to
the map. The entropy curves of the other plotted transmitters
flatten out very much at that point.

V. CONCLUSION

We have shown before that the positioning error of coopera-
tive Channel-SLAM is bounded in the long run outperforming
single user Channel-SLAM. Within this paper, we have derived
an approximation for the entropy of a transmitter state PDF
when it is represented as a Gaussian mixture model. Analyzing
the evolution of the entropies of transmitters in a comprehen-
sive map, we have shown that not only the positioning error,
but also the shared transmitter maps in cooperative Channel-
SLAM converge quickly. Although there are constantly new
transmitters added to the map, the average transmitter entropy
in a map tends to shrink over time. In particular, the transmit-
ters with lowest entropy converge already after only few users
have contributed.

Based on these results, we can establish the relevance
of transmitters in a map. In future work, we may analyze
the tradeoff between the size of a map, i.e., the number
of transmitters in the map, and the representation of these
transmitters in the map on the one hand, and the positioning
performance on the other hand. The communication load for
exchanging maps may be decreased crucially if only relevant
transmitter states are shared.
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