
 

 

 

 

PROGNOSTIC INSIGHTS FROM 

MULTIPLEXED SPATIAL PROFILING 

OF THE TUMOUR MICROENVIRONMENT 

 

 

 

A THESIS SUBMITTED TO  

THE UNIVERSITY OF MANCHESTER 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

IN THE FACULTY OF BIOLOGY MEDICINE AND HEALTH 

 

 

2021 

 

 

ANNA-MARIA TSAKIROGLOU 

 

 

 

SCHOOL OF MEDICAL SCIENCES 

DIVISION OF CANCER SCIENCES 

 

 

 

 

 

  



 2 

List of Contents 

LIST OF CONTENTS 2 

LIST OF FIGURES 6 

LIST OF TABLES 8 

LIST OF ABBREVIATIONS 10 

ABSTRACT 12 

DECLARATION 13 

COPYRIGHT 14 

ACKNOWLEDGEMENTS 15 

OUTLINE 16 

1 INTRODUCTION 17 

1.1 CLINICAL BACKGROUND 19 

1.1.1 Oropharyngeal squamous cell carcinoma 19 

1.1.1.1 Epidemiology, aetiology and treatment 19 
1.1.1.2 Prognostic factors 20 
1.1.1.3 The role of the tumour microenvironment in prognosis 21 
1.1.1.4 The importance of spatial architecture 23 
1.1.2 Follicular lymphoma 24 

1.1.2.1 Epidemiology, aetiology and treatment 24 
1.1.2.2 Prognostic factors 26 
1.1.2.3 The role of the tumour microenvironment in prognosis 29 
1.1.2.4 The importance of spatial architecture 34 
1.1.3 Summary of tumour microenvironment populations 35 

1.2 TECHNICAL BACKGROUND 37 

1.2.1 Multiplex immunofluorescence 37 

1.2.1.1 General principles 37 
1.2.1.2 Multiplex tissue analysis in situ 39 
1.2.1.3 The Vectra multiplex protocol 45 
1.2.2 Multiplex immunofluorescent image analysis 46 

1.2.2.1 Pre-processing 47 
1.2.2.2 Cell and sub-cellular segmentation 50 
1.2.2.3 Cell phenotyping 58 
1.2.2.4 Quantifying spatial patterns 60 



 3 

1.2.2.5 Software platforms supporting end-to-end multiplex analysis 62 
1.3 AIMS AND OBJECTIVES 64 

2 VALIDATION OF COMPUTER ASSISTED SCORING APPROACHES: A 

SYSTEMATIC REVIEW AND META-ANALYSIS 66 

2.1 INTRODUCTION 66 

2.1.1 Manual scoring systems 68 

2.1.1.1 ER scoring 68 
2.1.1.2 HER2 scoring 69 
2.1.1.3 T-cell marker scoring 70 
2.1.2 Review objectives 71 

2.2 METHODS 72 

2.2.1 Information sources and search strategy 72 

2.2.2 Study eligibility criteria 72 

2.2.3 Study selection 73 

2.2.4 Data collection 73 

2.2.5 Synthesis and meta-analysis methodology 73 

2.2.6 Study quality 76 

2.3 RESULTS 77 

2.3.1 Identified studies and their quality 77 

2.3.2 Validation of CAS design requirements 79 

2.3.2.1 Definability 80 
2.3.2.2 Accuracy 83 
2.3.2.3 Reproducibility 94 
2.3.2.4 Time-efficiency 96 
2.3.2.5 Interpretability 96 
2.3.2.6 Confidence estimation 96 
2.4 CONCLUSIONS 98 

2.5 SUMMARY 100 

3 MULTIPLEX IMAGE ANALYSIS FOR BIOMARKER DISCOVERY IN 

OROPHARYNGEAL SQUAMOUS CELL CARCINOMA 101 

3.1 INTRODUCTION 101 

3.2 MATERIALS AND METHODS 103 

3.2.1 Cohort characteristics 103 

3.2.2 Ethics approval and consent to participate 103 

3.2.3 Multiplex staining and multispectral scanning 104 

3.2.4 Spectral unmixing 105 

3.2.5 Deep learning for automated image quality check 105 

3.2.6 Cell segmentation and scoring 110 



 4 

3.2.7 Proximity analysis 114 

3.2.8 Statistical analysis 115 

3.3 RESULTS 116 

3.3.1 Smoking and HPV status predict overall survival 116 

3.3.2 Distribution and prognostic value of cell population densities 117 

3.3.3 Proximity analyses of T-cells with PD-L1+ cells 119 

3.4 DISCUSSION 122 

3.5 SUMMARY 125 

4 MULTIPLEX IMAGE ANALYSIS FOR BIOMARKER DISCOVERY IN 

FOLLICULAR LYMPHOMA 126 

4.1 DEVELOPING A MULTIPLEX IMMUNE PANEL FOR FOLLICULAR LYMPHOMA 128 

4.1.1 Motivation 128 

4.1.2 Materials and methods 129 

4.1.2.1 Dataset used for staining protocol development 129 
4.1.2.2 Optimisation of a Vectra multiplex protocol 129 
4.1.2.3 Building a spectral library 132 
4.1.2.4 Protocol validation 134 
4.1.3 Results 136 

4.1.4 Discussion 138 

4.2 FOLLICULAR LYMPHOMA BIOMARKERS BASED ON DIVERSITY OF THE IMMUNE 

MICROENVIRONMENT 139 

4.2.1 Motivation 139 

4.2.2 Materials and methods 140 

4.2.2.1 Dataset 140 
4.2.2.2 Multiplex immunofluorescence imaging 142 
4.2.2.3 Cell detection 142 
4.2.2.4 Positive cell scoring 144 
4.2.2.5 Cell density quantification 146 
4.2.2.6 Identifying CD21+ dendritic meshwork areas 146 
4.2.2.7 TME diversity quantification 147 
4.2.2.8 Diversity of spatial interactions 147 
4.2.2.9 Statistical analysis 150 
4.2.3 Results 151 

4.2.3.1 Prevalence of POD24 152 
4.2.3.2 Prognostic value of clinical and biochemical characteristics 152 
4.2.3.3 Distribution of immune cell densities and diversity metrics 154 
4.2.3.4 Cell population densities were not prognostic in multivariable analysis 155 
4.2.3.5 Immune infiltrate diversity analysis 155 
4.2.4 Discussion 160 

4.3 SUMMARY 163 



 5 

5 CONCLUSIONS 164 

5.1 CAS DESIGN REQUIREMENTS AS A GUIDE FOR FURTHER VALIDATION 167 

5.2 FUTURE WORK 168 

BIBLIOGRAPHY 169 

 

Word count: 41,635 

  



 6 

List of Figures 

Figure 1 Follicle structures in a follicular lymphoma tissue microarray core shown 

following haematoxylin and eosin (H&E) staining. ................................................. 25 

Figure 2 Human follicular lymphoma lymph node tissue microarray, stained with a 

multiplex immunofluorescence protocol110 and scanned at 10x with the Vectra 3.5 

microscope (only DAPI filter). ................................................................................. 39 

Figure 3 Demonstration of the convolution (mixing) of multiple fluorophores when 

applied on a tissue during multiplexing linearly to produce the observed emission 

spectrum. ................................................................................................................... 43 

Figure 4 The Vectra multiplex staining protocol, using tyramide signal amplification 

(TSA). ....................................................................................................................... 46 

Figure 5 Overview of process needed to analyse a multiplex digital tissue image. .......... 47 

Figure 6 Cell and sub-cellular segmentation task illustration............................................ 50 

Figure 7 Nuclear counterstain in fluorescence and brightfield immunohistochemistry. ... 51 

Figure 8 The convolution operation is shown for a 3x3 kernel. ........................................ 54 

Figure 9 StarDist model architecture for nuclear segmentation. ....................................... 56 

Figure 10 Types of errors in instance segmentation of cell nuclei. ................................... 57 

Figure 11 ER-alpha (ESR1 gene) staining expression levels in breast cancer, using 

HPA000449 antibody and brightfield immunohistochemistry. ................................ 69 

Figure 12 HER2 (ERBBR gene) staining expression levels in breast cancer, using 

CAB020416 antibody and brightfield immunohistochemistry. ................................ 70 

Figure 13 T-cell marker staining pattern in healthy lymph node tissue. ........................... 71 

Figure 14 Adapted PRISMA (2009) flow chart248 for study selection. ............................. 78 

Figure 15 The distribution of quality scores obtained using the Hawker checklist for the 

96 studies identified in the systematic review. ......................................................... 79 

Figure 16 Details on image preparation, imaging setup, resolution and validation setup 

from the 96 reviewed studies. ................................................................................... 82 

Figure 17 Random effects meta-analysis of Cohen's κ for HER2 scoring algorithm 

performance. ............................................................................................................. 86 

Figure 18 Random effects meta-analysis of Cohen's κ for ER scoring algorithm 

performance. ............................................................................................................. 87 

Figure 19 Example of an image in the data set, representing a single region of interest 

(1040 ×1392 pixels). ............................................................................................... 106 

Figure 20 The architecture of the U-net segmentation model ......................................... 107 

Figure 21 Problematic areas and predicted segmentation labels from the test set. ......... 109 

Figure 22 Cell segmentation was carried out in QuPath. ................................................ 110 

Figure 23 Nuclear segmentation comparison between inForm 2.4 and QuPath 0.1.3. ... 112 



 7 

Figure 24 Results of scoring for five regions of interest (ROI) from different slides and 

patients for the CD8 marker. ................................................................................... 113 

Figure 25 Diagram of image analysis pipeline ................................................................ 114 

Figure 26 Illustrative HID interaction features for a region of interest. .......................... 119 

Figure 27 Kaplan-Meier analysis of the effect of HID interactions on prognosis in the 

HPV negative subgroup. ......................................................................................... 121 

Figure 28 Steps to set up a Vectra multiplex protocol..................................................... 132 

Figure 29 Adding a spectrum to a spectral library. ......................................................... 133 

Figure 30 Human follicular lymphoma lymph node tissue, stained with the proposed 6-

plex tyramide signal amplification protocol,110 scanned multispectrally and unmixed 

using the Vectra 3.5 system. ................................................................................... 134 

Figure 31 Sequential TMA sections setup for multiplex experiment validation. ............ 135 

Figure 32 Area quantification in HALO for the CD21 antibody (570 fluorophore). ...... 136 

Figure 33 Comparison of % tissue area stained by each marker in two sequential 4μm 

TMA sections, a multiplex and a single-plex. ........................................................ 137 

Figure 34 Bland-Altman plot comparisons between singleplex and multiplex 

immunofluorescent assays for each antibody. ........................................................ 138 

Figure 35 Patient flowchart in the follicular lymphoma study. ....................................... 141 

Figure 36 Worse performing image in test set for nuclear segmentation (AP=0.733). ... 143 

Figure 37 Growing membranes around detected nuclei. ................................................. 144 

Figure 38 Dendritic meshwork areas were annotated manually by drawing around the 

CD21+ meshwork pattern regions. .......................................................................... 147 

Figure 39 Demonstration of how spatial interactions are calculated. .............................. 149 

Figure 40 Summary of methodology for automated diversity analysis in the tumour 

microenvironment of FL. ........................................................................................ 150 

Figure 41 Kaplan-Meier analysis with POD24 in the rituximab treated subgroup to test 

associations to OS and PFS. ................................................................................... 152 

Figure 42 Kaplan-Meier survival analysis for the new diversity metrics. ....................... 158 

 

  



 8 

List of Tables 

Table 1 Studies assessing tumour microenvironment biomarkers in rituximab treated FL 

cohorts: observed effects .......................................................................................... 33 

Table 2 Studies assessing tumour microenvironment biomarkers in rituximab treated FL 

cohorts: study design ................................................................................................ 34 

Table 3 A summary of tumour microenvironment populations discussed in this thesis for 

OPSCC and FL ......................................................................................................... 36 

Table 4 Description of ASCO/CAP manual HER2 scoring algorithm .............................. 69 

Table 5 Pre-piloted form for data collection from reviewed studies ................................. 75 

Table 6 Inventory of studies for each marker and imaging modality ................................ 77 

Table 7 Overview of computer assisted scoring (CAS) design requirement validation .... 80 

Table 8 Studies included in meta-analysis of Cohen's κ agreement for HER2 ................. 85 

Table 9 Studies included in meta-analysis of Cohen's κ agreement for ER ...................... 87 

Table 10 Sensitivity analyses based on the size of dataset, number of pathologists 

providing annotations, use of an independent test set and use of whole slide images

 .................................................................................................................................. 88 

Table 11 Agreement with pathologists' ground truth for automated scoring of T-cell 

markers (CD3, CD4, CD8) ....................................................................................... 90 

Table 12 Studies reporting agreement between HER2 immunohistochemistry (IHC) and 

FISH. IHC was scored using both manual scoring and CAS for comparison. ......... 93 

Table 13 Comparison of inter-observer agreement in manual scoring and CAS .............. 95 

Table 14 Antibodies, titrations and fluorophores in the multiplex immune-fluorescent 

experiment .............................................................................................................. 104 

Table 15 Normalised confusion matrix for the network predictions on the test set ........ 108 

Table 16 Nuclear segmentation settings for inForm 2.4 and QuPath 0.1.3 ..................... 111 

Table 17 Segmentation performance in the manually annotated test set ......................... 111 

Table 18 Cohort characteristics ....................................................................................... 116 

Table 19 Cox regression survival analysis (univariable) for clinical variables ............... 117 

Table 20 Median population density expressed as a percentage of positive cells ........... 117 

Table 21 Univariable Cox Regression analysis of overall survival for patients stratified by 

median cell expression ............................................................................................ 118 

Table 22 Distribution of HID features in all, HPV positive and HPV negative patients 120 

Table 23 Univariable Cox Regression analysis of overall survival for patients stratified by 

mean HID proximity frequencies............................................................................ 120 

Table 24 Antibodies, titrations and fluorophores in the multiplex immunofluorescence 

protocol ................................................................................................................... 136 



 9 

Table 25 Segmentation performance in the test set for different thresholds of the 

intersection over union (IoU) parameter ................................................................. 144 

Table 26 Agreement for cell labels generated by selecting a positivity cut-off per image in 

the validation set. .................................................................................................... 145 

Table 27 Baseline characteristics of the 127-patient cohort ............................................ 151 

Table 28 Survival and POD24 analysis for clinical variables ......................................... 153 

Table 29 Median and interquartile range for tumour microenvironment features in the 

data set .................................................................................................................... 154 

Table 30 Univariable survival analysis for features derived from the tumour 

microenvironment ................................................................................................... 156 

Table 31 Multivariable survival analysis for features derived from the tumour 

microenvironment ................................................................................................... 157 

Table 32 Logistic regression for POD24 prediction in the subset treated with rituximab 

containing regimens ................................................................................................ 159 

Table 33 Comparison of image analysis CAS pipelines developed for OPSCC and FL 165 

 

  



 10 

 List of Abbreviations 

AF Autofluorescence 

AJCC American Joint Committee on Cancer 

AP Average precision 

ASCO/CAP 
American Society of Clinical Oncology and Col-

lege of American Pathologists 

BM Bone marrow 

CAS Computer assisted scoring 

CEP17 Centromere of chromosome 17 

CI Confidence intervals 

CISH Chromogenic in situ hybridisation 

CMP Combinatorial molecular phenotypes 

CNN Convolutional neural network 

CoV Coefficient of variation 

CyTOF Cytometry by time of flight 

DAB 3,3’-diaminiobenzidine 

DAPI 4′, 6-diamidino-2-phenylindole 

DFS Disease free survival 

DLBCL Diffuse large B-cell lymphoma 

ECOG 
Eastern Cooperative Oncology Group perfor-

mance status 

EGFR Epidermal growth factor receptor 

ENS Extra-Nodal Sites 

ER Oestrogen receptor-α 

FDC Follicular dendritic cells 

FFPE Formalin-fixed and paraffin embedded 

FISH Fluorescent in situ hybridisation 

FL Follicular lymphoma 

FLIPI 
Follicular lymphoma international prognostic in-

dex 

FN False negative 

FP False positive 

H&E Haematoxylin & eosin staining 

Hb Haemoglobin 

HER2 Human epidermal growth factor receptor 2 

HID 
Hypothesized Interaction Distribution methodol-

ogy 

HPV Human papillomavirus 

HR Hazard ratio 

HRP Horseradish peroxidase 

IF Immunofluorescence 

IHC Immunohistochemistry 

IoU Intersection over union 

IPI International prognostic index 



 11 

LDH Serum lactate dehydrogenase 

LRC Loco-regional control 

MELC Multi-epitope-ligand cartography 

NMS Non-maximum suppression 

NS Nodal sites 

OPSCC Oropharyngeal squamous cell carcinoma 

OS Overall survival 

PD-1 Programmed cell death protein 1 

PFS Progression free survival 

PH Proportional hazards 

PI3K Phosphoinositide 3-kinase 

POD24 
Progression of disease within 24 months of start-

ing treatment 

R Rituximab 

R-CHOP 

Rituximab, cyclophosphamide, doxorubicin hy-

drochloride (hydroxydaunorubicin), vincristine 

sulphate and prednisone 

R-CVP 
Rituximab, cyclophosphamide, vincristine sul-

phate, and prednisone 

ROI Regions of interest 

SCCHN Squamous cell carcinoma of the head and neck 

T-regs T regulatory cells 

TAM Tumour associated macrophages 

TCR T-cell receptor 

TFH T follicular helper cells 

TIL Tumour infiltrating lymphocytes 

TMA Tissue microarray 

TME Tumour microenvironment 

TMTV Total metabolic tumour volume 

TP True positive 

TR Treatment response 

TSA Tyramide signal amplification 

TTT Time to transformation 

WSI Whole slide images 

WW Watchful waiting 

 

 

 

 

 



 12 

Abstract 

Fulfilling the promise of cancer immunotherapy would benefit from novel bi-

omarkers to characterise the tumour microenvironment and risk-stratify patients. 

Multiplex immunofluorescence imaging methods are suitable for this task, enabling 

visualisation of multiple proteins on the same tissue section. This facilitates identi-

fication of multiple cell phenotypes based on the proteins they express, while pre-

serving spatial context. The aim of this thesis was to explore how multiplexed and 

spatial profiling of the tumour microenvironment in two types of cancer, oropha-

ryngeal squamous cell carcinoma (OPSCC) and follicular lymphoma (FL), can be 

utilised for biomarker development.  

Computer assisted scoring tools are necessary to analyse multiplex images, as draw-

ing conclusions from the large amount of information available is challenging. 

Thus, the first contribution of this work was to define design requirements of com-

puter assisted scoring tools and assess their performance. Systematic review of the 

literature identified six design requirements: definability, accuracy, reproducibility, 

time-efficiency, interpretability and accurate confidence estimation. A meta-analy-

sis of several HER2 and ER scoring studies established that automated scoring 

agreed with manual scoring, similar to how well pathologists usually agreed with 

each other.  

The second contribution of this work was the introduction of a prognostic bi-

omarker in OPSCC using multiplex immunofluorescence and a new computer as-

sisted scoring system to observe spatial proximity between cell phenotypes. Fre-

quent spatial proximity between cells known to interact during the PD-1/PD-L1 

immune escape pathway was unfavourable in patients with HPV negative OPSCC. 

The final contribution was the development and validation of a 7-plex immunoflu-

orescent panel for FL and an automated scoring system to study the diversity of 

immune populations and their spatial relationships. Increased diversity of cell types 

and cell spatial interactions were favourable in multivariable analyses. 

These findings underline the importance of the tumour microenvironment in prog-

nosis of FL and OPSCC and merit further exploration in additional cohorts. The 

design requirements identified can be applied to guide further validation and estab-

lish clinical applicability of the proposed automated scoring systems.  
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Outline 

The outline of the thesis is described below. 

Chapter 1 is an introduction, outlining the clinical and technical background. Sec-

tion 1.1 provides clinical background on two cancers, oropharyngeal squamous cell 

carcinoma and follicular lymphoma, and outlines the need and scope for biomarkers 

to characterise the tumour microenvironment. Section 1.2 provides the technical 

background on multiplex tissue imaging and image analysis technologies that can 

assist in the development of such biomarkers. Section 1.3 summarises the motiva-

tion, aims and objectives of this work. 

Chapter 2 deals specifically with image analysis tools developed for histopatholog-

ical scoring, i.e., quantifying the level of protein expression on the tissue and pre-

sents a systematic review of the literature. 

Chapter 3 introduces a new biomarker in oropharyngeal squamous cell carcinoma, 

using multiplex and spatial analysis of the tumour microenvironment. 

Chapter 4 introduces a new biomarker in follicular lymphoma, using multiplex, 

spatial and immune diversity analysis. It is split in two ways. Section 4.1 describes 

development and validation of a novel multiplex assay to observe the immune mi-

croenvironment in follicular lymphoma. Section 4.2 describes the image analysis 

pipeline and biomarker validation. 

Chapter 5 presents concluding remarks and directions for future research. 
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1 Introduction 

The paradigm shift in cancer treatment caused by the advent of immunotherapy has 

improved the lives of millions of people worldwide and has radically changed our 

understanding of how the disease develops. Cancer researchers now agree that “it 

takes a village”1,2 for cancers to grow. That “village” signifies the tumour microen-

vironment and the dysfunctional community of host cells that infiltrate and sur-

round the tumour. This environment includes immune cells, signalling molecules, 

extra-cellular matrix and blood vessels, forming a permissive ecosystem that pro-

motes tumour growth and helps tumour cells escape immune detection. 

Immune escape signalling pathways in the tumour microenvironment are the target 

of effective immunotherapies, that help the host immune system recognise and kill 

tumour cells. Fulfilling the potential of immunotherapy requires novel biomarkers 

to characterise the tumour microenvironment and assist in treatment selection. Such 

precision medicine approaches are needed as many new treatments become availa-

ble. There is a pressing clinical need for biomarker led strategies that involve up-

front risk-adapted therapy selection and/or subsequent response adapted therapy es-

calation/de-escalation to maximise efficacy and minimise toxicity. 

Emerging highly multiplexed histopathological assays coupled with digital pathol-

ogy present new opportunities for cancer biomarker development. This technology 

can offer an unprecedented amount of information on the tumour microenviron-

ment. Multiplexed assays are the family of techniques that can concurrently visual-

ise the expression of multiple protein targets (up to ~100) on single cells. Multi-

plexing presents an opportunity for precise recognition of cell phenotypes and func-

tionality, while at the same time preserving the spatial context and producing an 

image of the tissue, similar to the conventional pathology workflow.  

Drawing conclusions from the huge amount of information available from multi-

plex assays is challenging by manual pathologist assessment. Digital pathology, 

i.e., the use of digital image analysis for the assessment of tissue biopsies can miti-

gate this problem. Digital pathology enables new ways to assess multiplex images 

and draw quantitative conclusions in a way that previously has not been possible.  

Thus, new insights into the tumour microenvironment are within reach, including a 

key aspect that has been generally understudied: the microenvironment’s spatial 
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architecture. Spatial architecture refers to the overall spatial organisation that per-

meates the tissue, including the formation of tissue compartments with distinct phe-

notypic profiles, the location of high cell density areas (“hotspots”), and the posi-

tioning and spatial distribution of cell phenotypes relative to themselves and to each 

other.  

Spatial architecture can reveal important insights on prognosis, disease develop-

ment, and response to treatment.3 Early studies3 have shown links between the spa-

tial proximity of certain cells and disease outcome. However, the implications of 

differential spatial architectures and the extent of their clinical usefulness are still 

not well understood. Furthermore, it is unclear whether spatial pattern is equally 

important for both solid and haematological tumours. 

This thesis addresses the multiplexed and spatial profiling of the tumour microen-

vironment for novel cancer biomarker discovery. Using multiplexed immunofluo-

rescence assays and automated image analysis, new methodologies to examine the 

spatial context are investigated and tested for their prognostic value as cancer bi-

omarkers in oropharyngeal cancer and follicular lymphoma. Such methodologies 

that allow quantitative mapping of the spatial architecture can ultimately achieve a 

more comprehensive understanding of the heterogeneous tumour microenviron-

ment. 
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1.1 Clinical background 

In this section, the epidemiology, treatment pathways and current prognostic land-

scape of oropharyngeal squamous cell carcinoma and follicular lymphoma are out-

lined. Clinical background is provided to determine the unmet clinical need and 

potential for development of novel prognostic biomarkers based on the spatial ar-

chitecture of tumours. 

1.1.1 Oropharyngeal squamous cell carcinoma 

Squamous cell carcinoma of the head and neck (SCCHN) is the most commonly 

encountered of the head and neck malignancies, affecting the thin, flat squamous 

cells. These cells form the lining of many organs in the human body, such as the 

oropharynx, mouth and nose and their functionality is primarily to enable and filter 

the transportation of molecules to and from these organs. Oropharyngeal squamous 

carcinoma (OPSCC), is the subset of SCCHN which includes the pharyngeal walls, 

base of tongue, soft palate and tonsils.4 

1.1.1.1 Epidemiology, aetiology and treatment 

In terms of prevalence, head and neck cancer is the 6th most common cancer glob-

ally5 and 8th in the UK population.6 The incidence rates in the UK have increased 

by approximately 40% since the early 1990s in 25-60 year olds.6 In the UK, most 

patients are male (70%), while incidence increases with age (usual range 35-90+ 

years).6 Prognosis in OPSCC is similar for men and women with a 1-year survival 

rate of 84% , 5-year survival of 66% and 10-year survival of 56%.6 

The aetiology of SCCHN is quite well understood today; tobacco and excessive 

alcohol consumption have been established as the main risk contributors, while 

their carcinogenic effects seem to be synergistic. However, as not all people who 

consume tobacco and alcohol will necessarily develop cancer, genetic predisposi-

tion and immunosuppression also play a role.4 Additionally, infection with high risk 

HPV sub types (primarily HPV-16) has been established as the cause of SCCHN in 

a subset of patients.7 HPV+ patients with SCCHN often have a favourable prognosis 

and present with different genetic and immune response characteristics. A meta-

analysis of 12,263 patients from 44 countries showed that 31.5% of SCCHN pa-

tients and 45.8% of OPSCC patients were HPV+ when assessed with DNA PCR 
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analysis.8 Because of their marked differences, it is generally suggested that HPV+ 

and HPV- OPSCC should be considered separate entities. 

Treatment for SCCHN usually depends on the stage at diagnosis and patient fitness. 

For early stages, radiotherapy with or without surgery is usually administered. For 

advanced stages, surgery may be combined or chemotherapy, radiation or immuno-

therapy. In patients with only locally advanced disease, platinum-based chemo-ra-

diation is indicated as the standard treatment, while a combination of radiotherapy 

and cetuximab can be administered if chemotherapy is not tolerated. Finally, in pa-

tients with distant metastases or recurrent disease, currently the preferred option is 

a combination of platinum-based chemotherapy and cetuximab.9 Cetuximab is a 

monoclonal antibody that gained FDA approval in 2006 and was designed to target 

the  epidermal growth factor receptor (EGFR). EGFR is expressed in the surface of 

neoplastic cells in SCCHN and when activated by binding to ligands that normally 

exist in the body, such as EGF, it promotes proliferation and apoptosis evasion.10 

While cetuximab is established in clinical practice, many other immunotherapy 

treatments are in development,11 such as DNA vaccines, adoptive T-cell transfer 

and immune checkpoint inhibitors (e.g. ipilimumab against CTLA-4 and pembroli-

zumab,  nivolumab,  durvalumab against the PD-1/ PD-L1 pathway of immune-

escape12). 

1.1.1.2 Prognostic factors 

Historically, the clinically used prognostic indicator for SCCHN is TNM stage, 

which consists of three components; tumour size, local nodal involvement and pres-

ence of distant metastases.4 However, as novel treatments based in specific target-

ing of immune escape mechanisms slowly emerge, there is a need for new bi-

omarkers for treatment selection (or de-escalation) that would be tailored to patient 

specific immune characteristics. One such biomarker is the HPV status. Notably, 

HPV+ patients are expected to have 28% lower risk of death than HPV- OPSCC 

patients,13 while HPV+ OPSCC patients with a higher density of TILs as a whole 

have been shown to have significantly better disease specific survival.14 While in-

formation on HPV status (p16 protein expression) is used to inform prognosis, no 

other biomarker is used routinely.  

There are, however, numerous publications highlighting potential prognostic fac-

tors derived from the tumour microenvironment, ranging from hypoxia,15 molecular 
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subtyping,16 and densities of several tumour infiltrating lymphocyte (TIL) subsets. 

This thesis aimed to identify such key TIL subsets in the tumour microenvironment 

of SCCHN and study their spatial patterns. To this end, prior findings on the poten-

tial prognostic value of several TIL subsets in head and neck cancer are discussed 

below. 

1.1.1.3 The role of the tumour microenvironment in prognosis 

1.1.1.3.1 PD-1 and PD-L1 

The PD-1 and PD-L1 signalling axis is considered a promising target for the devel-

opment of novel immunotherapy treatments in several cancers. PD-1 (or pro-

grammed cell death protein 1) is a surface receptor expressed in T-cells and pro-B-

cells.17 PD-L1 is its ligand, expressed by normal tissue cells, which binds to PD-1+ 

T-cells, eventually leading them to apoptosis. This interaction constitutes an im-

mune checkpoint that is in place to prevent autoimmune attacks. In cancer however 

this signalling axis is hypothesised to aid immune escape, as tumour cells over-

express PD-L1 to drive the PD-1 expressing T-cells to apoptosis or exhaustion.  

In SCCHN anti-cancer drugs that act as immune checkpoint inhibitors against PD-

1 or PD-L1 are being evaluated in clinical trials with promising results. Ran et al.12 

published a comprehensive review of immune checkpoint inhibitors for SCCHN in 

2017, comparing their overall response rates and mechanisms of action. PD-L1 pos-

itivity (at varying levels) is commonly used as a criterion for entry in these studies, 

however on its own it seems unable to determine a favourable response to treatment. 

Thus, there emerges a need for predictive biomarkers that could adequately identify 

an immune suppression landscape and be used for treatment selection.  

Several studies support the hypothesis of immune escape due to the PD-1/ PD-L1 

checkpoint in SCCHN and have correlated high PD-L1 expression with a poor 

prognosis. Mattox et al.18 showed that PD-1+ T-cells were often anergic when PD-

L1 was positively expressed in the tumour, by observing the reduced co-localisation 

of Ki67 with these T-cells. Muller et al.19 analysed PD-L1 expression in regards to 

overall survival (OS) in two cohorts (293 patients in total) of SCCHN and found a 

significant correlation between high PD-L1 levels and unfavourable outcome, 

which outperformed stage and the presence of distant metastasis in terms of prog-

nostic power. This study included mostly OPSCC but did not discriminate patients 

by HPV status. Skinner et al.20 recently established a correlation between high PD-
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L1 expression in tumour cells of HPV- SCCHN (mostly oral sites) and early local 

treatment failure. Through proteomic, transcriptomic and immunohistochemistry 

analyses, they pointed to an AXL -– PI3 Kinase –- PD-L1 signalling axis related to 

a radiation resistant phenotype.  

However, the correlation between PD-L1 or PD-1 expression and adverse outcome 

was not consistently observed, raising concerns about their use as biomarkers for 

treatment selection. Schneider et al.21 examined PD-1 and PD-L1 expression in 129 

SCCHN samples (58 OPSCC). They found that only HPV- OPSCC samples that 

were positive for PD-1+ TILs had significantly improved OS and DFS (disease-free 

survival) while PD-L1 expression was prognostic for oral, but not oropharyngeal 

squamous cell carcinoma, regardless of HPV status. Oguejiofor et al. in 201722 an-

alysed the expression of PD-L1 in a cohort of 124 OPSCC patients. They showed 

that the density of PD-L1+ cells in the stroma correlated with unfavourable loco-

regional control (LRC) and OS only in HPV- patients. The same study also assessed 

the population of CD8+PD-1+ TILs, and while a correlation was established be-

tween high densities in the stroma and favourable outcome in HPV+ patients, no 

such effect was present for HPV- patients. 

1.1.1.3.2 Tumour associated macrophages  

The CD68 marker is used to identify tumour associated macrophages (TAM). In 

several solid tumours TAM have been shown to correlate with tumour progression 

and angiogenesis. Mattox et al.18 recently reported that 14-32% of PD-L1 expres-

sion could be attributed to macrophages and that a co-localisation frequently oc-

curred between CD68+PD-L1+ and CD4+PD-1+ cells, and somewhat less frequently 

between CD68+PD-L1+ and CD8+PD-1+ cells. Based on these results they postu-

lated that TAM play a role in the PD-1/ PD-L1 immune escape pathway. 

Ritta et al.23 demonstrated a strong positive correlation between CD68 and Ki67 

numbers using samples from 22 primary OPSCC tumours, regardless of HPV sta-

tus. High Ki67 expression was an adverse prognostic factor in this study. In Russell 

et al.24 CD68 was slightly increased in HPV+  versus HPV-, but no correlation with 

outcome was observed.24  The absence of correlation between intra-tumoural CD68 

and disease free survival was reiterated by Pretscher et al.25 in a cohort of 33 

SCCHN (12 OPSCC) patients, irrespective of HPV status. Oguejiofor et al.22 con-

cluded that CD68+ and CD68+PD-L1+ expression in the stroma were associated with 
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adverse OS and LRC but only for HPV- tumours. They observed higher numbers of 

CD68+ cells in HPV+ than HPV- cells, in agreement with Russel et al.24 

1.1.1.3.3 Cytotoxic T-cells 

CD8 is used to identify the population of cytotoxic T-cells. These cells carry surface 

receptors that bind to specific antigens, like the ones expressed by tumour cells, 

infected or otherwise damaged cells. Once they bind to the antigens, the cytotoxic 

T-cells can then destroy these cells.17 The numbers and proportion of CD8+ cells 

has been shown to be significantly increased in HPV+ compared to HPV- SCCHN.14 

Two additional studies24,26 have confirmed this observation for CD8 cells in the 

central tumour, the invasive margin and the adjacent stroma. 

Populations of CD8+ T-cells are usually positively correlated with outcome in 

HPV+ OPSCC. 14,27,28 Oguejiofor et al.26 however demonstrated that this correlation 

was due to the stromal populations of CD8+ cells, while intra-tumoural CD8+ cells 

did not affect outcome. 

In HPV- OPSCC the effect of CD8+ infiltrate on survival is unclear. While some 

studies found that CD8+ TILs were prognostic regardless of HPV status,27,28 others 

showed no such effect in HPV- OPSCC.14,22,26 The effect may also depend on the 

site of disease, as Feng et al.29 recently published a study on oral squamous carci-

noma where the numbers of CD8+ TILs in the invasive margin correlated positively 

with improved OS in HPV-. 

1.1.1.3.4 Other microenvironment biomarkers 

Other cell subsets of interest that have been previously studied for their contribution 

in disease development of head and neck cancer include fibroblasts, neutrophils, 

mast cells, and T regulatory cells (T-regs). A comprehensive review can be found 

in Peltanova et al.30 

1.1.1.4 The importance of spatial architecture 

There is evidence to support that beyond simple enumeration of the cell densities 

of TILs, observation of their infiltration patterns could offer meaningful infor-

mation for biomarker development. For PD-L1 expression a study31 recently ob-

served two different patterns of infiltration; the lace-like induced pattern was found 
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in the invasive margin and mostly stained immunocytes, while the constitutive pat-

tern was found in the central tumour, staining strongly and uniformly the neoplastic 

cells. No outcome endpoint was available for this data set, however it was shown 

that the induced pattern was most frequently found in HPV+ OPSCC, while the 

constitutive pattern was equally encountered in both HPV+ and HPV- samples.  

Another study29 in HPV- oral squamous carcinoma demonstrated that the co-local-

isation of TIL subsets could be prognostic for OS. Looking at the invasive margin, 

a high occurrence of FOXP3+ T-cells or PD-L1+ cells within 30 μm of CD8+ corre-

lated with worse outcome. Close proximity between cell types, can be an indication 

of interaction frequency between these cell types, indicating the presence of an im-

mune-escape pathway. These results show that there is untapped potential in look-

ing at the architectural pattern of infiltration of TILs and spatial interactions be-

tween their various subsets in SCCHN for novel biomarker development.  

1.1.2 Follicular lymphoma 

1.1.2.1 Epidemiology, aetiology and treatment 

Non-Hodgkin’s lymphoma is the 6th most common cancer in the UK.32 Follicular 

lymphoma (FL) is the second most common Non-Hodgkin’s lymphoma subtype, 

accounting for 5% of all haematological malignancy diagnoses in the UK, with an 

annual incidence rate of 3.1 per 100 000 (95% CI: 2.8-3.3).33 Incidence increases 

with age,34 with a median age at diagnosis of 64.6 years.33 Slightly higher incidence 

have been observed for males and non-Hispanic white people.34 

FL is a malignant B-cell lymphoma that generally follows an indolent and incurable 

clinical course. The 5 year relative survival rate in the US ranged from 80-90% for 

cases diagnosed between 2000-2016,34 while in the UK, 5 year survival was 86.5% 

for cases diagnosed between 2004-2012.35 Most patients with advanced stage dis-

ease respond to systemic treatment and achieve durable remissions lasting several 

years, but the majority will relapse and many eventually die of relapsed or refrac-

tory lymphoma. Around 20% experience early treatment failure, which is associ-

ated with an inferior overall survival.36 Identifying those high-risk individuals with 

good precision at baseline is an important task to assist treatment selection and 

therefore the development of biomarkers for this purpose is critical. 
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FL is caused by failure of apoptosis in B-cells known as centrocytes and centro-

blasts. In the germinal centres of lymphoid tissue, such as lymph nodes or bone 

marrow, follicles structures will form that contain the FL B-cells. These follicles 

are characteristic nodular patterns in FL, which can vary in size. Figure 1 shows an 

example of FL follicles. 

 

Figure 1 Follicle structures in a follicular lymphoma tissue microarray core shown follow-

ing haematoxylin and eosin (H&E) staining. A follicle is annotated in red. 

The B-cell t(14;18) translocation leading to over-expression of BCL-2 protein is a 

principle cause of FL development with a prevalence of >85% in FL patients.34,37 

This translocation is thought to be a necessary requirement, but not sufficient for 

the development of the disease, as it is observed in healthy individuals with a low 

rate of FL development. Further research is necessary to pinpoint risk factors, how-

ever family history of non-Hodgkin’s lymphoma, certain genetic factors and some 

autoimmune disorders (e.g. Sjogren’s syndrome, auto-immune haemolytic anae-

mia) have been previously associated with FL.34 For most patients with FL, no caus-

ative factor can be identified. 

Regarding treatment options, advanced stage FL is still considered incurable. How-

ever the introduction of monoclonal anti-CD20 antibody rituximab and an increas-

ing number of available treatments has greatly improved survival outcomes in the 
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last 15 years.38 Patient management of FL is presently defined based on the Lugano 

classification.39 Patients presenting with grade 1, 2 and 3a disease are treated as FL, 

while patients with 3b disease are treated similarly to Diffuse Large B-cell Lym-

phoma (DLBCL).40 The management of patients with grade 1, 2 or 3a FL is sum-

marised below. 

1.1.2.1.1 First-line treatment 

Patients with stage I or contiguous stage 2 disease may successfully be treated with 

involved field radiotherapy. For patients with advanced stage low tumour burden, 

asymptomatic disease, as defined by the Groupe d’Etude des Lymphomes Follicu-

laires criteria,41 watchful waiting or single agent rituximab are often recommended.  

Because of the indolent course of FL, systemic treatment of advanced stage disease 

is usually delayed until the patient is symptomatic or has high disease burden. When 

treatment is appropriate, chemoimmunotherapy is the systemic therapy of choice, 

where rituximab (or the newer anti-CD20 monoclonal antibody obinutuzumab) is 

administered in combination with chemotherapy (CVP, CHOP or bendamustine).40 

Relative benefits of these alternative first-line treatment options have been studied 

in the randomised StiL,42 BRIGHT,43 GALLIUM,44 and RELEVANCE45 trials. 

Maintenance rituximab may be used after chemoimmunotherapy treatment, to pro-

long remission. 

1.1.2.1.2 Treatment at relapse 

Most FL patients with advanced stage disease will eventually relapse, possibly mul-

tiple times.40 At relapse, there is a risk of histologic transformation to high grade 

lymphoma (DLBCL) which requires a different therapeutic approach.46 At first re-

lapse, and if no transformation has taken place, the decision to treat is again based 

on symptoms and disease burden, and may include a further chemo-immunother-

apy, a targeted therapy, or stem cell transplant.40 After second relapse, the optimal 

treatment options are not well studied. Amongst others, PI3K inhibitors are a pos-

sible option.40 

1.1.2.2 Prognostic factors 

In the context of FL, given the many different available treatment options and the 

heterogeneous nature of the disease, the availability of precise prognostic infor-

mation is important to help clinicians select the right treatment for the right patient. 
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Therefore, researchers in recent years have directed their efforts into developing 

clinically relevant, prognostic indices for FL. 

1.1.2.2.1 International prognostic indices 

The international prognostic index (IPI) was introduced for aggressive non-Hodg-

kin’s lymphoma in 1993.47 IPI combined five clinical variables into a single prog-

nostic index: age, tumour stage, serum lactate dehydrogenase (LDH) concentration, 

performance status, and number of extra-nodal sites. IPI is a four-tier score (low 

risk, low intermediate, high intermediate and high risk). Its applicability was 

demonstrated for low grade non-Hodgkin’s lymphomas and FL, however, it was 

not useful for clinical decision making, as it assigned only 11.2% of patients to the 

high risk group.48 

The follicular lymphoma international prognostic index (FLIPI) is an adaptation of 

IPI developed exclusively for FL in 2004. FLIPI was developed using a cohort of 

4167 FL patients from 27 centres or groups, diagnosed between 1985-1992, and 

tested on 919 patients treated before the routine addition of anti-CD20 monoclonal 

antibodies to standard chemotherapy.49  FLIPI is calculated by summing five binary 

clinical risk indicators: age > 60 years, stage III or IV, haemoglobin level < 120 

g/L, number of nodal sites > 4 and LDH above normal. FLIPI scores 0-1 are low 

risk, scores of 2 are intermediate risk, and scores 3-5 are high risk. The distribution 

of patients to the risk groups was more balanced than with IPI: low risk 37.6%, 

intermediate 34.8%, high risk 27.6%.49  In 2006, FLIPI was also validated for use 

in cohorts treated with R-CHOP.50 

FLIPI-2 was developed in 2009 in a prospective study and consists of an adaptation 

of FLIPI, more suitable for cohorts treated with rituximab immunochemotherapy.51 

Similar to FLIPI, it is calculated by summation of five binary risk factors: haemo-

globin level < 120 g/L, age > 60 years, bone marrow involvement, nodal site diam-

eter > 6cm, and elevated β2- microglobulin. 

Finally, the PRIMA index was developed in 2018 in a cohort treated solely with 

immunochemotherapy and proposes a simplified version of FLIPI-2, where only 

two factors are considered: bone marrow involvement and β2- microglobulin higher 

than 3mg/L.52 

 



 28 

1.1.2.2.2 M7-FLIPI 

In 2015, a variation of the FLIPI that also took into account genetic factors was 

introduced for patients treated with R-CVP or R-CHOP, namely the m7-FLIPI. This 

prognostic index incorporated FLIPI, performance status, and the mutational status 

of the genes: CARD11, EZH2, MEF2B, EP300, ARID1A, FOXO1, and 

CREBBP.53 High risk m7-FLIPI patients had 65% 5-year OS, compared to 90% in 

the low risk. This index has not yet been prospectively validated. 

1.1.2.2.3 Post-treatment FDG-PET 

For patients treated with rituximab immunochemotherapy, the response to treat-

ment, as defined by observation of the FDG-PET scan post-treatment, has been 

shown to correlated favourably with overall survival and progression-free sur-

vival.40 Even though response to treatment is an important index for prognosis, it 

cannot be predicted pre-treatment and therefore cannot be used for treatment selec-

tion. 

1.1.2.2.4 Total metabolic tumour volume (TMTV) 

Instead of observing the FDG-PET post-treatment, two studies have validated prog-

nostic indices based on the baseline FDG-PET.54,55 The total metabolic tumour vol-

ume (TMTV) can be calculated from FDG-PET images using dedicated software, 

and was shown to be negatively correlated with outcome. 

1.1.2.2.5 Progression of disease  

The duration of remission after systemic treatment is one of the most robust prog-

nostic indicators in FL. Disease progression within 24 months of initiating treat-

ment (POD24) is considered as a surrogate endpoint for OS and progression-free 

survival (PFS). A 2015 validation study including a discovery cohort of 2700 FL 

patients and a validation cohort of 588 patients, treated with first line R-CHOP, 

demonstrated a negative correlation between POD24 and outcome. The 20% of pa-

tients with POD24 had a 5-year survival of 50%, compared with 90% in the POD24 

negative group.56 Unfortunately, POD24 can only be assessed post-treatment and 

baseline indices, such as FLIPI, have proved unreliable predictors of POD24.57 
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1.1.2.3 The role of the tumour microenvironment in prognosis 

Apart from the B-cell t(14;18) translocation, early gene expression studies58–60 point 

to a large subset of additional differentially expressed genes related to FL develop-

ment. Some of these genes regulate communication between various immune sub-

sets (T-cells, B-cells, macrophages etc.). Furthermore, FL B-cells hardly survive on 

their own when cultured in vitro, unless incubated with an emulated tumour micro-

environment,61 indicating that the non-neoplastic immune infiltrate in FL can act as 

a growth support network for tumour cells, shielding them from apoptosis.62 Many 

studies link the heterogeneity of TILs in the tumour microenvironment (TME) of 

follicular lymphoma to survival, even though there is not always consensus on the 

observed effects.63,64 A number of prognostic studies carried out using multiple co-

horts with distinct treatment arms have provided further evidence that the prognos-

tic value of TIL subsets depends on the type of treatment, and varies drastically 

between cohorts treated with or without monoclonal anti-CD20 immunochemother-

apy.64,65  

1.1.2.3.1 CD4+ T-cells 

The CD4 molecule is found on the surface of monocytes, macrophages, dendritic 

cells and T-cells. In the context of FL, CD4 mostly identifies T-cells (co-expressing 

CD3), characterised as T-helper cells.64,66 They are called “helper” cells, as one of 

their main roles is to send signals to other immune cells (such as CD8+ T-cells) to 

coordinate the immune response. In FL these cells have been shown to upregulate 

PD-1, CTLA4 and TIGIT.67 A higher population of CD4+ non-neoplastic T-helper 

cells has been associated with favourable outcome in some studies68 and unfavour-

able outcome in others.69 In rituximab treated cohorts, the prognostic effect of CD4+ 

cells has either been favourable70 or insignificant.65,71 

1.1.2.3.2 T-regulatory cells (T-regs) 

T-regulatory cells (T-regs) are a subset of T-helper cells, expressing CD4, FOXP3 

and CD25. FOXP3 is considered the principal lineage marker of these cells and is 

often used to identify them. The role of T-regs is to regulate immune responses and 

suppress any auto-immune attacks, by de-activation of T-cells. However, in the 

context of lymphoma, they can be related to unfavourable outcomes, by suppressing 

the host anti-tumour response.62 In FL the effect of T-regs is even more compli-

cated, as T-regs found in the germinal centre have been shown to suppress B-cell 
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expression through multiple pathways,72,73 potentially inducing an anti-tumour ef-

fect. The prognostic significance of T-regs is therefore unclear. Higher populations 

of intra-follicular CD4+FOXP3+ T-regs have been found to correlate with favoura-

ble outcomes in some studies.74,75 In other studies including rituximab treated pa-

tients, no effect was observed.65,71,76   

The location of T-regs has also been tested as a potential prognostic biomarker. 

Farinha et al.77  in 2010 identified two patterns of T-reg localisation: the diffuse, 

where T-regs could be found anywhere with equal probability, and the follicular, 

where T-regs formed dense hotspot clusters, either inside or outside the follicles. 

No rituximab treated patients were included in this study, which found that a diffuse 

distribution of T-regs was an independent favourable predictor of OS. The prog-

nostic significance of T-reg localisation patterns has since been tested in two ritux-

imab treated cohorts, where no correlation with outcome was observed.71,76 

1.1.2.3.3 CD8+ T-cells 

Cells expressing CD8 are cytotoxic T-cells. Increased populations of CD8+ cells 

correlated with favourable outcome in FL78–80 and are therefore thought to play a 

role in control of the disease. The link between cytotoxic T-cells and outcome seems 

however to depend on the type of treatment received, and recent studies on rituxi-

mab treated cohorts did not observe a statistically significant correlation.65,71 

1.1.2.3.4 PD-1+ expressing cells 

Cells expressing PD-1 in the microenvironment of FL were found to be mostly 

CD4+ T follicular helper cells (TFH).81  Higher populations of intra-follicular PD-1+ 

cells were associated with decreased survival in Richendollar et al.82, but increased 

survival in other studies83,84. In 2015, Yang et al.81 used a small rituximab-treated 

cohort of 32 patients and found that only CD4+PD-1+
low or CD8+PD-1+

low cells in 

interfollicular areas correlated with an unfavourable outcome, while CD4+PD-1+
high 

cells inside the follicles were not significant. These findings, combined with func-

tional analysis revealed two distinct PD-1 expressing cell populations: a) the PD-

1+
high TFH cells found inside the follicles that actively supported FL B-cell growth, 

and b) the PD-1+
low cells found outside the follicles, which represent exhausted T-

cells and were unfavourably correlated with outcome. The PD-1+ TFH found within 

the follicles are known to express CD4 less strongly (30.7% lower CD4 intensity) 

compared with other CD4+ cells in the interfollicular areas.85 These intra-follicular 
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PD-1+ TFH were shown to be in close proximity or direct contact to actively prolif-

erating (expressing CD20 and Ki67) FL B-cells, which could support the hypothesis 

that these cells promote tumour progression.85 

1.1.2.3.5 CD68+ macrophages 

In FL microenvironment studies, the CD68 marker is used to identify tumour asso-

ciated macrophages, although it can also be expressed by monocytes.71,86–90 Tumour 

associated macrophages have been correlated with poor prognosis, but only in co-

horts that underwent chemotherapy without rituximab.89,90 However, in rituximab 

treated cohorts macrophages correlated with good outcome,86 which can be at-

tributed to one of the many mechanisms of action of the anti-CD20 antibody. Ritux-

imab’s “immune-mobilising” effect is known to alert macrophages to the presence 

of malignant B-cells, and to induce antibody-dependent phagocytosis.91,92 There-

fore, the presence of macrophages is potentially beneficial to patients treated with 

rituximab. 

1.1.2.3.6 Follicular dendritic cells (FDC) 

Follicular dendritic cells in FL are mostly arranged in distinct spherical mesh net-

work patterns.93 They are known to express CD21, CD23, S-100 and CD35, among 

other markers.93 In healthy lymphoid tissue the functionality of FDC includes (i) 

long-lasting chronic retention and presentation of antigens, (ii) arranging the com-

partmentalisation of the lymphoid tissue, (iii) prevention of auto-immune attacks 

and (iv) facilitating apoptosis of B-cells that are auto-reactive or non-specific to the 

antigens presented by the FDC.94 In the context of FL, in a rituximab treated cohort 

Blaker et al.71 found that the presence of FDC networks at diagnosis was unfavour-

ably correlated with outcome. They hypothesised that persistent antigen presenta-

tion by FDC, may prevent B-cell apoptosis and induce proliferation, a finding sup-

ported by the pro-tumoural effect of co-culturing FL B-cells with CD14+ FDC.95 

Other studies have not confirmed this; Glass et al.71 found the presence of intact 

CD21 meshwork pattern was favourable, while Shiozawa et al.96 observed disap-

pearance of CD21+ FDC preceding transformation of FL to high grade lymphoma. 

1.1.2.3.7 Other microenvironment biomarkers 

Many other cell subsets have been studied for their prognostic potential in FL, no-

tably neutrophils and mast cells,86,88 MUM-1 expressing B-cells,76 GrzB+ cells,80 
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cells positive for TIA1, CD57 or PD-L1,71  and cells expressing ICOS.65 Compre-

hensive reviews on the tumour microenvironment of FL can be found in Carbone 

et al.37 and De Jong et al.64  

Given the prominent role of rituximab in current treatment practice, Table 1 and 

Table 2 provide an overview of studies that have assessed the prognostic effect of 

different microenvironment biomarkers in rituximab treated FL cohorts. The same 

studies are included in both tables; Table 1 gives an overview of the observed effect 

of the biomarkers studied, while Table 2 provides context on the study design and 

clinical endpoints used. Due to heterogeneity in study design, it is challenging to 

directly compare the findings of these studies. Better-quality evidence is expected 

from randomised clinical trial studies which are conducted in well controlled set-

tings. However the two randomised clinical trials65,70 did not use continuous varia-

bles in OS survival analyses, which could potentially have reduced their power of 

observation. 
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Table 1 Studies assessing tumour microenvironment biomarkers in rituximab treated FL 

cohorts: observed effects 
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CD68+         

CD3+          

Neutrophils         

Mast cells         

CD68+ intra-follicular         

CD68+ extra-follicular         

FOXP3+ T-regs         

FOXP3+ follicular pattern         

MUM-1+ tumour cells         

CD8+         

GrzB+         

CD4+         

CD4+PD-1+
high intra-follicular         

CD4+PD-1+
low extra-follicular         

CD8+PD-1+
low extra-follicular         

Presence of CD21+ cells         

TIA1+         

CD57+         

PD-1+         

PD-L1+         

ICOS+         

                  

Unfavourable                 

Favourable                 

Not studied                 

No correlation                 

Varies with treatment                 
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Table 2 Studies assessing tumour microenvironment biomarkers in rituximab treated FL 

cohorts: study design 

Study 
Patient  

selection 
Patients 

End-

point 

Treat-

ment 
Type of analysis 

Biopsy time 

point 

Taskinen 

(2007)86 
continuous 96 

PFS, 

OS 
R-CHOP 

continuous and 

dichotomised 

variables 

pre-treat-

ment, at di-

agnosis or 

relapse 

Taskinen 

(2008)88 
continuous 98 

PFS, 

OS 
R-CHOP 

continuous varia-

bles 

pre-treat-

ment, at di-

agnosis or 

relapse 

Canioni 

(2008)89 

high tu-

mour bur-

den 

102 
PFS, 

OS 

R-

CHVP-I 

dichotomised 

variables 
at diagnosis 

Sweeten-

ham 

(2009)76 

advanced 

FL 
77 OS R-CHOP 

dichotomised 

variables 

previously 

untreated 

Laurent 

(2011)80 
continuous 80 PFS R-chemo 

dichotomised and 

categorical varia-

bles 

at diagnosis 

Wahlin 

(2011)70  

randomised 

trial 
250 TR, OS 

R-single         

R-IFN-

α2a 

continuous for 

TR, categorical 

for OS 

pre-treat-

ment, at di-

agnosis or 

1st relapse 

Yang    

(2015)81 
continuous 32 OS R-chemo 

dichotomised 

variables 
at diagnosis 

Blaker 

(2016)71 

trans-

formed vs. 

not trans-

formed 

case con-

trol 

52 cases     

40 con-

trols 

TTT, 

OS, 

PFS 

R-chemo 
continuous varia-

bles 

at diagnosis, 

at transfor-

mation 

Xerri    

(2017)65 

randomised 

trial 
>287 PFS R-chemo 

dichotomised and 

categorical varia-

bles 

at diagnosis 

FL: follicular lymphoma, PFS: progression-free survival, OS: overall survival, TR: treatment 

response, TTT: time to transformation, R-chemo: rituximab immunochemotherapy, R-single: 

single agent rituximab, R-CHOP: rituximab, cyclophosphamide, doxorubicin (hydroxydauno-

mycin), vincristine (oncovin), prednisolone (a steroid), R-CHVP-I: rituximab, CHVP (cyclo-

phosphamide, adriamycin, etoposide, and prednisolone) plus interferon-α2a regimen, IFN-α2a: 

interferon α2a. 

 

1.1.2.4 The importance of spatial architecture 

Looking at studies searching for clinically useful tumour microenvironment bi-

omarkers in follicular lymphoma, it becomes apparent that most use cell population 

numbers or density to quantify the heterogeneity, while only a handful77,97 mention 

the potential of observing the spatial pattern as a biomarker. This approach is lim-

ited because it does not account for the spatial distribution of cell populations. In 

FL, different spatial tissue compartments are known to exist (inter-follicular, intra-

follicular, peri-follicular), with distinct phenotypic profiles. In addition, a complex 
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interplay is evident between different subsets of TILs in the tumour microenviron-

ment. A logical hypothesis follows that a holistic and spatially aware assessment of 

the FL microenvironment would be more informative than examining isolated com-

ponents. 

Automated quantification of pattern is a promising field for biomarker discovery 

and various methods have been proposed.98,99 In follicular lymphoma the “Hypoth-

esized Interactions Distribution” (HID) method97,100 has been applied to quantify 

the heterogeneity of cell type interactions in the tumour microenvironment, using 

multiplexed immunohistochemistry and machine learning. HID was used for over-

all survival prediction from right censored data in a follicular lymphoma data set 

stained for CD3+, CD69+ and FOXP3+, which allowed them to observe interactions 

between CD3+FOXP3+ T-regs and other CD3+CD69+ activated T-cells. 

1.1.3 Summary of tumour microenvironment populations  

Sections 1.1.1 and 1.1.2 have provided clinical background and context on the im-

portance of various tumour microenvironment cell populations in disease progres-

sion of OPSCC and FL. This section summarises several key tumour microenviron-

ment populations that were discussed, lists the proteins they characteristically ex-

press, and juxtaposes their role in healthy tissue, OPSCC tumours and FL tumours 

(Table 3).  

The microenvironment in the two cancers is quite different, and the same cell pop-

ulations may participate in different pathways. As an example, the prominent role 

of the PD-1/PD-L1 immune escape pathway in OPSCC has not yet been established 

in FL, where only 5% of FL cells were found to express PD-L1.101  

In both OPSCC and FL several tumour microenvironment populations have been 

shown to correlate with prognosis. Furthermore, spatial tissue compartments with 

distinct phenotypic profiles are shown to exist in both cancers, with varying levels 

of antigen expression. Therefore, spatially aware assessment of the tumour micro-

environment in both cancers may hold additional unexplored prognostic infor-

mation.  
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Table 3 A summary of tumour microenvironment populations discussed in this thesis for 

OPSCC and FL 

Marker Phenotype 

Role in                   

healthy tissue 

Role in        

OPSCC 

Role in               

FL 

CD68+ 

Monocytes, 

primarily 

macrophages 

Detection and 

phagocytosis of 

bacteria and other 

harmful organ-

isms/ cells, antigen 

presentation 

Pro-tumour 

effect, angio-

genesis 

Depends on treat-

ment, anti-tumour 

effect in rituximab 

treated 

CD8+ 
Cytotoxic     

T-cells 

Recognise anti-

gens presented by 

damaged cells and 

kill them 

Anti-tumour 

effect, may 

depend on lo-

cation/ HPV 

status 

Depends on treat-

ment, probable 

anti-tumour effect 

CD4+ CD68- T-helper cells 
Coordinate im-

mune response 

Probable anti-

tumour ef-

fect30 

Depends on treat-

ment, probable 

anti-tumour effect 

CD4+FOXP3+ 
T-regulatory 

cells (T-regs) 

Immune-regula-

tory effect 

Increased 

compared to 

healthy tissue, 

unclear prog-

nostic signifi-

cance30 

Probable anti-tu-

mour effect 

CD21+ 

CD23+ 

CD14+  

Primarily 

FDC (mesh-

work pattern) 

FDC provide 

chronic antigen 

presentation, B-

cell selection, im-

mune-regulation, 

lymphoid tissue 

compartmentalisa-

tion 

Absent 

Probable pro-tu-

mour effect, alt-

hough they disap-

pear preceding 

transformation  

PD-1+ 
Primarily      

T-cells 

Immune         

checkpoint 

Immune         

escape       

mechanism 

Exhausted T-cells 

(anti-tumour ef-

fect) or T-follicu-

lar helper cells 

(pro-tumour) 

PD-L1+ 

Some tumour 

cells, macro-

phages, other 

Immune           

checkpoint 

Immune          

escape       

mechanism 

Unclear, expressed 

by 5% FL cells, 

presence of im-

mune escape still 

investigated101 
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1.2 Technical background 

Multiplex immunofluorescence enables concurrent observation of multiple cell 

populations in the tumour microenvironment, such as the ones identified for their 

prognostic relevance in section 1.1. The following sections provide technical back-

ground on generating such multiplex images and analysing them to study the spatial 

architecture of the tumour microenvironment. 

1.2.1 Multiplex immunofluorescence 

1.2.1.1 General principles 

Immunohistochemistry (IHC) and immunofluorescence (IF) assays, first imple-

mented during the 1940s, are routinely used in clinical practice to detect antigens 

in tissue biopsies.102 The underlying principle relies on antibodies, which are pro-

tein structures that can bind specifically to particular antigens of interest, present 

on the tissue. The antibodies are incubated on the tissue, often conjugated with dyes 

(brightfield IHC) or fluorophores (IF), and subsequently the binding sites can be 

visualised using a microscope.102  

IHC and IF are applied on tissue sections. These sections of 3-5 μm are cut using a 

microtome, from tissue or cell blocks that have been either frozen or formalin-fixed 

and paraffin embedded (FFPE). This fixation aims to prevent loss of structure.103 

When using FFPE sections, de-paraffinisation through heating is required to re-

move the wax before further analysis. In some applications, to reduce the cost and 

increase throughput, sections from tissue microarrays (TMA) can also be used in 

IHC; TMA blocks are prepared by selecting and delineating relevant areas from 

multiple individual FFPE tissue blocks, extracting cores 0.6-2.0 mm in diameter 

and embedding them all on a new tissue block, in a grid formation (Figure 2). 

IHC and IF analysis generally consist of two parts: the tissue pre-processing and 

detection phase. During tissue pre-processing, antigen retrieval is carried out, to 

restore the 3D structure of relevant antigens on the tissue that might have been com-

promised during fixations.104 Antigen retrieval is done by means of enzymes (pro-

tease induced epitope retrieval) or heating (heat induced epitope retrieval).104,105 

Heating is carried out in high temperatures for a short period of time, in a micro-

wave oven, steamer, or pressure cooker, while the sample is immersed in a buffer.106  
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During the detection phase, labels are conjugated to the antibodies. Labels are en-

zymes, or in the case of IF, fluorescent compounds. Afterwards, dyes (also called 

“tags”) such as chromogens or fluorophores are added. These bind to the labels and 

can be observed using a microscope. Fluorophores are fluorescent chemical com-

pounds that when excited at a wavelength range, emit light at a specific higher 

wavelength. The emission peaks  are observed using excitation/ emission filter pairs 

in the fluorescent microscope, specific to each fluorophore.107 When interpreting IF 

signals, the autofluorescence that is inherently emitted from the tissue needs to be 

taken into account. The detection mode can be direct or indirect. Direct detection is 

a one step process, where the label is attached directly to a primary antibody, and 

both are applied together on the sample. Indirect detection consists of two steps 

with a primary antibody applied first followed by a secondary label-conjugated an-

tibody that binds specifically to the primary. Indirect labelling allows for several 

secondary antibody molecules to become attached to each primary antibody, am-

plifying the signal. Direct detection is faster, while indirect improves sensitivity. In 

both approaches, the amount of signal received is proportionate to the quantity of 

antigen in the sample.108 

IF and IHC are complementary technologies,109 however IF is better suited for 

quantitative analysis. The IF signal is linearly proportionate to the level of protein 

expression on the tissue, while the relationship for brightfield IHC is non-linear.109 
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Figure 2 Human follicular lymphoma lymph node tissue microarray, stained with a multi-

plex immunofluorescence protocol110 and scanned at 10x with the Vectra 3.5 microscope 

(only DAPI filter). 

1.2.1.2 Multiplex tissue analysis in situ 

Traditionally, IHC and IF can visualise only one antigen per tissue section. Serial 

tissue sections need to be cut from a tissue block to observe multiple antigens. Thus, 

two drawbacks are presented; tissue material is depleted faster, and after a few sec-

tions, the observed cells will not correspond exactly to the same tissue area, as sec-

tions are taken deeper into the tissue block.107 Staining of sequential sections does 

not permit multiple protein expression profiling of each single cell. Multiplex tissue 

analysis overcomes this limitation and conserves tissue by visualising multiple an-

tigens simultaneously on the same section.  

There are several advantages to multiplexing. First, accurate identification of cell 

phenotypes often requires expression profiling of multiple proteins to fully compre-

hend their functional role. Second, sometimes multiplex stains can be used as land-

marks to identify tissue areas relevant for further analysis. For example, a cy-

tokeratin antibody could be used to identify tumour areas where the oestrogen re-

ceptor (ER) antibody should be quantified, to obtain a breast cancer subtype classi-
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fication before selecting treatment. Third, clinical diagnosis and prognosis of com-

plex diseases, such as lymphomas, require identifying multiple cell populations, 

each characterised by a unique protein expression profile. Last, expression levels 

of proteins relative to each other sometimes need to be assessed, rather than the 

absolute expression level of a single protein.  

Flow cytometry111 and mass cytometry112 can achieve high levels of multiplexing 

with single-cell resolution. However, the technologies are typically destructive and 

do not preserve the spatial context of the tissue, making them unsuitable for live 

cell imaging. The following paragraphs describe highly multiplexed methods that 

preserve the spatial information and, therefore, can provide insight into protein lo-

calisation and tissue architecture. The list is not exhaustive, but rather a brief over-

view of the different approaches available. 

1.2.1.2.1 Use of multiple tags 

Multiple protein visualisation becomes possible in IHC and IF, by using a different 

tag for each antigen target. However, staining protocols need to account for cross 

reactivity that can occur between primary/secondary antibodies and labels. In 

brightfield IHC, even though a variety of chromogens is available (e.g. the brown 

3,3’-diaminiobenzidine [DAB] or the purple Vector VIP), the number of discernible 

colours in the visible spectrum is limited.107 Fluorescence microscopy permits 

higher multiplexing.107 Microscope filters can be appropriately selected to isolate 

the signal of each fluorophore as a separate imaging channel, for up to 4-5 fluoro-

phores.113 The success of this approach depends on fluorophore properties; to obtain 

strong non-overlapping signals, the fluorophore excitation and emission spectra 

have to be as far away from each other as possible. This need for separation be-

comes impractical, as the number of fluorophores increases. Strategies to mitigate 

this problem include: (1) using emission filters to narrow the spectral range of de-

tection for each fluorophore, (2) using a sub-optimal wavelength for exciting some 

fluorophores and (3) sequential excitation and detection of the fluorophores.113 An-

other important parameter is to have good photo-stability of a fluorophore, i.e., re-

sistance to gradual photo-bleaching due to exposure to fluorescent light.107,113 
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1.2.1.2.2 Sequential staining, scanning and bleaching 

The sequential staining approach consists of cycles of staining with a fluorescent 

tag, imaging the sections using a slide scanner, and subsequent bleaching (inactiva-

tion) of the tag. Then the process is repeated for the next tag.  

Multi-epitope-ligand cartography (MELC) is a sequential staining technique, first 

introduced in 2003 by Schubert.114 MELC is an automatic iterative multiplexing 

method, where in every cycle two monoclonal antibodies are applied. In 2006, two 

publications115,116 used MELC to multiplex up to 18 antibodies and introduced the 

concept of combinatorial molecular phenotypes (CMPs). CMPs are binary vectors 

assigned to each pixel, whose length equals the number of multiplexed proteins. 

The value of each position in the CMP vector is either 1 or 0, indicating the detec-

tion of a protein, or its absence, respectively. In this way, representative images 

were constructed, where a colour was assigned to each of the most prominent CMPs 

in the sample (toponome maps). The toponome imaging protocol was later detailed 

by Friedenberger et al.117 Several applications of this method have been demon-

strated,118–123 including the achievement of multiplexing the detection of over 100 

proteins in super-resolution.124 Moreover, alternative interactive approaches for the 

visualisation of the CMPs were proposed, using graph theory,125 and other method-

ologies.126,127 Higher multiplicity is achieved for surface components, which can be 

easily bleached compared with intracellular components.113  

In 2013, Gerdes et al.128 demonstrated the use of another sequential staining proto-

col to achieve multiplexing of 61 markers on a single tissue section. An inactivation 

solution using alkaline oxidation chemistry was developed and patented. The solu-

tion reduced Cy3 and Cy5 fluorescent dye signal down to 2% of the original value, 

irreversibly, without altering the absorbency of DAPI (4′, 6-diamidino-2-phenylin-

dole). DAPI is a fluorescent stain that binds to DNA in all cells, therefore illumi-

nating the nucleus shape and position. The DAPI stained nuclei could subsequently 

be used as reference to register, i.e. align virtually, the images obtained from se-

quential scans. They also patented a protocol for de-waxing, rehydrating samples 

and implementing a two-step antigen retrieval process. This protocol was tested for 

loss of antigen epitopes and tissue integrity for a maximum of 100 reaction cycles.  
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1.2.1.2.3 Multispectral imaging and spectral unmixing 

The cyclic imaging systems permit highly multiplexed analysis but scanning the 

section after each step can be time-consuming, unsuitable for live samples, and re-

quires a specialised lab set-up. Multispectral imaging combined with spectral un-

mixing can overcome this issue, when fewer than ten antibodies are needed. A se-

quential staining approach is applied; each step applies one antibody-fluorophore 

combination and then strips away the antibodies, leaving only the fluorophores on 

the tissue. The next step repeats the process for a different antibody-fluorophore 

combination. When staining is completed all the fluorophores remain on the tissue. 

In this setting the sample is scanned only once after the staining is completed at 

multiple emission wavelengths, producing a multispectral 𝜆 stack.129  

Confocal laser scanning microscopy, which operates with multiple lasers, allows 

quantitative multispectral analysis.129–131 Otherwise, a rotating filter wheel or elec-

tronically tunable filters can be placed in front of a charge-coupled device camera, 

to capture images at fixed 𝜆 intervals.132 

After acquiring the 𝜆 stack, linear spectral unmixing separates the contributions of 

individual fluorophores.133 Since the signals of the fluorophores combine linearly 

to produce the observed mixed emission spectrum (Figure 3), linear regression is 

applied to separate them. The acquired image is considered a two-dimensional array 

of pixel elements, each defined by a height  𝑖 and width 𝑗 coordinate. Linear regres-

sion minimises the residuals at each pixel to obtain the contribution of each fluoro-

phore: 

 𝑎𝑟𝑔min
𝒘𝒊,𝒋

‖𝒔𝒊,𝒋 − (𝑤𝑖,𝑗
𝑎 𝒂 +  𝑤𝑖,𝑗

𝑏 𝒃+. . . )‖
2
                                   (1) 

, where 𝒔𝒊,𝒋 is the observed mixed signal vector across all 𝜆 intervals in pixel 𝑖, 𝑗; 

𝒂, 𝒃, … are the base signal vectors of individual fluorophores across all 𝜆; 

 and  𝒘𝒊,𝒋 = (𝑤𝑖,𝑗
𝑎 , 𝑤𝑖,𝑗

𝑏 , … )𝑇 the unknown weights indicating the contribution of 

each fluorophore in pixel 𝑖, 𝑗.133 When solving the minimisation problem, a new 

image is constructed for each fluorophore, displaying the contribution 𝑾 for that 

fluorophore on all pixel locations. Each of those images is stored as a separate im-

aging channel. 
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Figure 3 Demonstration of the convolution (mixing) of multiple fluorophores when applied 

on a tissue during multiplexing linearly to produce the observed emission spectrum. 

To perform spectral unmixing, the base spectrum of each individual fluorophore 

𝒂, 𝒃, …must be known. These are acquired from singleplex experiments, where tis-

sue is stained with only one fluorophore at a time and the spectrum is extracted and 

saved in a spectral library.133,134 In the IF setting, the autofluorescence spectrum is 

also acquired and subtracted, using a section where no fluorophore has been ap-

plied.133 Specialised microscope slide scanners, such as the Vectra (Akoya Biosci-

ences, Marlborough, MA, USA) and Vectra Polaris (Akoya Biosciences, Marlbor-

ough, MA, USA) combined with software, such as the inForm (Akoya Biosciences, 

Marlborough, MA, USA) provide a user-friendly interface to build spectral libraries 

and unmix fluorophore signals. 

1.2.1.2.4 Metal-based multiplexing 

A competing approach to IHC that can achieve high levels of quantitative multi-

plexing while also preserving the spatial structure of the tissue is imaging mass 

cytometry.135 Cytometry by time of flight (CyTOF) technology conjugates antibod-

ies to heavy metal isotopes instead of conventional chromogens or fluorophores.112 

Accurate discrimination between these isotopes is achieved by measuring their 

mass-to-charge ratio in a time-of-flight mass spectrometer,112 thus enabling multi-

plexing of up to 45 targets.136,137 While originally mass cytometry did not allow 

quantification of protein expression in situ, imaging mass cytometry overcame this 

issue by use of a high resolution laser.138 The laser performs successive ablation of 



 44 

small tissue areas (1 μm2 at a time), which are then analysed with CyTOF and com-

bined to create a reconstructed image of the tissue.135,138 Currently CyTOF is mar-

keted by Fluidigm (South San Francisco, California, USA). 

Another metal-based technology is Multiplexed Ion Beam Imaging, marketed by 

IonPath (Menlo Park, California, USA). The technology combines use of high en-

ergy beams and imaging mass cytometry to visualise in situ more than 40 targets.139 

1.2.1.2.5 Oligonucleotide-based multiplexing 

Another group of methodologies for multiplexing in situ that is gaining popularity 

quickly relies on oligonucleotide probes. DSP technology by NanoString (Seattle, 

WA, USA)140,141 uses oligonucleotide “barcode” tags, attached to antibodies using 

photocleavable linkers. After antibody incubation, UV light is applied to photo-

cleave and release the tags, which are then transferred onto a plate using micro-

capillary aspiration and digitally counted. This method does not produce a recon-

structed image of protein expression on the tissue; however, the spatial component 

can be preserved by UV cleaving specific tissue areas at a time. Tissue area selec-

tion is guided by basic immunofluorescent staining.140  

New competing platforms, based on oligonucleotide sequence probes that allow 

visualisation of all targets in situ include the InsituPlex (Ultivue, Cambridge, MA, 

USA)142 for approximately 12 targets and the CODEX (Akoya Biosciences, Marl-

borough, MA, USA)143 for up to 40 targets.  

1.2.1.2.6 Virtual multiplexing  

Finally, a few studies144,145 have adopted a computational approach to multiplexing, 

by staining serial sections, scanning them and then aligning them virtually based on 

a counterstain marker. Virtual multiplexing can be combined with any other multi-

plex technology to achieve visualisation of even higher numbers of targets, using 

only 2-3 serial tissue sections.146 

1.2.1.2.7 Choosing the appropriate multiplexing method 

The field of quantitative multiplexing in situ is rapidly expanding with new tech-

nologies. Flow and mass cytometry are well validated methods that can achieve 

high levels of multiplexing; however, they are inadequate when spatial context is 

required. If concurrent observation of more than 40 targets is needed to answer 
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open-ended research questions and generate new hypotheses, cyclic immunofluo-

rescence, metal-based multiplexing and oligonucleotide-based multiplexing pro-

vide this capability. However, multiplex Vectra or InsituPlex panels, visualising 

approximately 10 targets, are sufficient and more cost effective, when investigating 

pre-specified hypotheses in larger cohorts.139  

Another important factor is how well validated and commercially available the 

methods are. Cyclic immunofluorescence is well validated, however not currently 

marketed commercially. Imaging mass cytometry, DPS and the Vectra systems are 

well supported by commercial companies, and well validated for research applica-

tions. However, CODEX and InsituPlex technologies, while well supported com-

mercially, are relatively new and unexplored.139 The level of optimisation required 

by the end-user also varies, and panels that require extensive tuning (e.g. the Vectra) 

are usually the most inexpensive. Finally, the Vectra and oligonucleotide-based 

technologies are better suited when sensitive or live samples are analysed. 

As new competing technologies introduce rapid improvements in spatial resolution, 

scanning speed and number of targets, the optimal choice of multiplexing method 

will change dynamically. When choosing a method, the type and size of sample, 

cost, as well as the specific nature of the task and required level of multiplexing 

should be considered. 

In this work, the well-established Vectra system was selected as a means to test pre-

specified prognostic biomarker hypotheses, while considering the spatial context of 

the tumour microenvironment. 

1.2.1.3 The Vectra multiplex protocol 

Multiplexing with the Vectra system relies on sequential staining, using the OPAL 

fluorophores (Akoya Biosciences, Marlborough, MA, USA) and tyramide signal 

amplification (TSA). After the initial de-paraffinisation and antigen retrieval steps, 

staining is performed in iterative cycles, one for each antigen target (Figure 4).107 

In each cycle the primary antibody is incubated on the tissue, followed by a sec-

ondary antibody from the same species (rabbit or mouse) as the primary, conjugated 

to horseradish peroxidase (HRP). Then, an OPAL fluorophore is incubated, after 

titration with the TSA diluent. HRP acts as a catalyst, binding the fluorophores on 

the antigen epitopes with strong covalent bonds.147 Thereafter, heat antigen retrieval 
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will remove the primary and secondary antibodies, while the fluorophores remain 

on the tissue. The next cycle repeats the process with a different primary antibody 

and fluorophore. This iteration of staining and stripping permits the use of the same 

secondary antibody for all targets. A blocking agent (e.g. DISCOVERY Inhibitor, 

Roche, Switzerland) is also applied every few cycles to neutralise endogenous HRP 

on the tissue.148 As 2-3 hours may be required per cycle, this staining protocol is 

best performed using a robotic staining platform, such as the Ventana ULTRA Dis-

covery (Roche, Switzerland) or the BOND Rx (Leica Biosystems, Germany). At 

last, the DAPI counterstain is applied directly on the section, which is then cover-

slipped and scanned using the Vectra microscope. 

 

Figure 4 The Vectra multiplex staining protocol, using tyramide signal amplification 

(TSA). HRP: horseradish peroxidase and DAPI: 4′, 6-diamidino-2-phenylindole. 

Multiplexing with the Vectra microscope uses multispectral scanning and spectral 

unmixing (see page 42). When optimising a new Vectra protocol, a spectral library 

is built, using singleplex stained control samples to extract the spectrum of each 

individual fluorophore. The spectral library can then unmix the signals of different 

fluorophores in the multiplex stained tissue sections.149  

1.2.2 Multiplex immunofluorescent image analysis 

Interpreting the rich information available from multiplex assays in situ proves 

challenging when done manually. When three markers or more are used, it becomes 

impractical for the human eye to accurately correlate staining patterns, recognise 

cell phenotypes, and observe co-localisations. Digital pathology overcomes this 

limitation by employing automated and quantitative image analysis solutions. Dig-

ital pathology tools can support a variety of tasks, such as background noise re-

moval, relevant tissue area identification, cell detection and phenotyping, and lead 
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to extracting valuable prognostic and diagnostic information from patient biop-

sies.150 In the following paragraphs, important steps for the analysis of multiplex 

images are described, along with frequently used algorithms in each step. 

Typically, a pipeline for multiplex single-cell analysis will involve pre-processing 

steps for noise reduction and normalisation, nuclear and cell segmentation, and fi-

nally cell phenotyping (Figure 5). 

 

 

Figure 5 Overview of process needed to analyse a multiplex digital tissue image. 

1.2.2.1 Pre-processing 

A pre-processing step is usually necessary when analysing digital pathology im-

ages. In this step various corrections can be made to counter the effect of variable 

conditions and problems encountered during image acquisition.  
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There are many common problems encountered in digital pathology images. When 

a microscope’s illumination field is uneven, illumination artefacts may be present. 

Noise may also be present originating from the imaging system (camera sensor 

noise). Stitching artefacts may occur, when the digital scanner combines multiple 

fields of view together to form the overall image. Furthermore, under or over-satu-

ration is a known pitfall in microscopy151 when too little or too much light is used 

during imaging, the image histogram shifts and a spike appears in the maximum (or 

minimum) permissible intensity value. This effect hinders quantitative assessment 

of protein expression and is impossible to correct post-acquisition. Additionally, 

autofluorescence is an issue in all fluorescent image analyses, where the unstained 

tissue will always emit a baseline signal that should be accounted for. 

Other important sources of background signal that may confound digital pathology 

analyses are rooted in the staining process itself. Colour inconsistencies can be ob-

served, caused by slight variations in staining or imaging conditions. Some staining 

protocols will produce non-specific binding of the antibody on cells that do not 

express the antigen of interest. The non-specific binding signal will usually appear 

in cellular compartments where the protein is not usually expressed and usually will 

have lower intensity than the true signal. Finally, several significant artefacts can 

be seen in these images, such as dirt, blurriness, bubbles of air that form between 

the tissue and the glass coverslip, folded tissue areas, and other small objects. 

These problems are common, and therefore the pre-processing step is usually a part 

of all digital pathology analyses. Pathologists in the clinical setting can learn to 

recognise and work around these issues, however algorithms need to be adjusted 

appropriately to avoid reaching incorrect conclusions. A non-exhaustive list of pre-

processing algorithms relevant to the multiplex immunofluorescent setting are dis-

cussed below. 

1.2.2.1.1 Illumination and stitching corrections 

To correct uneven illumination and any stitching artefacts, a blank-field correction 

can be applied,152 where a blank image is captured and then subtracted from the 

sample images. Recent retrospective approaches, such as CIDRE153 and BaSiC,154  

do not require capturing reference blank images and can derive the true uncorrupted 

signal by observing simultaneously multiple images acquired in the same way. 
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1.2.2.1.2 Techniques to remove noise caused by the imaging system 

Filtering refers to a family of image processing operations, where the value of each 

pixel is modified, based on the value of its surrounding neighbourhood pixels. Ex-

amples include median filtering,155 where the median neighbourhood value is as-

signed to each pixel, or Gaussian smoothing.156 Filtering can sharpen or smooth the 

image and may be used to remove small artefacts and noise caused by the imaging 

system. Mathematical morphology can also be used for noise reduction. Specifi-

cally, by applying morphological erosion and dilation on the image small objects 

and sharp peaks are eliminated, or breaks and holes on the image are fused, depend-

ing on the order of application of the two operations.157 

 Other de-noising strategies may include masking out parts of the image on the Fou-

rier domain to remove quasi-periodic noise,158 or wavelet-based de-noising.159  

1.2.2.1.3 Colour corrections 

There are several methods to enhance image details and improve low contrast or 

achieve consistent colouring between different samples: histogram equalisation160; 

contrast stretching; matching the colour distribution to a histogram reference by 

linear transformation of each pixel161; and using index TMAs built from cell lines 

with negative, weak and strong expression.162 However, some colour-related prob-

lems, such as over- or under-saturation during imaging cannot be corrected post-

acquisition.  

1.2.2.1.4 Thresholding 

Thresholding is a widely used approach to remove unwanted background signal in 

digital tissue images. The presence of background could be caused either from the 

imaging system, or non-specific antibody staining. In thresholding, all the pixels 

that fall under a specific threshold (empirical or automatically calculated) of inten-

sity in the image histogram are considered as background and ignored. Automated 

thresholding finds either a global image threshold (e.g. Otsu’s algogrithm163 or 

Rosin’s algorithm for unimodal histograms such as seen in immunofluorescence164) 

or local thresholds (e.g. adaptive thresholding165) to account for illumination varia-

tions.  
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Some thresholding techniques were developed specifically for the multiplex setting, 

taking advantage of the co-localisation relationships between different stains to de-

rive optimal cut-offs to separate signal from background. The Coste’s algorithm,166 

selects the maximum threshold for each colour in the multiplex image, so that all 

pixels below the threshold are not statistically correlated. A similar approach was 

suggested by Baryenska et al.167 A recent approach168 automatically identifies un-

stained cells in each colour channel, based on a priori known co-localisation rela-

tionships between antigens, to infer the background distribution and remove it. 

1.2.2.2 Cell and sub-cellular segmentation 

A mainstay in the analysis of all multiplex images is outlining the boundaries (i.e. 

segmentation) of the cells and sub-cellular compartments (Figure 6). This task is 

relevant for innumerable life science applications.  Cell images vary widely, de-

pending on their origin, imaging and staining conditions, and thus, in the past 60 

years, hundreds of algorithms have been introduced.169–172  

 

Figure 6 Cell and sub-cellular segmentation task illustration. Left: DAPI channel of a fol-

licular lymphoma tissue, rendered with grey colourmap. Middle: After nuclear segmenta-

tion the shapes of the nuclei have been found. Right: Membranes have been simulated 

around the segmented nuclei, by growing out the nuclear regions by a few microns. Once 

the process is completed, the nuclear and cytoplasmic compartments of the cells have been 

defined. 

1.2.2.2.1 Nuclear segmentation framework 

In multiplex images, cell segmentation starts by outlining the nuclei shapes to pin-

point the cellular locations. Nuclear segmentation is based on the nuclear counter-

stain, which conveniently stains all cell nuclei. The goal is to define the shape of 

the nucleus and use it as a reference for the observation of staining patterns of all 

other markers. 
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In practice, algorithms developed for nuclear segmentation in brightfield micros-

copy can often transfer well to the immunofluorescent setting. In fluorescence, the 

nuclear counterstain is almost always DAPI (Figure 7). In brightfield, haematoxylin 

and eosin counterstains are often paired together (“H&E” stain). Haematoxylin ren-

ders the nuclei of the cells dark purple, and eosin renders the surrounding stroma 

pink. This section will provide a brief overview of nuclear segmentation methodol-

ogies for both fluorescence and brightfield microscopy, focusing on 2D, static im-

ages.  

By conscious choice, nuclei detection algorithms that only locate the cells, without 

outlining their boundaries will not be discussed, as the overall goal of nuclear and 

cell segmentation in multiplex image analysis is to explicitly measure the expres-

sion of multiple antibodies (up to 100) in each sub-cellular compartment and, based 

on this information, to classify the cells into distinct subtypes. Therefore, it is nec-

essary to obtain the outline of the nucleus. 

 

Figure 7 Nuclear counterstain in fluorescence and brightfield immunohistochemistry. A) 

DAPI stain. B) Haematoxylin and eosin stains. 

When aiming to perform accurate single-cell quantitative observations, the algo-

rithm should be able to treat multiple objects of the same class (e.g., nucleus) as 

separate objects/entities and separate them when they slightly overlap. Touching 

and overlapping nuclei can be seen in Figure 7A. This framework is called instance 

segmentation, and is commonly approached in one of three ways:171 

1. Binary pixel classification: The algorithm first classifies each pixel as nu-

cleus or background. Then post-processing ensues to separate the different 

nuclear objects, such as connected component labeling,173 or watershed.174 
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2. Ternary pixel classification: The algorithm classifies each pixel in one of 

three classes; nucleus, background or nuclear boundary. This formulation 

simplifies post-processing, because after the classification, each nuclear ob-

ject has already been separated from all others by a boundary.171 This ap-

proach requires explicit annotation of the nuclear boundary. 

 

3. Distance from nuclear centroid regression: Nuclear segmentation is formu-

lated as a regression, rather than classification problem. After detecting the 

centroids of nuclei, a distance map is predicted from each centroid to the 

nuclear edge.175,176 

Using these three different instance segmentation frameworks as reference, the next 

two sections will outline some unsupervised and supervised algorithms that have 

been previously applied for nuclear segmentation.  

1.2.2.2.2 Unsupervised nuclear segmentation 

Unsupervised segmentation is performed only in the context of the first framework 

described above. Early nuclear segmentation algorithms often used a combination 

of intensity thresholding (e.g. Otsu’s, isodata, maximum entropy) to locate the nu-

cleus and background pixels, and some type of post-processing, such as morphol-

ogy transforms, watershed174, graph cuts, 177 active contours178, or Canny edge de-

tection179. The performance of such algorithms depends substantially on image and 

staining quality.180  

The watershed174 approach works well for high signal to noise ratios, and requires 

no nuclear annotations, so it is still widely used today as a practical way to segment 

nuclei by many digital pathology software applications. Watershed methods are a 

family of algorithms that intuitively simulate the way water floods a basin to assign 

pixels to different nuclei. After thresholding, a distance transform is applied to the 

binary image (nucleus vs. background). Initial seed points are placed at local min-

ima of the distance transform to represent the centre of each basin, which also cor-

responds to the centre of each nucleus. Then neighbouring pixels are added to each 

basin iteratively, the same way that water would flood the basin if it entered through 

the seed point.  When two basins meet, a one-pixel wide ridge is formed allowing 

touching nuclei to be separated. Flooding stops when met with a pixel originally 

labelled as background.  
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Instead of thresholding, clustering (k-means181, fuzzy c-means182, or expectation-

maximisation183,184 algorithms) may also be used as the initial step, to obtain the 

binary pixel classification of nucleus vs. background. Clustering groups pixels into 

groups (in this case nucleus or background) based on their measured similarity. 

Pixel similarity can be assessed by generating various hand-crafted features (e.g. 

texture and intensity). Such label-free algorithms do not generalise well to variable 

staining conditions and usually underperform when segmenting an image with 

densely packed nuclei.  

1.2.2.2.3 Supervised nuclear segmentation 

Supervised machine learning can improve performance compared to unsupervised 

techniques by using human-generated nuclear annotations to train models (e.g. k-

nearest neighbours185 or support vector machines186). Supervised nuclear segmen-

tation can potentially be applied in any of the three instance segmentation frame-

works outlined above, however it is mostly used in the binary (nucleus vs. back-

ground) classification setting. Handcrafted features are selected and extracted as the 

image representation, including shape,186 context186 and colour texture features.185 

For supervised learning nuclear segmentation it is worth mentioning ilastik187 soft-

ware, which was designed to generate annotations and build models for instance 

segmentation of bio-image data. Comprehensive reviews of nuclear segmentation 

methods up to 2016 can be found in Irshad et al.188 and Xing et al.189 

1.2.2.2.4 Nuclear segmentation using deep learning 

In the past five years, supervised deep learning methods have gained considerable 

popularity for nuclear segmentation tasks. They employ convolutional neural net-

works (CNN) to derive an image representation, bypassing the need of handcrafting 

custom features. The basic building block of a CNN is a convolution. Convolution 

is a type of mathematical operation or filtering, where the input image is trans-

formed by iterative application of a kernel (usually a small 2D array, e.g. 3x3) on 

all of its pixels. When a kernel is applied on a pixel, elementwise multiplication of 

the kernel values is carried out with all neighbouring pixels and the sum is calcu-

lated and assigned as the new value of that central pixel (Figure 8). Complex, deep 

network architectures are constructed by stacking multiple convolutions, with in-

tercalated non-linear activation functions (e.g. ReLU, 190 sigmoid190). During model 

training, the kernel weights are learned through backpropagation.190 
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Figure 8 The convolution operation is shown for a 3x3 kernel. The kernel is applied by 

sliding over all pixels in the input image. In CNN the kernel weights are initialised ran-

domly and then learned and updated iteratively during training. 

In the nuclear segmentation Challenge (MoNuSeg 2018)171 aiming to reveal the 

optimal algorithms for nuclear segmentation of H&E images from seven different 

human organs, deep learning was used by almost all participants. The most fre-

quently used network architecture was the U-Net,191 which follows an encoder-de-

coder U-shape. Other popular architectures were the VGGNet,192 Mask R-CNN,193 

FCN,194 DenseNet195 and ResNet.196 Deep learning can be used for the binary (nu-

cleus vs. background), ternary classification task (nucleus vs. background vs. 

boundary), or in the distance regression setting. Post-processing may follow, using 

watershed, graph partitioning197, morphology transforms and size filtering. To pre-

vent false positives, non-maximum suppression198 and h-minima 199,200 can also be 

applied.  

Excessive data augmentation techniques were used by the top ten algorithms in 

MoNuSeg 2018.171 Data augmentation is the practice of artificially increasing the 

number of training images available by applying transformations, such as rotations, 

flips, affine transformations, Gaussian noise addition, colour jitter, random HSV 

shifts and random brightness shifts. Using an augmented dataset reduces overfitting 

when training the deep learning models. Overfitting is a common problem in deep 

learning, where the model learns to memorise the exact examples in the training set 

and classify them correctly but is not able to generalise to new unseen images.190 

Because of the significant colour variations that can be seen in histopathology im-

ages, caused by slight changes in staining conditions, data augmentation techniques 

that randomly shift the colour space (colour jitter, HSV shifts and brightness shifts) 

are particularly successful ways to artificially produce additional realistic data. 
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Recent methods formulating nuclear segmentation as a deep regression prob-

lem,175,176 require limited post-processing and have demonstrated excellent perfor-

mance in brightfield and fluorescence microscopy images. The StarDist175 algo-

rithm proposes a nuclear detection approach, where a convex polygon is predicted 

for each nucleus. Convex polygons are adopted as a shape representation to better 

fit the nucleus shape.  This way, nuclear detection and segmentation are carried out 

simultaneously. The StarDist CNN outputs a probability map of a pixel belonging 

to a nuclear object and predicts a star-convex polygon from each nuclear pixel, pa-

rameterised by a fixed number (typically 32) of radial distances. The object proba-

bility is formulated to represent the distance of a nuclear pixel to the nearest back-

ground pixel. Multiple polygons may be predicted for each nucleus, and non-max-

imum suppression (NMS) is applied to select the best one. NMS selects the polygon 

corresponding to the pixel with the highest object probability (i.e. the nuclear pixel 

that is the furthest from the background). The base architecture is a light-weight U-

net (Figure 9).191 StarDist performed very well in challenging fluorescent micros-

copy datasets,175 and a StarDist ImageJ plugin201  and QuPath script202 are now 

available.  

While supervised deep learning currently outperforms other nuclear segmentation 

methods by a significant margin, it requires large amounts of training data to work 

efficiently. Solutions to this problem can be found in approaches using interactive 

segmentation and weakly supervised learning. NuClick203 provides an interactive 

nuclear segmentation framework, where a multi-scale encoder-decoder CNN gen-

erates the fully segmented outline of objects that a user has previously just clicked 

on once. This way new annotations to train nuclear segmentation models are rapidly 

generated. Mahmood et al.204 proposed a conditional generative adversarial net-

work205 to create synthetic H&E datasets with perfect labelling for nuclear segmen-

tation, initialised by a random map of polygon shapes. Haq et al.206 suggested do-

main adversarial training to allow a cell segmentation CNN to generalise to another 

organ/ image acquisition setup without any labels from the new domain. 
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Figure 9 StarDist model architecture for nuclear segmentation. The input image is fed into 

a U-net type CNN, whose main building block consists of two convolutions, followed by 

a max pooling layer. The max pooling layer will reduce the dimensionality so that moving 

further into the network produces a lower dimensionality feature embedding. This part of 

the U-net is called the “encoder”. The second half of the symmetric U-shaped network is 

the “decoder”. In this part, up-sampling and concatenation with previous layers is used to 

increase the dimensionality of the embedding once again. In the end, the output layer has 

the dimensions of the original image. StarDist predicts two types of outputs: i) the 𝒅𝒊,𝒋 map 

gives the probability of each pixel 𝒊, 𝒋 belonging to a nucleus. ii) the 𝒓𝒊,𝒋
𝒌  gives the predicted 

distance to the nearest background pixel from each pixel 𝒊, 𝒋. The distance is regressed for 

each 𝒌 = 𝟏, . . 𝑲 radial orientation, where usually 𝑲 = 𝟑𝟐. For pixels with low probability 

of belonging to a nucleus, the regressed distance is set to zero. Finally, NMS is applied to 

examine overlapping polygons and keep only the ones originating from the most central 

nuclear pixels. Thus, the nuclear shapes are segmented. 

1.2.2.2.5 Performance metrics 

Several metrics have been introduced to assess the performance of nuclear segmen-

tation. Simple approaches may compare only the numbers of true and predicted 

nuclei or use metrics (e.g. Jaccard or Dice coefficients) to assess if pixel labels were 

assigned correctly. However, these approaches cannot capture adequately an algo-

rithm’s ability to both locate each separate nucleus and predict the correct shape. 

The types of errors that may occur are shown in Figure 10. 
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Figure 10 Types of errors in instance segmentation of cell nuclei. 

A) The true nucleus is found by the algorithm; however, the shape is mismatched (true 

positive within a margin of error). B) Nucleus not found (false negative). C) A nucleus 

shape is predicted when none exist (false positive). D) Perfect prediction of nuclear shape 

(true positive). 

Kumar et al.171 introduced the aggregated Jaccard index to evaluate performance. 

This metric is an extension of the Jaccard index for instance segmentation. First, 

every ground truth (true) nucleus is matched to a predicted nucleus, by selecting the 

predicted nucleus to maximise the Jaccard index of the two shapes (i.e. the inter-

section over union). After matching, two metrics are calculated: the sum of all in-

tersections 𝐶, and the sum of all unions 𝑈 for matched nuclei. Unmatched nuclei 

are also added to the union sum. Finally, the AJI is calculated as the ratio: 𝐶/𝑈. 

Another approach by Uwe et al.175 adopted the average precision metric, calculated 

as: 

𝐴𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
                                                (2) 

where 𝑇𝑃 are the true positive, 𝐹𝑁 the false negative and 𝐹𝑃 the false positive 

nuclei. These definitions follow the notation of Figure 10. True positive predictions 

are the ones that could be matched with a ground truth nucleus. Matching occurs 

when the intersection over union is higher than a pre-specified threshold 𝜏 ∈ [0,1]. 

False negatives were the unmatched ground truth nuclei, whereas false positives 

were the unmatched predicted nuclei. Finally, a more radical approach was sug-

gested by Al-Kofahi et al.207 where a support vector machine was trained to classify 

whether a cell object had been correctly segmented. 

1.2.2.2.6 Membrane and cell segmentation in multiplex fluorescence 
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Once the nuclei have been outlined, they are used to guide whole cell and membrane 

segmentation in multiplex fluorescent images. This task differs from the nuclear 

segmentation task described above, as a stain to universally visualise the membrane 

and cell boundaries has not yet been developed. Studies try to reconcile this limita-

tion by combining multiple membrane markers (e.g. β-catenin, NaKATPase) to 

achieve delineation of all cell membranes.208 However, this leads to a need for 

highly multiplexed panels of stains, which are not always practical and increase 

time and cost of assay. 

In practice, the membrane boundaries of cells can be reasonably well approximated, 

once the nuclear shape is known. Algorithms have been developed to “grow” an 

estimated membrane shape around each nucleus by sliding band filters,209 Voronoi 

tessellations210–212 or a size-constrained watershed.213,214 These approaches are 

practical in most applications but may fail for non-convex or elongated cell shapes. 

Finally, other methods will resort to only segmenting the membranes of cells that 

express a particular membrane stain of interest, and ignore all other cells.215 

1.2.2.3 Cell phenotyping 

Despite the inherent variability of antigen expression that renders each cell unique, 

biologically meaningful, and phenotypically coherent clusters of cells are known to 

exist, each performing a distinct function. Cell phenotyping is the task of assigning 

the cells into these phenotypically coherent clusters. Multiplexing could accurately 

discriminate between different cell phenotypes, through high dimensional protein 

expression profiling. Following nuclear and membrane segmentation, extensive 

data becomes available for each single cell (e.g., the fluorescent intensity for each 

marker in the sub-cellular compartments and cell shape morphology) that can be 

mined to successfully assign cells to phenotypes. This task is not only relevant for 

multiplex assays in situ, but also for all other methods that quantitatively observe 

protein expression at the single-cell level, such as flow cytometry and mass cytom-

etry. Therefore, in this section describes cell phenotyping algorithms that could be 

applied either to the digital pathology, flow or mass cytometry setting alike. 

To phenotype a single cell, one can examine whether it expresses a number of dif-

ferent protein markers. Determining the level of expression for a marker in a cell or 

in the overall tissue area is called scoring. Scoring constitutes an essential task in 

most pathology workflows and several digital pathology algorithms in the past 20 
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years have been developed to automatically carry out this task. Manual gating of 

protein signal is considered the gold standard in similar settings, such as flow cy-

tometry.216 However, when pathologists manually annotate which cells express a 

marker, this ground truth can be very unreliable.217 In a typical clinical pathology 

workflow, pathologists usually provide semi-quantitative estimates for the level of 

staining expression, which can be subject to multiple biases, intra- and inter-ob-

server variability. Thus, at this time, the most appropriate way to validate automated 

scoring algorithms remains unclear. 

If the pathologists’ manual annotations of cell phenotypes were to be considered 

the ground truth, several ways to approach automated cell phenotyping are pre-

sented below: 

To determine whether a cell expresses a marker, one may adopt a binary on/off 

approach where a cell is either positive (expressing the marker) or negative. To this 

end, gating on the signal intensity is applied, where cut-offs are often determined 

manually by the annotator. If automated thresholding has been applied to separate 

true signal from background as described in page 49, then any cells where signal is 

present may be considered positive. Alternatively, Blom et al.218 suggest using a 

cut-off equal to one standard deviation higher than the mean signal of all cells. Use 

of an index TMA with positive and negative control cell lines to derive a reasonable 

cut-off is also an option.162 

When observing a high number of proteins simultaneously, not all of them might 

be relevant to define a phenotype. Some combinations of protein positivity could 

be considered equivalent. To negotiate such phenotypic relationships, one may use 

prior biological knowledge about possible protein co-localisations. A more data 

driven approach,115 suggests that cell phenotypic groups or “motifs” can be defined 

by specifying the lead proteins (L), expressed in all cells of the group, the absent 

proteins (A), and some wildcard proteins (W), that may or may not be expressed. 

By this definition, a phenotype that expresses protein A, but not protein B is iso-

morphic to a phenotype that also expresses protein A, and only sometimes expresses 

protein B (a wildcard). Schubert et al115 used this coding to represent graphs of 

inter-relationships between phenotypes. 

Other approaches opt for continuous assessment of the expression level for pheno-

type identification. Clustering approaches are commonplace in the multiplex flow 
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cytometry setting. In the FlowCap216 challenge of 2013, different algorithms com-

peted in phenotyping cell populations assessed with flow cytometry. Manual gating 

was the gold standard in this challenge. The ADICyt (Adinis Ltd, Slovenia) com-

mercial algorithm, using hierarchical clustering and entropy-based merging, ranked 

first and agreed the most with manual gating. For highly multiplexed mass cytom-

etry data, Phenograph219 suggests construction of a cell similarity graph to perform 

clustering and pinpoint cells likely to belong in the same phenotype. Each cell is 

represented by a vector of protein signals and similarity between cells is calculated 

as the Euclidean distance between vectors. Weighted graphs are constructed by con-

necting each cell with its k-nearest neighbours in that vector space.219 A community 

detection method220 is then applied to partition the graphs and cluster cells with 

similar phenotypic profiles. For toponome imaging systems data, the DisWOP ap-

proach suggests a way to cluster cells into phenotypes based on their protein co-

dependence or anti-dependence profiles.99 

Supervised learning can also be applied for phenotyping, where the phenotyping 

algorithm is trained by manual annotations of cells belonging to each phenotype. In 

an example implemented with QuPath, a random forest classifier was trained from 

manual annotations to identify cell phenotypes in multiplex immunofluorescent 

samples, using the protein signal intensities as features.221 In FlowCap216 supervised 

learning methods, such as use of radial SVM,222 had similar performance to clus-

tering. 

1.2.2.4 Quantifying spatial patterns 

Compared to flow cytometry and mass cytometry, multiplexing assays in situ offer 

the advantage of providing spatial context. Observing spatial gradients of protein 

expression, co-localisations and proximity relationships add new powerful tools to 

the arsenal of the pathologist, with potential to improve prognostic and diagnostic 

accuracy.223 Spatial architecture in the tumour microenvironment can be assessed 

in many ways, for example by observing tissue compartments with distinct pheno-

typic profiles (e.g. tumour, stroma, invasive margin), the presence and location of 

tumour infiltrating lymphocyte hotspots and the positioning and spatial distribution 

of tumour associated phenotypes relative to themselves and to each other.  

A fundamental hypothesis underpinning studies of spatial heterogeneity in the mi-

croenvironment of tumours is that cells found in close proximity are more likely to 
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interact. Cell-cell interactions could take place either by direct contact junctions or 

signalling molecule secretion, while each cell is estimated to be able to communi-

cate within a maximum distance of ≈ 250 μm.224 Image analysis algorithms provide 

reliable quantification of spatial patterns, with promising applications in cancer 

which are briefly reviewed below.  

Many spatial heterogeneity studies have focused on immune populations infiltrat-

ing solid tumours. Huang at al.225 observed that the tumour associated macrophage 

phenotype changed as a function of their distance to the nearest tumour cell in gas-

tric cancer. They built an R package to calculate nucleus-nucleus distance in multi-

plex immunofluorescent images, namely ISAT (https://cran.r-pro-

ject.org/web/packages/ISAT/index.html).225 A second study in gastric cancer,226 

looked at the spatial distance between CD8+ T-cells and T-regs, and noted that a 

distance of 30-110 μm was associated with favourable survival rates. In non-small 

cell lung cancer, Barua et al.227 introduced the G-cross function to measure the spa-

tial distribution of T-regs and other immune subsets around tumour cells and linked 

higher proximity between T-regs and tumour cells to poor survival.227 A similar 

study in non-small cell lung cancer,228 studied the distances between CD8+ T-cells 

and tumour cells and showed that longer median distances were favourable. In co-

lon cancer, Lazarus et al.229 observed the mean distance between cytotoxic T-cells, 

epithelial cells and antigen presenting cells. Cytotoxic T-cells were considered “en-

gaged” if found within 15 μm of either epithelial or antigen presenting cells, and 

the number of engagements was favourable for survival.229 In oral squamous cell 

carcinoma, Feng et al.29 showed that high numbers of co-localisations within 30 μm 

of PD-L1+ cells/ T-regs and CD8+ T-cells is associated with reduced overall sur-

vival. Such studies help identify cancer specific cell-cell interactions and introduce 

novel predictive and prognostic biomarkers for high-risk patient identification. 

In breast cancer, several studies observed the spatial pattern of lymphocytic infil-

tration in H&E images to identify tumours shielded from immune attack. Cheikh et 

al.230 used graph based mathematical morphology to identify immune hotspots in 

H&E images, i.e. areas with dense aggregates of immune cells. For the same pur-

pose, Maley et al.231 suggested use of the Morisita-Horn co-localisation index, a 

metric commonly used in ecology, to observe proximity between immune and tu-

mour cells. Another robust proximity metric was suggested for triple negative 

breast cancer by Yuan et al.232, which was calculated as the distance from each 

https://cran.r-project.org/web/packages/ISAT/index.html
https://cran.r-project.org/web/packages/ISAT/index.html
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lymphocyte to the centroid of the convex hull formed by the five nearest cancer 

cells.  

Finally, metrics are being introduced to represent the overall spatial heterogeneity 

between multiple cell phenotype populations in highly multiplexed tissue images. 

Rose et al.100 proposed one of the first statistical frameworks to observe spatial in-

teractions, the Hypothesized Interaction Distribution (HID). To represent a tissue 

sample, a symmetrical 𝑁 × 𝑁 array was constructed, where 𝑁 was the number of 

cell phenotypes found in the sample. Each element in this array corresponded to a 

pair of phenotypes. The number of times these two phenotypes co-localised within 

a pre-defined distance threshold 𝑑 of each other was entered in the array. The HID 

array could be represented by a single summary statistic, such as the Shannon’s 

entropy or the array’s energy100 and its prognostic value was demonstrated in fol-

licular lymphoma.97 Construction of a similar array was later suggested for breast 

cancer by Spagnolo et al.98, where each element represents the pointwise mutual 

information for each pair of phenotypes, instead of the number of co-localisations. 

Comprehensive reviews of methods assessing spatial heterogeneity with automated 

image analysis can be found in Yuan et al.223 and Heindl et al.233 

1.2.2.5 Software platforms supporting end-to-end multiplex analysis 

As a final remark on multiplex image analysis, it is worth mentioning some open 

source or commercial software applications that offer end-to-end pipelines and sup-

port data acquired by multiplex immunofluorescence or other multiplex in situ tech-

nologies. InForm (Akoya Biosciences, Marlborough, MA, USA) is a commercial 

software platform that is bundled with the Vectra microscope and supports multi-

spectral scanning and spectral unmixing, along with other functions such as tissue 

segmentation, label-free nuclear and cell segmentation, and supervised cell classi-

fication. HALO (Indica labs, Albuquerque, NM, USA) also supports multiplex image 

formats, currently offering a larger suite of compatible algorithms, including spatial 

proximity analyses. It uses parallel computing to speed up the process considerably. 

Additionally, QuPath,234  the open source pathology software built by Peter Bank-

head and his associates at the University of Edinburgh, currently supports multiplex 

image analysis. QuPath supports the processing of large histopathology whole slide 

images, a functionality currently missing from the otherwise very powerful Im-
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ageJ.235 QuPath also provides the option for custom scripting that could enable ex-

tension of its functionality for specialised applications, such as spatial analysis. On-

cotopix (Visiopharm, Hørsholm, Denmark) is another commercial software plat-

form supporting multiplex image analysis that also offers deep learning capabilities 

for cell phenotyping. Finally, histoCAT236 is an open source platform that, when 

combined with ilastik187 and CellProfiler237 for cell segmentation and phenotyping, 

allows multiplex and spatial interaction analysis.  
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1.3 Aims and objectives 

This section provides a brief synopsis of the clinical and technical background de-

scribed in Sections 1.1-1.2 and states the aims and objectives of this thesis. 

This thesis was motivated by the need for new cancer biomarkers that can accu-

rately profile the microenvironment of tumours and assist in pre-treatment risk strat-

ification for therapy selection, at the time of initial diagnosis. In Section 1.1 the 

potential for development of prognostic biomarkers based on the tumour microen-

vironment and its spatial architecture was identified in two different types of cancer: 

OPSCC (a solid tumour) and FL (a haematological cancer). Developing baseline 

prognostic biomarkers for risk stratification is a major area of research in these can-

cers, and in oncology generally, driven by a need to develop risk-adapted effective 

therapies capable of overcoming the poor outcomes of high-risk disease, and pre-

venting over-treatment of low-risk disease.  

In recent years, and in both cancers, novel immunotherapies (such as cetuximab and 

checkpoint inhibitors in OPSCC and rituximab in FL) have greatly improved patient 

outcomes. As treatments based on specific targeting of immune escape mechanisms 

slowly emerge, there is a need for novel biomarkers for treatment selection that 

would be tailored to specific host immune characteristics. The benefit of tumour 

microenvironment biomarkers, when compared with other prognostic indices (e.g., 

the FLIPI or stage), is that they allow a direct observation of interactions between 

relevant cell populations, permitting potential for discovery of new disease mecha-

nisms, disease sub-types and novel therapy targets. 

Multiplex in situ imaging was identified as a promising route to study the microen-

vironment of tumours (Section 1.2). Multiplex imaging, combined with automated 

image analysis, is capable of visualising concurrently a high number of antigens on 

biopsied tissue sections. Thus, extensive data becomes available for each single cell 

in the multiplex images and multiple cell phenotypes can be identified, while pre-

serving the spatial context of the tissue.  

Multiplexing in situ enables the investigation of a key property of the tumour mi-

croenvironment that is not well understood: its spatial architecture. Several studies 

have measured spatial architecture to gain valuable insights into the microenviron-

ment of tumours. New biomarkers based on observing spatial distance and co-lo-

calisation of tumour infiltrating lymphocytes and tumour cells have demonstrated 
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predictive and prognostic value in gastric cancer, non-small cell lung cancer, head 

and neck cancer, breast cancer and follicular lymphoma, among others. These find-

ings support further exploration of the tumour spatial context to improve precision 

in guiding treatment decisions in cancer.  

Automated image analysis algorithms are required for the analysis of the complex 

information present in highly multiplexed images. Much progress has been made 

in recent years in the development of computer assisted scoring algorithms, able to 

assess antigen expression levels and derive scores for patient categorisation. The 

scoring task is an integral part of many routine analyses in anatomic pathology. 

However, the appropriate way to validate performance of computer assisted scoring 

algorithms is still an open research question, as the ground truth provided by 

pathologist manual scoring can lack reproducibility and be subject to a number of 

biases.217 Thus, the strategy to validate computer assisted scoring algorithms and 

demonstrate comparable or superior performance to manual scoring remains un-

clear. 

To explore the potential of multiplex spatial profiling of the tumour microenviron-

ment for biomarker discovery in OPSCC and FL, the specific research objectives 

of this thesis were as follows: 

i.  To identify appropriate strategies for the validation of computer assisted scoring 

algorithms in anatomical pathology and design requirements to judge their per-

formance. 

ii. To develop and validate suitable multiplex assays and computer assisted scoring 

algorithms for the development of new biomarkers in OPSCC, based on the spa-

tial proximity between cell types in the tumour microenvironment.  

iii. To develop and validate suitable multiplex assays and computer assisted scoring 

algorithms for the development of new biomarkers in FL, based on concurrent 

observation of multiple immune populations and a spatially aware assessment of 

the FL microenvironment diversity as a whole. 
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2 Validation of computer assisted scoring approaches: a 

systematic review and meta-analysis 

In anatomic pathology, upon routine examination of an immunohistochemically 

stained tissue biopsy, a pathologist will often provide a score to describe the level 

of antibody expression in relevant cell populations.238 Scoring is a prerequisite for 

identifying cell phenotypes and analysing their spatial pattern in multiplex images. 

In recent years much progress has been made in the development of computer as-

sisted scoring (CAS) tools to assist pathologists in scoring. Although many CAS 

algorithms have been introduced, the design requirements and reference methods 

for their validation have not been comprehensively considered. Furthermore, it is 

unclear whether CAS tools have achieved comparable performance to manual scor-

ing. 

Thus, before beginning the development of CAS tools for multiplex images in the 

next chapters, this chapter sought to clarify validation practices for CAS tools, by 

identifying design requirements, reference methods and assessing CAS perfor-

mance. A systematic review of the literature on CAS tool validation for HER2, ER 

and three T-cell markers (CD3, CD4 and CD8) was carried out. 

2.1 Introduction 

Scoring is an integral part of histopathology with countless applications in support-

ing treatment decisions, predicting patient prognosis, or determining clinical trial 

design and enrolment. However, manual scores observed using a microscope are 

qualitative or semi-quantitative and so will always contain a degree of subjectivity, 

affected by a number of  visual and cognitive biases.217 In recent years, slide scan-

ning technology lent itself to the development of automated image analysis tools, 

able to support the pathologist’s workflow by performing scoring quantitatively and 

objectively. CAS tools aim to quantify the number and intensity of stained objects 

in tissue images, and offer a promising avenue towards better standardisation, re-

producibility and throughput. Particularly in multiplex images, CAS is necessary 

for cell phenotyping, as correlating the information available from a high number 

of stains cannot be performed manually at a large scale. 

Routine clinical adoption of CAS tools requires rigorous validation. Despite rapid 

advances in CAS technology, the appropriate way to validate performance of these 
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algorithms remains unclear. Typically, a reference method is needed as a compara-

tor to establish analytical performance. Manual scoring is the most straightforward 

gold standard for CAS algorithm validation. Thus a paradox arises:217 CAS is in-

troduced as a more objective and reproducible alternative to manual scoring, how-

ever its performance is judged based on how well it agrees with the subjective man-

ual scores. Furthermore, it is challenging to assess whether CAS has achieved su-

perior performance to manual scoring, when good agreement of CAS with manual 

scoring is the only criterion.  

To clarify the appropriate validation strategy for CAS systems, the requirements for 

clinical adoption, and their performance, this systematic review examined studies 

validating CAS tools for scoring the nuclear oestrogen receptor-α (ER), membra-

nous human epidermal growth factor receptor-2 (HER2) and three T-cell markers 

(cluster of differentiation [CD] 3, CD4, CD8). Scoring of these antibodies is essen-

tial in many clinical and research applications in breast, lymphoma, head and neck 

and other types of cancer. While ER and HER2 expression levels are scored rou-

tinely in breast cancer to select adjuvant therapies,239–241 T-cell populations in the 

tumour microenvironment  are increasingly studied for their impact on cancer prog-

nosis.14,71,242,243  Multiple markers were included in this systematic review to pro-

vide insight on validation practices of CAS tools, irrespective of the markers they 

assessed. Even though the HER2 and ER markers are mostly relevant for breast 

cancer and not OPSCC or FL, a large majority of state-of-the-art CAS tools vali-

dated in recent years have focused on these markers due to their well-established 

role in routine clinical decision making. In contrast, not many CAS tools are cur-

rently available for the OPSCC and FL tumour microenvironment markers dis-

cussed in Chapter 1. By reviewing CAS tools for HER, ER, CD3, CD4 and CD8, a 

representative subset of this technology could be assessed.  

While routine clinical scoring is typically carried out in the brightfield setting, re-

search applications may also score samples acquired with immunofluorescent im-

aging. The scoring task in the two settings is identical, aiming to quantify protein 

expression levels visualised either with chromogens (brightfield) or fluorophores 

(immunofluorescence). This review retrieved CAS algorithms from the past 20 

years validated in either setting.  
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2.1.1 Manual scoring systems 

Before discussing design requirements for the validation of CAS, it is useful to de-

scribe the existing manual scoring systems. The scoring task is routinely carried out 

manually using a brightfield microscope. Several reference systems exist for man-

ual scoring. The simplest systems only indicate if a sample is overall positive or 

negative for an antibody. To overcome the paucity of information available from 

this approach, other semi-quantitative systems have been adopted for ER, HER2 

and T-cell scoring. These manual scoring systems also provide an estimate of the 

intensity of antibody expression in the sample. 

2.1.1.1 ER scoring 

ER is a nuclear marker. For ER, the American Society of Clinical Oncology 

(ASCO) and College of American Pathologists (CAP) guidelines240 recommend 

scoring a sample as positive if >1% of tumour nuclei express the marker. In a clin-

ical diagnostic setting, after reporting ER positivity status, pathologists may also 

supplement a semi-quantitative score incorporating the level of staining intensity, 

such as Allred or H-score. Figure 11 demonstrates ER staining expression patterns 

in breast cancer. 

In the Allred244 (also known as “Quickscore”) system, a sample is assigned a score 

to indicate the percentage of positive tumour nuclei (0: none, 1: less than one tenth, 

2: less than one third, 3: between one and two thirds, 4: more than two thirds), and 

a second subjective score (0-3) that indicates average staining intensity. The Allred 

is calculated by summation of those two scores and therefore and Allred of 0 is 

negative, 2-3 is weakly positive, 4-5 is intermediate positive and 6-7 is strongly 

positive. An Allred equal or greater than 2 corresponds to positive ER status. 

The histochemical score (H-score)245 may also be used, tumour nuclei are assigned 

a subjective level of intensity of staining (0: negative, 1: weak, 2: intermediate, 3: 

strongly positive). The overall H-score is calculated by multiplying each intensity 

score with the percentage of nuclei expressing it and then summing the results. The 

range of this continuous score spans from 0 to 300. 
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Figure 11 ER-alpha (ESR1 gene) staining expression levels in breast cancer, using 

HPA000449 antibody and brightfield immunohistochemistry. Image credit: Human Protein 

Atlas, available from v19.3.protein.atlas.org.17,* A: strong nuclear staining, B: moderate 

staining at >75% of tumour cells, C: negative staining. 

2.1.1.2 HER2 scoring 

True HER2 staining is localised on the tumour cell membrane. For HER2, the 

ASCO/CAP algorithm246 uses a semi-quantitative HER2 score (0-3+) in breast can-

cer samples. To guide adjuvant treatment selection a definite decision is made on 

whether to consider a patient HER2 positive or negative. The ASCO/CAP algo-

rithm is described in Table 4.  

Table 4 Description of ASCO/CAP manual HER2 scoring algorithm 

HER2 Immunohistochemical Staining HER2 score 

No stained tumour cells 0 negative 

Incomplete, weak membrane staining in  

10% of tumour cells 

1+ negative 

Complete staining in  10% of tumour 

cells or incomplete, weak staining in more 

than 10% of tumour cells 

2+ equivocal 

Complete and intense, circumferential 

membrane staining in more than 10% of 

tumour cells 

3+ positive 

 

 
*Online: https://www.proteinatlas.org/ENSG00000091831-ESR1/pathology/breast+cancer#, ac-

cessed 13/12/2020. 

https://www.proteinatlas.org/ENSG00000091831-ESR1/pathology/breast+cancer
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In the ASCO/CAP HER2 algorithm, 0-1+ patients are scored negative, 3+ patients 

are positive, and 2+ patients are equivocal and referred for supplementary fluores-

cent in-situ hybridisation (FISH) testing to clarify whether HER2 is amplified. Fig-

ure 12 demonstrates HER2 staining patterns in breast cancer. 

FISH is a powerful, yet costly, quantitative assay that preserves the spatial context 

of the tissue. Currently, a dual probe FISH assay is recommended,246 where HER2 

and centromere of chromosome 17 (CEP17) probes are counted concurrently. 

CEP17 can be used for HER2 probe count normalisation, as HER2 is known to be 

located on chromosome 17. Therefore, HER2 FISH status is determined based on 

the ratio of HER2 to CEP17 probes. Notably, some patients can still be classified 

as equivocal by FISH testing, in which case a repeat immunohistochemical or FISH 

assay is recommended to determine the final HER2 positivity status. 

 

Figure 12 HER2 (ERBBR gene) staining expression levels in breast cancer, using 

CAB020416 antibody and brightfield immunohistochemistry. Image credit: Human Pro-

tein Atlas, available from v19.3.protein.atlas.org.17,† A: strong complete membranous stain-

ing, B: moderate staining, C: weak staining, D: negative staining. 

2.1.1.3 T-cell marker scoring 

The number or density of stained cells is usually reported for CD3, CD4 and CD8 

during manual scoring. CD3 is a pan-T-cell marker, CD4 is predominantly ex-

pressed on the surface of T-helper cells, and CD8 is primarily found on the surface 

 
† Online: https://www.proteinatlas.org/ENSG00000141736-ERBB2/pathology/breast+cancer#, ac-

cessed 13/12/2020. 

https://www.proteinatlas.org/ENSG00000141736-ERBB2/pathology/breast+cancer
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of cytotoxic T-cells.17 A cell is usually deemed positive for these markers based on 

cytoplasmic and/or membranous staining (Figure 13). 

All manual scoring systems are potentially useful when used in a suitable context 

by trained experts and appropriately calibrated. The above-described semi-quanti-

tative scores are the most popular in clinical and research settings and serve as the 

current gold standard in histopathological scoring. 

 

Figure 13 T-cell marker staining pattern in healthy lymph node tissue. Image credit: Hu-

man Protein Atlas, available from v19.3.protein.atlas.org.17 A: CD3 staining, using 

CAB013055 antibody.‡ B: CD4 staining, using HPA004252 antibody.§ C: CD8 staining, 

using CAB000012 antibody.**  

2.1.2 Review objectives 

The strategy for validation and analytical performance of CAS algorithms for 

HER2, ER and T-cell markers were recorded. The objectives were to: i) outline 

design requirements fundamental for CAS systems, ii) describe how satisfaction of 

these requirements can be validated and iii) assess CAS performance. A key re-

quirement of CAS systems is accuracy, often established through comparison with 

manual scoring. Performance of CAS in terms of agreement with manual scoring 

was described in a quantitative meta-analysis.   

  

 
‡ Online: https://www.proteinatlas.org/ENSG00000167286-CD3D/tissue/lymph+node#img, ac-

cessed 13/12/2020. 
§ Online: https://www.proteinatlas.org/ENSG00000010610-CD4/tissue/lymph+node#img, ac-

cessed 13/12/2020. 
** Online: https://www.proteinatlas.org/ENSG00000153563-CD8A/tissue/lymph+node#img, ac-

cessed 13/12/2020. 

https://www.proteinatlas.org/ENSG00000167286-CD3D/tissue/lymph+node#img
https://www.proteinatlas.org/ENSG00000010610-CD4/tissue/lymph+node#img
https://www.proteinatlas.org/ENSG00000153563-CD8A/tissue/lymph+node#img
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2.2 Methods 

The protocol is registered in the PROSPERO database of systematic reviews (no. 

CRD42019139688).247 The review complies with PRISMA guidelines.248 The fol-

lowing section describes how studies were selected for inclusion in the review and 

the data collected and plan for synthesis of findings. 

2.2.1 Information sources and search strategy 

The electronic bibliographic databases PubMed, Web of Science (Core Collection) 

and IEEE Xplore Digital Library were searched. Search strategy for PubMed was: 

(quantitat* OR automat*) AND (score OR scoring) AND (immunohistochem* OR 

immunofluorescen*) AND (("2000/01/01"[PDat] : "2019/12/31"[PDat]) AND Hu-

mans[MeSH]). The search terms were adapted for use with other bibliographic da-

tabases by including synonyms as necessary. The language was restricted to Eng-

lish.  Filtering options were used when available to retrieve only human studies, 

peer-reviewed publications and exclude studies related to irrelevant domains.  

2.2.2 Study eligibility criteria 

CAS tools were reviewed for HER2, ER and T-cell markers (CD3, CD8, CD4) in 

the tumour microenvironment. Only peer-reviewed studies providing quantitative 

validation of CAS tools were included. If a study proposed a new CAS tool without 

quantitatively validating its performance, it was excluded. Studies validating algo-

rithms against multiple markers without reporting performance for each individual 

marker were excluded; the premise that automated scoring performance is equiva-

lent for different markers cannot be taken for granted a priori. 

Selection criteria based on a pilot screening process and agreed by author consensus 

were formalin-fixed, paraffin-embedded (FFPE) or frozen tissue of human tumours 

or adjacent stroma, published between 1/1/2000 and 31/12/2019, with full text 

available. CAS tools developed either for immunohistochemical or immunofluo-

rescent samples were included. Any staining protocol, detection system and scan-

ning set-up was included, however, this information was recorded to provide con-

text. Studies were excluded if they involved animal tissue, blood, cellular aspirates, 

cell lines or bony tissue.  
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2.2.3 Study selection 

Studies retrieved according to the search strategy were pooled and duplicates re-

moved. Retrieved studies were screened on their title and abstract. The selected 

studies were subsequently read in full and a final decision on inclusion made.  

2.2.4 Data collection 

A pre-piloted form was used to collect data (Table 5). The form was trialled on ten 

studies by two investigators (A.M.T., A.M.). Collected data included information 

on sample preparation, algorithm description, and algorithm validation. Three 

trained investigators collected the data from the remaining studies (I.P.M., M.F., 

A.M.T., in duplicate or by independent reading).  

2.2.5 Synthesis and meta-analysis methodology 

Synthesis of findings listed the selected studies and categorised them based on an-

tibody and imaging modality (immunofluorescence vs brightfield immunohisto-

chemistry). Subsequently, the synthesis outlined the design requirements, i.e., the 

required attributes of CAS systems, and expanded on how these were validated in 

the reviewed studies.  

A key design requirement of CAS systems is their accuracy, which is often estab-

lished by comparing with manual scoring. To assess performance of CAS systems 

in terms of accuracy, a meta-analysis was performed. This meta-analysis quantified 

the agreement of CAS tools with manual scoring. Meta-analysis was limited to 

brightfield immunohistochemistry, because of the scarcity of standardised manual 

scoring systems for immunofluorescence. Agreement was probed by quantitative 

meta-analysis of Cohen’s κ metric. Cohen's κ measures inter-rater variability, as-

sessing whether the degree of agreement between two alternative forms of a test 

(here automated algorithm vs pathologist) is higher than expected by chance.  

Studies were included in the meta-analysis if they reported data required for calcu-

lating Cohen’s κ and its variance, as described by Sun.249 For HER2, studies were 

included in the meta-analysis if they reported Cohen’s κ using the 3-tier 

ASCO/CAP HER2 scoring system (0/1+, 2+, 3+). For ER, studies were included if 

they reported Cohen’s κ for the dichotomised Allred score (≤ 2 = negative, > 2 = 
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positive). The limited number of T-cell studies prohibited quantitative meta-analy-

sis. 

Meta-analysis was performed with the metafor R package.250 Heterogeneity was 

tested using the Higgin’s 𝐼2 statistic and scores >50% were considered heterogene-

ous. Forest plots were constructed, and combined effects were assessed by random 

effects meta-analysis because of the inherent variability in image preparation and 

algorithm components. Finally, sensitivity analysis was carried out by selecting dif-

ferent thresholds for minimum test size, minimum number of pathologists provid-

ing annotations and restricting to studies using an independent test set, and whole 

slide images. 
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Table 5 Pre-piloted form for data collection from reviewed studies 

 Field Description 

G
en

er
al

  Study details 
Title, Author, Year published, Journal of Confer-

ence 

Marker  ER, HER2, CD3, CD4 or CD8 

Im
ag

e 
p

re
p

ar
at

io
n

 

Compartment expressed Membrane, Cytoplasm or Nucleus 

Number of patients   

Type of images scanned 
Regions of interest, whole sections or tissue mi-

cro-array cores 

Number of images  

Reference scoring system 
Either Allred, H-score, HER2 score, percentage of 

positive cells or other 

Scoring system details  

Antibody clone   

Detection system 
Brightfield or fluorescence, single-plex or multi-

plex 

Type of tissue Type of cancer, site of biopsy 

Fixation 
Formalin fixed paraffin embedded or frozen sam-

ples 

Width of section (μm)   

Scanner   

Magnification Magnification for scanning and processing 

Resolution (μm/pixel) Resolution for scanning and processing 

A
lg

o
ri

th
m

 Software 
Available software platform (commercial or open 

source) 

ROI selection Method for region of interest selection 

Scoring algorithm description  

V
al

id
at

io
n
 s

et
u

p
 &

 P
er

fo
rm

an
ce

 

Type of ground truth (training) 
Type of ground truth used to train or tune the algo-

rithm 

Configuration of pathologists' anno-

tations (training) 

Single pathologist, multiple pathologists, consen-

sus score or non-experts 

Number of annotations (training) Number of training annotations 

Type of ground truth (testing) 

Type of ground truth used to test the algorithm 

(does not matter if this is an independent test set or 

not) 

Configuration of pathologists' anno-

tations (testing) 

Single pathologist, multiple pathologists, consen-

sus score or non-experts 

Number of annotations (testing) Number of training annotations 

Independent test set 
Indicate if the test set was independent from the 

training/ tuning dataset 

Number of pathologists 
Number of pathologists that participated in the 

study overall 

Virtual reading Ground truth by digital or microscope reading 

Notes on training testing 
Additional information that may be relevant to de-

scribe the validation  

Agreement & Accuracy Metrics (vs 

human) 

Values of all agreement metrics with pathologists' 

ground truth. For studies reporting Cohen's κ rec-

ord or calculate confidence intervals. 
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Additional performance metrics 
List the metrics (e.g., time to process sample, in-

ter-run agreement) 

Inter-observer agreement (auto-

mated) 
  

Inter-observer agreement (manual)   

Other modality used as ground truth List the modalities (e.g., FISH) 

Agreement vs FISH (only for HER2) 
Agreement with FISH for breast cancer studies, 

for manual and automated IHC scoring 

Nature of errors As described in the study 

Comments General comments 

ROI indicates a region of interest; FISH indicates fluorescent in situ hybridisation; IHC indicates 

immunohistochemistry. 

 

2.2.6  Study quality 

Individual study quality was assessed using the Hawker checklist,251 where nine 

components (e.g. abstract, findings) are judged on a 0-3 scale.  The sum of individ-

ual components provides an overall score, and studies were classified as low (0-9), 

medium (10-18) or high (19-27) quality. Initially, two reviewers assessed the qual-

ity of 12 studies, achieving good agreement (Spearman’s rho = 0.94, p < 10-5). One 

reviewer then assessed remaining studies. Differences in quality between studies 

were tested with the Kruskal-Wallis non-parametric test.  
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2.3 Results 

2.3.1 Identified studies and their quality 

Figure 14 shows the PRISMA flow chart248 for the systematic review. Ninety-six 

studies were identified for qualitative synthesis (Table 6). A number of selected 

studies validated more than one algorithm; 65 algorithm validations are reported 

for HER2, 49 for ER and 13 for T-cell markers.  

Table 6 Inventory of studies for each marker and imaging modality 

  HER2 ER CD3 CD4 CD8 

Immunoflu-

orescence 

128,252,261,253–

260 

128,256,260,262–

267 
268 - 268 

Immuno-

histochemis-

try 

269,270,279–

288,271,289–

298,272,299–

308,273,309–

312,274–278 

263,269,314–

323,270,324–

333,298,334–

339,301,303,304,3

09,312,313 

340–345 344 341,344–346 
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Figure 14 Adapted PRISMA (2009) flow chart248 for study selection. After the initial 

screening 208 studies were fully read and assessed for eligibility based on the pre-defined 

selection criteria (see section 2.2.2). Ninety-six studies were finally included in the quali-

tative synthesis and 13 in the quantitative meta-analysis. This flow chart additionally indi-

cates how many studies were reviewed per marker (HER2, ER and T-cell markers). Some 

studies validated more than one algorithm or validated algorithms for multiple markers 

(e.g., both ER and HER2). The number of algorithm validations (“comparisons”) is also 

shown. 
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Most studies were medium to high quality (Figure 15), with no significant differ-

ence between markers (Kruskal-Wallis p=0.5). 

 

Figure 15 The distribution of quality scores obtained using the Hawker checklist for the 

96 studies identified in the systematic review.  

2.3.2 Validation of CAS design requirements 

Validation of CAS determines how well they meet the design requirements for scor-

ing systems. These design requirements were retrieved by review of studies vali-

dating CAS algorithms. They are similar for automated and manual systems; any 

scoring system should be definable, meaningful (accurate), reproducible, and time-

efficient.217,238 Particularly in the case of automated systems, additional design re-

quirements may be introduced to ensure that algorithms can explain the basis of 

their decisions (interpretability) and indicate correctly when their predictions are 

uncertain, by providing a confidence estimation. An overview of the design require-

ments and how these were satisfied in reviewed studies is given in Table 7. 
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Table 7 Overview of computer assisted scoring (CAS) design requirement validation 

Design requirement Description Satisfied by 

Definability Well defined algorithm and in-

tended usage 

Description of algorithm, 

sample preparation and val-

idation setup 

Accuracy Accurate (meaningful) patient cat-

egorisation 

Either of: 

1. Agreement with previ-

ously validated manual 

scoring system 

2. Agreement with previ-

ously validated orthog-

onal assay 

3. Correlation with pa-

tient clinical endpoint 

Reproducibility Robustness to staining and imag-

ing variability, consistent scores 

when different pathologists oper-

ate interactive CAS tools 

1. Good intra/inter-lab 

agreement 

2. Good intra/inter-ob-

server agreement for 

interactive CAS tools 

Time-efficiency Time-efficient sample processing  Time efficiency compara-

ble to manual scoring 

Interpretability Explaining why a score was as-

signed 

Producing salient features 

or/ and representative im-

age regions 

Confidence estima-

tion 

Accurate indication of uncertainty 

about the assigned score 

Accurate confidence esti-

mates 

 

2.3.2.1 Definability  

Scoring systems should be definable and based on a predetermined set of rules. 

Definability can be demonstrated by describing the scoring algorithm, as well as its 

intended usage by providing information on sample preparation, staining and scan-

ning, the setup for algorithm validation and the type of reference ground truth. 

Error! Reference source not found. shows what percentage of the reviewed algo-

rithm validations provided information on the type of images (whole slides, regions 

of interest or TMA core images), image acquisition setup, resolution, and described 

the validation setup. While general information on the image acquisition setup and 

type of images was generally well described, details on the image resolution were 

often lacking. When human annotations were used as reference ground truth, most 
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studies provided detailed information on how and by whom the annotations were 

produced. 

CAS algorithms are usually well defined and rely on objective and measurable 

properties of the scanned slides to arrive at a decision. However, while some CAS 

systems are fully automated, others involve a degree of interaction by a 

pathologist.303 The pathologist operates the automated tool, tunes its parameters ap-

propriately,310 selects regions for analysis,278,328 accounts for predicted scores and 

other visual aids, and makes a decision. The intervention of a pathologist in the 

scoring process potentially introduces a degree of subjectivity. Despite this, scoring 

rules in CAS remain much better defined than the approximate intensity estimates 

of manual scoring systems, as the pathologist’s decision is usually based on quan-

titative information of image properties. 
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Figure 16 Details on image preparation, imaging setup, resolution and validation setup 

from the 96 reviewed studies. ROI indicates images of regions of interest; TMA, images of 

tissue microarray cores; WSI: whole slide image; IF, immunofluorescence; IHC; bright-

field immunohistochemistry. A) Bar chart indicating whether an independent test set was 

used to assess performance during validation; B) Bar chart indicating who provided human 

annotations (pathologists vs non-experts) to be used as reference ground truth during algo-

rithm validation. “Not given” indicates that human annotations were used but information 

on who provided them is not described. “Consensus” indicates that a consensus score by 

more than one pathologist was used as reference ground truth. “None” indicates that no 

human annotations were used during validation; C) Bar chart indicating whether the human 

annotations used as reference ground truth were produced by virtual reading (using a mon-

itor) or microscope reading. D) Type of images used as input to the CAS system; E) Image 

acquisition setup; F) Resolution of images, if explicitly mentioned.  
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2.3.2.2 Accuracy 

Scoring systems should be meaningful. This requirement translates to an accurate 

patient categorisation that can predict clinical outcome, select patients for treatment 

or enrolment in clinical trials and is related to relevant patient clinical characteris-

tics. The accuracy of the scoring system was evaluated in one of three ways in the 

reviewed studies: CAS studies either validated agreement with an equivalent man-

ual scoring system that had previously been proven to be clinically meaningful 

(Section 2.3.2.2.1), validated agreement to orthogonal quantitative assays (Section 

2.3.2.2.2), or directly demonstrated correlation with patient outcome (Section 

2.3.2.2.3). 

2.3.2.2.1 Accessing accuracy via agreement with equivalent manual scoring sys-

tem 

Manual scoring is the most straightforward comparator for CAS and most com-

monly adopted by the reviewed studies. Even though concerns were raised217 on the 

reliability of manual annotations as the gold standard, approximately half (29/65) 

of the reviewed HER2 CAS validations did not use any additional comparators to 

verify performance. For ER, over half the algorithm validations relied only on 

pathologist’s annotations (36/49), while one study used crowdsourcing of non-ex-

pert manual scoring339 as ground truth. Last, for T-cell markers all reviewed studies 

used pathologists’ annotations as the gold standard. This approach to establishing 

CAS accuracy is potentially limited by the quality and accuracy of the reference 

manual scoring system.  

The manual reference scoring systems adopted for CAS validation in the reviewed 

studies were heterogeneous. CAS tools for HER2 were validated 80% of the time 

against the reference ASCO/CAP HER2 score. Most algorithm validations (60/65) 

involved breast cancer samples. For ER, 16 studies adopted the Allred, eight the H-

score, five the % of positive cells, and 20 in-house scoring systems. Most valida-

tions of automated scoring algorithms for ER were also carried out in breast cancer 

samples (48/49). Validation of CAS tools for T-cell markers involved multiple 

types of cancer. The percentage of manually detected positive cells was the com-

parator for all T-cell marker reviewed studies, either as a continuous or categorical 

score.  
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This study performed quantitative meta-analysis of agreement between CAS and 

manual scores for ASCO/CAP HER2 scoring and ER Allred, to establish the overall 

level of agreement when these reference scoring systems are used as ground truth. 

For quantitative meta-analysis, 9 HER2 studies (11 comparisons) and 5 ER studies 

(6 comparisons) provided sufficient information to calculate the Cohen’s κ against 

pathologists’ ground truth. Frequent reasons for exclusion were lack of automated 

methodology or quantitative validation, and markers other than the predefined.  

2.3.2.2.1.1 Meta-analysis of HER2 studies 

Table 8 details the characteristics of HER2 studies included in random effect meta-

analysis. The results of the random effects meta-analysis placed the summary esti-

mate of Cohen’s κ for all HER2 CAS studies at 0.75 (95% CI: 0.70-0.81). However, 

high heterogeneity was present with Higgin’s 𝐼2=79.5% (95% CI: 54.2-93.6), sug-

gesting 79.5% of the variability in performance is due to differences in study char-

acteristics and only 20.5% due to chance. The random effects model is presented in 

Figure 17. In this analysis, the HER2 score was considered as: 0/1+ negative, 2+ 

equivocal and 3+ positive. 

To judge whether this agreement between CAS and pathologists was satisfactory, 

how well pathologists usually agree with each other was investigated. As reference, 

the average inter-pathologist agreement from the studies of Bloom et al.347 (κ = 

0.60, 95% CI: 0.53-0.68) and Jefferson et al.348 (κ = 0.77, 95% CI: 0.71-0.83) was 

plotted. Bloom et al.347 reported inter-observer agreement between 10 pathologists 

for 126 whole slide images (WSI) while Jefferson et al.348 provided inter-lab agree-

ment between 17 laboratories for 36 tissue microarray (TMA) cores. Based on the 

raw data from these two human observer studies the agreement of each pathologist 

with the consensus score was calculated and the average Cohen’s κ and 95% CI 

was reported as a reference. The overall performance was satisfactory; the auto-

mated HER2 scoring algorithms agreed with pathologists at least as well as 

pathologists agreed with each other. 
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Table 8 Studies included in meta-analysis of Cohen's κ agreement for HER2 

Study 
Cohen's κ 

[95% CI] 

%                         

Agreement 
Images Annotations Data set 

Independent 

test set 

Khameneh 

et al. 

(2019)272 

0.79           

[0.64, 0.94] 
87.0 WSI 

≥ 1 pathologist 

consensus 
52 patients 

Yes, differ-

ent cohort 

Vanden-

berghe et al. 

(2017) 311 

0.69                 

[0.53, 0.85] 
83.0 WSI 

Single 

pathologist 
71 patients 

Yes, same 

cohort 

Holten-Ros-

sing et al. 

(2015) 288 

0.74                 

[0.69, 0.79] 
90.5 

TMA 

Cores 

Single 

pathologist 
904 cores No 

Micsik et al. 

(2015) 307 

0.87                 

[0.81, 0.94]  
TMA 

Cores 

> 2 pathologists’ 

consensus 
173 cores No 

Howat et al. 

(2014)312  

Rater 1 

0.71                  

[0.63, 0.79] 
93.7 

TMA 

Cores 

Single 

pathologist 
716 cores No 

Howat et al. 

(2014)312  

Rater 2 

0.62                

[0.53, 0.71] 
90.7 

TMA 

Cores 

Single 

pathologist 
693 cores No 

Mohammed 

et al. 

(2012)274  

0.81               

[0.74, 0.88] 
94.2 

TMA 

Cores 

2 pathologists 

scored sepa-

rately or consen-

sus 

431           

patients 
No 

Lauri-

naviciene et 

al. (2011)286 

Round 1 

0.69              

[0.55, 0.83] 
89.4 

TMA 

Cores 

Single 

pathologist 

(scored twice) 

161            

patients 

Yes, differ-

ent cohort 

Lauri-

naviciene et 

al. (2011)286  

Round 2 

0.8                  

[0.69, 0.91] 
92.5 

TMA 

Cores 

Single 

pathologist 

(scored twice) 

161           

patients 

Yes, differ-

ent cohort 

Brügmann et 

al. (2011)278  

0.86               

[0.82, 0.91] 
92.3 

TMA 

Cores 

5 pathologists’ 

consensus 
430 cores 

Yes, same 

cohort 

Minot et al. 

(2009)296  

0.58                  

[0.43, 0.73] 
84.3 WSI 

Single 

pathologist 

159           

patients 

Yes, differ-

ent cohort 

CI: Confidence intervals, WSI: whole slide images, TMA: tissue microarray 
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Figure 17 Random effects meta-analysis of Cohen's κ for HER2 scoring algorithm perfor-

mance. The size of markers represents the size of the dataset for which performance is 

reported. All findings correspond to a three-class HER2 score (0 or 1+ as negative, 2+ 

equivocal, 3+ positive). As benchmark, the human inter-observer agreement for the HER2 

scoring task is plotted for two studies; Bloom et al.347 and Jefferson et al.348 

2.3.2.2.1.2 Meta-analysis of ER studies 

Table 9 details the characteristics of ER studies included in random effect meta-

analysis. The results of meta-analysis placed the summarised agreement for all ER 

CAS algorithms with manual scoring at κ = 0.74, 95% CI: 0.66-0.83 (Figure 18). 

To assess agreement with manual scoring in this analysis, Cohen’s κ was reviewed 

and the dichotomized Allred score (Allred ≤2: negative, Allred >2: positive) was 

selected as reference scoring system. Again, high performance heterogeneity was 

present with Higgin’s 𝐼2=91.0% (95% CI: 68.4-98.4).  

To judge whether agreement of CAS with manual scoring was satisfactory, how 

well pathologists usually agree with each other for the same task was investigated. 

Although the overall agreement of CAS with pathologists was good, it fell short of 

the excellent inter-pathologist agreement reported348 (κ = 0.96, 95% CI: 0.93-0.99) 

for manual dichotomized ER Allred scoring.  
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Table 9 Studies included in meta-analysis of Cohen's κ agreement for ER  

Study 
Cohen's κ.    

[95% CI] 

% Agree-

ment 
Images Annotations 

Data 

set 

Independ-

ent test set 

Ali et al. 

(2013)304 

0.82            

[0.78, 0.85] 
93.2 

TMA 

cores 
> 1 pathologist 

1664 

cores 
No 

Howat          

et al. 

(2014)312 

0.62            

[0.6, 0.64] 
84.1 

TMA 

cores 

≥ 2 pathologists’ 

consensus 

6424  

patients 

Yes, differ-

ent cohort 

Sarikoc        

et al. 

(2013)314             

Rater 1 

0.77             

[0.52, 1.02] 
88.9 

ROI        

images 

Single 

pathologist 

27 

ROIs 

Yes, same 

cohort 

Sarikoc      

et al. 

(2013)314               

Rater 2 

0.84             

[0.63, 1.05] 
92.6 

ROI              

images 

Single 

pathologist 

27 

ROIs 

Yes, same 

cohort 

Bankhead 

et al. 

(2018)301 

0.69               

[0.6, 0.78] 
84.3 

TMA 

cores 

Single 

pathologist 

267         

patients 
No 

Trahearn et 

al.  

(2017)333 

0.85             

[0.65, 1.05] 
96.0 WSI 

1st pathologist 

scored all, con-

sensus with 2nd 

pathologist for 

cases discrepant 

with automated 

prediction 

50            

patients 
No 

TMA: tissue microarray, ROI: regions of interest, WSI: whole slide images. 

 

 

 

Figure 18 Random effects meta-analysis of Cohen's κ for ER scoring algorithm perfor-

mance. The size of markers represents the size of the dataset for which performance is 

reported. All findings correspond to a dichotomised Allred score (≥3 positive, ≤2 negative). 
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As benchmark, the human inter-observer agreement for the same task is plotted, using data 

from the Jefferson et al.348 study. 

2.3.2.2.1.3 Sensitivity analysis of the meta-analyses  

Varying the restrictions on cohort size, and whether this represented an independent 

test set, had no effect on the meta-analysis results (Table 10). When only studies 

reporting results for whole slide images were selected, this did not affect perfor-

mance for HER2; this comparison was not possible for ER.   

Table 10 Sensitivity analyses based on the size of dataset, number of pathologists provid-

ing annotations, use of an independent test set and use of whole slide images 

Sensitivity analysis HER2   ER   

Criteria 
Cohen's kappa  

[95% CI] 
Algorithms 

Cohen's kappa  

[95% CI] 
Algorithms 

All studies 0.75 [0.70, 0.81] 11 0.74 [0.66, 0.83] 6 

Dataset ≥ 100 images 0.75 [0.69, 0.82] 9 0.71 [0.59, 0.83] 3 

> 1 Pathologist 0.85 [0.82, 0.88] 4 0.75 [0.60, 0.90] 3 

Independent test set 0.75 [0.66, 0.84] 6 0.71 [0.56, 0.86] 3 

Whole slide images 0.69 [0.56, 0.81] 3 Not available 1 

 

In the sensitivity analyses, the only factor shown to affect significantly the overall 

accuracy of CAS algorithms was the number of pathologists providing annotations. 

Improved Cohen’s κ was observed for studies using more than one pathologist (κ = 

0.85, 95% CI: 0.82-0.88) for HER2 CAS validation (Table 10), compared to all 

studies (κ = 0.75, 95% CI: 0.70-0.81). Since pathologists manually scoring HER2 

agree only moderately well to each other,347,348  the improved performance in this 

case could be attributed to better quality ground truth, acquired by using multiple 

pathologists as reference to reduce subjectivity. This effect was less pronounced in 

ER scoring, potentially because the inter-pathologist agreement for manual scoring 

is known to be excellent.348 Therefore, using multiple pathologists in manual ER 

scoring would produce the same scoring results as using a single pathologist and 

would not necessarily improve the quality of reference ground truth. 

2.3.2.2.1.4 Agreement of T-cell CAS with manual scoring 

The limited number of T-cell studies and the heterogeneous accuracy metrics they 

adopted did not allow quantitative meta-analysis, as described above for HER2 and 

ER. However, Table 11 reports the agreement between CAS and manual scoring 
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for each study separately. As reference, the manual inter-observer agreement be-

tween pathologists was sought for the task of scoring the % of positive cells; Singh 

et al.341 reported Pearson’s r=0.83 for CD8, and r=0.80 for CD3, while Halama et 

al.343 reported Pearson’s r=0.91 for CD3. Inter-observer agreement data for manual 

CD4 scoring was not available. Overall, the performance of CAS for CD3 and CD8 

appears to vary across different studies and no study achieved good performance 

for CD4. 

2.3.2.2.1.5 Limitations of manual scoring as a reference gold standard 

Manual scoring can be a sub-optimal gold standard for CAS validation, as it is sub-

ject to a degree of subjectivity, visual and cognitive biases.217 Particularly in scoring 

tasks that demonstrate high intra- and inter-pathologist disagreement, relying on 

annotations from a single pathologist can hinder the training of automated algo-

rithms and produce biased CAS systems. In such case, using consensus scores from 

multiple pathologists may be beneficial.  

Manual scoring can be an unsuitable reference method for CAS in immunofluores-

cence. Standardised manual scoring systems are scarce in the immunofluorescent 

setting and the manual inter-observer agreement is usually unknown.  

Furthermore, CAS tools will usually produce continuous scores, where manual 

scoring is only provided as semi-quantitative categorical scores. This discrepancy 

makes comparisons less straightforward. When there are concerns that manual scor-

ing is unreliable, orthogonal quantitative assays providing continuous assessment 

of protein expression levels may be a more suitable reference method. These are 

discussed in the next section. 
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Table 11 Agreement with pathologists' ground truth for automated scoring of T-cell mark-

ers (CD3, CD4, CD8) 

Marker Study 
Perfor-

mance* 

Im-

ages 
Annotations Data set 

Independent 

test set 

CD3 
Singh et al. 

(2018)341 

Pearson's r: 

0.83 
WSI Single pathologist 

35              

patients 
No 

 De Meulenaere 

et al. (2018)345 

Spearman's 

rho: 0.63 
ROI 

>1 pathologist 

scored 

75                  

patients 
No 

 Bouzin et al. 

(2015)342 

Pearson's r: 

0.90 
WSI 

>1 pathologist 

scored different 

samples 

64                      

patients 
No 

 Sander et al. 

(2014)344 

% Agree-

ment: 32-43 

TMA 

Cores 

7 pathologists 

scored the same 

sample 

54 cores No 

  
Halama et al. 

(2009)343  

Pearson's r: 

0.96-0.97 
WSI 

2 pathologists 

scored the same 

sample 

30 ROI No 

CD8 
Singh et al. 

(2018)341 

Pearson's r: 

0.92 
WSI Single pathologist 

35          

patients 
No 

 Hartman et al. 

(2018)346 

Pearson's r: 

0.97 

TMA 

Cores 

Configuration not 

given 

122 

cores 
No 

 De Meulenaere 

et al. (2018)345 

Spearman's 

rho: 0.65 
ROI 

>1 pathologist 

scored 

75        

patients 
No 

  
Sander et al. 

(2014)344 

% Agree-

ment: 17-78 

TMA 

Cores 

7 pathologists 

scored the same 

sample 

54 cores No 

CD4 
Sander et al. 

(2014)344 

% Agree-

ment: 43-73 

TMA 

Cores 

7 pathologists 

scored the same 

sample 

54 cores No 

*Pearson’s r corresponds to ground truth provided as a continuous score representing the % of 

positive cells. Spearman’s rho and % agreement correspond to ground truth provided as an or-

dinal score reflecting the % of positive cells. WSI: whole slide images, TMA: tissue microar-

ray, ROI: regions of interest. 



2.3.2.2.2 Assessing accuracy via agreement with orthogonal assays 

Several studies adopted orthogonal protein expression assays as a reference gold 

standard in CAS validation. 

2.3.2.2.2.1 Orthogonal assays for validating CAS of HER2 expression 

The most frequently used orthogonal assay for HER2 CAS tool validation was chro-

mogenic (CISH) or fluorescent (FISH) in-situ hybridisation (23 studies). FISH 

holds an important role in clinical HER2 scoring, as ASCO/CAP guidelines recom-

mend it as a suitable alternative to immunohistochemistry.246 Furthermore, patients 

deemed HER2 equivocal by manual immunohistochemical scoring are referred to 

supplementary FISH to confirm HER2 amplification. If the adoption of CAS in 

HER2 immunohistochemical assays could reduce the number of patients assigned 

as equivocal and demonstrate high concordance with FISH, then the need for and 

cost of confirmatory FISH testing would be reduced. To test this hypothesis, several 

studies evaluated agreement between immunohistochemistry and FISH in breast 

cancer, when CAS or manual scoring was applied (Table 12). Comparison between 

these studies is challenging, as ASCO/CAP criteria for FISH scoring have changed 

over the years.279 From this analysis, no clear benefit was demonstrated when CAS 

is used instead of manual scoring. The numbers of patients assigned as equivocal 

(needing FISH) was similar for CAS and manual scoring, across all studies. Fur-

thermore, CAS and manual scoring has similar negative and positive predictive 

value for patients designated 0, 1+ and 3+, when FISH was the reference gold stand-

ard.  

Even though CAS cannot fully replace the need for FISH testing, FISH scoring can 

still provide a good orthogonal assay for HER2 CAS system validation. Other quan-

titative assays such as qRT-PCR254,257 and RNA expression assays,270 have been 

used for the same purpose. Additionally, the PAM50 genotypic categorisation349 

introduced in 2009, could be used as the reference to validate HER2 scoring.298,309 

This categorisation is used to classify patients into four intrinsic subtypes with dif-

ferent prognostic outcome: HER2-enriched, luminal A, luminal B, and basal-like 

(triple-negative). The HER2-enriched subtype is known to be HER2 positive and 

ER/PR negative. Luminal A is HER2 negative and ER/PR positive, with low Ki67 

expression. Luminal B subtype is ER/PR positive and either HER2 positive or neg-

ative with high Ki67 expression. Finally, the basal-like subtype is negative for 

HER2 and ER/PR. 
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2.3.2.2.2.2 Orthogonal assays for validating CAS of ER expression 

Similar to HER2, in ER CAS validation, some studies compared to PAM50 geno-

typing298,339, dextran-coated charcoal ER biochemical assay319 or qRT-PCR.327 A 

synthetically generated data set, where the images were artificially simulated for 

ER positive and negative samples was also suggested for the initial tuning of the 

ER CAS algorithm331. FISH was not used for ER CAS tool validation in any of the 

reviewed studies. 

2.3.2.2.2.3 Orthogonal assays for validating CAS of T-cells 

For T-cell markers, only flow cytometry was used as an alternative compara-

tor.268,344 Even though the analytical validity of this method is well established, it 

does not preserve the spatial context of the tissue and requires fresh samples for 

evaluation, that can be difficult to acquire. 

The orthogonal assays discussed in this section could be used as reference for the 

validation of CAS tools, independently or in addition to manual scoring annota-

tions. 

2.3.2.2.3 Assessing accuracy via agreement with patient outcome 

CAS algorithms can be established as meaningful and accurate without the need for 

comparison with alternative reference scoring methods, if they are shown to signif-

icantly and robustly correlate with patient outcome or other relevant clinical char-

acteristics. Several HER2 CAS studies253,255,308,258,259,269,274,285,298,301,304 considered 

survival endpoints as the ultimate gold standard. For ER, again, several stud-

ies255,263,269,298,301,304,319,321 used survival analysis as a comparator. For T-cell scor-

ing, CAS tools were validated against pathological complete response268,344 or over-

all survival346. Even though it directly assesses the relationship between scoring and 

patient outcome, survival analysis is challenging, requiring long patient follow-up 

and controlling for multiple confounding factors. In the cases where CAS is vali-

dated for tumour biomarker development, the REMARK guidelines350 provide rec-

ommendations to report validation findings.



Table 12 Studies reporting agreement between HER2 immunohistochemistry (IHC) and FISH. IHC was scored using both manual scoring and CAS for comparison. 

   
% FISH Amplified 

(CAS)† 

% FISH Amplified 

(Manual)† 

CAS Manual Scoring 

Study FISH Reporting Dataset for 

FISH 

0/1+ 2+ 3+ 0/1+ 2+ 3+ 2+             

Cases 

Agreement with 

FISH 

2+ 

Cases 

Agreement with 

FISH 

Holten-Rossing 

et al. (2015)288 

ASCO/CAP 2013351 904 cores 0.4 2.5 88.5 0 6.2 100 41 Accuracy: 0.94         

Cohen’s κ: 0.76 

127 
 

Micsik et al. 

(2015)307 

ASCO/CAP 2007352 35 cores, 

only 2-3+ 

- 50 100 - 50 100 12  12 
 

Mohammed et 

al. (2012)274 

Amplified if the ratio of 

HER2/CEP17 > 2.0 

431           

patients 

3.7 64.7 91.8 2.5 78.3 96.4 17 ICCC: 0.92 23 ICCC: 0.95 

Tuominen et al. 

(2012)284 

Amplified if the ratio of 

HER2/CEP17 > 2.2, equivocal 

if 1.8-2.2 

144           

patients* 

3 30 85.7   
 

  30  20 
 

Brügmann et al. 

(2011)278 

Amplified if the ratio of 

HER2/CEP17 > 2.2, equivocal 

if 1.8-2.2 

430 ROI (22 

patients)* 

0 13.5 98.7 0 27.3 98 37  44 
 

Atkinson et al. 

(2011)279 

Amplified if the ratio of 

HER2/CEP17 > 2.2  

997 WSI, 2+ 

excluded 

  
 

    
 

   Accuracy: 0.95           

Cohen’s κ: 0.86 

 
Accuracy: 0.95           

Cohen’s κ: 0.85 

Atkinson et al. 

(2011)279 

Amplified if the ratio of 

HER2/CEP17 ≥ 2.0 

997 WSI, 2+ 

excluded 

  
 

    
 

   Accuracy: 0.92           

Cohen’s κ: 0.79 

 
Accuracy: 0.92              

Cohen’s κ: 0.78 

Laurinaviciene 

et al. (2011)286 

Amplified if the ratio of 

HER2/CEP17 > 2.0 

152              

patients* 

4.4 15.8 80 2.5 13.3-

25 

82.4-

88.2 

19  8-15 
 

Cantaloni et al. 

(2011)277 

Amplified if the ratio of 

HER2/CEP17 ≥ 2.2 

292 patients, 

only 2+  

  
 

    
 

  
 

ROC AUC:                

0.81 (0.75-0.87) 

 
ROC AUC:                      

0.79 (0.72-0.86) 

Turashvili et al. 

(2009)285 

Amplified if the ratio of 

HER2/CEP17 > 2.2, equivocal 

if 1.8-2.2 

616 patients   
 

    
 

  

2-3 times 

more than 

manual 

Weighted κ; 

 user 1: 

 0.67 (0.61–0.72), 

 user 2:  

0.54 (0.49–0.58) 

 
Weighted κ;        

pathologist 1:  

0.81 (0.77–0.86), 

pathologist 2:  

0.76 (0.71–0.81) 

Hall et al. 

(2008)297  

Amplified if the ratio of 

HER2/CEP17 ≥ 2.3 

99 patients   
 

    
 

    
 

ROC AUC: 0.82 

ICCC: Intra-class correlation coefficient, ROC AUC: Area under curve for receiver operating characteristic. Only studies that reported quantitative agreement with FISH both for CAS and manual 

scoring are shown. *Independent validation set. †The percentage of samples that were recorded as amplified by FISH, for each immunohistochemistry score (0/1+ vs 2+ vs 3+). 



2.3.2.3 Reproducibility 

Scoring systems should be reproducible. A fully automated CAS system should 

produce consistent scores when presented with the same image at different times. 

An interactive semi-automated CAS system, where pathologists are involved as us-

ers of the system, should produce consistent scores when the same sample is as-

sessed by the same pathologist at a later time, or by different pathologists.  

To gauge whether CAS guarantees agreement between different pathologists, stud-

ies have assessed inter-observer agreement in interactive CAS compared to manual 

scoring (Table 13). This analysis was not possible for T-cell studies, as none of the 

studies compared inter-observer agreement when using CAS vs manual scoring. 

Even though heterogeneous metrics were used, there was a trend for improved inter-

observer agreement when CAS was used, compared to manual scoring.287,303 This 

improvement was not always statistically significant, and in a few cases279,319 CAS 

underperformed. Thus, the inter/intra-observer agreement for CAS systems are 

properties that should be explicitly validated. 

Furthermore, scores obtained by CAS should be reproducible when the same sam-

ple is stained in the same lab at different times, by different operators, or in different 

labs.  CAS is expected to cope at least as well as pathologists, when presented with 

variability stemming from experimental conditions.  For this reason, several CAS 

validation studies assessed agreement between intra-run, inter-run and inter-lab ex-

periments.259,284,338,341 To satisfy this design requirement, CAS systems have been 

developed to automatically detect the image acquisition setting276 and calibrate ac-

cordingly.310 
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Table 13 Comparison of inter-observer agreement in manual scoring and CAS 

    Manual scoring Computer assisted scoring 

Marker Study Inter-observer agreement Inter-observer agreement 

HER2 Barnes et al. (2017)303  % agreement = 0.87 [0.82-0.92] % agreement = 1.0 [0.97-1.0] 

 

Atkinson et al. 

(2011)279 
Cohen's κ = 0.72 [SD 0.09] Cohen's κ = 0.84 [SD = 0.05] 

 

Gavrielides et al. 

(2011)287  
Kendall’s τ = 0.77 [0.74-0.80] Kendall's τ = 0.86 [0.84-0.89] 

 

Słodkowska et al. 

(2010)292 ACIS 
% agreement = 0.84 % agreement = 0.88 

 

Słodkowska et al. 

(2010)292  APERIO 
% agreement = 0.84 % agreement = 0.80 

  
Turashvili et al. 

(2009)285  
Weighted κ = 0.93 [0.91-0.95] 

Weighted κ = 0.81 [0.79-

0.83] 

ER Barnes et al. (2017)303 % agreement = 0.95 [0.91-0.98] 
% agreement = 0.98 [0.94-

1.0] 

 

Zarrella et al. (2016)263       

AQUA 
Pearson's r = 0.96 Pearson's r = 1.0 

 

Zarrella et al. (2016)263        

APERIO 
Pearson's r = 0.97 Pearson's r = 0.98 

 Nassar et al. (2011)337        % agreement = 0.94 [0.91-0.99] 
% agreement = 0.98 [0.98-

0.99] 

  Turbin et al. (2007)319 Cohen's κ = 0.92 [0.90–0.93] Cohen's κ = 0.91 [0.90–0.93] 

Values in brackets [] represent 95% CI.  
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2.3.2.4 Time-efficiency 

A fundamental goal in anatomic pathology is to render a diagnosis in a timely fash-

ion, in a way that is useful to the physician treating the patient.353 Time-efficiency 

is a design requirement that should be satisfied by CAS, at least as well as by man-

ual scoring. The challenge in this case lies in the size of whole slide images, that 

can typically be more than 100,000 x 100,000 pixels. Scanning and processing these 

images fully can be time-consuming. For this purpose, several CAS tools include 

sophisticated region selection algorithms, using supervised machine learning301 or 

reinforcement learning,302 to ensure that instead of processing the whole image, 

only relevant areas are assessed. In the reviewed studies, algorithm processing times 

were often not reported, but varied depending on the algorithm and computational 

resources (ranging from 3 seconds277,282 to 40-45 min311,342 per sample). CAS sys-

tems can potentially have great impact on the time-efficiency of the scoring task, 

by reducing processing time per sample and processing multiple samples in parallel. 

2.3.2.5 Interpretability 

Improvements in accuracy, reproducibility and time-efficiency are possible when 

pathologists act as users of the CAS system, instead of manually assigning a score. 

This however implies that the pathologist can trust the CAS system enough, to take 

into account the information it provides. Interpretability of CAS systems is im-

portant in this context, as understanding inspires trust. This requirement can be sat-

isfied by systems designed to produce salient features and image areas explaining 

the basis of decisions.334 

2.3.2.6 Confidence estimation 

When a pathologist performs the scoring task manually, they are able to indicate 

when they are uncertain about a sample and request a second opinion or repeat 

staining/ biopsy. This ability is also critical for CAS systems. CAS tools should 

indicate when a sample is inadequate or significantly different from any sample 

they have previously encountered.  

To this end, scoring systems have been developed to provide a confidence estimate 

for their output. Vandenberghe et al.311 developed an algorithm to measure staining 

heterogeneity in HER2 slides. It was demonstrated that samples with high staining 
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heterogeneity were the ones that pathologists disagreed on the most. This algorithm 

was therefore able to automatically flag up heterogeneously stained and challenging 

samples. In 2017, an open HER2 scoring challenge contest was organised299 as a 

means to identify the best algorithms for automated HER2 scoring. Manual scoring 

by two pathologists was the reference gold standard in this challenge. Algorithms 

participating in the challenge were ranked on their ability to predict an accurate 

score, as well as an accurate confidence estimate 𝑐. A weighted confidence metric 

was devised to evaluate the accuracy of the confidence estimate 𝑐, depending on 

whether the algorithm predicted the reference score correctly or not: 

𝑤𝑐 = {

2𝑐 − 𝑐2

2
 

1 − 𝑐2

2
 

      𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                    (1) 

Higher value of this metric indicated improved accuracy in confidence estimates. If 

the algorithm predicts a correct score with high confidence 𝑐, then it is rewarded 

with higher 𝑤𝑐 .  However, if the algorithm predicts an incorrect score with high con-

fidence 𝑐, then it is penalised with lower 𝑤𝑐 .  Confidence estimation is particularly 

important for interactive CAS systems, as it can contribute to the pathologist’s trust 

of the automated algorithms. 
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2.4 Conclusions 

This review examined studies validating CAS systems for HER2, ER and T-cell 

marker scoring. CAS validation practices were retrieved for a large number of stud-

ies, in brightfield immunohistochemistry and immunofluorescence. Studies were 

overall medium to high quality. They covered a variety of immunohistochemical 

markers, and therefore, the validation practices that were identified are generalisa-

ble to various staining patterns. 

This chapter sought to clarify appropriate design requirements for CAS validation. 

Six key design requirements guiding the validation of CAS systems were identified; 

CAS tools should be well defined, provide accurate patient categorisation, be re-

producible, time-efficient, interpretable and able to provide an accurate confidence 

estimate for their predictions. A CAS system has the potential to safely and vastly 

improve upon the current clinical and research scoring practices; provided that it 

demonstrates equivalent or superior accuracy, reproducibility and time-efficiency 

compared to manual scoring, while at same time being well defined, interpretable 

and able to indicate uncertainty. 

Furthermore, reference methods to validate CAS accuracy were sought. Accuracy 

of CAS is defined as accurate (meaningful) patient categorisation. It is most often 

established through agreement with equivalent manual scoring systems. Other strat-

egies to establish analytical validity are available when there are concerns that man-

ual scoring is unreliable (e.g., because of low manual scoring intra/inter-observer 

concordance). These include using a consensus score from multiple pathologists, or 

orthogonal assays as the reference gold standard. Last, a CAS system could be 

shown to be meaningful and accurate by directly demonstrating correlation to pa-

tient clinical characteristics. If reproducibly good correlation to patient clinical end-

points can be demonstrated, establishing agreement to an equivalent manual scoring 

method is not necessarily required. 

Finally, the performance of existing CAS systems was assessed. Quantitative meta-

analysis was used to determine how well existing HER2 and ER CAS systems agree 

with manual scoring. Moderately good agreement with manual scoring was ob-

served for HER2 (κ = 0.75, 95% CI: 0.70-0.81) and ER algorithms (κ = 0.74, 95% 

CI: 0.66-0.83). CAS agreed with manual scoring, at a similar level to how well 
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pathologists agreed with each other in manual scoring. Furthermore, use of interac-

tive CAS tools by pathologists was shown to sometimes improve inter-pathologist 

agreement. Through this quantitative analysis, it was shown that several CAS algo-

rithms have achieved comparable performance to manual scoring in terms of accu-

racy and inter-observer agreement.  

The meta-analysis was limited by use of a single metric, the Cohen’s κ, to assess 

agreement with manual scoring. Consequently, studies that did not provide enough 

information for calculation of this metric could not be included in the random-ef-

fects model. Nevertheless, a sufficient number of studies were included to provide 

an estimate for the overall performance of this technology. Meta-analysis was only 

performed for CAS systems in brightfield immunohistochemistry, which is com-

monly applied in routine clinical practice and benefits from the existence of stand-

ardised manual scoring systems. For T-cell marker studies quantitative meta-anal-

ysis was not possible. As such, the performance for each study was recorded sepa-

rately. 

Clarifying design requirements, validation practices and performance of CAS sys-

tems will hopefully be useful for iterative improvements in this technology. Aware-

ness of the design requirements provides a framework to judge CAS system perfor-

mance, in an objective manner. Demonstrating satisfaction of each of these require-

ments would be necessary to consider a CAS system good enough to be used in 

clinical practice. 

CAS systems for cell phenotype identification in the microenvironment of OPSCC 

and FL will be proposed in the next two chapters. The next two chapters describe 

the initial biomarker discovery phase, and attempt to validate primarily CAS accu-

racy, by comparing against clinical survival endpoints. Further validation steps will 

be required in future studies, to demonstrate satisfaction of all other design require-

ments identified in Chapter 2, to achieve clinical translation of this technology. 
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2.5 Summary 

This section summarises Chapter 2 by repeating key findings of the systematic re-

view discussed in this chapter. This review identified for the first time six design 

requirements needed to validate CAS systems: definability, accurate patient cate-

gorisation, reproducibility, time-efficiency, interpretability (particularly for inter-

active systems) and accurate confidence estimation. A CAS system able to demon-

strate equivalent or superior performance to manual scoring on accuracy, reproduc-

ibility and time efficiency, while simultaneously being definable, interpretable and 

able to provide accurate confidence estimates, would be superior to manual scoring. 

A meta-analysis of several HER2 and ER CAS algorithms established the perfor-

mance of CAS technology in terms of agreement with manual scoring. CAS agreed 

with manual scoring, similar to how well pathologists agreed with each other. Fur-

thermore, use of interactive CAS tools by pathologists was shown to sometimes 

improve inter-pathologist agreement. These findings underline the potential of CAS 

systems. Clarifying validation practices and performance of CAS systems will 

hopefully be useful for iterative improvements in this technology. 
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3 Multiplex image analysis for biomarker discovery in 

oropharyngeal squamous cell carcinoma 

Previous chapters have laid the groundwork on how multiplexed immunofluores-

cence and automated image analysis could be employed for the analysis of multiple 

cell types and their spatial relationships in the tumour microenvironment. This 

chapter introduces an application of this technology for biomarker discovery in oro-

pharyngeal squamous cell carcinoma (OPSCC). A computer assisted scoring sys-

tem (CAS) is developed to define a new biomarker based on observation of spatial 

patterns in the tumour microenvironment.354 

3.1 Introduction 

It is recognised that a plethora of immune regulatory factors in the tumour micro-

environment (TME) contribute to the progression of cancers and limit their re-

sponse to treatment.355–357 An important class of inhibitory factors, designated im-

mune checkpoints, have been associated with long-lasting response to treatment in 

a variety of cancers.358,359 Many cancers engage the immune checkpoints to abro-

gate the host anti-tumour immune response, leading to T cell exhaustion, loss of 

immune surveillance and unchecked tumour proliferation. Therapeutic immune 

checkpoint blockade restores immune surveillance and re-engages an anti-tumour 

response. Checkpoint inhibitors have revolutionised the management of many solid 

and haematological cancers, underlining the direct and powerful role the host im-

mune response and TME composition plays in the prognosis of many cancers. 

 The programmed cell death 1 (PD-1) receptor has emerged as a dominant negative 

regulator of anti-tumour effector function. Interaction with its ligand PD-L1 leads 

to PD-1 mediated T-cell exhaustion and inhibition of antitumour cytotoxic T-cells. 

The latter results from specific T-cells releasing interferon gamma (IFN-γ+) after 

recognising their tumour associated antigens. IFN-γ+ release leads to upregulation 

of PD-L1 on the local tumour and other cells, which in turn can compromise T-cell 

function through adaptive immune resistance. This state of local immune privilege 

can be reversed by blocking antibodies to PD-1 or PD-L1 and such single agent 

therapies are now licensed for the treatment of patients with multiple types of can-

cers.12,358–363 Response rates can be as high as 90% for some tumour types but as 

low as 15% with others, but selection of patients likely to respond favourably to 
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such single agent therapy proves a challenge, as it requires an in depth understand-

ing of immune interactions in the TME.358,359 

Head and neck squamous cell carcinomas (SCCHN) develop as a consequence of 

either a persistent high risk HPV infection or through carcinogen exposure (e.g. 

smoking, alcohol).364 In the subgroup of oropharyngeal squamous cell carcinomas 

(OPSCC), the HPV positive patients have a significantly better clinical outcome 

and this is linked to differences in tumour infiltrating lymphocyte (TIL) densities.26 

PD-L1 positivity within a tumour has been explored as a potential treatment bi-

omarker but the results have not been consistent in predicting subsequent clinical 

responses.19,21,22,365,366 The spectrum of conclusions may not be surprising consid-

ering the variability of tumour aetiology, the antibodies and detection methodolo-

gies used, the arbitrary cut-off levels defined and cellular diversity of cells express-

ing PD-L1. Moving beyond simple enumeration of cell densities, and observing the 

spatial organisation of the TME may provide further insight for the development of 

more informative biomarkers.226,98 In the TME of SCCHN the existence of varying 

patterns of PD-L1 expression has been highlighted.31 These qualitative results are 

useful pointers to further analysis but are not easily generalised, as the criteria for 

defining patterns are subjective. Quantitative, non-subjective, assessment of spatial 

organisation becomes possible using automated image analysis approaches22,367 to 

minimise operator dependence and analysis time, and facilitate successful clinical 

application. 

Here an automated analysis pipeline to quantify the potential of T-cells to interact 

with PD-L1 expressing cells in the TME is reported, which will reflect a key driving 

force for immune regulation. This pipeline discards artefacts and scanning errors, 

performs cell segmentation and accounts for the proximity between cell subsets. 

Using the Hypothesised Interaction Distribution (HID) method100, it is assessed 

whether a high frequency of spatial interactions between CD8+ or PD-1+ and PD-

L1+ cells correlates with a poor prognosis in OPSCC, as previously observed in 

HPV- OSCC.367 
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3.2 Materials and methods 

This analysis used the multiplex immunofluorescent dataset prepared by the study 

of Oguejiofor et al.22 Cohort characteristics and the multiplex immunofluorescent 

staining protocol that was employed to generate the images are described below. 

3.2.1  Cohort characteristics  

The dataset for this study derived from a retrospective collection of 218 OPSCC 

patients treated with radiotherapy alone or with concurrent chemotherapy at The 

Christie NHS Foundation Trust in Manchester, UK between January 2002 and De-

cember 2011 (REC reference: 03/TG/076).  HPV status of these patients was as-

sessed (p16 expression, in-situ hybridisation and human papillomavirus DNA PCR) 

as described elsewhere.26 Within this cohort, 124 patients with concordant HPV 

status for all three assays had sufficient formalin fixed, paraffin embedded tissue 

available for multiplex immunofluorescence staining with antibodies against PD-

L1, CD8, CD68 and PD-1.22 Analyses were performed on randomly selected re-

gions of interest (ROIs) from sections taken from pre-treatment diagnostic biopsies 

of OPSCC. The associated clinical data for grade, stage and comorbidities (alcohol 

and smoking) is described in Oguejiofor et al.22 For the present analysis, updated 

overall survival (OS) information was obtained for 72 patients. 

3.2.2  Ethics approval and consent to participate 

The study was approved by the Tameside & Glossop Local Research Ethics Com-

mittee subsequently renamed the National Research Ethics Service Committee 

North West – Greater Manchester East (REC reference: 03/TG/076). Patients were 

not required to provide written consent as approved by the ethics committee due to 

researchers working on anonymised data. The study was performed according to 

the Declaration of Helsinki. 
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3.2.3 Multiplex staining and multispectral scanning  

Table 14 Antibodies, titrations and fluorophores in the multiplex immune-fluorescent ex-

periment 

Order Antibody Dilution Provider Opal detection 

1 Rabbit monoclonal against PD-L1 1:200 
Cell Signalling, 

US 
Cyanine 5.5 

2 
Mouse monoclonal against CD8 

(clone C8/144B) 
1:60 DAKO, Denmark Cyanine 3 

3 Mouse monoclonal against PD-1 1:50 Abcam, UK Fluorescein 

4 Mouse monoclonal against CD68 1:200 Abcam, UK Cyanine 3.5 

The order presented reflects the order in which the antibodies were placed on the tissue. 

 

Multiplex immunofluorescent staining was performed using the Ventana auto-

staining platform (Ventana Medical Systems, Oro Valley, Arizona, United States) 

and the Opal detection system (PerkinElmer, Waltham, Massachusetts, United 

States) with tyramide signal amplification, as described elsewhere22 and summa-

rised in Table 14. Using TSA148 and the Opal kit technology permits multiple re-

peated cycles of staining and stripping of anti-mouse or anti-rabbit antibodies, while 

the TSA conjugated fluorophores bind strongly to the epitopes and remain on the 

tissue. The auto-staining platform performed an initial deparaffinisation and epitope 

retrieval at pH 8.5. Subsequent staining cycles involved incubation with the primary 

antibody, the secondary antibody, and then the opal detection label. Each staining 

cycle was separated by a short denaturation at pH 6. After staining, slides were 

washed with EZ preparation (1:10) for 3 cycles of 5 min each and cover-slipped 

using the Prolong aqueous mounting agent (Thermo Fisher, Waltham, Massachu-

setts, United States) with DAPI for counter-staining. Imaging was performed using 

a Vectra microscope (PerkinElmer) and a 20x objective (0.495 µm per pixel). The 

Vectra microscope first scanned whole slides at low resolution to obtain the tissue 

grid using only the DAPI filter. Subsequently, 10 to 20 ROIs (1392 × 1040 pixels) 

were selected randomly for each slide from tissue areas for multispectral scanning 

at full resolution using all available filters (DAPI, FITC, Cy3, Texas Red and Cy 

5). 
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3.2.4 Spectral unmixing 

Linear spectral unmixing134 was performed using the inForm software (Perki-

nElmer). For unmixing a spectral library was built comprising individual fluoro-

phore spectra. Each spectrum was acquired from slides that were single stained for 

the different antibodies, using the same experimental parameters as in the multiplex 

experiment. A slide stained only with DAPI was also used to extract the DAPI spec-

trum. Finally, a slide that underwent all steps in the multiplex experiment without 

application of antibodies or fluorophores was used to extract the spectrum of tissue 

auto-fluorescence (AF). After spectral unmixing, the images had 6 channels 

(1392 × 1040 × 6 pixels), each containing the intensities of a different fluorophore 

(see Figure 19). 

3.2.5 Deep learning for automated image quality check 

After spectral unmixing, a quality assessment of images was needed to verify that 

only relevant areas of tissue were included in subsequent analyses. To discard arte-

facts and select areas of tissue suitable for analysis, supervised tissue segmentation 

using Support Vector Machines or CNN has previously been employed success-

fully.368,369 It is shown that the CNN approach can also be used with immunofluo-

rescence, where apart from blurring and artefacts, high auto-fluorescence in blood 

vessels and red blood cells cause problems. Immunofluorescence image artefacts 

include: bubbles created during cover-slipping; tissue folding; blurriness due to 

scanning errors; the presence of blood vessels with brightly auto-fluorescing red 

blood cells; and the presence of fatty tissue. Digital pathology datasets tend to be 

large, making manual checking of images to identify and exclude problematic areas 

slow and labour intensive. 

To automate this essential pre-processing step, a deep CNN classifier was trained 

on a set of 3280 manually annotated image patches of size 128 × 128 × 6 to dis-

criminate at pixel level between problematic areas, useful tissue, or background. 

The image undergoes a series of transformations as it passes through the layers of 

the network and a predicted output label is generated for each pixel. This output is 

compared to the ground truth and the parameters of the network are updated during 

training to decrease the error. A variant of the U-Net network architecture,191 pop-

ular in biomedical applications, was used as detailed in Figure 20.  
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Figure 19 Example of an image in the data set, representing a single region of interest 

(1040 ×1392 pixels). A: Composite view where DAPI, CD8, CD68, PD-L1 and PD-1 were 

mapped to blue, green, yellow, red and magenta, respectively; B: DAPI nuclear counter-

stain; C: PD-1; D: PD-L1; E: CD68 and F: CD8. The image also includes a channel with 

tissue auto-fluorescence (AF) signal - not shown here. AF has already been subtracted from 

all other channels during spectral unmixing. 

Ground truth annotations were drawn using the open-source software QuPath and 

exported automatically using custom Groovy scripts, as this platform allows the 

user to easily implement their own algorithms to supplement the functionality of 

the main interface. This implementation allowed to keep the full resolution of the 

image and assign an integer label to each pixel based on the drawn annotation (0: 

background or fatty tissue, 1: useful tissue, 2: artefacts). The annotations were cre-

ated by observing all the stains separately and also the composite image. The ROI 

images were tiled into patches of size 128 × 128 × 6, run through the network and 

a map of the predicted pixel labels was generated for each patch. Example artefacts 

and corresponding segmentation results are shown in Figure 21. The predicted 

pixel labels from all patches were merged to create the map of the entire ROI. Tiling 

greatly improved the memory requirements for the task. 
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Figure 20 The architecture of the U-net segmentation model 

Keras with a Tensforflow backend was used for the implementation and training 

was performed for 200 epochs and a batch size of 20. The Adaptive Moment Esti-

mation (Adam) optimiser was used with the categorical cross-entropy loss and a 

learning rate parameter of 0.0005. All image channels were included during train-

ing. A separate validation set of 960 images (size 128×128×6) was used to tune 

empirically the hyper parameters of the network by observing the validation loss. 

The pixel-wise predicted accuracy on the validation set was 92.9%. 

A test set of 640 images were used to assess performance. Pixel-wise accuracy was 

88.3% when compared with manual annotations (Figure 21 and Table 15).  
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Table 15 Normalised confusion matrix for the network predictions on the test set 

  U-net CNN Confusion Matrix 

T
ru

e 
la

b
el

 Tissue 0.92 0.06 0.02 

Artefact 0.22 0.75 0.03 

Background 0.01 0.10 0.89 

  Tissue  Artefact Background 

  Predicted label  

This analysis compared the performance of the automated artefact finder using U-

net to the image segmentation algorithm supplemented in inForm 2.4 (Akoya Bio-

sciences) software. For that purpose, the same set of manually drawn full image 

annotations previously used to train U-net, was also used to train a tissue segmen-

tation module in inForm. The training was allowed to continue, until the training 

accuracy stabilised at 91%, while the segmentation resolution was set to coarse. All 

fluorophore channels and auto-fluorescence were used during training. To assess 

performance, the images of the test set were then processed using the trained in-

Form algorithm, resulting in pixel-wise accuracy of 81.2%, which was markedly 

worse compared to the 88.3% accuracy obtained by the U-net classifier for the same 

test set.  

Therefore, the CNN was applied to remove artefacts and background. If there was 

<30% useful tissue identified by the CNN the ROI was excluded from subsequent 

analysis. After pre-processing, the dataset was reduced to 1620 images 

(1392 × 1040 × 6 pixels), and only cells with centroids located within the useful 

tissue areas were considered for subsequent analyses. 
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Figure 21 Problematic areas and predicted segmentation labels from the test set.   A.  Area 

with tissue fold (upper right corner).  B. Bubble due to poor cover-slipping.  C. Blood 

vessels filled with red blood cells.  D. Whole region scanned out of focus.  The colour-map 

of predicted segmentation masks (images on the right) as follows; red: problematic area, 

blue: normal tissue, white:  background. 



 110 

3.2.6 Cell segmentation and scoring 

 

Figure 22 Cell segmentation was carried out in QuPath. A. DAPI channel view; B. Nucleus 

segmentation; C. Cytoplasm simulation by nucleus expansion. A Groovy batch script was 

written using QuPath’s interface to segment the cells in all images and export the cell data. 

Cell segmentation was carried out using the open source digital pathology software 

QuPath v0.1.3234 (Figure 22). Nuclear detection was performed on the DAPI chan-

nel using an unsupervised watershed algorithm with parameters tuned on a valida-

tion set of 10 ROI. To assess the nuclear segmentation accuracy, a manually anno-

tated independent test set of 5 ROI, containing 956 nuclei in total, was constructed 

from the head and neck data set. The performance of unsupervised nuclear segmen-

tation in inForm 2.4 was compared to the unsupervised nuclear segmentation using 

a watershed algorithm in QuPath 0.1.3 open-source software. QuPath was used to 

generate and export the manual segmentation annotations as labelled integer masks 

by using custom Groovy scripting. 

To compare these two algorithms the approach in Schmidt et al.175 was adopted and 

the average precision 𝐴𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 was calculated, where true positive (TP) pre-

dictions are defined as predicted nuclei which sufficiently overlap annotated ground 

truth nuclei. Overlap was measured as the intersection over union (IoU) between 

predicted and ground truth cells, but as “sufficient” overlap can be tricky to define, 

the performance assessment was repeated for various thresholds of the IoU metric. 

False positives (FP) were defined as the predicted nuclei with no corresponding 

ground truth nuclei, while false negative (FN) were the ground truth nuclei with no 

corresponding predicted nuclei.  

Many different settings for algorithm implementation in inForm were qualitatively 

tested through trial and error, and the optimal settings were selected, as presented 
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in Table 16. The average precision results, calculated on a cell-wise basis, are pre-

sented in Table 17.  

Table 16 Nuclear segmentation settings for inForm 2.4 and QuPath 0.1.3 

Settings for inForm 2.4 

Algorithm Adaptive cell segmentation 

Component DAPI 

Relative intensity threshold 0.1 

Nuclear staining quality Mixed 

Nuclear splitting settings threshold 0.442 

Minimum nuclear size (pixels) 60 

Fill nuclear holes smaller than (pixels) 50 

Refining cell after segmentation FALSE 

Settings for QuPath 0.1.3 

Algorithm Watershed cell detection 

Component DAPI 

Requested pixel size 0.5 

Background radius 8 

Median filter radius 0.8 

Sigma 1.2 

Minimum area (μm2) 5 

Maximum area (μm2) 200 

Intensity threshold 2 

Split by shape TRUE 

Smooth boundaries TRUE 

 

Table 17 Segmentation performance in the manually annotated test set 

Intersection over union (IoU) thresh-

old 
10% 20% 30% 40% 

AP inForm 2.4 0.845 0.755 0.65 0.495 

AP QuPath 0.1.3 0.865 0.762 0.634 0.51 

AP is the average precision for different values of the intersection over union threshold (IoU). 

As the IoU threshold increases the definition of a true positive cell becomes stricter (i.e., the 

shape of the predicted cell must match more closely the ground truth). 

 

While both software packages produce similar results as seen in Figure 23, QuPath 

was selected for this study as it is open-source software, with well-maintained doc-

umentation, version management and an active supportive community. Further-

more, it offers built-in capability of custom scripting, which facilitates quantitative 

validation of its algorithms’ performance.  
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Figure 23 Nuclear segmentation comparison between inForm 2.4 and QuPath 0.1.3. a) 

DAPI component b) manual annotations c) QuPath segmentation results d) inForm seg-

mentation results. 

After nuclear detection, the cytoplasm around each nucleus was simulated by cell 

expansion of 2 μm and measurements generated for marker intensity in different 

compartments (mean, minimum, maximum and standard deviation of intensity in 

cytoplasm or nucleus). Details of this procedure are shown in Figure 22. 

The intensity of each marker in the primary cell compartment where it is usually 

expressed was observed to determine whether a cell was positive for this marker. 

In this study, markers were cytoplasmic or membranous. Before cell scoring, the 

intensity of each marker was re-scaled onto a grey-scale colour map, with the 

brightest and darkest values corresponding to the 99% and 1% percentiles of the 

marker’s pixel intensities in the entire data set. Having a consistent colour-map per 

marker ensured that the same intensity value was represented with equal brightness 

in all images. 
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Figure 24 Results of scoring for five regions of interest (ROI) from different slides and 

patients for the CD8 marker. These images were part of the set used when selecting the 

thresholds. The colour map of the grey scale images is scaled to range between the mini-

mum and maximum intensity value for CD8 in the entire data set. 

Guided by a pathologist (R.B), a single threshold for each marker was selected as a 

cut-off to determine positivity across the entire data set. The threshold was identi-

fied by its ability to separate positive from negative cells in a set of 20 ROIs from 

20 different patients (Figure 24). This cell scoring method was chosen for its sim-

plicity but provided a non-optimal separation in some samples, possibly due to 

slight variations in fixation, staining, scanning or cell segmentation performance. 

For subsequent analysis these small variations were ignored, however their pres-

ence remains a challenge to overcome in order to improve the accuracy and robust-

ness of the automated analysis pipeline. 
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3.2.7 Proximity analysis 

To quantify the proximity relationships between cell phenotypes the Hypothesised 

Interaction Distribution (HID) analysis100 was applied. For a pair of cell phenotypes 

𝑖, 𝑗 the HID is calculated to quantify how often these phenotypes occur close to each 

other in a sample. Let 𝑘, 𝑙 be cells of phenotype 𝑖, 𝑗 respectively. Then HID is com-

puted as follows: 

𝐻(𝑖, 𝑗) =  |{{𝒙𝑖
𝑘 ∈ 𝐶𝑖 , 𝒙𝑗

𝑙 ∈ 𝐶𝑗} ∀ 𝑘, 𝑙, 𝒙𝑖
𝑘 ≠  𝒙𝑗

𝑙 𝑠. 𝑡. ‖𝒙𝑖
𝑘 −  𝒙𝑗

𝑙‖2 < 𝑑 }|   (2) 

where 𝒙 represents the position of the centroid of a cell and 𝑑 is the distance pa-

rameter that defines closeness. To construct HID, the algorithm iteratively exam-

ines the neighbourhood within a distance 𝑑 around each cell of phenotype 𝑖 and 

counts the number of occurrences of cells of phenotype 𝑗 within that same neigh-

bourhood. The distance parameter 𝑑 is problem specific, as the size of the neigh-

bourhood of interest depends on the type of cells, their mobility and mode of inter-

action (e.g., directly by contact or indirectly through secretion of cytokines).  

The HID measure was normalised using the total number (𝑁) of all cells, regardless 

of phenotype, in samples, as follows:  

ℎ(𝑖, 𝑗) =  
𝐻(𝑖,𝑗)

𝑁
 )                                           (3) 

The complete image analysis pipeline is presented in Figure 25. 

 

Figure 25 Diagram of image analysis pipeline 
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3.2.8 Statistical analysis 

Kaplan-Meier and Proportional Hazards Cox Regression survival analyses for right 

censored data were performed using the Lifelines 0.18.1 library in Python. Statisti-

cal significance of differences between Kaplan-Meier curves was assessed using 

the Mantel-Haenszel log rank test. The variance of the Kaplan-Meier estimator plot-

ted as error bars in the figures was derived using Greenwood’s formula.370 For com-

parisons of cell distributions between HPV positive and negative subgroups the 

Mann-Whitney one-sided U-test for unpaired data was used. This non-parametric 

test was selected as the observations did not satisfy the Kolmogorov-Smirnov (K-

S) test of normality (𝑝 <  0.005). Significance is considered at a level 𝛼 =  0.05. 
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3.3 Results 

3.3.1 Smoking and HPV status predict overall survival 

The 72-patient cohort analysed in the current study had a minimum follow up of 

7.1 years for the patients who were alive at the time at the time of data collection, 

and 43 observed events (40% censored data). The median overall survival (OS) of 

the 72 patients, observed and censored, was 86.8 months. Clinical data for HPV 

status, stage, alcohol consumption and smoking for the 72 patients are summarised 

in Table 18.   

Table 18 Cohort characteristics 

Characteristic All 

 HPV 

 Positive 

HPV  

Negative 

Patients [Events Observed OS]  72 [43] 41 [18] 31 [25] 

Gender Female 12 7 5 

  Male 60 34 26 

Age (years) Median 58 56 59.5 

AJCC Stage I 0 0 0 
 

II 2 1 1 
 

III 10 4 6 
 

IV 23 14 9 

  No data 37 22 15 

Grade Well differentiated 10 9 1 

 Moderately  

differentiated 36 13 23 

 Poorly  

differentiated 19 14 5 

  No data 7 5 2 

Alcohol Never 8 5 3 
 

Moderate 35 19 16 
 

Excessive 27 16 11 

  No data 2 1 1 

Smoking Never 14 12 2 
 

Ex-smoker 29 16 13 
 

Current smoker 27 12 15 

  No data 2 1 1 

 

Table 19 lists the findings from a univariable Cox regression analysis. As expected, 

negative HPV status was highly prognostic for poor OS (hazard ratio [HR] 

3.30;  95% 𝐶𝐼 1.77 − 6.15;  𝑝 = 0.0002. Smoking also correlated with a worse 

outcome (𝐻𝑅 = 1.91, 95% 𝐶𝐼 1.05 − 3.48, 𝑝 = 0.034). 
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Table 19 Cox regression survival analysis (univariable) for clinical variables 

 HR (CI 95%) P value 

HPV status 3.295 (1.767, 6.145) 0.0002 

AJCC stage 0.790 (0.396, 1.579) 0.5052 

Alcohol 0.982 (0.760, 1.269) 0.8896 

Smoking 1.911 (1.049, 3.481) 0.0342 

Grade 0.979 (0.636, 1.507) 0.9226 

Alcohol was assessed as 0:  never, 1:  moderate and 2:  excessive, while smoking was assessed 

as 0:  never or ex-smoker and 1:  currently smoking.  Grade was given as 0:  well differentiated, 

1:  moderately and 2:  poorly and stage as I-IV according to staging criteria set by the American 

Joint Committee on Cancer (AJCC). 

 

3.3.2 Distribution and prognostic value of cell population densities 

Table 20 Median population density expressed as a percentage of positive cells 

Cell type All HPV positive HPV negative   

T-cells Median Percentage of Positive Cells P value 

CD8+ 6.60% 8.90% 4.90% 0.034 

CD8+PD-1+ 1.50% 1.70% 1.10% 0.111 

Macrophages         

CD68+ 3.10% 6.00% 2.10% 0.035 

CD68+PD-L1+ 1.10% 2.20% 0.70% 0.058 

PD-L1 and PD-1         

PD-L1+ 9.00% 9.00% 7.40% 0.356 

PD-1+ 12.70% 13.50% 10.90% 0.284 

Percentage cell expression was first assessed for individual ROIs, and the median expression 

from all ROI was selected to represent the patient.P-value tests the difference between HPV 

positive and negative groups. 

 

Table 20 summarises the percent median cell expression of various cell phenotypes 

in the patient cohort of OPSCC. CD8+ T-cells and CD68+ macrophages were found 

in significantly greater numbers in HPV+ OPSCC tumours. The PD-1+ phenotype 
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outnumbered CD8+ T-cells, which could be explained by PD-1 expression in dif-

ferent T-cell subsets, such as CD4+ cells. Additionally, the PD-L1+ category out-

numbered CD68+ macrophages, as PD-L1 expression is expected in immune re-

lated, as well as tumour cells. These marked populations did not significantly differ 

when stratified by HPV status. An up-to-date survival analysis using the median 

percent marker expression to define high and low expression levels is shown in 

Table 21. In this study only an increased detection of CD68+ cells (macrophages) 

was significantly associated with improved outcome in the HPV negative patients. 

It is not possible to compare these results with those published previously as the 

current analysis did not distinguish the stromal versus tumour locations and a dif-

ferent methodological approach was applied to select ROIs, detect the cells, identify 

positives and report densities by normalising with total number of cells.26,22 

Table 21 Univariable Cox Regression analysis of overall survival for patients stratified by 

median cell expression 

  HPV Positive HPV Negative All 

Cell population 
HR  

(95% CI) 
P value 

HR  

(95% CI) 
P value 

HR  

(95% CI) 
P value 

T-cells             

CD8+ 
0.56  

(0.21, 1.50) 
0.25 

1.03  

(0.47, 2.26) 
0.94 

0.84  

(0.46, 1.54) 
0.57 

CD8+PD-1+ 
0.76  

(0.29, 1.99) 
0.57 

1.88  

(0.85, 4.16) 
0.12 

1.16  

(0.63, 2.14) 
0.63 

Macrophages             

CD68+ 
1.34  

(0.51, 3.53) 
0.55 

0.34  

(0.14, 0.79) 
0.01 

0.58  

(0.32, 1.07) 
0.08 

CD68+PD-L1+ 
1.33  

(0.51, 3.45) 
0.56 

1.50  

(0.67, 3.34) 
0.32 

1.34  

(0.73, 2.47) 
0.34 

PD-L1 & PD-1             

PD-L1+ 
1.36  

(0.52, 3.52) 
0.53 

1.50  

(0.67, 3.34) 
0.32 

1.42  

(0.77, 2.60) 
0.26 

PD-1+ 
0.60  

(0.22, 1.60) 
0.31 

1.84 

 (0.83, 4.07) 
0.14 

1.06  

(0.57, 1.94) 
0.86 

Variables stratified by the median to distinguish patients with high and low expression. Percent-

age cell expression was first assessed for individual ROIs, and the median expression from all 

ROI was selected to represent the patient. 
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3.3.3 Proximity analyses of T-cells with PD-L1+ cells 

Figure 26 illustrates an example of the methodology used to generate the HID 

measure reflecting potential cell interactions. An interaction is hypothesized to oc-

cur whenever a CD8+ cell (yellow) occurs within 30 μm of a PD-L1+ cell (pink). A 

connection is drawn (white) to represent each hypothesized interaction. Cells not 

expressing CD8 or PD-L1 are presented in blue. 

 

Figure 26 Illustrative HID interaction features for a region of interest. An interaction is 

hypothesized to occur whenever a CD8+ cell (yellow) occurs within 30 μm of a PD-L1+ 

cell (pink). A connection is drawn (white) to represent each hypothesized interaction. Cells 

not expressing CD8 or PD-L1 are presented in blue. 

 A pre-specified HID analysis was carried out for two pairs of interacting pheno-

types co-localised within 30 μm of each other (CD8+ and PD-L1+ cells; PD-1+ and 

PD-L1+ cells). This distance was used by Feng et al19 and represents a neighbour-

hood size of 2-3 cells. The mean +/- standard error of HID values are shown in 

Table 22. There was a larger number of CD8/PD-L1 and PD-1/PD-L1 proximal 

events in the HPV positive tumours, but the difference was not statistically signifi-

cant. A univariable Cox regression analysis stratified patients by high versus low 

levels of co-localisation (percent mean). More frequent interactions between CD8+ 

and PD-L1+ or PD-1+ and PD-L1+ cells were prognostic for poor overall survival in 
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HPV- but not HPV+ patients or the whole cohort (Table 23, Figure 27). When strat-

ifying the HPV- patients by the mean value of PD-1+ and PD-L1+ HID interactions, 

30% of the patients were assigned to the poor prognostic group. When grouping by 

CD8+ and PD-L1+ interactions 23% of patients were assigned to the poor prognostic 

group (Figure 27 A, B). 

Table 22 Distribution of HID features in all, HPV positive and HPV negative patients 

Cell interactions All 
HPV  

positive 

HPV  

negative 
P value* 

CD8+ within 30 μm of PD-L1+ 
27.65 

 (± 6.86) 

34.73  

(± 10.68) 

17.73 

 (± 6.69) 
0.276 

PD-1+ within 30 μm of PD-L1+ 
15.76  

(± 7.32) 

23.48  

(± 12.41) 

4.95  

(± 1.72) 
0.535 

Data presented as mean HID · 103 (± standard error of the mean). *P value tests the difference 

between HPV positive and negative groups. 

 

Table 23 Univariable Cox Regression analysis of overall survival for patients stratified by 

mean HID proximity frequencies 

  HPV Positive HPV Negative All 

Cell Interac-

tions 

HR (95% 

CI) 

P 

value 

HR (95% 

CI) 

P 

value 

HR (95% 

CI) 

P 

value 

CD8+ within 30 

μm of PD-L1+ 

0.82                   

(0.26, 2.50) 
0.73 

2.95                   

(1.15, 7.56) 
0.02 

1.15                   

(0.58, 2.30) 
0.68 

PD-1+ within 30 

μm of PD-L1+ 

0.59                  

(0.17, 2.06) 
0.41 

2.64                   

(1.04, 6.71) 
0.04 

1.15                    

(0.58, 2.29) 
0.69 
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Figure 27 Kaplan-Meier analysis of the effect of HID interactions on prognosis in the HPV 

negative subgroup. Significance is considered using the log rank test. High and low co-

localisations are considered by splitting the patients at the mean value. A: Interactions be-

tween PD-L1+ and PD-1+ cells. B: Interactions between PD-L1+ and CD8+ cells. 
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3.4 Discussion 

This study introduces an automated pipeline for analysis of different biomarkers in 

the tumour microenvironment. In comparison with other automated image analysis 

studies, this pipeline used an automated quality check of scanned images and ROI 

selection prior to quantification of spatial interaction features. Checking image 

quality is a time consuming but essential part of any histopathological analysis. 

Blurred areas and artefacts (e.g., bubbles, tissue folds, presence of fatty tissue) lead 

to processing errors and consequently the samples are sent back for re-staining and 

scanning, increasing the time required for analysis. This automated selection of 

good quality ROIs decreases the need for input from a pathologist. A key compo-

nent of this study is the use of HID methodology which can be used to assess the 

spatial relations (proximity) between particular cell phenotypes.100 It has previously 

been used by us to analyse T-cell regulatory patterns in follicular lymphoma.97,371 

This study provides novel evidence that the frequent proximity of PD-1+ and PD-

L1+ cells is an adverse prognostic factor in HPV- OPSCC. It is tempting to speculate 

this derives from the functional consequence of these interactions in the PD-1/PD-

L1 pathway of immune escape. If the latter is correct, then quantifying the fre-

quency of proximal cell-cell interactions using HID should be further explored as a 

secondary companion diagnostic potentially useful in directing checkpoint inhibitor 

treatment. Monitoring levels of PD-L1 expression alone, while biologically plausi-

ble, has shown inconsistent results, particularly in cases where expression levels are 

close to the cut-off threshold.365 Interestingly, in this analysis no correlation be-

tween PD-L1 expression and overall survival was observed, regardless of HPV sta-

tus for OPSCC. This result agrees with the observations from other studies.21,367 

However, previous analyses of the same cohort22 demonstrated that PD-L1 expres-

sion was prognostic in HPV negative OPSCC but only if assessed in the stromal 

regions with a cut-off of 5%. The optimal manner of scoring PD-L1 is still being 

investigated, as the cut-off thresholds differ in lung, urothelial and head and neck 

cancer. Indeed, opinions differ on whether positivity should be assessed only for 

tumour cells or additionally for immune infiltrating cells.372 An automated process 

to quantifying cell patterns promotes consistency and reproducibility and could fa-

cilitate its use to support the role of PD-L1 in personalised treatment strategies. 
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Interestingly, the correlation between overall survival and HID spatial interactions 

in the HPV positive subgroup was not significant. If this is a true effect, it would 

indicate reduced importance of T and PD-L1+ cell interactions for the HPV+ sub-

group. This finding is not surprising as HPV related OPSCC is considered in many 

aspects different from HPV- OPSCC and is known to have a better prognosis,373 

more active anti-tumour immune response26 and favourable response to treat-

ment.373 However, the nature of PD-L1+ spatial interactions in HPV+ OPSCC merits 

further investigation in larger cohorts, before their significance could be ruled out.  

Due to the size of the cohort the power of the study is limited which increases the 

risk of false negative results. To avoid multiple testing, only two pre-determined 

hypotheses using HID in relation to overall survival were explored. Another possi-

ble limitation is the image analysis pipeline, which involved a single pathologist 

identifying positive cells by selecting a cut-off for each marker based on selected 

images with clear positive staining. However, variation was observed between the 

intensities of positive cells in different sections, which a simple on-off scoring ap-

proach cannot capture. Accuracy in cell phenotyping could be more reliable if it 

was carried out using cut-offs selected by multiple pathologists, or unsupervised 

machine learning for single-cell classification.  

The automated pipeline developed in this chapter can be viewed as an interactive 

CAS system that enables accurate patient categorisation into risk stratified groups. 

The system is interactive, as a pathologist is required to set the stain intensity cut-

off to identify positive cells. To ensure this CAS system’s ability to translate into 

routine clinical practice, thorough validation would be necessary following the six 

design requirements identified in Chapter 2. This CAS system is well defined and 

interpretable as it relies on easily explainable features (i.e., the numbers of cells and 

cellular interactions). Furthermore, the accuracy of patient categorisation was vali-

dated against patient overall survival. Further work would be needed to establish 

reproducibility under variable staining conditions, time-efficiency and a methodol-

ogy to identify samples with high uncertainty. 

In summary, this study combined multiplex immunofluorescence and multispectral 

microscopy with an automated analysis pipeline for quality checking, spectral un-

mixing, cell segmentation, scoring and assessment of the spatial pattern of cell-cell 

interactions. In a cohort of OPSCC patients it was shown that frequent proximity of 
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CD8+ or PD-1+ and PD-L1+ cells was prognostic for OS in patients with HPV- tu-

mours. This method is ready to be tested independently in additional, multicentre 

cohorts to validate its potential as a companion diagnostic for therapies targeting 

the PD-1/ PD-L1 pathway of immune escape. 
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3.5 Summary 

Fulfilling the promise of cancer immunotherapy requires novel predictive bi-

omarkers to characterise the host immune microenvironment. Deciphering the com-

plexity of immune cell interactions requires an automated multiplex approach to 

histological analysis of tumour sections. A new automatic approach was tested to 

select tissue and quantify the frequencies of cell-cell spatial interactions occurring 

in the PD-1/PD-L1 pathway, hypothesised to reflect immune escape in oropharyn-

geal squamous cell carcinoma (OPSCC). 

Single sections of diagnostic biopsies from 72 OPSCC patients,  stained using mul-

tiplex immunofluorescence (CD8, PD-1, PD-L1, CD68) were retrieved from the 

study of Oguejiofor et al.22. Following multispectral scanning and automated re-

gions-of-interest selection, the Hypothesised Interaction Distribution (HID) method 

quantified spatial proximity between cells. Method applicability was tested by in-

vestigating the prognostic significance of co-localised cells (within 30 μm) in pa-

tients stratified by HPV status. 

High frequencies of proximal CD8+ and PD-L1+ (HR 2.95, p = 0.025) and PD-

1+ and PD-L1+ (HR 2.64, p = 0.042) cells were prognostic for poor overall survival 

in patients with HPV negative OPSCC (n = 31). 

The HID method can quantify spatial interactions considered to reflect immune es-

cape and generate prognostic information in OPSCC. The new automated approach 

is ready to test in additional cohorts and its applicability should be explored in re-

search and clinical studies. 
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4 Multiplex image analysis for biomarker discovery in 

follicular lymphoma 

The spatial biomarker described in Chapter 3 for OPSCC observed cellular interac-

tions taking place in PD-1/ PD-L1 pathway of immune escape. The presence and 

significance of this pathway has not been proven conclusively in FL,101  therefore 

the biomarker developed in Chapter 3 was not considered for FL. Instead, in this 

chapter, the potential of observing the overall immune diversity in the tumour mi-

croenvironment of FL was investigated as an alternative approach to derive prog-

nostic insights. 

In follicular lymphoma (FL) there is a clinical need for upfront risk stratification, 

recognising the subset of patients (15-30%) with early progression of disease after 

first line therapy in need of more effective treatment to overcome poor outcomes 

,36,374,375 alongside the majority of patients with a more favourable prognosis who 

may do just as well with less therapy. Current FL prognostic indices such as the 

Follicular Lymphoma International Prognostic Index (FLIPI)49,51 are well validated 

but lack the necessary precision for clinical decision making. The tumour microen-

vironment (TME) is known to affect disease progression and treatment response in 

many cancers,355,356 and may hold the key to improving precision in patient risk 

stratification and development of rational risk adapted therapy. Heterogeneity of 

tumour infiltrating lymphocytes (TILs) has been associated with survival in FL but 

there is no consensus on the observed effect.63,64 Consequently, TME derived bi-

omarkers have not yet been developed for clinical use. Automated image analysis 

and multiplex immunofluorescence assays improve TME biomarker performance 

and reproducibility.128,285,376 Use of such technology could therefore provide a reli-

able way of measuring the complex interactions in the TME of FL with the potential 

for improved risk prediction. 

Many studies have examined the prognostic effects of TIL subsets, but with con-

flicting results particularly between cohorts treated before and after the introduction 

of rituximab.36,63,377 Increased numbers of CD68+  lymphoma associated macro-

phages was unfavourable in cohorts treated without rituximab90, but either favour-

able86 or not significant in cohorts treated with rituximab.71,89 Additionally, CD3+ 

T-cell65,70,71,86 and CD4+ T helper cell65,70,71 densities in cohorts treated with rituxi-

mab were either favourable or not significant. The role of CD8+ cytotoxic T-cells 
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is similarly controversial65,71,80 and altered by the type of treatment.70 Other TIL 

subsets of interest include  CD4+FOXP3+ T regulatory cells (T-regs), 65,71,74,76,97 

dendritic cells,71 mast cells,88 and PD-1 expressing T-cells.65,71,81  However, as FL 

B-cells and TME cells engage in crosstalk through multiple pathways,37 observing 

the diversity and spatial interactions between cells in the TME could be more in-

formative than examining isolated components. 
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4.1 Developing a multiplex immune panel for follicular lym-

phoma 

4.1.1 Motivation 

A new 6-plex immunofluorescent assay using tyramide signal amplification, the 

Opal™ 7 colour Kit (Akoya Biosciences, Menlo Park, CA, USA) and the Ultra 

Discovery robot-stainer (Roche, Basel, Switzerland) was developed and validated, 

to enable concurrent visualisation on the same tissue sections of multiple immune 

subsets. 

4.1.1.1.1 Panel selection 

A panel of antibodies was selected to identify cell populations of non-neoplastic 

immune infiltrates: 

• CD68 was selected to observe monocytic cells and particularly macro-

phages.86,89 CD68 is expressed in the cell membrane.17 Studies assessing 

macrophages in the microenvironment of FL86,87,90,378 usually adopt CD68 

as a macrophage specific marker. CD68 was adopted as a macrophage 

marker, to enable direct comparisons with previous studies. 

• By inclusion of the CD4 marker, T-helper (TFH) cells were identified.377 

CD4 is mostly expressed in the membrane of T-helper cells in the microen-

vironment of FL, although rare spots of staining may be seen in mono-

cytes.17 Thus, FL studies have often used CD4 to identify T-helper cell pop-

ulations85,379 and assess impact to survival endpoints. In this study, T-helper 

cells were identified as CD4+CD68- cells to exclude CD68+ macrophage 

subsets that might express CD4. 

• CD8 was used to observe cytotoxic T-cells (CD8+).377 CD8 is a membrane 

marker often used to identify cytotoxic T-cells in the FL microenviron-

ment.62,80,380 

• FOXP3 was used to identified T regulatory cells (T-regs [CD4+FOXP3+]).77 

T-regulatory cells (T-regs) are a subset of T-helper cells, expressing CD4, 

FOXP3 and CD25. The FOXP3 nuclear marker is considered the principal 

lineage marker of these cells and is often used to identify them in FL.74,381 

• The CD21 marker was added to observe the spatial arrangement of follicular 

dendritic cell (FDC)17 meshwork areas.95,380 CD21 may also be expressed 
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by mature B-cells, however it is expressed by FDC in a characteristic mesh-

work pattern that is easily recognisable.93  

• PD-1 detected CD4+PD-1+ T follicular helper cells and CD8+PD-1+ lym-

phocytes.81 Cells expressing PD-1 in the microenvironment of FL were 

found to be mostly CD4+ CD68- T follicular helper cells, although some 

CD8+PD-1+ cytotoxic T-cells are also present. Recent studies81 have shown 

that PD-1+ cells do not necessarily represent exhausted cell phenotypes. 

Two distinct types of TFH were found from functional analysis: a) the PD-

1+
high TFH cells found inside the follicles that actively supported FL B-cell 

growth, and b) the PD-1+
low cells found outside the follicles, which usually 

represent exhausted T-cells. 

• Finally, DAPI (4′,6-diamidino-2-phenylindole) was the nuclear counter-

stain. No B-cell tumour marker was used, as the aim was to study the diver-

sity of the non-neoplastic microenvironment. 

The role and prognostic impact of these immune microenvironment cell types in FL 

has been extensively discussed in Section 1.1.2.3 

4.1.2 Materials and methods 

4.1.2.1 Dataset used for staining protocol development 

Experimental assay development and validation was performed using sequential 

sections from a formalin-fixed paraffin-embedded (FFPE) tissue micro-array 

(TMA) constructed from 44 FL cases retrospectively collected from The Christie 

archives. The study was conducted with approval from the North-West Multi-centre 

Ethics Committee (03/08/016) and according to the Declaration of Helsinki. These 

patients were diagnosed in the 1980-1990s and treated using historical protocols. 

4.1.2.2 Optimisation of a Vectra multiplex protocol 

An overview of required steps for optimising a Vectra multiplex protocol is shown 

in Figure 28. The first step is to establish TSA immunofluorescence staining pro-

tocols for each antigen target separately (singleplex protocols).149 At this stage, an-

tibodies, antibody-fluorophore pairings, titration and incubation times, and optimal 

antigen retrieval strategies are selected, based on maximising the signal to noise 
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ratio. An acceptable range for the signal to noise ratio is above 10 to 1.149 The sin-

gleplex optimisations could initially be carried out in brightfield, using DAB in-

stead of fluorophores, where non-specific background staining is more easily dis-

tinguished from true signal. The suggested optimisation process for the singleplex 

protocols is ‘trial-and-error’, where the experiment is repeated for multiple antibody 

and fluorophore titrations, as well as antigen retrieval and incubation times, to de-

termine an acceptable range of values.149  

The optimised parameters from the singleplex assay of an antibody will also apply 

in the multiplex experiment (e.g., if anti-CD8 is titrated 1:200 in the singleplex and 

incubated for 12 minutes, the same will apply in the multiplex). The next important 

optimisation decision is the ordering of antibody staining cycles in the multiplex 

experiment. A good starting point is placing antibodies so that their order reflects 

the antigen retrieval time required for each antibody in the singleplex. Antibodies 

that require short retrieval prior to their application are placed first. After each stain-

ing cycle, additional heat antigen retrieval is carried out to strip away the previously 

applied antibodies. The heat retrieval has an additive effect; antigens that are de-

tected last in the multiplex protocol will have been subjected to the longest retrieval 

times.  

For example, suppose the CD8 and CD4 antibodies required 16 minutes and 24 

minutes of antigen retrieval in their singleplex protocols, respectively. In the mul-

tiplex protocol, after the initial deparaffinisation and a short heat retrieval of 16 

min, the CD8 antibody would be incubated first, followed by the secondary anti-

body and a fluorophore. Subsequently, additional heat retrieval of 8 minutes would 

follow, before incubating the CD4 antibody (for a total retrieval of 24 minutes). The 

second retrieval has a dual purpose; it removes all antibodies used in the CD8 stain-

ing cycle and provides the additional heating required to retrieve the 3-D structure 

of the CD4 antigen epitopes. However, the intermediate heat retrieval steps between 

staining cycles should be carefully tuned, as long heating times will also remove 

the fluorophores, which is an unwanted side effect. Furthermore, when multiple 

antigens require equal retrieval time, one of them would have to be detected at sub-

optimal conditions. This approach represents a heuristic that can be used as a good 

initial guess for the antibody ordering in the multiplex experiment. Subsequent re-

fining of the order can be carried out by slightly changing the antibody ordering and 

observing the effects on the signal to noise ratio (trial-and-error). 
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In practice, the effect of changing the antibody order is tested by running the com-

plete multiplex protocol (heat retrieval, washing and blocking steps for all cycles) 

multiple times, but each time only applying the reagents of a single staining cycle. 

No counterstain is applied. This setup is referred to as “single-stain multiplex”. Us-

ing this approach, the effects of fine-tuning the multiplex experiment can be quickly 

observed on each antibody independently. Thus, the optimal ordering and retrieval 

times can be found. 

Another optimisation step deals with rebalancing the signals. To achieve accurate 

spectral unmixing, the signals from different fluorophores must have approximately 

equal intensity.149 When the signals are imbalanced or too strong, bleed through 

might be observed, i.e. the signal of one fluorophore might show up in a second 

fluorophore’s channel. Therefore, the single-stain multiplex experiments are re-

peated with different fluorophore titrations, to establish the lowest concentration at 

which the signal-to-noise ratio remains acceptable.149 This concentration is then 

adopted in the multiplex experiment. To achieve rebalancing, different antibody-

fluorophore pairings might need to be selected, e.g. pairing bright fluorophores with 

weaker antibodies. 

To check whether the antibodies are fully removed after the end of each staining 

cycle, the following stripping test can be performed; the multiplex experiment is 

run with only the reagents of a single staining cycle at a time (similar to a single-

stain multiplex). After this cycle, heat retrieval follows. Then on the next staining 

cycle, only a different fluorophore is added. This setup is referred to as a “double-

stain multiplex”. When antibody stripping is ineffective, both fluorophores will be 

seen on the sample, as the second fluorophore will bind onto the antibodies that 

remained on the tissue. To improve stripping, the retrieval times and antibody titra-

tions are fine-tuned.149 
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Figure 28 Steps to set up a Vectra multiplex protocol 

4.1.2.3 Building a spectral library 

Once optimal parameters for all antibody staining cycles have been found, a single-

stain multiplex is run for each of the antibodies to extract the representative fluor-

ophore spectra. A section undergoing all multiplex staining steps without applica-

tion of any fluorophore or antibody is used to extract the autofluorescence spectrum. 

Similarly, a section undergoing all the steps of the multiplex with only application 

of the DAPI counterstain is used to extract the DAPI spectrum.  

The spectrum of a fluorophore is recorded using the Vectra microscope with all 

available filters. A multispectral snapshot of the section is captured, by auto-setting 

the exposure times on the relevant filters where the fluorophore is expected to emit. 

The default settings are used for all other filters. The inForm software stores the 

extracted spectra in a spectral library file (Figure 29). 

To optimise:

•Antibody selection and antibody-fluorophore pairing

• Incubation times
•Antibody and fluorophore titrations

•Antigen retrieval times

Singleplex

To optimise:

•Order of staining cycles

•Between-cycles antigen retrieval times
• Fine-tune titrations for fluorophores

• Fine-tune antibody-fluorophore pairing

Single-stain multiplex

To optimise:

•Check if antibody stripping is complete

• Fine-tune between-cycle antigen retrieval times
• Fine-tune antibody titrations

Double-stain multiplex

Spectral library is built by extracting spectra from:

•Optimised single-stain multiplex experiments

•Auto-fluorescence control
•DAPI control

Spectral library

To optimise:

• Spectral unmixing
Multiplex
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Figure 29 Adding a spectrum to a spectral library. Extracting the spectrum of fluorophore 

OPAL 540, paired with and anti-CD8 antibody in a single-stain multiplex experiment 

(snapshot of the inForm 3.5 software interface). The emission peaks on each of the 5 avail-

able filters are shown on the right panel. 

Once the spectral library is built, the multiplex experiment is set. A section can then 

undergo all staining cycles with all reagents applied according to the optimal pa-

rameters. The multiplex-stained section will be scanned on the Vectra microscope 

multispectrally, by auto-setting the exposure times of all filters. The scanned image 

is then loaded in inForm software and unmixed into separate channels (one for each 

fluorophore) using the prepared spectral library (Figure 30). 
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Figure 30 Human follicular lymphoma lymph node tissue, stained with the proposed 6-

plex tyramide signal amplification protocol,110 scanned multispectrally and unmixed using 

the Vectra 3.5 system. (a) Composite multiplex image displaying all stains together using 

pseudo-colours. In this composite image DAPI is blue, CD21 is red, CD4 is orange, PD-1 

is cyan, CD8 is yellow, CD68 is magenta and FOXP3 is green. Panels from (b) to (i) cor-

respond to the exact same tissue region, indicated as a white rectangle in (a) to demonstrate 

the process of spectral unmixing: (b) DAPI in grey; (c) CD21 in red; (d) CD4 in orange; 

(e) PD-1 in cyan; (f) CD4 (orange) and PD-1 (cyan) overlayed to show that PD-1 mostly 

almost always colocalised with CD4 in follicular regions; (g) CD68 in magenta; (h) FOXP3 

in green; (i) CD8 in yellow. 

4.1.2.4 Protocol validation 

Agreement between singleplex and multiplex immunofluorescent assays was quan-

titatively validated by comparing the stained area in sequential sections of a FL 

FFPE TMA (Figure 31). DAPI was added in both the singleplex and multiplex 

experiments to quantify the whole tissue area in each core. Slides were scanned 

multispectrally on the Vectra microscope (Akoya Biosciences, software version 
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3.5) at 20x magnification, and the exposure times were set according to the ob-

served signal strength of each filter. In the case of the singleplex experiments, ex-

posure times were adjusted only for the relevant filters, while for the rest the default 

settings were applied; 40 ms for the overview and 150 ms for the multispectral scan. 

A spectral library was built and spectral unmixing of all sections was carried out in 

inForm 2.4 software (Akoya Biosciences).  

Image analysis was subsequently performed in HALO software (Indica Labs, Al-

buquerque, NM, USA). Using the Multiplex Fluorescent Area Quantification mod-

ule, automated thresholding of pixel intensities in each channel identified the per-

centage of stained area. This algorithm requires the user to specify minimum true 

signal intensity. These settings for the singleplex and multiplex sequential sections 

were chosen by the same user, leaving a “wash-out” period of 3 days between them. 

Cores with artefacts, such as bubbles and blood vessels were excluded from the 

analysis. In some cases, cores would be missing from one of the two sequential 

sections (tissue was broken or torn), and so these were excluded as well. A demon-

stration of automated area quantification is shown in Figure 32. 

Agreement between multiplex and singleplex experiments was observed by con-

structing Bland-Altman plots and calculating Pearson’s R2.  

 

Figure 31 Sequential TMA sections setup for multiplex experiment validation. Each sin-

gle-plex assay is compared to an adjacent multiplex assay. 
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Figure 32 Area quantification in HALO for the CD21 antibody (570 fluorophore). Top 

row: single-plex. Bottom row: multiplex. Left: Unmixed composite image. Middle: simu-

lated chromogenic view (inForm 2.4) for CD21. Right: Positive area quantification 

(HALO) where CD21 is rendered in red and DAPI in blue. 

4.1.3 Results 

The experimental protocol is publicly available online110 and summarised in Table 

24. 

Table 24 Antibodies, titrations and fluorophores in the multiplex immunofluorescence pro-

tocol 

Order Antibody Dilution Provider 
Opal detec-

tion 

1 
Anti-CD4 (SP35) Rabbit Monoclonal 

Primary Antibody 

Pre-di-

luted 

Roche,           

Switzerland 
Opal 620 

2 
Anti-CD68 antibody mouse monoclonal 

[KP1] to CD68 
1:40 Abcam, UK Opal 650 

3 
Monoclonal Mouse Anti-Human CD8 

Clone C8/144B 
1:450 

Agilent,         

Denmark 
Opal 540 

4 
CD21 (2G9) Mouse Monoclonal Anti-

body 
1:25 

Cell Marque, 

USA 
Opal 570 

5 
Anti-FOXP3 antibody mouse monoclo-

nal [236A/E7] 
1:60 Abcam, UK Opal 520 

6 
Anti-PD-1 antibody [NAT105] 

(ab52587) Mouse monoclonal 
1:150 Abcam, UK Opal 690 

The order reflects the order the antibodies are applied on the tissue. 

 

Comparisons between singleplex and multiplex experiments demonstrated satisfac-

tory linear correlations as shown in Figure 33. For most markers, slightly lower 
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staining expression was observed in the multiplex compared to the singleplex ex-

periments. Lower expression may derive from incomplete stripping in between 

staining cycles, which may lead to steric obstruction and slightly decreased anti-

body binding. This effect was however not significant, as seen in Bland-Altman 

plots (Figure 34). The mean difference of the two experiments was usually close 

to zero, with >94% of data points lying within the limits of agreement (mean ± 1.96 

standard deviation) for all markers. 

 

Figure 33 Comparison of % tissue area stained by each marker in two sequential 4μm 

TMA sections, a multiplex and a single-plex. The single-plex was also stained with DAPI 

and both sections were scanned multispectrally at 20x and unmixed with the same spectral 

library. Each point represents a TMA core. 
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Figure 34 Bland-Altman plot comparisons between singleplex and multiplex immunoflu-

orescent assays for each antibody. Antibody expression is measured as a percentage of the 

positively stained tissue area. Each point represents a tissue microarray core. The dotted 

lines represent the limits of agreement (± 1.96 standard deviation of difference). 

4.1.4 Discussion 

Through extensive optimisation, a 6-plex multiplex immunofluorescent protocol 

was developed using the Vectra platform. The protocol has been validated against 

adjacent singleplex assays and demonstrated sufficient agreement. Furthermore, it 

has been made publicly available in the protocols.io experimental platform.110 This 

protocol, combined with automated analysis of the multiplex images can be used to 

study in depth the immune populations in the microenvironment of follicular lym-

phoma.  
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4.2 Follicular lymphoma biomarkers based on diversity of the 

immune microenvironment 

4.2.1 Motivation 

In ecological sciences several metrics can describe species diversity. The Shannon 

diversity (or entropy) index, a measure derived from information theory, quantifies 

biodiversity in terms of “evenness”. For example, if three species are found in an 

area, and one accounts for 99% of the population, this community would be con-

sidered less diverse than one where the three species are found in approximately 

equal abundances. Shannon’s entropy has found applications in histopathology to 

quantify heterogeneity of HER2 expression382 and chromosome 8q24 copy number 

variation383 in breast cancer. If each TIL phenotype is considered as a species, this 

metric can be applied to quantify the immune infiltrate diversity in the TME.  

Similarly, it is possible to quantify the diversity of not only phenotypes but also 

their spatial interactions, which is recognised for its potential as a biomarker3 for 

many tumour types including FL.77,97 The Hypothesised Interactions Distribution 

(HID) method100 can identify spatial interactions defined as co-localisation of dif-

ferent cell types within 30 μm. The diversity of these spatial interactions can also 

be investigated using Shannon’s entropy. 

The aim was to develop a methodology to quantitatively assess immune infiltrate 

diversity in the tumour microenvironment of FL and test its potential utility as a 

prognostic biomarker. To this end, an automated image analysis pipeline was de-

veloped and validated to simultaneously identify cells positive for CD4, CD68, 

CD8, CD21, FOXP3 and PD-1 in multiplex images produced with the protocol de-

veloped in section 4.1. Furthermore, the use of Shannon’s entropy was tested as a 

means of quantifying overall and spatial diversity of TIL populations. It is shown 

that increased diversity of TIL populations and interactions are both associated with 

improved overall survival (OS) in a cohort of FL patients. 
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4.2.2 Materials and methods 

4.2.2.1 Dataset  

4.2.2.1.1 Cohort selection 

The study was conducted with approval from the North-West Multi-centre Ethics 

Committee (03/08/016) and according to the Declaration of Helsinki. Patients with 

WHO 2008 histologically confirmed FL were identified from the archives of The 

Christie NHS Foundation Trust, Manchester, UK. An initial cohort of 1004 patients 

was retrieved from the electronic database by searching for the keywords “follicular 

lymphoma”. Examination of the first 350 patients in a random order identified 262 

patients meeting the inclusion criteria: adult patients with previously untreated FL; 

diagnosed from incisional or excisional biopsy; non primary cutaneous; and treated 

at first presentation with radiotherapy, watchful waiting or rituximab-based sys-

temic therapy. Pre-treatment diagnostic biopsies were requested for 262 patients, of 

which 131 had sufficient tissue for analysis. The 131 patients included in this study 

were diagnosed between 1998 and 2015 and had a median follow-up of 114 months 

(range 3-199 months). A histological diagnosis of FL was re-confirmed by an expert 

haemato-pathologist (R.B). Regions of interest were identified by a haemato-

pathologist (R.B) and cores were extracted in triplicate from formalin-fixed, paraf-

fin-embedded (FFPE) blocks to construct five tissue microarrays (TMA). Follicular 

and extrafollicular regions were both selected for inclusion in the TMA. A section 

of each TMA stained with H&E is provided,384 to demonstrate the morphology of 

selected regions. No cases of transformed high grade FL at baseline were present 

in this cohort. Three patients with FL grade 3b were excluded, as their disease pro-

gression and treatment pathways resemble more closely Diffuse Large B-cell Lym-

phoma and grade 3b FL is generally considered a separate disease entity.385 After 

staining and scanning, some cores were excluded because of poor quality and arte-

facts, leaving 342 cores from 127 patients available for further analyses.  

4.2.2.1.2 Clinical endpoints 

OS was recorded for all patients. Progression-free survival (PFS) and disease pro-

gression within 24 months of starting treatment (POD24) were recorded only for 

patients treated with rituximab-containing immuno-chemotherapy at first presenta-

tion, as these endpoints are not well defined for patients assigned to watchful wait-
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ing. Patients who received radiotherapy alone at first presentation were also ex-

cluded from PFS and POD24 analysis, as recent findings65 have shown different 

effects of TILs in FL patients treated with and without rituximab. The events of 

disease progression and relapse were defined using the Lugano criteria.39 PFS was 

calculated from diagnosis until the first observed progression event (or disease spe-

cific death) or, if no events were observed, until the date of last follow-up. POD24 

was calculated from start of immuno-chemotherapy treatment. The patient 

flowchart for all survival analyses in this study is shown in Figure 35. 

 

Figure 35 Patient flowchart in the follicular lymphoma study. 
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4.2.2.2 Multiplex immunofluorescence imaging 

This section describes preparation of the image dataset using multiplex immunoflu-

orescence and multispectral scanning. 

4.2.2.2.1 Staining protocol 

A single 4 μm section was cut from each of the five TMAs of the cohort. These 

sections were stained with the 6-plex immunofluorescent assay described in section 

4.1, using tyramide signal amplification, the Opal 7 colour kit (Akoya Biosciences, 

CA, USA) and the Ultra Discovery auto-stainer (Roche, Switzerland).110   

4.2.2.2.2 Image acquisition 

Stained sections were scanned with the Vectra 3.5 microscope (Akoya Biosci-

ences). Initially, a low-resolution scan (10x) was performed to manually annotate 

the TMA core locations. Then, a multispectral image of each core was acquired at 

20x magnification (0.49 μm/ pixel). Spectral unmixing134 was performed using in-

Form 2.4 software (Akoya Biosciences). To separate the fluorophore signals, a 

spectral library was pre-built; the individual spectrum of each fluorophore, DAPI 

and auto-fluorescence were acquired from single-plex controls. After unmixing, the 

images consisted of 6 channels, each containing the intensities of a different fluor-

ophore, plus two channels for DAPI and auto-fluorescence (2420 × 2420 × 8 pix-

els). Areas containing artefacts were manually excluded. 

All prepared images are publicly available††. 

4.2.2.3 Cell detection 

Spectral unmixing was performed using inForm 2.4 software (Akoya Biosciences) 

and all images were manually examined to exclude any areas containing artefacts, 

such as folded tissue, bubbles and blood vessels. Nuclear detection in these images 

was challenging, because of densely packed and overlapping cells. A convolutional 

neural network (CNN) using the “StarDist” method175 was trained for concurrent 

nuclear detection and segmentation. The model was trained from scratch on nuclear 

outline annotations drawn by a trained non-expert, under supervision from a 

pathologist (R.B.). The CNN was built with a U-net type191 architecture and trained 

 
†† http://dx.doi.org/10.17632/274xbhc5rx.3 

http://dx.doi.org/10.17632/274xbhc5rx.3
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with two losses; the first penalised whether a pixel was correctly predicted as nu-

cleus vs. background; the second penalised the predicted distance from each nuclear 

pixel to the background, which is used to obtain the shape of the nucleus.  

To assess nuclear segmentation performance, the average precision 𝐴𝑃 =

 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 was considered, where true positive (TP) predictions are defined as pre-

dicted nuclei, for whom exist ground truth nuclei with sufficient overlap. Overlap 

was measured as intersection over union (IoU) > 30%. False positive (FP) were the 

unmatched predicted nuclei, while false negative (FN) were the unmatched ground 

truth nuclei. There were 3 ROI (883 nuclei) in the test set, 3 ROI (906 nuclei) in the 

validation set and 35 ROI (6791 nuclei) in the training set. The average precision 

for the testing set of nuclei was AP = 0.827. The worst image in the testing set is 

presented in Figure 36 (AP=0.733) and in Table 25 the AP for different threshold 

of the IoU is given for the test set.   

 

Figure 36 Worse performing image in test set for nuclear segmentation (AP=0.733). The 

amount of overlap between nuclei is challenging even for human annotators. 
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Figure 37 Growing membranes around detected nuclei. 

After nuclear segmentation, simulated membranes are grown around the nuclei by 

maximum 1.5 μm to represent whole cells (Figure 37) and measurements are taken 

of the median intensity for all stains and each cell compartment (nucleus, mem-

brane). All images in the dataset were manual examined and areas that presented 

artefacts because of folded tissue, bubbles or blood vessels were excluded from 

further analysis. 

Table 25 Segmentation performance in the test set for different thresholds of the intersec-

tion over union (IoU) parameter 

IoU threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

AP 0.915 0.866 0.827 0.726 0.603 0.494 0.341 0.157 0.013 

The test set included 3 ROI with 883 nuclei. AP: Average precision. 

4.2.2.4 Positive cell scoring 

Cell scoring was performed using an interactive computer assisted scoring system, 

that required input from a human observer to select a positivity cut-off for each 

stain. 

A validation set of 10 images, each containing a whole TMA core, was selected to 

determine a positivity cut-off, as follows; first, intensity scaling onto a consistent 

colour map across all images was carried out for each stain so that equal intensity 

levels were represented by equal brightness. Measurement of the median stain in-

tensities in the relevant compartment (nuclear for FOXP3 and membrane for all the 

rest) were carried out. Then, a cut-off threshold was selected per image core and 

stain by two independent annotators (a non-expert [A.M.T] and a trainee pathologist 
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[M. D.]) to separate positive from negative cells. A single threshold was then se-

lected as a positivity cut-off per stain by averaging all thresholds selected for the 

images in the validation set by both annotators.  

Agreement between the two annotators that scored positive cells using the computer 

assisted scoring system is shown in Table 26. Agreement was assessed by using 

the selected cut-offs to classify the cells as positive or negative and calculating the 

𝑓1 score (harmonic mean of precision and recall) between the labels generated by 

different annotators. The fact that a single threshold across all images was mostly 

adequate to separate positive from negative cells (0.68 ≤ 𝑓1  score ≤ 0.92) indicates 

low staining variation across different patients and TMA blocks. These single cut-

off thresholds were finally applied to phenotype cells in the entire dataset. 

Table 26 Agreement for cell labels generated by selecting a positivity cut-off per image in 

the validation set.  

FOXP3 Annotator 1 Trainee pathologist Single threshold 

Annotator 1 - 0.83 0.92 

Trainee pathologist  - 0.90 

Single threshold   - 

CD8 Annotator 1 Trainee pathologist Single threshold 

Annotator 1 - 0.72 0.86 

Trainee pathologist  - 0.85 

Single threshold   - 

CD4 Annotator 1 Trainee pathologist Single threshold 

Annotator 1 - 0.88 0.87 

Trainee pathologist  - 0.88 

Single threshold   - 

CD68 Annotator 1 Trainee pathologist Single threshold 

Annotator 1 - 0.49 0.76 

Trainee pathologist  - 0.68 

Single threshold   - 

PD-1 Annotator 1 Trainee pathologist Single threshold 

Annotator 1 - 0.69 0.76 

Trainee pathologist  - 0.86 

Single threshold   - 

Agreement is calculated as the 𝑓1score, representing the harmonic mean of precision 

and recall for the binary classification task of assigning a cell as positive or negative 

for each stain. 

 

This method was applied to identify cells positive for CD4, FOXP3, CD8, CD68 

and PD-1. This approach was not adopted for CD21, as the staining pattern of 
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CD21+ cells followed a non-convex meshwork pattern which would be challenging 

to simulate accurately by simply growing simulated membranes around the nuclei. 

4.2.2.5 Cell density quantification 

The tissue area was detected per core by Otsu’s thresholding163 of the DAPI chan-

nel. Cell density was subsequently measured for each cell phenotype of interest by 

dividing the number of positive cells by the tissue area. Thus, cell densities were 

calculated for cell types of interest, identified from prior studies on the FL micro-

environment,36,37,86,89,90,97,377,63,65,70,71,74,76,80,81 namely CD4+CD68- T-helper cells, 

CD4+FOXP3+ T-regs, CD8+ cytotoxic T-cells, CD68+ macrophages, CD4+CD68- 

PD-1+ TFH cells and CD8+PD-1+ T-cells.  

Additionally, the total immune infiltrate was measured as the number of cells ex-

pressing any of the CD4, FOXP3, CD8, CD68 or PD-1 markers. The immune infil-

trate ratio was subsequently calculated by dividing the immune infiltrate cells by 

the number of all non-immune cells that expressed only DAPI. This ratio can be 

used to represent the extent of total immune infiltration in the microenvironment of 

FL.  

4.2.2.6 Identifying CD21+ dendritic meshwork areas 

To quantify the extent of CD21+ dendritic meshwork areas, manual annotations 

were drawn around them for all samples (Figure 38), under supervision of a 

pathologist. Subsequently, the area covered by these meshwork patterns was meas-

ured, and expressed as a proportion of the total tissue area. 
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Figure 38 Dendritic meshwork areas were annotated manually by drawing around the 

CD21+ meshwork pattern regions. A) CD21 (red) and DAPI (blue) view of a multiplex 

TMA core image. B) Manual annotation of dendritic meshwork areas, overlayed in grey.  

4.2.2.7 TME diversity quantification 

TME diversity was assessed by computing the Shannon’s entropy diversity index 

for non-neoplastic immune cell phenotypes. In this analysis a phenotype is defined 

as a combination of expression of five immune cell markers: CD4, CD8, CD68, 

PD-1 and FOXP3. For these five markers there are 𝑛 =  25 = 32 potential combi-

nations of stain positivity, each defining a separate cell phenotype. Cells expressing 

none of these markers were not included in the diversity analysis, as the aim was to 

assess the diversity of the non-neoplastic immune tumour microenvironment. 

Therefore, cells positive only for DAPI or only for CD21 were excluded as these 

could potentially include FL B-cell subsets. Shannon’s entropy is calculated as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖ln (𝑁
𝑖 𝑝𝑖)                                            (4) 

where 𝑁 is the number of total species in the community and 𝑝𝑖 the proportion of 

individuals belonging to the 𝑖th species.  

4.2.2.8 Diversity of spatial interactions 

The diversity of TIL spatial interactions in each sample was additionally quantified 

by applying the HID methodology100. HID performs a pair-wise examination of cell 

types identified during cell scoring and counts their spatial interactions, i.e. their 

frequency of co-occurrence within a pre-specified distance (see Figure 39). Further 

implementation details can be found in Rose et al100. The distance parameter was 

selected as 30 μm similar to chapter 3, which represents a neighbourhood of 3-4 
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cells. A co-localisation between each pair of phenotypes 𝑖 and 𝑗 was considered a 

unique type of spatial interaction. The proportion of all interactions belonging to 

this type  𝑝𝑖,𝑗 could then be calculated. If each type of interaction is considered as a 

separate “species”, Shannon’s entropy diversity index for the distribution of inter-

actions in a sample can be derived: 

Interaction entropy =  − ∑ ∑ 𝑝𝑖,𝑗ln (𝑝𝑖,𝑗)𝑛
𝑖=j

𝑛
𝑗=1                         (5) 

In the current study all 𝑛 TIL phenotypes that were observed in the samples across 

the entire dataset were assessed, while cells expressing only DAPI were ignored. 

Intuitively, interaction entropy quantifies the diversity of co-localisations between 

immune subsets in the tumour microenvironment.  

Figure 40 provides a summary of the methodology steps. 
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Figure 39 Demonstration of how spatial interactions are calculated. (A) CD8 (yellow) and 

DAPI (blue); (B) FOXP3 (green) and DAPI (blue); (m) spatial “interactions” between cells 

scored as FOXP3+ (shown in red) and CD8+ (shown in yellow) are plotted as connections 

(shown in white) between cells occurring within 30μm of each other. 
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Figure 40 Summary of methodology for automated diversity analysis in the tumour micro-

environment of FL. 

4.2.2.9 Statistical analysis 

Since cores were extracted in triplicate for each patient, the median feature value 

was used to represent the patient. Univariable analysis for OS and PFS was carried 

out using Cox regression models, where all features were treated as continuous var-

iables. Multivariable analysis involved building Cox regression models to assess 

associations, independent of FLIPI. FLIPI was assessed as an ordinal score (0-5)49. 

Kaplan-Meier analysis for the diversity features was carried out by dichotomising 

the variables at the optimal cut-point and adjusting the estimated significance to 

account for bias using the Contal and O’Quigley method.386 The findcut implemen-

tation in SAS 9.4 was used for optimal cut-point selection.387 Univariable and mul-

tivariable logistic regression was also applied for POD24 prediction. All patients 

included in POD24 analyses had at least 24 months of follow-up.  

Significance was assessed at a level α = 0.05 and the Bonferroni correction was 

applied to account for multiple hypothesis testing. Statistical tests were performed 

using the lifelines v.0.14.6, statsmodels v.0.10.1 and scipy v.1.3.1 libraries in Py-

thon.  
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4.2.3 Results 

Table 27 summarises patient characteristics at diagnosis. The 3- and 5- year OS 

rates were 97.7% (95% CI: 92.67, 99.22) and 94.46% (95% CI: 88.51, 97.14).  

Table 27 Baseline characteristics of the 127-patient cohort 

Characteristic Value No.  % 

Median Age, years 59     

Age, years ≤ 60 69 54% 

  > 60 58 46% 

Age Range, years 31-92     

Histologic Grading 1 37 29% 

  1/2 12 9% 

  2 45 35% 

  2/3a 6 5% 

  3a 20 16% 

  Unspecified 7 6% 

Serum LDH > 549 IU/L 12 11% 

  ≤ 549 IU/L 96 89% 

Ann Arbor Stage I-II 46 36% 

  III-IV 81 64% 

No. of Nodal Sites 0-4 79 70% 

  > 4 35 30% 

Hb Level g/dL ≥ 12 91 82% 

  < 12 20 18% 

BM Involvement Presence 45 38% 

  Absence 73 61% 

ENS, Excluding BM Presence 37 30% 

  Absence 88 70% 

ECOG Performance Status 0-1 85 97% 

  > 1 3 3% 

FLIPI 0-1 45 44% 

  2 33 33% 

  3-5 23 23% 

Initial Treatment Watchful waiting (WW) 35 28% 

  Radiotherapy 25 20% 

  Rituximab regimens 67 52% 

Rituximab Regimens R-CVP 44 66% 

  R-CHOP 9 13% 

  R-Ibritumomab tiuxetan 10 15% 

  Rituximab single agent 3 5% 

  R-Bendamustine 1 1% 

BM indicates bone marrow; ECOG, Eastern Cooperative Oncology Group (ECOG) 

Performance Status; ENS, Extra-Nodal Sites; Hb, haemoglobin; LDH, Lactic Acid 

Dehydrogenase; R, rituximab;  R-CHOP, rituximab, cyclophosphamide, doxorubicin 

hydrochloride (hydroxydaunorubicin), vincristine sulphate and prednisolone; and R-

CVP, rituximab, cyclophosphamide, vincristine sulphate, and prednisolone. 
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4.2.3.1 Prevalence of POD24 

For POD24 analysis, 67 patients had a minimum of 2 years follow-up, and 14 had 

an observed progression event within 24 months of the initiation of immuno-chem-

otherapy (20.3%). POD24 was an indicator of unfavourable OS (p=0.001) and PFS 

(p<0.001; (Figure 41). 

 

Figure 41 Kaplan-Meier analysis with POD24 in the rituximab treated subgroup to test 

associations to OS and PFS. 

4.2.3.2 Prognostic value of clinical and biochemical characteristics 

As a baseline for this cohort, the prognostic value of clinical and biochemical char-

acteristics commonly used to assess patient risk (e.g., FLIPI) was tested in univari-

able Cox regression analysis. 

4.2.3.2.1 FLIPI and extra-nodal site involvement predict OS 

FLIPI considers age, stage, haemoglobin levels, Lactate Dehydrogenase (LDH) lev-

els and number of nodal site involvement. FLIPI data was available at diagnosis for 

101 patients, of which 51 were treated with rituximab-based regimens. The distri-

bution of FLIPI index risk (low: 44%, intermediate: 33%, high: 23%) is similar to 

that reported by others51. FLIPI was prognostic for overall survival (HR=1.57, 95% 

CI 1.09, 2.26) in the 101-patient cohort, but not PFS (HR=1.30, 95% CI 0.95, 1.77) 

in the 51 rituximab treated patients. When examining individual FLIPI components, 

age, and haemoglobin were associated with OS (Table 28). Additionally, extra-

nodal site (HR=3.81, 95% CI 1.68, 8.63) and bone marrow (HR=3.33, 95% CI 1.39, 

8.01) involvement correlated to unfavourable OS.  
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4.2.3.2.2 Haemoglobin, ECOG status and stage predict early progression 

Only low haemoglobin levels (HR=2.66, 95% CI 1.31, 5.43) and ECOG status 

(HR=6.83, 95% CI 1.49, 31.39) were associated with unfavourable PFS (Table 28). 

Advanced stage at diagnosis was more commonly observed in patients who devel-

oped POD24 (p=0.041,Table 28). 

Table 28 Survival and POD24 analysis for clinical variables 

Adverse Factor 

Cox PH Univariable OS  Cox PH Univariable PFS  POD24 

All Patients Rituximab Patients 

HR  

(95% CI) 
P* N  

HR  

(95% CI) 
P* N PPOD24

† N  

Age > 60 years 
2.80 

0.017 127  
0.77 

0.412 67  0.088 67  
(1.2, 6.53) (0.41, 1.45) 

Grade 3a 
0.98 

0.961 120  
0.61 

0.305 61  0.308 61  
(0.36, 2.63) (0.23, 1.57) 

LDH > 549 IU/L 
0.95 

0.942 108  
0.82 

0.688 58  0.315 58 
(0.22, 4.11) (0.31, 2.14) 

Stage III or IV 
2.69 

0.052 127  
2.18 

0.140 67  0.041 67 
(0.99, 7.3) (0.77, 6.15) 

NS > 4 
0.95 

0.912 114  
1.29 

0.469 56  0.085 56  
(0.37, 2.45) (0.65, 2.55) 

Hb < 12 g/dL 
3.13 

0.017 111  
2.66 

0.007 59  0.106 59 
(1.23, 7.97) (1.31, 5.43) 

BM Presence 
3.33 

0.007 118  
1.78 

0.107 60  0.122 60  
(1.39, 8.01) (0.88, 3.6) 

ECOG > 1 
6.05 

0.095 88 
6.83 

0.014 46 0.090 46  
(0.73, 49.97) (1.49, 31.39) 

ENS Presence 
3.81 

0.001 125  
1.26 

0.474 65  0.445 65  
(1.68, 8.63) (0.67, 2.37) 

FLIPI  

0-5 

1.57 
0.014 101  

1.30 
0.102 51  0.214 51  

(1.09, 2.26) (0.95, 1.77) 

OS indicates overall survival; PFS indicates progression free survival; POD24, progression of 

disease within 24 months of treatment; CI indicates confidence intervals; HR, hazard ratio; PH, 

proportional hazards; BM indicates bone marrow; NS, nodal sites; ECOG, Eastern Cooperative 

Oncology Group (ECOG) Performance Status; ENS, Extra-Nodal Sites; Hb, haemoglobin; 

LDH, Lactic Acid Dehydrogenase; FLIPI, Follicular Lymphoma International Prognostic Index. 

*P value testing significance of the log rank test. †P value testing significance of the Mann-

Whitney U statistic testing differences between POD24 positive and negative subgroups. P val-

ues < 0.05 are shown in bold. 
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4.2.3.3 Distribution of immune cell densities and diversity metrics 

Table 29 provides the median, inter-quantile range, and intra-patient coefficient of 

variation (CoV) of cell populations and diversity metrics in the 127-patient cohort. 

The CoV measures intra-patient heterogeneity between different TMA cores for the 

same patient.  

Table 29 Median and interquartile range for tumour microenvironment features in the data 

set 

Features 

Feature Distribution (Median [Q25, Q75]) 

Cohort (N=127) 
Rituximab 

(N=67) 
CoV 

Cell Density, 

cells / mm2 

 

CD4+CD68-  

T-helper cells 
219.5 [110.9, 311.0] 

170.6  

[83.3, 275.9] 
45.7% 

CD4+FOXP3+  

T-regs 
14.1 [5.8, 24.1] 11.5 [5.7, 23.8] 51.6% 

CD8+ T-cells 72.8 [26.8, 125.5] 58.0 [22.8, 117.0] 37.4% 

CD68+ cells 126.0 [77.6, 184.6] 
121.2  

[74.9, 171.8] 
28.7% 

CD4+CD68-PD-1+ 26.6 [9.0, 58.3] 25.1 [6.7, 53.5] 61.3% 

CD8+PD-1+ 10.3 [3.9, 23.0] 9.5 [3.9, 17.0] 58.3% 

Cell Ratio 
Immune infiltrate 

 ratio† 
0.4 [0.3, 0.7] 0.4 [0.2, 0.6] 32.4% 

% Positive Area 
CD21+ dendritic 

 meshwork area 
0.3 [0.0, 0.4] 0.3 [0.1, 0.5] 73.5% 

Diversity,  

natural digits 

Phenotype entropy 1.9 [1.7, 2.1] 1.9 [1.8, 2.1] 8.3% 

Interaction entropy 4.0 [3.6, 4.4] 4.0 [3.7, 4.4] 7.7% 

Q25 and Q75: 25th and 75th quantile, respectively. CoV: The average intra-patient coefficient 

of variation. †Immune infiltrate ratio is calculated as the total immune cells (positive for any 

marker) divided by the number of cells that expressed only DAPI. 
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The CoV of the diversity metrics was very low (7.7% and 8.3% for interaction and 

phenotype entropy, respectively), indicating that diversity in FL could be robustly 

measured by use of triplicate core samples. In contrast, all other features assessed 

showed higher disagreement between measurements from different cores (CoV >28 

%), indicating that a higher number of cores may be necessary to obtain a repre-

sentative value of these features on a patient level. 

4.2.3.4 Cell population densities were not prognostic in multivariable anal-

ysis 

In univariable Cox regression for OS, only the density of macrophages (HR=0.99, 

95% CI 0.98, 1.0) was significant after the Bonferroni correction for multiple com-

parisons (Table 30). However, in univariable Cox regression for PFS (Table 30), 

POD24 logistic regression (Table 32), and all multivariable analyses (Table 31, 

Table 32), none of the cell population densities were statistically significant.  

4.2.3.5 Immune infiltrate diversity analysis 

Increased diversity of cell types (HR=0.22, 95% CI 0.07, 0.64) and diversity of 

spatial interactions (HR=0.47, 95% CI 0.27, 0.82) were favourable for OS in uni-

variable Cox regression analysis (N=127, Table 30). Furthermore, in multivariable 

Cox regression analysis (N=101, Table 31), the diversity of phenotypes remained 

favourable for OS after the Bonferroni correction (HR=0.39, 95% CI 0.20, 0.75). 

Therefore, the immune diversity biomarker offers prognostic value, independent of 

FLIPI. This effect was not seen in PFS (Table 31) and POD24 (Table 32) regres-

sion analyses.  

Kaplan-Meier analysis showed a trend towards increased diversities being favour-

able for OS (Figure 42), when stratified at the optimal cut-off. The optimal cut-off 

was selected using the Contal & O’ Quigley387 method, where all possible cut-offs 

are tested and the p-value is adjusted to account for the bias of multiple testing. 

Stratification of OS based on the diversity of phenotypes was significant (adjusted 

p = 0.032), assigning 45.6% of patients to the poor prognostic group. 
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Table 30 Univariable survival analysis for features derived from the tumour microenviron-

ment 

 Univariable Analysis 

Cox PH Univariable 

OS                                                                

All Patients,                            

N=127, 27 Events 

Cox PH Univariable 

PFS                                                                    

Rituximab Patients,                                 

N=67, 39 Events 

HR (95% CI) P* HR (95% CI) P* 

Cell        

Density, 

cells / mm2 

CD4+CD68- T-helper cells 1 (1, 1) 0.264 1 (1, 1) 0.160 

CD4+FOXP3+ T-regs 0.96 (0.92, 0.99) 0.023 0.97 (0.95, 1) 0.022 

CD8+ T-cells 0.99 (0.99, 1) 0.055 1 (0.99, 1) 0.211 

CD68+ cells 0.99 (0.98, 1) 0.002 0.99 (0.99, 1) 0.010 

CD4+CD68-PD-1+ 0.99 (0.98, 1.01) 0.278 1 (0.99, 1.01) 0.467 

CD8+PD-1+ 0.97 (0.94, 1) 0.084 0.99 (0.97, 1.01) 0.253 

Cell Ratio Immune infiltrate ratio† 0.21 (0.05, 0.92) 0.039 0.25 (0.08, 0.82) 0.023 

% Positive 

Area 

CD21+ dendritic  

meshwork area 
1.65 (0.31, 8.8) 0.556 1.35 (0.41, 4.48) 0.626 

Diversity, 

natural 

digits 

Phenotype entropy 0.22 (0.07, 0.64) 0.006 0.69 (0.3, 1.61) 0.393 

Interaction entropy 0.47 (0.27, 0.82) 0.007 0.81 (0.52, 1.27) 0.359 

HR: hazard ratio; CI: confidence intervals; PH: proportional hazards; OS: overall survival; PFS: 

progression free survival. *The log rank test p value examines whether the null hypothesis of no 

effect (H0: HR=1) can be rejected. †Immune infiltrate ratio is calculated as the total immune 

cells (positive for any marker) divided by the number of cells that expressed only DAPI. P val-

ues < 0.05 are shown in bold. All features were assessed as continuous variables. P values < 

0.005 remain significant after the Bonferroni correction for multiple hypothesis testing. 
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Table 31 Multivariable survival analysis for features derived from the tumour microenvi-

ronment 

  

Multivariable 

Models with 

FLIPI 

Cox PH Multivariable 

OS  

Cox PH Multivariable 

PFS  

All Patients,                   

N=101, 20 events 

Rituximab Patients,         

N=51, 29 events 

HR (95% CI) P* HR (95% CI) P* 

Cell Density,               

cells / mm2 

 

 

 

  

CD4+CD68- T-

helper cells 
0.872 0.872 1 (1, 1) 0.158 

CD4+FOXP3+ T-

regs 
0.96 (0.92, 1) 0.066 0.98 (0.95, 1) 0.109 

CD8+ T-cells 1 (0.99, 1) 0.315 1 (0.99, 1) 0.561 

CD68+ cells 0.99 (0.98, 1) 0.013 0.99 (0.99, 1) 0.046 

CD4+CD68-PD-1+ 1 (0.98, 1.01) 0.478 1 (0.99, 1.01) 0.907 

CD8+PD-1+ 0.97 (0.94, 1.01) 0.137 1 (0.98, 1.01) 0.613 

Cell Ratio 
Immune infiltrate 

ratio† 
0.37 (0.07, 2) 0.247 0.35 (0.09, 1.37) 0.131 

% 

Positive Area 

CD21+ dendritic 

meshwork area 
0.4 (0.09, 1.69) 0.2115 1.08 (0.25, 4.79) 0.915 

Diversity, 

natural 

digits 

Phenotype en-

tropy 
0.19 (0.06, 0.65) 0.008 0.85 (0.31, 2.31) 0.750 

Interaction en-

tropy 
0.39 (0.2, 0.75) 0.005 0.9 (0.53, 1.53) 0.700 

Only subset of patients with available FLIPI data at diagnosis is included. HR: hazard ratio; CI: 

confidence intervals; PH: proportional hazards; OS: overall survival; PFS: progression free sur-

vival. *The log rank test p value examines whether the null hypothesis of no effect (H0: HR=1) 

can be rejected. Features are assessed as continuous variables. †Immune infiltrate ratio is calcu-

lated as the total immune cells (positive for any marker) divided by the number of cells that ex-

pressed only DAPI. P values < 0.05 are shown in bold. P values < 0.0056 remain significant af-

ter the Bonferroni correction for multiple hypothesis testing. 
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Figure 42 Kaplan-Meier survival analysis for the new diversity metrics. Analysis shown 

for overall survival (OS), where patients have been split into two groups based on the op-

timal cut-points, found using the Contal & O’Quigley method.387 PLog Rank: significance for 

the Log rank test and PC.O.: significance for the Contal & O’Quigley test387 adjusted for the 

fact that the optimal cut-point has been selected to maximise separation of patient groups. 

A) Effect of phenotype entropy (diversity) on OS. B) Effect of HID spatial “interaction” 

entropy (diversity) on OS. 
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Table 32 Logistic regression for POD24 prediction in the subset treated with rituximab 

containing regimens 

 

Logistic Regression 

for POD24 

Univariable 
Multivariable with 

FLIPI 

(Rituximab patients, 

 N=67 [14 events]) 

(Rituximab patients, 

N=51 [8 events]) 

OR (95% CI) P* OR (95% CI) P* 

Cell Density,               

cells / mm2 

CD4+CD68- T-helper 

cells 
0.99 (0.99, 1) 0.027 0.99 (0.98, 1) 0.034 

 CD4+FOXP3+ T-regs 0.95 (0.9, 1) 0.066 0.95 (0.88, 1.02) 0.132 

 CD8+ T-cells 1 (0.99, 1.01) 0.465 1 (0.99, 1.01) 0.638 

 CD68+ cells 0.99 (0.98, 1) 0.051 0.98 (0.97, 1) 0.063 

 CD4+CD68-PD-1+ 0.98 (0.96, 1.01) 0.116 0.96 (0.92, 1.01) 0.100 

 CD8+PD-1+ 0.98 (0.95, 1.02) 0.389 0.97 (0.92, 1.04) 0.410 

Cell Ratio 
Immune infiltrate 

ratio† 
0.02 (0, 0.48) 0.017 0.01 (0, 1.23) 0.060 

 % Positive 

Area 

CD21+ dendritic 

meshwork area 
0.28 (0.02, 3.65) 0.334 0.06 (0, 3.14) 0.166 

Diversity, 

natural digits 

Phenotype entropy 0.73 (0.13, 4.07) 0.718 0.64 (0.08, 5.07) 0.669 

Interaction entropy 0.82 (0.33, 2.02) 0.665 0.75 (0.25, 2.27) 0.610 

Only subset of patients with available FLIPI data at diagnosis is included in multivariable analy-

sis and features treated as continuous variables. *The log rank test p value examines whether the 

null hypothesis of no effect (H0: Odds ratio=1) can be rejected. †Immune infiltrate ratio is calcu-

lated as the total immune cells (positive for any marker) divided by the number  of cells that ex-

pressed only DAPI. Features are assessed as continuous variables. P values < 0.05 are shown in 

bold. P values < 0.005 would remain significant after the Bonferroni correction for multiple hy-

pothesis testing. 
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4.2.4 Discussion 

This study introduced a 6-plex immunofluorescence protocol for concurrent obser-

vation of immune subsets and an image analysis pipeline to detect cell types and 

objectively measure tumour microenvironment diversity. This new approach pro-

vides a versatile and adaptable platform that could be extended to other tumour 

types. The proposed pipeline benefits from precise marker localisation as well as 

conservation of valuable tissue material through multiplexing. The improved accu-

racy and reliability of quantitative immunofluorescence compared to conventional 

immunohistochemistry, and its cost-effectiveness compared to in-situ hybridisa-

tion, provide scope and rationale for wider clinical adoption. 

Developing baseline prognostic biomarkers for risk stratification is a major area of 

research in FL, driven by an urgent need to develop effective therapies capable of 

improving the outcomes, especially for patients with of high-risk disease. Using 

this pipeline, this analysis reports that increased diversity of immune infiltrate pop-

ulations and interactions in FL are potential biomarkers of favourable OS. Diversity 

was quantified through a novel approach using Shannon’s entropy, a metric describ-

ing species biodiversity in ecological sciences. The diversity of spatial interactions 

remained significant after Bonferroni correction for multiple comparisons in multi-

variable analysis of OS. Therefore, this biomarker could improve risk stratification, 

offering additional prognostic value to FLIPI. The diversity biomarkers also out-

performed simple cell density measurements. Indeed, none of the immune infiltrate 

cell densities remained significantly associated with survival endpoints in multivar-

iable analysis after Bonferroni correction (Table 31), similar to results reported by 

others65 for rituximab treated patients. This evidence supports applicability of the 

diversity biomarker for risk stratification in FL. Furthermore, a favourable trend 

was observed between increased total immune infiltrate ratio and improved OS, 

PFS and fewer POD24 events in all univariable analyses, indicating that both the 

extent of the immune infiltrate and its diversity may affect FL prognosis.  

Increased diversity translates to diffuse and increased expression of multiple lym-

phocytic and myeloid cell subsets in the microenvironment of FL. Previous studies 

investigating tumour immune microenvironment diversity have demonstrated the 

importance of diversity in T-cell populations, as measured by T-cell receptor (TCR) 

Next Generation sequencing, in a way that is agnostic to the types of T-cells that 
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are quantified.388 Increased TCR diversity has been associated with improved clin-

ical benefit in metastatic melanoma,389 and favourable overall survival in metastatic 

breast cancer.390 Furthermore, clonal TCR diversity has been shown to increase af-

ter immunotherapy treatments (e.g., cryo-immunotherapy for breast cancer389 and 

Sipuleucel-T immunotherapy for prostate cancer391) and is investigated as a poten-

tial endpoint for response to therapy.390 A diverse T-cell repertoire is thought to 

increases the likelihood that a useful anti-tumour T-cell population is present,389 

leading to favourable outcomes. In this study the concept of diversity was expanded 

to include T-cells and macrophage subsets and propose that a diverse repertoire of 

immune cells in the microenvironment of FL would similarly increase the likeli-

hood of relevant anti-tumour pathways being active. 

In this study, CD68+ macrophages were significantly correlated with favourable OS 

in univariable analysis, after Bonferroni correction. A favourable trend of increased 

CD68+ density was observed for PFS and POD24. This effect could be attributed to 

one of the mechanisms of action of the anti-CD20 rituximab treatment, whose im-

mune-mobilising effects include the induction of antibody-dependent cell phagocy-

tosis.392 Consequently, cells coated with rituximab are recognised by macrophages 

as targets and killed.91 The favourable effect of macrophages has been previously 

demonstrated in a rituximab treated cohort.86 However, this effect depends strongly 

on the type of treatment, as in cohorts treated without rituximab89,90 increased num-

bers of tumour associated macrophages correlated with unfavourable outcome. 

To ensure reproducibility of results, the staining assay and cell detection algorithms 

were quantitatively validated, and the image dataset is shared publicly384. The FL 

cohort included treatment pathways and prognostic outcomes reflective of current 

modern practice. The TMA technology employed is equivalent to whole section 

assessments in lymphomas393, enabling rapid processing of large number of sam-

ples. Furthermore, the diversity metrics demonstrated low intra-patient heterogene-

ity (CoV = 7.7-8.3%), indicating robustness when assessed using triplicate TMA 

core samples.  

A limitation of this study is the use of a single cut-off to score positive and negative 

cells for each stain. Robust cut-offs were selected by two different users of the com-

puter assisted scoring system. However, this approach may sometimes underper-
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form because of the inherent variation of staining intensities in positive cells. No-

tably, in FL two functionally different PD-1+ cell phenotypes have been observed,81 

characterised by different levels of PD-1 expression: PD-1+
high T follicular helper 

cells found inside the follicles actively support FL B-cell growth, while the PD-

1+
low cells found outside the follicles represent exhausted T-cells. The PD-1+ T-

helper cells found within the follicles are also known to express CD4 less strongly 

(30.7% lower CD4 intensity) compared to other CD4+ cells in the interfollicular 

areas.85 The present study attempted to select single cut-offs able to pick up both 

the dim and bright positive cells. Use of multiple cut-offs was avoided as nuanced 

intensity variations can be challenging to capture using manual gating in a repro-

ducible manner. An alternative scoring approach could adopt automated cluster-

ing219 of cells based on their intensities, or rely on additional functional markers in 

the multiplex panel (e.g., TIM3 for exhausted phenotypes or CXCR5 for T follicular 

helper cells81) to differentiate between PD-1 subsets. 

Analysis of PFS and POD24 in the rituximab-treated subset did not demonstrate 

significant prognostic value for any of the immune infiltrate biomarkers, after cor-

rections for multiple hypothesis testing. However, the limited size and variable 

treatment increase the risk of false negative results. Therefore, the effect of tumour 

microenvironment diversity on early relapse merits further investigation before it 

could be ruled out.  

Similar to the biomarker described in chapter 3, the automated pipeline to identify 

cell subsets and measure diversity in FL can also be considered as an interactive, 

definable and interpretable CAS system, whose accuracy in this study is validated 

against patient clinical endpoints (OS, PFS, POD24). Following the design require-

ments identified in chapter 2, further work before clinical adoption should validate 

reproducibility under variable staining conditions, time-efficiency and establish a 

method to identify samples that are challenging (i.e., have high uncertainty). Future 

work may also involve validation of diversity measurements using orthogonal as-

says, such as gene expression profiling. 

In summary, automated assessment of immune infiltrate diversity, based on multi-

plex immunofluorescence, warrants further exploration as a prognostic biomarker 

in FL. This pipeline is ready to be tested in larger series, with the potential to sig-

nificantly improve risk stratification and risk-adapted treatment for FL in the future. 
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4.3 Summary 

Follicular lymphoma (FL) prognosis is influenced by the composition of the tumour 

microenvironment. An automated approach to quantitatively assess the phenotypic 

and spatial immune infiltrate diversity was tested as a prognostic biomarker for FL 

patients.  

Diagnostic biopsies were collected from 127 FL patients initially treated with ritux-

imab-based therapy (52%), radiotherapy (20%) or active surveillance (28%). Tissue 

microarrays were constructed and stained using multiplex immunofluorescence 

(CD4, CD8, FOXP3, CD21, PD-1, CD68 and DAPI). Subsequently, sections un-

derwent automated cell scoring and analysis of spatial interactions, defined as cells 

co-localising within 30 μm. Shannon’s entropy, a metric describing species biodi-

versity in ecological habitats, was applied to quantify immune infiltrate diversity of 

cell types and spatial interactions.  Immune infiltrate diversity indices were tested 

in multivariable Cox regression and Kaplan-Meier analysis for overall (OS) and 

progression free survival (PFS).  

Increased diversity of cell types (HR=0.19 95% CI 0.06-0.65, p=0.008) and cell 

spatial interactions (HR=0.39, 95% CI 0.20-0.75, p=0.005) were associated with 

favourable OS, independent of the Follicular Lymphoma International Prognostic 

Index. In the rituximab treated subset, the effect of diversity on PFS did not reach 

statistical significance. 

Multiplex immunofluorescence and Shannon’s entropy can objectively quantify 

immune infiltrate diversity and generate prognostic information in FL. This auto-

mated approach warrants validation in additional FL cohorts and its applicability as 

a pre-treatment biomarker to identify high risk patients should be further explored. 

The multiplex image dataset generated by this study is shared publicly to encourage 

further research on the FL microenvironment. 
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5 Conclusions 

This thesis sought to establish multiplex assays and image analysis methodologies 

that would enable a clinically meaningful quantification of the tumour microenvi-

ronment. The key contributions are summarised below. 

Computer assisted scoring (CAS) tools are essential for the analysis of multiplex 

images. The first contribution of this work was a comprehensive description of de-

sign requirements for CAS tools. Although requirements have been previously de-

scribed for manual scoring systems,217,238 to the best of the author’s knowledge, the 

equivalent requirements for CAS are still unclear. These requirements and valida-

tion practices were identified through systematic review of CAS validation for 

HER2, ER and three T-cell marker assessment in the past 20 years. Scoring is a 

prerequisite for numerous routine histopathology analyses and could greatly benefit 

from the introduction of objective, computer assisted tools that increase reproduci-

bility and throughput. The newly identified design requirements provide a guide to 

judge the performance of new algorithms and determine whether use of an auto-

mated scoring tool is equivalent or superior to the standard-of-care, manual scoring 

system. The requirements outline that CAS algorithms should be well defined, pro-

vide accurate patient categorisation, be reproducible, time-efficient, interpretable 

and able to accurately estimate confidence in their predictions. Furthermore, a meta-

analysis of agreement between automated and manual scoring determined the over-

all accuracy of CAS technology for assessment of HER2 and ER. Assessment of 

these markers has significant clinical implications for selecting adjuvant treatments 

in breast cancer and determining prognosis. CAS agreement with manual scoring 

was similar to inter-observer agreement between pathologists in manual scoring.  

The second contribution of this thesis was the development of CAS pipelines for 

the analysis of multiplex images in OPSCC and FL. CAS is required for the analysis 

and identification of cell phenotypes in such images, as the high number of stains 

visualised concurrently cannot be interpreted manually at large scale. A step-by-

step comparison of the two pipelines developed for OPSCC and FL are presented 

in Table 33.  
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Table 33 Comparison of image analysis CAS pipelines developed for OPSCC and FL 

Step  OPSCC CAS tool FL CAS tool 

Useful tissue area identifica-

tion 

Supervised classification (U-

net) to identify background, 

artefacts and useful tissue  

- Automated thresholding 

to find tissue area 

- Manual identification 

and removal of artefacts  

Outlining nuclear shapes 

(segmentation) 

Label-free watershed  Supervised nuclear segmenta-

tion (StarDist) 

Outlining membranes Size constrained region grow-

ing around the nucleus 

Size constrained region grow-

ing around the nucleus 

Cell classification - Median intensity of each 

stain in the relevant cel-

lular compartment was 

measured 

- Positivity cut-off for each 

stain manually selected 

by one user of the CAS 

system 

- Median intensity of each 

stain in the relevant cel-

lular compartment was 

measured 

- Positivity cut-off for each 

stain manually selected 

by two users of the CAS 

system 

 

Both CAS tools are interactive, as they require some input from a trained expert to 

select positivity cut-offs and identify positive cells. They follow similar steps, with 

some noted differences. The OPSCC algorithm included a fully automated step for 

exclusion of artefactual and background image areas, while the FL algorithm relied 

on manual artefact removal. For analyses of subsequent FL cohorts at a larger scale, 

this step could be fully automated with the same approach used for OPSCC.  Fur-

thermore, the label-free nuclear segmentation approach used for OPSCC was not 

adopted for outlining the nuclear shapes in FL samples, where the nuclei were 

densely packed and often overlapping. Instead, a state-of-the-art supervised seg-

mentation approach using a deep convolutional neural network (StarDist) was em-

ployed for FL samples.  

In this work, the only design requirement (from the requirements identified in Chap-

ter 2) that was explicitly validated for the new CAS tools was accuracy. In both 

CAS tools, the accuracy of the nuclear segmentation steps was validated against 

manual nuclear shape annotations. Furthermore, the analytical validity of these 
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CAS tools in terms of accuracy in patient categorisation was validated against pa-

tient clinical endpoints: overall survival in OPSCC and overall, progression-free 

survival and POD24 in FL.  

Using the developed CAS system, the third contribution of this work was the dis-

covery of a new biomarker in OPSCC, and analysis of cellular interactions in the 

tumour microenvironment using the HID methodology. Frequent spatial proximity 

between cell types that are known to interact as part of the PD-1/PD-L1 immune 

escape pathway was identified as an adverse prognostic biomarker in HPV negative 

OPSCC. This biomarker was able to successfully identify at the time of diagnosis 

the patients who will have poor overall survival. 

The last contribution was the proposal of a new biomarker in FL, based on the phe-

notypic and spatial interaction diversity of the tumour microenvironment. By ex-

amining the follicular lymphoma microenvironment as a whole, this biomarker was 

able to accurately predict overall survival at baseline. The diversity biomarkers out-

performed other microenvironment indicators and provided prognostic value inde-

pendently of the standard-of-care prognostic index (FLIPI). Additional research 

outcomes from this work were the development and validation of a new multiplex 

immunofluorescent assay for the observation of six antigen targets concurrently on 

FL tissue, and an image analysis pipeline for characterisation tumour microenvi-

ronment diversity that could be extended for any type of cancer. 

The new biomarkers based on spatial interaction analysis in OPSCC and diversity 

analysis of the tumour microenvironment in FL are ready to be validated in addi-

tional cohorts, offering potential for improved risk stratification of patients at base-

line diagnosis. Compared to other clinical indicators (e.g., age, stage, FLIPI), bi-

omarkers based on multiplexed spatial profiling of the tumour microenvironment 

offer additional insights and can capture information on significant cell interactions 

that affect prognosis, thus improving precision in clinical decision making. Other 

technologies to describe the tumour microenvironment, such as RNA signatures,394 

have sparked interest in recent years. Multiplex immunofluorescence methods us-

ing tissue microarray technology offer a cost-effective alternative to RNA assays, 

with the added benefit of preserving the spatial context.  

Contrary to other tumour microenvironment assays, the adoption of multiplex spa-

tial biomarkers is conditional upon the wider clinical adoption of digital pathology 
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and CAS tools in everyday practice. Even though this presents significant chal-

lenges, progress is steadily being made in this direction. Therefore, we may soon 

re-imagine the pathology workflow as fully digital, with information from multiple 

antigens available at once to the pathologist, along with several automatically cal-

culated phenotype, spatial and diversity indicators to provide quantitative insights. 

This workflow could increase throughput and precision in clinical decision making 

across manifold applications. 

5.1 CAS design requirements as a guide for further validation 

Further validation of the tumour microenvironment biomarkers introduced in this 

thesis will be required for translation to clinically meaningful applications. The au-

tomated image analysis pipelines used to produce the biomarker scores can be seen 

as interactive CAS systems and therefore would need to demonstrate satisfaction of 

the design requirements outlined in Chapter 2. The systems developed in this thesis 

are well defined and interpretable, and accuracy in patient categorisation was vali-

dated against clinical survival endpoints. However further work is needed to a) val-

idate accuracy of patient categorisation in independent cohorts and/or against or-

thogonal assays, b) assess reproducibility, c) time efficiency and d) develop accu-

rate methodologies to estimate confidence. These steps are described below: 

a) A limitation of the present analysis is the limited size of cohorts in OPSCC 

and FL, which may limit statistical power. The accuracy of patient catego-

risation based on the proposed biomarkers would need validation in larger, 

independent cohorts. Homogeneously treated cohorts would be necessary to 

validate these biomarkers as predictive, enabling their use for selection of 

appropriate treatments.  

Furthermore, accuracy of cell phenotyping may be improved by implemen-

tation of a single-cell classifier using label-free clustering approaches, in-

stead of adopting a simplistic stain intensity cut-off to indicate positive/ neg-

ative cells. Accuracy of the cell density measurements could be further val-

idated by demonstrating agreement with orthogonal assays, such as other 

multiplex in situ technologies (e.g., imaging mass cytometry), or alternative 

non in situ methods (e.g., flow cytometry). Accuracy may also be tested 

against manual scoring. The analytical validity and reproducibility of any 



 168 

orthogonal methodologies used as reference would need to have been estab-

lished in advance. 

b) Reproducibility assessment would include demonstrating good intra and in-

ter-observer agreement for different users of the CAS tools, as well as re-

peatability of scores despite variability in staining and slide scanning con-

ditions. For this purpose, staining and scoring would be repeated for differ-

ent runs and operators and/or in different labs. 

c) Time efficiency would be judged based on the time window available to the 

physician to perform the scoring assessment. It would also depend on the 

computational resources available, and the time needed for staining and 

scanning the samples. 

d) Finally, confidence estimation methodologies could be developed to iden-

tify challenging samples. Simple approaches may identify problematic sam-

ples with high numbers of artefacts or blurriness, indicate when staining 

intensities lie outside of an accepted range, or observe when there is high 

disagreement between different images of the same patient (different re-

gions of interest or TMA cores). Alternatively, more complex Bayesian sta-

tistical frameworks could be employed during cell segmentation and classi-

fication, e.g., use of Bayesian deep neural networks395 to provide an indica-

tion of uncertainty. Confidence estimation could assist in preventing “si-

lent” failure of the automated image analysis pipeline. Achieving validation 

of these design requirements would facilitate clinical adoption of this tech-

nology.  

5.2 Future work 

The present work undertook initial exploration for tumour microenvironment bi-

omarker discovery in OPSCC and FL. However, the OPSCC biomarker that ob-

serves proximity between cells interacting in the PD-1/PD-L1 pathway would be 

relevant for other cancers where this pathway of immune escape is present. Further-

more, the usefulness of the diversity biomarker could be explored in other lympho-

mas and solid tumours.  

Overall, multiplexed spatial profiling of the tumour microenvironment merits fur-

ther exploration to advance prognostic insights across multiple types of cancer. 
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