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ABSTRACT

Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute

respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of

WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally,

there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance

(AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research

but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify

barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and ident-

ifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and

chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors

influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection

and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
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HIGHLIGHTS

• Wastewater-based epidemiology (WBE) has been successfully used to track SARS-CoV-2.

• WBE can monitor populations which are not captured through routine clinical surveillance.

• WBE has the potential for monitoring many additional indicators of public health.

• Research is required to validate the use of WBE in public health management.

• Considerations include integration of WBE with existing public health systems and ethics.
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GRAPHICAL ABSTRACT

INTRODUCTION

The COVID-19 pandemic has had a major impact on public health, well-being, and economic systems globally (Kolahchi

et al. 2021). The causative agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread rapidly since
2019. Clinical presentation has ranged from asymptomatic cases to hospitalisation or death (Weiss et al. 2020; Zheng
et al. 2020; Park et al. 2021). One method for monitoring levels of SARS-CoV-2 that is inclusive, prone to fewer population
biases, and less invasive than testing individuals is surveillance of wastewater in sewer systems, where the level of infection in

the catchment community is associated with viral copies in sewage (Polo et al. 2020; Sims & Kasprzyk-Hordern 2020). This
approach, termed wastewater-based epidemiology (WBE), has been used to complement existing public health data and clini-
cal monitoring procedures (Naughton et al. 2021), with most data coming from high-income countries, for example, in the

United Kingdom (Wade et al. 2020), the Netherlands (Medema et al. 2020), and the United States (Kirby et al. 2021).
There are WBE studies in low and middle-income countries (LMICs), such as Tunisia (Jmii et al. 2021), Morocco (Amahmid
et al. 2021), Brazil (Barbosa et al. 2022), where challenges for conducting this work are greater and complex (Pandey et al.
2021). The response to the pandemic has led to rapid acceleration of WBE research and development, and monitoring is now
being performed at national, regional, and local scales (University of California 2022). Additionally, WBE has provided stra-
tegically important information through the development of new bioinformatics pipelines for variant detection and advanced

algorithms for data interpretation, all of which have helped reduce uncertainty in the data (Karthikeyan et al. 2021; Habte-
wold et al. 2022). WBE has also provided early warning of local disease outbreaks, thus facilitating public health actions, such
as focusing subsequent deployment of face masks, mobile testing, and vaccination facilities (e.g., surge testing; Hillary et al.
2021) and increasing bed capacity at hospitals (Brown et al. 2021; Crits-Christoph et al. 2021; Herold et al. 2021; Swift

et al. 2021).
WBE is not a new concept, having been used to monitor illicit drug consumption as early as 2005 (Zuccato et al. 2005;

Biello 2007) and the global distribution of poliovirus over the last decade (Hovi et al. 2012). Aside from these applications

and monitoring of SARS-CoV-2, WBE has been used on a more ad hoc basis, with the implementation of a wide range of
temporally and spatially distinct use cases, such as consumption of the antiviral oseltamivir (Tamiflu) during the 2009
H1N1 pandemic (Singer et al. 2013), the presence of influenza A and H1N1 in wastewater in the Netherlands (Heijnen &
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Medema 2011), consumption of illicit and licit drugs (including antidepressants) during the 2010–2014 Greek economic crisis

(Thomaidis et al. 2016), and the global distribution of antimicrobial resistance (AMR) (Hendriksen et al. 2019).
WBE has demonstrated potential in monitoring different human health and behaviour markers to provide valuable infor-

mation for public health activities. However, this remains a relatively novel epidemiological tool, and to facilitate the

expansion of WBE to other health targets and integration into public health surveillance activities research gaps need to
be identified, so further study can be directed in these areas.

The aim of this paper is to review the applications of WBE for public health surveillance, focusing on the following
three broad areas: (1) pathogenic viruses; (2) AMR; and (3) chemicals. It describes the additional value WBE contributes

to public health surveillance, evaluates the evidence base supporting these applications, and identifies research gaps
that need to be addressed to permit large-scale adoption of WBE as a central pillar in public health surveillance and
decision-making.

PATHOGENIC VIRUSES

Added value of WBE monitoring

Viruses that cause diseases in humans significantly impact life quality and expectancy, put strain on healthcare settings,
and negatively impact economies (Shang et al. 2021). Many novel pathogens to emerge in the past 100 years have been

zoonotic in origin, including SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV); human immu-
nodeficiency virus (HIV); novel influenza viruses H1N1, H3, N2, and H2N2; Zika virus; and Ebola virus (Sharp & Hahn
2011; Morse et al. 2012; Recht et al. 2020). Furthermore, the most recent pandemic virus, SARS-CoV-2, is likely to have
originated in a zoonotic reservoir (although the zoonotic origin has not been conclusively identified) (Holmes et al. 2021).
The conditions for the emergence of novel viruses with pandemic potential remain (Woolhouse et al. 2008; Plowright et al.
2021) and the development of robust plans and resources to monitor the progress of pathogen spread and inform public
health interventions is essential to adequately prepare for subsequent pandemics. Endemic pathogens, such as influenza

virus, non-influenza RNA respiratory viruses (e.g., respiratory syncytial virus (RSV)), and enteric viruses (e.g., norovirus,
rotavirus, etc.) also have a significant health burden, particularly among children, the elderly, and the immunocompro-
mised (Modjarrad et al. 2016; Paget et al. 2019). Enhanced monitoring for pathogenic viruses imposing high burdens of

disease by testing wastewater could help to reduce the number of respiratory infections and sequelae (Jartti et al. 2006;
Ruotsalainen et al. 2013).

Currently, clinical surveillance for pathogenic viruses is limited to those who seek treatment, which excludes those who are
asymptomatic, mildly symptomatic, or who do not present for treatment for other reasons (e.g., lack of access to healthcare or

mistrust in healthcare systems; Tsimtsiou et al. 2021). There have been attempts to use data collection methods that would
include information on populations not seeking clinical treatment, as well as people who do. This has been done using sur-
veys of symptoms, such as the FluSurvey in Europe (FluSurvey 2017), or Flu Near You in the United States and Canada

(FluSurvey 2017; Baltrusaitis et al. 2017), and analysis of digital search engine data on influenza-like illness by FluModel
(i-sense-flu) (Lampos et al. 2015; Wagner et al. 2018). However, the results of surveys and search engine data analyses are
also affected by biases such as a greater proportion of participants from more affluent and educated backgrounds than the

population baseline tend to take part in voluntary surveys (Baltrusaitis et al. 2017; FluSurvey 2017). Models using digital
search engine data to track search trends are biased towards populations with regular internet usage, and for whom surveil-
lance data exists to train the model.

Clinical diagnostics, such as PCR-based methods or rapid antigen testing of individuals’ samples, allow correct identi-
fication of an infective agent to inform empirical treatment of symptomatic patients, which may reduce the
consumption of antimicrobials and allow the infected patients to isolate and limit the spread of the disease (Chen
et al. 2011). However, the lack of community-level surveillance means infected patients are not identified until they

reach clinical settings, at which point the disease may have spread significantly. WBE offers the opportunity to provide
community-level data on pathogen presence to supplement and/or enhance existing clinical surveillance methods and
public health activities (Figure 1), namely through (1) detecting the spread of viruses in individuals who have not inter-

acted with healthcare systems; (2) identifying strategic locations for implementation of disease interventions and
preventative measures; and (3) tracking changes in the epidemiology of the target that warrant further attention
(Tang et al. 2017).
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Presence of pathogens in human stool and urine

For WBE to be useful for viral pathogen surveillance, markers of specific viral infection must be present in faeces, urine, or
vomit (Jones et al. 2020). The shedding patterns of viral particles are likely to be affected by several factors, including virus-
specific factors (e.g., infection site, incubation period) and host-specific factors (e.g., symptom severity, susceptibility to infec-

tion, and age).
The evidence base for faecal shedding of enteric viruses is well established (Supplementary Material, S1), (Allard

et al. 1992; Papapetropoulou & Vantarakis 1998; Chitambar et al. 2001; Maunula et al. 2009; Lion et al. 2010;
Jeulin et al. 2011; Ganesh & Lin 2013), since the transmission of such viruses is understood to be via the faecal–

oral route. However, quantitative estimates of faecal shedding of respiratory viruses are less well explored (Supplemen-
tary Material, S1) since their primary transmission route is through respiratory aerosol droplets, rather than water or
food contamination.

Interest in WBE for the pandemic respiratory virus, SARS-CoV-2, has resulted in numerous studies producing quantitative
and temporal information related to faecal shedding of SARS-CoV-2 RNA (Cheung et al. 2020; Jones et al. 2020; Hoffmann &
Alsing 2021). Evidence suggests SARS-CoV-2 shedding is greatest early in the course of the infection cycle and then

decreases and continues for several days after symptoms and respiratory shedding have ceased (Gupta et al. 2020b; Van
Doorn et al. 2020; Xu et al. 2020; Cavany et al. 2022; Hoffmann & Alsing 2021; Zhang et al. 2021b). For most non-enteric
viruses, shedding studies are limited to a binary positive/negative result and are conducted when gastrointestinal symptoms

are also experienced and may only be detected in a minority of confirmed cases (von Listow 2006; Minodier et al. 2015).
Furthermore, the faecal and urinary shedding dynamics of respiratory viruses may not align with shedding at other sites.
For example, prolonged shedding of H7N9 Avian Influenza has been observed in faecal and urine samples after respiratory
samples became negative and viral detection was more common in the urine of severely ill patients (Hu et al. 2013a; Zhu
et al. 2015).

For most viral pathogens, including SARS-CoV-2, our knowledge of shedding rates in faeces and urine have been obtained
from hospitalised individuals, thus biasing the results towards cases presenting with more severe symptoms or comorbidities.

Additionally, there is scant understanding of how shedding varies with the age of the patient, comorbidities, vaccination
status, or re-infection. Data are therefore not representative of the general population, and future research needs to address

Figure 1 | Diagram showing the advantages of WBE and clinical surveillance techniques for pathogenic virus detection, and the potential
benefits of integrating WBE with clinical surveillance data for public health.
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this bias by ensuring diversity in symptom phenotypes and immunological states is represented in study cohorts. Limited

available evidence (e.g., from norovirus, Sabrià et al. 2016) underscores the importance of understanding the differences
in shedding of different viruses in faeces and urine from both symptomatic cases and asymptomatic carriers (Jones et al.
2020), who will both contribute waste to sewer systems. Further data are also needed on shedding dynamics, as existing evi-

dence rarely captures the pre-symptomatic phase when shedding rates may be high (Hoffmann & Alsing 2021). The ability to
detect outbreaks before cases present in healthcare settings is extremely valuable for public health planning and infection
control. Information is also needed on the persistence of faecal shedding following the infectious period to improve the ability
to detect active cases (Santos et al. 2020). Understanding how immunity (whether attained through vaccination or previous

infection) impacts shedding is also necessary, as this could potentially influence the interpretation of epidemiological esti-
mates through different phases of an outbreak.

In general, urine samples provide lower sensitivity for viral detection, particularly in enteric pathogens such as Enterovirus

and Parechovirus (.90% in faeces vs. ,60% in urine) (Crom et al. 2013). However, variability exists and for some pathogens
shedding in other excretions may be the predominant source: the measles virus (measles morbillivirus) has been found in the
urine of ∼88% of infected patients in one study (van Binnendijk et al. 2003), and viral markers may be present in body fluids

which also enter sewer systems (Crank et al. 2022), such as sputum (e.g., SARS-CoV-2 (Li et al. 2022)), saliva (e.g., human
herpes virus (Fox et al. 1990), Epstein–Barr virus (Niederman et al. 1976)), semen (e.g., HIV-1 (Kariuki et al. 2020), hepatitis
C virus (Cavalheiro et al. 2008), and Zika virus (Atkinson et al. 2016)). This is particularly relevant when developing the

sampling framework to account for differences where samples may be more heterogenous (e.g., building-level surveillance;
Crank et al. 2022).

Impacts of wastewater environments on viral detection

The stability of pathogen markers in the environment and in wastewater are highly variable (Bofill-Mas et al. 2006). In gen-
eral, DNA targets are more stable than RNA targets, although physiochemical characteristics of the environment influence

the persistence of both (Ward & Ashley 1980; Bofill-Mas et al. 2006; Muirhead et al. 2020). Enveloped viruses (viruses with a
lipid envelope that include influenza viruses, coronaviruses, and parainfluenza viruses) are usually less stable in the environ-
ment than non-enveloped viruses (without a lipid envelope, including enteroviruses, noroviruses, and adenoviruses).

Noroviruses and adenoviruses can survive up to months in the environment (Kotwal & Cannon 2014) and have frequently
been detected in wastewater and surface waters (Lago et al. 2003; La Rosa et al. 2010; Rajko-Nenow et al. 2013; Guillois et al.
2016; Farkas et al. 2018; Falman et al. 2019; Mancini et al. 2019; McCall et al. 2021). However, very limited information
currently exists on the persistence of the genetic material of enveloped viruses in the environment, especially in

wastewater. It is only recently that Ebola (Zaire ebolavirus) was found to persist in water for 8 days (Bibby et al. 2015),
whereas it was previously assumed that enveloped viruses were quickly deactivated in the environment (Wigginton et al.
2015; Ye et al. 2016).

Due to the requirement for biosafety level (BSL) 3 laboratories to perform infectivity studies, surrogate viruses such as Phi6
bacteriophage have been used to assess the potential for survivability (Aquino de Carvalho et al. 2017). The persistence of
Phi6 bacteriophage under different temperatures, biological activity, and liquid media was found to vary significantly, with

temperature being particularly important (Aquino de Carvalho et al. 2017). Even though temperature greatly affects viral sur-
vival, most WBE studies do not take temperature or seasonality into account and risk mis-quantifying results at different times
of the year, particularly in temperate regions (Hart & Halden 2020). The presence of stormwater in combined sewers can also

result in dilution which can limit the accurate quantification of microbial communities (Wade et al. 2022). Even in separated
systems, fluctuating groundwater infiltration has the potential to impact observed results, in a way that is not immediately
apparent (Choi et al. 2018).

Matrix composition has repeatedly been found to influence virus detection efficiency and survival in wastewater. For

example, organic matter has a great impact on molecular detection as they inactivate the enzymes used for DNA amplifica-
tion (Matheson et al. 2010; Hata et al. 2015). Ammonia can inactivate viruses through genome degradation and viruses could
be aggregated or adsorbed into liquid media (Bibby et al. 2015; Aquino de Carvalho et al. 2017). A study found that aggrega-

tion of viruses in the solid fraction of the wastewater was higher for enveloped viruses than non-enveloped viruses at 26 and
6% of virus adsorbed, respectively (Ye et al. 2016). Therefore, sampling only the liquid fraction may exclude a large pro-
portion of the viral target.

Journal of Water and Health Vol 20 No 9, 1288

Downloaded from http://iwaponline.com/jwh/article-pdf/20/9/1284/1115140/jwh0201284.pdf
by guest
on 17 October 2022



Biotic factors may also impact detection of viral targets in wastewater. Wastewater is a complex and dynamic mix of

microbial communities and competition, predation and selective pressures are not well understood (Choi et al. 2018). In
some locations, urban wastewater may also contain animal viruses (e.g., influenza A; Heijnen & Medema 2011), which
can confound the signal due to difficulties in separating human and animal contributions without sequencing-based

approaches.
It is evident that mechanisms of virus marker inactivation in wastewater environments for different viruses of interest

require further investigation. The observed differences between faecal and sewage samples indicate environmental con-
ditions that alter microbial communities and further research is required to be able to interpret viral signals in WBE

accurately.

Sampling methodology and storage requirements for viral pathogens

Wastewater sampling for viral pathogens may use flow-based interval approaches, but is typically achieved through grab or
composite sampling. Grab samples are collected at a single point in time, often at a time of day that is estimated to be ‘peak
flow’ to maximise the target load from human sources (Polo et al. 2020). However, this can vary greatly depending on the

location of sampling sites as network travel times of wastewater can typically range between 2 and 12 h (Castiglioni et al.
2013) and peak shower usage may dilute the signal (Ahmed et al. 2021). Some markers can have greater daily variability
than others (Ahmed et al. 2021). Due to the temporal variability of wastewater concentrations, this is often not representa-

tive of the entire population input over 24 h, therefore a composite sample may be used. Composite sampling is a means to
try and overcome this, typically via the use of autosamplers, which sample at set intervals (ranging from minutes to hours)
and can be used to develop a time series or mixed to make a composite sub-sample. Grab samples appear to be suitable for
enteric viruses in wastewater effluent (i.e., treated wastewater) (Sidhu et al. 2017; Farkas et al. 2018), however, variation in

wastewater influent means daily composite samples are the best approach for enteric viruses (∼4 samples per day; Farkas
et al. 2018) and SARS-CoV-2 detection in influent wastewater (24 samples per day; Ahmed et al. 2021). Further temporal
studies to determine enteric pathogen variation over 24 h are recommended (Farkas et al. 2018) and whether these patterns

are consistent across various wastewater systems. There is a lack of research comparing sampling techniques for other res-
piratory viruses. The use of autosamplers requires specific infrastructure and is associated with a higher operational
workload and cost, as well as the need for on-site sample refrigeration. These facilities are not always available, particularly

in resource-poor areas.
Passive samplers are absorbent devices that can accumulate markers of interest when submerged in wastewater and may

offer a good alternative to composite sampling. They do not require specialised equipment to be deployed (Habtwold et al.
2022; Schang et al. 2021), and can be used for sampling in the sewer network where autosampler use is impractical (Corchis-

Scott et al. 2021) and are considerably less costly (Petrie et al. 2016). Passive samplers have been successfully used to detect
viruses, such as hepatitis A and E, norovirus (Vincent-Hubert et al. 2017), poliovirus (Sattar & Westwood 1977; Cassemiro
et al. 2016), SARS-CoV-2 (Schang et al. 2021). However, they may saturate quickly, and daily exposure times may be too long

to obtain representative results. Furthermore, as passive samples are submerged and accumulate biological material over
time, often to the point of saturation, viral concentration data obtained from passive samplers cannot be easily normalised
for factors such as wastewater flow. Thus, the results are considered semi-quantitative. Overall, insight into wastewater

dynamics and temporal variation of the marker of interest is needed for different pathogens to determine the most accurate
and cost-effective sampling method. This could vary significantly between different sites depending on the pathogen of inter-
est, the availability of infrastructure to permit composite sampling, and whether quantitative data are required for public

health use.
There is currently limited standardised guidance on wastewater sample storage conditions and duration prior to molecular

marker testing for viruses. It has been suggested that samples be kept refrigerated and analysed as soon as possible after col-
lection, although temperatures and duration of storage vary, depending on the type of viral analyte (e.g., RNA/DNA,

enveloped vs. non-enveloped viruses). For example, the US Centers for Disease Control and Prevention (CDC) recommends
immediate sample refrigeration at 4 °C, and processing with 24 h (CDC 2022), whereas the US Environment Protection
Agency (USEPA) recommends that samples be stored and chilled for up to 48–72 h prior to viable bacteriophage testing

(USEPA 2001). For enterovirus viability and norovirus RNA testing in drinking water, the USEPA suggests storage for up
to 24 h prior to analysis (Fout et al. 2010). Standardised methods need to be developed and agreed upon to allow compar-
ability between studies, times and locations, and improve quality assurance.
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Laboratory analysis methodologies for viral pathogens

Different methods for optimising RNA extraction, concentration, and quantification of SARS-CoV-2 have been explored.
Concentration methods for viral pathogens in wastewater, primarily developed for non-enveloped enteric viruses, have

since been applied for SARS-CoV-2 surveillance (Ahmed et al. 2021). These include precipitation with salt or polyethene
glycol (PEG) (Farkas et al. 2021; Kevill et al. 2022), electrostatically charged membrane filtration (Ahmed et al. 2021), ultra-
filtration (Izquierdo-Lara et al. 2021), adsorption-extraction (AE) with aluminium chloride, silica (Randazzo et al. 2020) or
magnesium chloride (MgCl2) (Ahmed et al. 2021), or using an automatic concentrating pipette (CP) instrument (Ahmed

et al. 2021; McMinn et al. 2021). Concentration methods have been found to be one of the greatest sources of variation in
the quantification of SARS-CoV-2 in the English wastewater monitoring programme, based on the recovery of Phi6 bacterio-
phage, which was used as a process control (Wade et al. 2022).

To improve the efficiency of wastewater sampling, testing samples for the presence of multiple viral markers would necessi-
tate optimising viral recovery for multiple pathogens. However, a study by Ahmed et al. (2021) evaluated two concentration
techniques (AE supplemented with MgCl2 and CP) against concentration of SARS-CoV-2 and enteric pathogens. They found

the CP method achieved the greatest overall recovery of SARS-CoV-2, however recovery did vary and was not consistent
across all viral targets. Another study found viral recovery was reduced when CP was applied to high turbidity samples
(Kevill et al. 2022). Further research should investigate concentration methods for different pathogens in wastewater and
recovery efficiencies. This is key to optimising multi-pathogen recovery methods, minimising equipment requirements, and

streamlining lab throughput. Further method development could additionally focus on optimisation in terms of concentration
methods to enable both RNA and DNA extraction, where the latter could also be analysed using culture-independent
methods for AMR surveillance, for example.

The gold standard for the targeted detection of viral pathogens in wastewater is quantitative polymerase chain reaction
(qPCR). Although ubiquitous in much of WBE programmes, the method is sensitive to biological and chemical inhibitors,
which are often present in wastewater extracts (Volkmann et al. 2007). Commercially available reaction mixes provide differ-

ent levels of resistance to inhibitors, which may result in false-negative results and generate inter-laboratory variation (Farkas
et al. 2017). The validation and implementation of strict quality control measures for each qPCR assay are crucial to achieving
reliable results (Bustin et al. 2009). For example, one meta-analysis found that only 26% of studies published on SARS-CoV-2

detection in wastewater reported qPCR quality control details and where they were reported did not meet the minimum cri-
teria (Bivins et al. 2021), questioning the reliability of the results.

Emerging targeted technologies such as digital droplet PCR (ddPCR), isothermal amplification (e.g., LAMP) assays and bio-
sensors have also been developed; however, some of these are often less sensitive than qPCR (Haramoto et al. 2018; Farkas
et al. 2020b). To date, besides qPCR, only ddPCR has been routinely used for WBE (Jahne et al. 2020; Al-Duroobi et al. 2021;
Bivins & Bibby 2021), as this technique may be more sensitive than qPCR (Zhao et al. 2016), particularly for low viral loads
or in matrices with more variable contamination (Taylor et al. 2017; Falzone et al. 2020).

Sequencing-based approaches have been trialled and implemented in WBE to generate data describing viral communities,
including variant-level identification of circulating viruses (Fernandez-Cassi et al. 2018; Adriaenssens et al. 2018, 2021; Gua-
jardo-Leiva et al. 2020) and identification of novel viruses and their variants (Rios et al. 2021). However, existing methods are

time-consuming and often biased, tending to over-represent abundant or large DNA genomes and miss rare, shorter genomes
(Garner et al. 2021). Amplicon sequencing increases sensitivity and accuracy for known viruses and has been effective in
wastewater research to describe certain viral groups, including astroviruses (Hata et al. 2018), adenoviruses (Ogorzaly
et al. 2015; Iaconelli et al. 2017), saproviruses (Mancini et al. 2019), enteroviruses (Tao et al. 2020), and noroviruses

(Fumian et al. 2019). A similar approach has been used for SARS-CoV-2 by amplifying its whole genome or certain genes
using the Illumina ARTIC pipeline (Avgeris et al. 2021; Dharmadhikari et al. 2021; Hillary et al. 2021).

Ultimately, the methodology for detection and quantification of viral pathogens will depend on the requirements of the data

for public health. Research on the application of these technologies to wastewater samples for various pathogens is necessary
to demonstrate their detection and quantification capability. Additionally, if it is necessary to detect several pathogens in one
sample, development of high-throughput quantification tools for multiple targets would be necessary.

Comparison of WBE and public health data for viral pathogens

Clinical data, such as microbiological diagnostic data, may be used to assess how well markers in sewers correlate temporally
and spatially with specific health outcomes in a community of interest. Comparison of WBE data should encompass two
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broad aspects: (1) that the markers reliably measure the intended target of surveillance (i.e., sensitivity and specificity) and (2)

that data are collected at a temporal and spatial resolution that enable public health decision-making.
For SARS-CoV-2 in the UK, WBE data could be compared with public health data, including hospital admissions (Kaplan

et al. 2020; Peccia et al. 2020; Galani et al. 2022), case data from the national and regional surveillance programmes (Wade

et al. 2022), the Coronavirus Infection Survey (CIS) (Pouwels et al. 2020), and Real-time Assessment of Community Trans-
mission studies (REACT) (Elliott et al. 2021). Comparisons between datasets also reveals potential population behaviours
driving transmission, including social response to the pandemic, temporally resolved variations in population size (e.g., com-
muting, weekend breaks), sampling biases in wastewater, or biases, gaps, or reporting lags in clinical testing (Galani et al.
2022).

While the extensive clinical testing available throughout the pandemic meant comparable data was readily available
(noting limitations within these data (Elliott et al. 2021)), similar comparisons might not be as feasible for pathogens like nor-

ovirus or RSV, where monitoring is dependent on data from healthcare settings. Therefore, to ensure the data collected
through WBE is an accurate reflection of infection rates, future research must ensure these comparisons are designed into
studies (e.g., by collecting samples or data from healthcare institutions, the wider community, and open data sources, such

as social media).

Summary and suggestions for further research

Asymptomatic carriage of pathogenic viruses by members of the community is currently under-estimated but can play an

important role in disease transmission. WBE has the potential to provide additional information on viral transmission
dynamics that are currently missed by existing surveillance programmes, which are biased towards symptomatic and severely
ill patients. However, knowledge gaps remain that must be addressed before WBE can be useful as a stand-alone surveillance

tool to inform public health practice.

• Further quantitative studies on the shedding of viral pathogens (particularly for enveloped viruses such as influenza) are

needed. Studies should ideally monitor patients throughout the entire course of the infection, with a range of variants,
and recruit diverse cohorts to ensure generalisability of results. Shedding should be evaluated in faeces and urine. Impacts
of immunity against viruses (achieved through vaccination or infection) on viral shedding dynamics need to be elucidated.

• Further studies on the persistence of various viruses in wastewater are necessary (particularly enveloped viruses), including

evaluation of the impact of factors such as temperature, matrix composition, and biotic processes on viral detection.
Researching this within the context of WBE may inform data interpretation for public health.

• Different sampling procedures and analytical techniques should be explored for pathogens of interest to optimise methods.

The extent to which viral pathogen detection in wastewater samples can pre-empt or match clinical and community-level
data must be evaluated to ensure that WBE data are an accurate reflection of clinical outcomes of interest.

ANTIMICROBIAL RESISTANCE

Added value of WBE for AMR

AMR, where microbes develop resistance against antimicrobial drugs, poses a threat to public health that is only likely to

worsen. Antimicrobials are becoming less effective over time with continued overuse (Prestinaci et al. 2015) and fewer are
being brought to market. Economic impacts are expected due to reduced productivity, resulting from lost days-of-work
and longer hospital admissions (WEF 2021).

Compared to infectious viral pathogens described in the previous section, monitoring AMR is complicated given there is no
one singular infectious agent responsible, nor single reservoirs for resistant organisms. There are numerous pathogenic anti-
biotic-resistant bacteria (ARBs) of concern, and antibiotic-resistant genes (ARGs), which can also be released in faecal matter
and transferred between even distantly related bacteria by horizontal gene transfer (HGT). Beyond bacteria, resistance to anti-

microbial treatment arises in other microorganisms such as azole antifungal resistance in pathogenic fungi, like Candida
albicans (Whaley et al. 2017), antiviral resistance, including resistance to antivirals for hepatitis B (Locarnini 2004) and influ-
enza virus (Lampejo 2020; Van Poelvoorde et al. 2020) and resistance among parasites, like Plasmodium spp.

AMR is an issue that is now recognised as extending beyond healthcare settings, with resistance determinants emerging in
environmental settings (Larsen et al. 2022; Poirel et al. 2002) and selected for by antimicrobial use in agriculture systems
(Woolhouse et al. 2015; Cheng et al. 2019; Pollock et al. 2020), the release of resistance in sewage into waterways and general
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environmental pollution (Harris et al. 2014; Agga et al. 2015; Murray et al. 2018; Hiller et al. 2019; Mughini-Gras et al. 2019).
Therefore, surveillance and management of AMR are often considered through a One Health lens including environmental
and animal monitoring (Mendelson & Matsoso 2015; WHO 2021a).

With current monitoring focussing on healthcare settings and a small group of key pathogens (e.g., English Surveillance for

Antimicrobial use and Resistance (ESPAUR), (UKHSA 2021); European Antimicrobial resistance surveillance (EARS-Net),
and WHO Global AMR Surveillance System (GLASS), (WHO 2021a)), the true scale and potential burden of AMR may be
under-estimated (Burnham et al. 2019). ARGs, which are abundant in stool and wastewater samples, are the main way of
indirectly monitoring AMR prevalence at large scales. The most comprehensive resistance monitoring study quantified

ARGs in wastewater metagenomes in over 70 countries and found major differences in relative AMR abundances and classes
in community sewage, reflecting large regional differences in ‘local guts’ (Hendriksen et al. 2019). Furthermore, a recent
review by Pruden et al. (2021) described a range of applications of WBE for AMR monitoring including the following: (1)

identification of hotspots to guide policy action on interventions; (2) inform medical and veterinary practitioners of the
best antibiotics to use to avoid therapeutic failure; (3) inform risk assessments for discharge of antibiotics/ARB/ARGs into
the wider environment; and (4) provide data for forecasting models and key drivers. Overall, the use cases for AMR surveil-

lance using wastewater demonstrate the potential to add significantly to public health monitoring and therefore warrant
further exploration.

Presence of AMR in human stool and urine

AMR is represented in stool by a diverse array of ARGs and mobile genetic elements (MGEs), primarily associated with bac-
terial hosts. Resistance carriage in humans varies substantially internationally due to different environmental exposures, diet,
and antimicrobial use (Hu et al. 2013b; Pal et al. 2016; Feng et al. 2018). The abundance and diversity of ARGs also varies

between body sites/tissues, with one study using metagenomic sequencing on oral and stool samples in different countries
and finding a higher abundance, but lower diversity, of ARGs present in oral samples compared to stool samples (Carr
et al. 2020). Studying stool samples may provide information not captured from data such as antibiotic prescription rates,

which do not always correlate with ARGs present in faeces (Collignon et al. 2018; Hendriksen et al. 2019; Carr et al. 2020).
Quantification of ARGs present in stool using metagenomics and qPCR has been well studied (Hu et al. 2013b; Rose et al.

2017; Feng et al. 2018) and in urine mostly studied in the limited context of urinary tract infections (Li et al. 2020; Kaye et al.
2021). However, the clinical relevance of ARG detection in metagenomic data is poorly understood since the presence of
ARGs in faecal samples does not necessarily result in AMR infections, even in high-risk patients (Tacconelli et al. 2009;
Wryes et al. 2021). Furthermore, some genes (e.g., tetracycline genes) perform multiple functions unrelated to AMR, including
signal tracking and hydrophobic protein transport (Martínez 2008; Dantas & Sommer 2012; Feng et al. 2018). There is also

the question as to whether ARGs present in the gut and stool are an accurate indication of resistance at other parts of the body
(Piddock 2016; Carr et al. 2020), the duration of colonisation, and risk factors extending shedding in faeces (Leonard et al.
2018). Further research in this area is also required for ARGs in urine samples, since there is evidence to suggest enhanced

resistance following kidney transplantation is reflected in urine (Rani et al. 2020). Overall, the link between ARG detection in
stool and urine to treatment-resistant infections among various at-risk groups needs further exploration.

Impact of wastewater on AMR detection

Like viral markers, the stability and abundance of AMR indicators in wastewater are complicated by many abiotic and biotic
factors that influence microbial populations and resistomes (collection of AMR genes within the microbiome). As with viral

pathogens, animal hosts of AMR can contribute ARGs to wastewater, making it difficult to precisely identify which AMR
genes in a sample originated from humans (McCann et al. 2019). Biofilms present in sewers may also serve as a source of
ARGs in wastewater independent of human waste inputs (Medina et al. 2020), and dispersion of ARG-bearing microbes
may be triggered by the conditions in sewer environments (Kaplan 2010). In addition, bacteria and ARGs are capable of mul-

tiplying in the environment, and the presence of antibiotic residues, heavy metals, and biocides in wastewater can influence
the selection of certain bacteria and their genes, and therefore their abundance, outside the human body (Baquero et al. 2008;
Knapp et al. 2008; Martinez 2009; Gullberg et al. 2011; Murray et al. 2018).

There are many additional factors in wastewater that have an impact on the microbial community and resistome dynamics,
including local residence times, geographic area, antibiotic prescribing, temperature, salinity, dissolved oxygen, micro-eco-
logical factors such as predation, and the presence of organic matter (Caucci et al. 2016; Sun et al. 2016; Jiao et al. 2018;
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Lamba et al. 2018; Jong et al. 2020; Pallares-Vega et al. 2021). Additionally, further research on different wastewater treat-

ment plant types and maintenance and impacts of combined sewer overflows (CSOs) on AMR detection is critical in
places with aging or poorly maintained sewer systems.

Due to the higher antibiotic usage in hospital settings, previous studies have investigated the impact of hospital wastewater

mixing with community wastewater on resistomes, with mixed results (Islam et al. 2017; Lamba et al. 2017; Buelow et al.
2018, 2020; Quintela-Baluja et al. 2019, 2021; Li et al. 2021). Future work should focus on evaluating the factors that
affect the influence of sewer conditions and inputs to the sewer systems that impact measures of AMR. Such research will
aid interpretations of AMR data derived from wastewater samples.

Sampling methodology and storage requirements for AMR

As with viral markers, methods for the collection and storage of samples must be evaluated to ensure robust data are extracted
from samples. A systematic review by Chau et al. (2021) compared composite and grab samples to evaluate performance

according to association with clinical AMR data and found greater agreement with composite samples. The authors observed
that several studies did not report their sampling methodologies, limiting comparability of studies and highlighting the urgent
need for standardisation of approaches (Hassoun-Kheir et al. 2020). There are also few studies on the use of passive samplers

for AMR surveillance, which may provide a more cost-effective and practical approach to sampling than composite samplers.
Further research should seek to determine the most accurate and cost-effective sampling methodologies to inform standard
practice, to allow data to be compared regionally and internationally. This has commenced through the EMBRACE-WATERS
(rEporting antiMicroBial ResistAnCE in WATERS) initiative, which is aiming to develop reporting standards for AMR

research in wastewater and other aqueous environments (Hassoun-Kheir et al. 2021).
Poulsen et al. (2021) compared storage conditions on the microbiome and resistome of sewage samples and pig faeces.

They observed that sample storage conditions had an influence on microbial community and resistance genes, where freezing

wastewater changed the microbiome in comparison to processing the samples immediately. AMR abundance in frozen
sewage samples was also overall significantly higher than samples stored at 22 or 5 °C (Poulsen et al. 2021). Therefore, it
was recommended that sewage samples are processed the same day, frozen immediately, or stored in the fridge and processed

during the day or on the following day. However, the opposite finding was observed for pig faeces, indicating that stool
samples, or perhaps even near-source samples have different storage requirements (Poulsen et al. 2021). Further research
on the storage requirements of near-source samples would inform standard practice and standard protocols.

Access to storage facilities and appropriate alternatives need to be considered, to ensure sampling is consistent and samples
are comparable.

Laboratory analysis methodologies for AMR

AMR detection can be conducted through culturing and gene-based methods (or a combination) (Figure 2). Culturing faecal

indicators or pathogens, such as extended-spectrum beta-lactamases (ESBL) Escherichia coli is recommended by the WHO
Tricycle Protocol (WHO 2021a, 2021b). Quantifying ESBL-producing Enterobacteriaceae (Marano et al. 2020) and carbape-
nem-resistant bacteria (Blaak et al. 2021) is useful as they are important but relatively rare phenotypes and can be effective

indicators of clinically relevant bacteria displaying resistance to essential and last-resort antibiotics (WHO 2017). Antimicro-
bial susceptibility test methods can also indicate levels of resistance and have been well studied and standardised (Jorgensen
& Turnidge 2015). Culturing is cost-effective and technically easy, and therefore more accessible for LMICs (Pruden et al.
2021). However, it provides comparatively narrow information about the phenotypic characteristics of target organisms.
Therefore, combining genotypic methods, such as qPCR, extends monitoring to gene-specific targets to accompany phenoty-
pic data. Targeting MGEs which may be high-risk also can be valuable (Zhang et al. 2021a), or have been found to closely
reflect anthropogenic resistance, using the Intl1 (Gillings et al. 2015) or aintl1 (Quintela-Baluja et al. 2021) assays. Genotypic

methods like qPCR can provide accurate quantitative data on AMR abundance which can be normalised to cell abundance
through co-quantification of genes like 16S rRNA. However, to be meaningful in a health protection context, such analyses
should be corroborated a priori by parallel culturing methods to ensure they mirror health consequences.

The use of multi-array high-throughput qPCR arrays has shown promise because they can be designed to capture many
different indicator genes at once (Wang et al. 2014). These have already been used successfully for wastewater applications
(Quintela-Baluja et al. 2019).
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In recent years, metagenomic sequencing has proved to be a powerful approach for the detection of AMR. Metagenomic
sequencing has the potential to reveal the diversity of ARGs, from natural ocean and soils to samples from the guts of animals,

humans, and sewage (Hendriksen et al. 2019; Zeng et al. 2019). Factors included in metagenomic pipelines such as the Meta-
Compare’s relative resistome risk (Martínez et al. 2015), can assign a value to the mobility of ARGs or the potential to occur
in pathogens which could be useful for determining clinical risk using metagenomic data. Sequencing-based approaches can
also be used with and without a culture phase: targeted metagenomics permits the quantification of thousands of ARGs in

culturable and potentially pathogenic bacteria (Leonard et al. 2018). As with viruses, detection of novel and rare genes
will be limited.

Multiple pipelines for detection and enumeration of AMR exist (Gupta et al. 2020a), but a standardised method is needed

for WBE if opportunities to compare data internationally are to be realised. With the high cost of sequencing-based
approaches, this approach may not be accessible to some regions, therefore centralised sample processing and data analysis
resources and funding to LMICs is needed (Aarestrup &Woolhouse 2020). Development of combined sequencing with multi-

plex qPCR and culturing methods would make monitoring more accessible across different socioeconomic settings.

Comparison of WBE and public health data for AMR

There is some evidence that WBE AMR data are correlated with data on regional clinical infections. Hutinel et al. (2019)
demonstrated strong and significant correlations between E. coli isolated from wastewater samples and patient samples
from Gothenburg, Sweden. Significant correlations were also found between samples taken from 10 wastewater treatment
plants in Europe and clinical samples from EARS-Net, where resistance of E. coli to four antibiotics was analysed (Huijbers

et al. 2020). Genotypic data gathered via qPCR arrays have also been found to broadly reflect clinical resistance in European
sites (Pärnänen et al. 2019). Chau et al. (2021) identified a strong association with phenotypic and genotypic data from WBE
to data gathered from clinical settings, indicating WBE provided insight into the resistance profiles of a community.

Figure 2 | Summary of laboratory techniques for analysis of AMR that could be used for WBE.

Journal of Water and Health Vol 20 No 9, 1294

Downloaded from http://iwaponline.com/jwh/article-pdf/20/9/1284/1115140/jwh0201284.pdf
by guest
on 17 October 2022



Comparisons between clinical and wastewater data have also shown WBE can be used to inform colonisation of specific

pathogens, such as carbapenem-producing Enterobacteriaceae (CPE). CPEs are a major threat to healthcare settings and
screening is currently limited to those who are most at risk (i.e., who have travelled, came into contact with a positive
case, or visited a hospital abroad (Brown & Fry 2020)). Studies have found wastewater CPE cultures are reflective of what

is observed in clinical samples (Meir-Gruber et al. 2016; Ludden et al. 2017; Flach et al. 2021). Isolates have been identified
in WBE prior to identification in clinical samples, demonstrating its potential use as an early warning tool to prevent hospital
outbreaks (Flach et al. 2021). WBE has also identified strains which were not detected in clinical samples, interpreted to be
due to a carrier that was missed from clinical screening, or a result of persistence in wastewater after previous exposure

(White et al. 2016).
While there are correlations between WBE and clinical resistance datasets, there is currently too much uncertainty to

enable public health response. An improved understanding of the connection between clinical colonisation and wastewater

could be achieved through more comprehensive studies including participants who are deemed low risk, and further inves-
tigation into the impact of wastewater on the persistence of resistance.

Summary and suggestions for further research

Surveillance of AMR using wastewater is complicated by the ubiquity of AMR across the One Health triad. Detection of AMR
in wastewater may therefore not be from human carriers experiencing or at risk of treatment-resistant infection, but may be
there as a result of zoonotic reservoirs, or persistence of AMR in the environment. Further research is needed before this tool

can be used to support public health decision-making.

• The link between ARG detection in stool and urine to treatment-resistant infections among various at-risk groups warrants

further exploration.

• Further studies should consider the effect of abiotic and biotic factors, selection processes, the influence of seasonality, and
different types of wastewater treatment plants as this will aid interpretation of WBE data. The influence of wastewater from

healthcare settings should be reviewed on a case-by-case.

• Further research should determine the best sampling and storage methodologies with consideration to resource constraints
to inform standard practice and facilitate data comparisons.

• A standardised methodology for wastewater sample laboratory analysis is needed to allow international collaboration and

comparisons. This approach needs to be accessible for LMICs.

• Improved understanding of the link betweenWBE and clinical resistance could be achieved through a comprehensive study
incorporating participant and wastewater sampling and further investigation into the impact of wastewater on the persist-

ence of resistance.

CHEMICALS

Added value of WBE for chemical surveillance

Chemical analysis of wastewater provides a broad range of information that can be used to understand multiple parameters
influencing public health. Potential insights include but are not limited to (1) illicit drug use (Thomas et al. 2012; Ort et al.
2014; González-Mariño et al. 2020), (2) alcohol and tobacco consumption (Baz-Lomba et al. 2016), (3) consumption of over-
the-counter medicines (Harman et al. 2011; Fattore et al. 2016; Melchor-Martínez et al. 2021; Rice et al. 2020), (4) consump-
tion of antimicrobials (Castrignanò et al. 2020; Elder et al. 2021), (5) exposure to chemicals such as pesticides (Rousis et al.
2020), toxicants from everyday products including parabens, UV filters, bisphenols (BPAs), and phthalates (Lopardo et al.
2019a; Senta et al. 2020), and (6) biomarkers for certain non-communicable diseases, for example, cocaine, F2-isoprostanes,
Prostaglandin E2 (Thomas & Reid 2011; O’Brien et al. 2019).

WBE has long been recognised as an approach for monitoring illicit drug use. Illicit drug use data are especially challenging

in terms of surveillance, due to the behaviour being illegal, and highly stigmatised (Huizer et al. 2021). For this purpose, it fills
significant gaps in other monitoring techniques such as surveys, drug-related hospital admissions, and arrest data, which do
not capture the extent of consumption and are not temporally and spatially sensitive (González-Mariño et al. 2020; Huizer

et al. 2021). This approach has been used widely, including an international study in 2011, where five illicit drugs (cocaine,
cannabis, amphetamine, methamphetamine, and methylenedioxymethamphetamine (MDMA)) were analysed in the waste-
water of initially 19 European cities, increasing to a total of 73 cities globally by 2017, including locations in LMICs
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(Thomas et al. 2012; Gonzalez et al. 2020). Ongoing monitoring in 80 European cities is supported by the European Moni-

toring Centre for Drugs and Drug Addiction (EMCDDA) which hosts an interactive website (EMCDDA 2021). Antibiotic
consumption has also been investigated within the context of ARG prevalence in wastewater, showing strong correlations
between antibiotic levels, ARGs, and population size (Castrignanò et al. 2020; Elder et al. 2021).

Data gap exist in understanding consumption of pharmaceuticals being prescribed and purchased online or in pharmacies.
Patients often do not follow dosage or disposal recommendations, stockpiling leftover doses, or self-prescribing (Escolà Casas
et al. 2021). One benefit of WBE for pharmaceutical use is the ability to differentiate between metabolised vs. discarded medi-
cation levels. The example of carbamazepine (Figure 3) shows the importance of measuring metabolic products compared to

drugs themselves as direct disposal of unused drugs might result in overestimation of intake. Furthermore, information on
public health trends tend to rely on individual data collection and biological samples or surveys, such as NHS England’s
health survey (Rice & Kasprzyk-Hordern 2019). These data are often not available in real-time due to the need to collate

data before assessing and formulating appropriate responses.
Chemical analysis of wastewater could therefore provide spatially and temporally comprehensive epidemiological

information to aid public health and healthcare practitioners. Longitudinal analysis would allow regional and temporal

comparisons to be made and help to understand principal mechanisms driving public health trends. WBE could also
provide information in data-poor regions, where antimicrobials, prescription drugs, and exposure to pollutants may be less
regulated.

Figure 3 | Comparison of carbamazepine loads and intake calculated using carbamazepine-1-,11-epoxide and prescribed over a 7-day
sampling week (adapted from Wade et al. 2022).
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Presence of chemicals in faeces and urine

Chemical residues are excreted through urine and stool and can be detected in wastewater, usually reported as a percentage
of the target residue (Baker et al. 2014). Understanding of human pharmacokinetics including excretion rates are therefore

essential to back-calculate the approximate total exposure or consumption of chemicals (Zhang et al. 2019).
A comparison between the parent compounds and their metabolites for WBE found a higher certainty using metabolic mar-

kers (Baker et al. 2014), while other studies went further to suggest that only metabolic markers should be used in calculations
where possible (Kasprzyk-Hordern et al. 2021).

An extensive list of excretion rates of biomarkers for lifestyle (e.g., illicit drugs, alcohol), exposure (e.g., pesticides), health
(e.g., pharmaceuticals), and population (e.g., endogenous compounds) is available from Gracia-Lor et al. (2017). These esti-
mates are from studies published after 2000, and primarily after 2010. However, some metabolites only have urine or faecal

excretion percentage reported, and rarely both. This means some studies estimating exposure have only used excretion rates
from urine in back-calculations (van Nuijs et al. 2015), likely underestimating exposure since often only phase I metabolites of
chemicals are excreted in urine. A more accurate approach would be to include both phase I and II metabolites, which can be

found in urine and faeces (Daughton 2018; Escolà Casas et al. 2021).
Further research is needed to understand excretion data for metabolites, which are often less complete than for parent com-

pounds and varies depending on individual and medical conditions (Escolà Casas et al. 2021). Unfortunately, further
pharmacokinetic studies on excretion rates are not always feasible, due to high costs, time requirements, and ethical consider-

ations (Gracia-Lor et al. 2017). Alternative approaches include in vitro studies using liver enzymes (Mardal et al. 2016) and
computer modelling (Reid et al. 2014). However, such data provide information on metabolic products and general insight
into metabolism, but not quantitative information on excretion rates that could be used for WBE. Clinical proteomics have

also led to the identification of new biomarkers. However, due to the time and expense required for clinical trials, very few are
being confirmed clinically (Nkuipou-Kenfack et al. 2017; Rice & Kasprzyk-Hordern 2019). Nevertheless, the identification of
human proteins in wastewater offers an opportunity for community-wide monitoring of diseases (Carrascal et al. 2020), and
further studies on key biomarkers including metabolites as well as other endogenously formed entities such as proteins are
needed. Emphasis should be put on improving understanding of pharmacokinetics to help quantify excretion factors for stool
and urine, particularly where population variation is likely.

Impact of wastewater on chemical detection

Chemical stability in wastewater varies depending on the original compound and the conditions in wastewater. The stability
of illicit drug biomarkers has been reviewed elsewhere (McCall et al. 2016a). A study investigating 43 pharmaceuticals
showed that the majority remained stable in a pressurised sewer of 7.6 km, with a concentration error of+10% for most phar-
maceuticals, with some at ∼60% (Jelic et al. 2015). Temperature impacts biomarker stability, with one study showing that

half-lives of biomarkers in colder temperatures were significantly longer than in warmer temperatures (Senta et al. 2014).
McCall et al. (2016b) also found that temperature, pH, hydraulics, residence times, sorption processes, and biodegradation
rates affect drug stability in sewers. Biofilms may also influence the stability of illicit drug biomarkers (McCall et al.
2016a; Li et al. 2018) and particulate matter in sewage has been shown to affect results, where a large proportion of the
analyte may partition onto particulate matter (Baker et al. 2012). A study from Tang et al. (2020) found phthalate metabolites
in wastewater were in much higher concentrations than predicted from urinary excretion, therefore whether metabolites are

formed from parent compounds within wastewater environments should be investigated.
Further studies are required to estimate correction factors for metabolites that are to be used in WBE, particularly through

understanding the conditions in wastewater that may influence interpretations, including the amount and type of sewage bio-
film and different environmental conditions (e.g., temperature, pH and biodegradation) (McCall et al. 2016a).

Sampling methodology and storage requirements for chemicals

Analysis of chemicals and drugs in wastewater is most accurately conducted through 24-h flow-proportional composite
sampling. While both time- and flow-proportional sampling is commonly applied, flow-proportional instead of time-pro-
portional samples (e.g., every 20 min), have been found to provide an accurate indication of peak input of chemicals and

biomarkers excreted into wastewater (Ort et al. 2010; Petrie et al. 2017). Grab or spot sampling does not allow for full analyte
capture due to common diurnal variabilities in wastewater composition linked with variable human excretion patterns as well
as external factors, like rainfall. To preserve chemicals for accurate analysis, storage time and temperature are crucial.
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Samples need to be transported to laboratories refrigerated (if over a short period of time, e.g., a few hours) or frozen (for

overnight transport). If chilled, they must be immediately frozen on arrival to prevent analyte degradation. Acidification
can improve the stability of chemicals, by preventing some drugs from partitioning to the water fraction (Baker & Kaspr-
zyk-Hordern 2011).

Passive sampling has been investigated (Moschet et al. 2015; Townsend et al. 2018; Rimayi et al. 2019). A comparison of
passive and active sampling undertaken by Petrie et al. (2016), found the concentration of chemicals captured from passive
sampling was within a factor of 2 of the known concentration. However, passive samplers might not achieve the same res-
olution as composite samples (Jones et al. 2015), but may nevertheless be used when analyte detection alone is a suitable

measure for public health purposes. Further research is needed before it can be used as a standard alternative sampling
method where there is insufficient infrastructure for composite sampling.

To preserve chemicals, understanding storage time and temperature for chemical stability is crucial. Chemicals are likely to

degrade under repeated freeze–thawing cycles and over long-term storage. In a study by Fedorova et al. (2014), influent waste-
water samples were spiked with 124 pharmaceuticals and personal care products to determine the impact of different storage
conditions on analyte detection. Storage conditions at 4 °C resulted in greater amounts of analyte being detected compared to

samples kept at�18 °C, with 15 analytes undetected after a freeze/thaw cycle. An understanding of the stability of target com-
pounds and biomarkers, and appropriately designed standards for storage is necessary, to ensure consistency and
comparability among studies.

Laboratory analysis methodology for chemicals

Chemical markers are present in wastewater at low concentrations, spanning from sub-ppt to ppm levels. Ultra-performance
liquid chromatography is the method of choice for the separation of structurally wide-ranging groups of analytes with variable
polarities, but gas chromatography can be also utilised for more volatile targets, also with common derivatisation steps uti-

lised for more polar analytes.
In order to enable analysis at trace ppt levels, analyte enrichment is required. Solid phase extraction with wide-ranging

materials is widely utilised to both clean-up and enrich liquid samples. QuEChERS method as well as pressurised liquid

extraction or accelerated solvent extraction are also suitable for the extraction of analytes from solid samples such as sus-
pended particulate matter in wastewater (Nieto et al. 2010; Kachhawaha et al. 2017; Pang et al. 2017). High-throughput
methods are increasingly being used and within the context of WBE can provide more insight into multiple targets. Triple

quadrupole mass spectrometry is usually applied to undertake multi-residue targeted analysis of .100 markers with one
analytical run and is highly useful for large catchment studies (Proctor et al. 2019). High-resolution mass spectrometry
can also allow untargeted screening for novel chemicals, with subsequent data mining allowing the potential to expand
and develop analytes of interest (Lopardo et al. 2019b).

Further research on high-resolution mass spectrometry approaches is required for data mining and identifying further steps
in sensing approaches. High-resolution analysis approaches would enable detection of an expanded biomarker suite, and
allow multilevel estimation of public exposure to stressors and resulting effects (e.g., disease status).

Further studies are also necessary on chemical population markers. Population normalisation is necessary for all aspects of
WBE, where inputs into the sewer may vary over the course of the day or be diluted by stormwater. Estimation of population
may also provide insights into population mobility and travel. Metabolic markers for population normalisation are being

explored, such as metabolites for caffeine or nicotine (Senta et al. 2015), or prescription pharmaceuticals such as atenolol
(Lai et al. 2011). Further application of these biomarkers in WBE studies, and more information on how these products
are metabolised, are necessary to use these to quantitatively estimate population.

Comparison of chemical WBE data

Several studies have compared prescription and WBE data (Carballa et al. 2008; Lai et al. 2011; Verlicchi et al. 2014; Escolà
Casas et al. 2021). Data on illicit drug market trends and confiscated drugs have been used to sense-check WBE illicit drug
data (Kankaanpää et al. 2016; Krizman-Matasic et al. 2019; Gonzalez et al. 2020). Considerations for evaluating WBE for

pharmaceutical consumption include ensuring prescription data are at an appropriate temporal and spatial scale, where
national averaged data are insufficient for comparison (Carballa et al. 2008; Lai et al. 2011; Verlicchi et al. 2014). An example
of a study with a higher temporal resolution is Escolà Casas et al. (2021), which compared pharmaceutical detection via WBE
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against a monthly aggregated pharmaceutical dataset. Such datasets need to be explored and compared against WBE data to

ensure data are correct, identify and explain discrepancies, and account for any variation.

Summary and suggestions for further research

Chemicals can also act as indicators of human health. However, these are known to undergo changes in the body and/or the
sewer environment, affecting the choice of chemical markers for surveillance, collection and storage of samples, and data
interpretation.

• Further research is needed to understand excretion data for metabolites and endogenously formed entities, such as proteins.
Improved understanding of pharmacokinetics is necessary to help find excretion factors in stool and urine, and how these
may vary due to treatment received or age group.

• There is a lack of information on biomarker stability, particularly for metabolites. Further studies should investigate con-
ditions in the sewer which may impact interpretations of WBE data, including sewage biofilm and different
environmental conditions.

• Improved understanding of passive sampling could support WBE in areas where composite sampling is not feasible. Further
understanding of the stability of various biomarkers is necessary to design appropriate standards, to ensure consistency and
comparability among studies.

• Expansion of the biomarker suite coupled with high-resolution mass spectrometry approaches could allow multilevel esti-
mation of public exposure and resulting effects. Exploration and application of population level biomarkers in WBE studies
are necessary to have an improved estimated of population.

• WBE data need to be compared to appropriate datasets at an appropriate temporal and spatial scale to identify and explain
discrepancies and account for any variation.

ADDITIONAL CONSIDERATIONS FOR IMPLEMENTATION

Integration into public health monitoring

Looking forward, WBE can be used for strategic and urgent public health surveillance needs, and to support environmental

surveillance (Figure 4). Consideration should be given to the detection approach necessary for each area of interest and the
subsequent response to an increase in infection or positive detection.

Figure 4 | WBE could be used to support public health surveillance through strategic public health surveillance, urgent public health sur-
veillance, and by supporting environmental surveillance.
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To be useful for public health monitoring, WBE needs to be integrated and add value to other public health initiatives,

including clinical case reports, self-reporting systems, or social media tracking systems like FluDetector (Lampos 2016) or
ZoeApp (Menni et al. 2021). Current epidemiological systems typically do not integrate clinical and environmental monitor-
ing together. However, such an approach is necessary to ensure both groups are openly communicating, sharing insights, and

harmonising approaches. Communication and collaboration with clinical and public health teams are also necessary for
ensuring the data collected are useful in informing practice (e.g., identification of clinically relevant resistance within a com-
munity would need to be communicated to veterinary and clinical practitioners). Likewise, people working in healthcare
might share with WBE teams requirements for novel targets. Collaboration with organisations collecting animal and environ-

mental data could also be beneficial for developing a One Health surveillance framework.
Further research is needed between people working in WBE and those in healthcare settings to develop improved ways for

public health users to receive these data and the best communication tools. Further discussions across clinical and environ-

mental sectors is crucial for the design of WBE to ensure this is integrated into existing monitoring and provides a practical
application. In addition, communication across the general public warrants further consideration. Publicly available dash-
boards during the COVID-19 pandemic showing daily case rates should be considered for additional WBE applications,

allowing the public to have transparent access to information, raise awareness of health trends and provide information to
make informed decisions. An interactive website or centralised dashboard providing clear, accessible summarised/non-ident-
ifiable data, integrating environmental, wastewater, and clinical data would be a potential way to communicate this

information.
Having an overall understanding and ability to communicate uncertainties is also important. Within the UK, sewage net-

works are regionally diverse and can be publicly and privately owned, leading to differences in the way sampling is delivered
(Wade et al. 2022). Some of the challenges may be especially evident in smaller rural communities, which may have hundreds

of small wastewater treatment sites (Farkas et al. 2020a). Being able to communicate this uncertainty to relevant clinical sta-
keholders, the media and the general public is necessary to ensure data transparency and guide informed interpretations and
responses.

Ethical implications

Despite wastewater being considered an ethical way of collecting data, further consideration and engagement of social scien-

tists and the public is required to assess the ethics of WBE in applications beyond the pandemic. It is widely assumed that
WBE uses aggregate measurements and cannot be used to identify individual persons. However, concerns have been
raised over the privacy of data obtained from small populations or marginalised communities (McClary-Gutierrez et al.
2021), as well as over how the data will be used. Individual consent for the collection of wastewater samples for SARS-
CoV-2 analysis has not been deemed necessary (Kwiatkowska et al. 2021). While data should be made publicly available
and transparent, it is necessary to navigate how best to ethically and legally handle data, as well as communicate this infor-

mation. Further research is required to gain community feedback and support open access information and prevent
disagreements and stigmatisation (Polo et al. 2020). Regions or marginalised communities may be associated with negative
health, and this could have a negative impact on well-being, local economies, and potentially insurance policies (Wang et al.
2020; Harris et al. 2021). These discussions are particularly urgent as the technology and applications for WBE advance.

CONCLUSIONS

Research on WBE has proven it is a potentially useful tool in monitoring the presence of health markers, providing a theor-

etically constant stream of information on the health status of whole communities. Proposed uses include tracking viral
pathogens, AMR, and chemicals (i.e., drug and pharmaceutical metabolites, markers of human disease or pollution exposure).
However, each application of wastewater has its own challenges and research needs, including varying disease dynamics,
non-human reservoirs, instability of markers in sewers and storage and interpretation for public health. Research into

these areas would allowWBE to be developed as a useful tool for public health to supplement existing surveillance. However,
WBE methods and protocols have been developed in high-income countries with improved sanitation. With greater globali-
sation, emerging threats to health can occur anywhere, and spread around the world rapidly. International cooperation and

coordination is necessary to monitor for future threats, and if WBE is to play a role in this, comparable datasets across com-
munities and countries are needed. In particular, we should consider and support the development and validation of these
techniques for lower income settings to ensure improved global health surveillance.
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