
The University of Manchester Research

Towards an interpretable model for automatic
classification of endoscopy images

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
García-Aguirre, R., Torres Treviño, L., Navarro Lopez, E., & González-González, J. A. (Accepted/In press).
Towards an interpretable model for automatic classification of endoscopy images. In Proceedings of the 21st
Mexican International Conference on Artificial Intelligence (MICAI 2022) (Vol. 13612). (Lectures Notes in Artificial
Intelligence; Vol. 13612). Springer Berlin.
Published in:
Proceedings of the 21st Mexican International Conference on Artificial Intelligence (MICAI 2022)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:17. Nov. 2022

https://www.research.manchester.ac.uk/portal/en/publications/towards-an-interpretable-model-for-automatic-classification-of-endoscopy-images(7aa5a791-36bb-42b0-9e46-c21dc1f16aaf).html


Towards an interpretable model for automatic

classi�cation of endoscopy images

Rogelio García-Aguirre1, Luis Torres-Treviño1, Eva María Navarro-López2,3,
José Alberto González-González4

1 Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y
Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, N.L.

CP 66455 México.
2 School of Environment, Education and Development, University of Manchester,

Oxford Road, Manchester M13 9PL, United Kingdom
3 School of Engineering, Computing and Mathematical Sciences, Faculty of Science
and Engineering, University of Wolverhampton, Alan Turing Building, Wulfruna

Street, Wolverhampton WV1 1LY, United Kingdom
4 Servicio de Gastroenterología, Facultad de Medicina, Hospital Universitario "Dr.

José E. González�, Universidad Autónoma de Nuevo León, Monterrey, N.L. CP 64700
México

Abstract. Deep learning strategies have become the mainstream for
computer-assisted diagnosis tools development since they outperform
other machine learning techniques. However, these systems can not reach
their full potential since the lack of understanding of their operation
and questionable generalizability provokes mistrust from the users, lim-
iting their application. In this paper, we generate a Convolutional Neural
Network (CNN) using a genetic algorithm for hyperparameter optimiza-
tion. Our CNN has state-of-the-art classi�cation performance, delivering
higher evaluation metrics than other recent papers that use AI models
to classify images from the same dataset. We provide visual explana-
tions of the classi�cations made by our model implementing Grad-CAM
and analyze the behavior of our model on misclassi�cations using this
technique.

Keywords: Interpretability · Convolutional Neural Networks · Endoscopy
images

1 Introduction

We are living the third arti�cial intelligence (AI) boom [5,21]. Areas such as
computer vision (CV) and natural language processing (NLP) have undergone
considerable progress due to the deep learning (DL) schemes developed during
the last decade. Referring to CV, Deep Neural Networks (DNN) have exceeded
human performance in many applications [2], including medical image classi�ca-
tion [1]. Nevertheless, DNNs are far from perfect. Numerous studies have stated
their concerns about the relevance of the existing DL models in real-world appli-
cations. The focal limitations found for these systems are their interpretability
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scarcity [2,9,16,20] (often referred to as the "black box" condition [11,21,25])
and questionable generalizability [2,20,26,28].

In medicine, image-intensive specialties have bene�tted from AI systems [15].
For the particular matter of endoscopy, numerous publications describe the cur-
rent state of the applications and expectations of AI for this �eld [1,3,4,7,17].
Nevertheless, DL systems are usually unsuitable for clinical application due to
the previously stated limitations of these systems (interpretability scarcity and
questionable generalizability). As DL models become more and more present
for critical applications (such as medicine), model interpretability has been sug-
gested as a solution for the black box condition. Nevertheless, many papers lack
a de�nition of interpretability [13]. For that matter, Lipton [13] stated that in-

terpretability is not a monolithic concept but re�ects several distinct ideas.
We take the following de�nition: the interpretability of an AI system refers to

the possibility for a human to understand the relation between the system's pre-
dictions and the information used to make those predictions [22]. In that sense,
for AI applications in medical image classi�cation, the interpretability purpose
is not to understand every part of an AI system but to have enough informa-
tion for the assigned work [22]. Hence, the radiology �eld requires task-speci�c
interpretability solutions with clinically oriented validations [22]. Following that
idea, Reyes et al. [22] concluded that saliency maps can be integrated easily into

the radiology work�ow because they work at the voxel level; hence, these visual-

ization maps can be fused or merged with patient images and computer-generated

results.

In this work, we aim to explore the capabilities of the current AI tools to
develop a system for automatic endoscopy image classi�cation with the poten-
tial of having a clinical application. To that end, we construct an optimized
Convolutional Neural Network (CNN) using a framework [6] based on genetic
algorithms that perform hyperparameter optimization to increase the CNN clas-
si�cation performance as the model generalizability. Then, as an interpretability
method, we apply the Grad-CAM technique [23] to the network to generate heat
map-like images that aid the visualization of the relevant zones in the input im-
ages for the classi�cation using the optimized CNN. We use the KVASIR dataset
of endoscopy images to develop the optimized CNN and test the interpretability
method. The classi�cation performance of our optimized CNN is state-of-the-art,
and the visualizations using the Grad-CAM technique can locate the regions rel-
evant for the correct classi�cations.

2 Related work

2.1 Classi�cation of endoscopy images

Several studies are using AI to analyze endoscopic images. A great deal of these
focuses on a speci�c gastrointestinal �nding, such as polyp detection and segmen-
tation (e.g., [24]), gastric cancer detection and diagnosis (e.g., [14]), diagnosis
and detection of Helicobacter Pylori infection (e.g., [29]), among others. The
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publication in 2017 of the KVASIR dataset [19], consisting of 8000 images of
di�erent GI �ndings in images of upper endoscopy, made possible the develop-
ment of a new generation of algorithms for endoscopic image classi�cation. These
studies aim to achieve a general classi�cation of the di�erent GI �ndings that
can appear during endoscopy instead of concentrating on a particular su�ering
or symptom. For a detailed review of papers using AI to classify images of the
gastrointestinal tract, refer to Jha et.al [10].

2.2 Interpretability

Interpretability is a critical research topic for AI due to the rise of DL approaches
during the last years [22]. There are di�erent kinds of interpretability methods,
and this area is continually growing. Nevertheless, numerous interpretability
methods have not yet reached the radiology AI systems [22].

In this paper, we focus on providing visual explanations (often refer as
saliency maps), which is the typical form of explainability in medical image
analysis [27]. Saliency maps are often gradient-based techniques [27], which foun-
dation is the assumption that the magnitude of the gradients correlates with the
contribution of voxels to a model's prediction [22]. For an overview of methods
for interpretability of DL for medical image analysis, refer to van der Velden
et.al. [27].

3 Methods and implementation

3.1 Dataset

For our approach development and evaluation, we used the KVASIR dataset
[19], which consists of 8000 images of the gastrointestinal tract insides. This
dataset includes anatomical landmarks, pathological �ndings, procedures, and
normal �ndings. All the images in this dataset belong to one of the following
classes: dyed lifted polyps, dyed resection margins, esophagitis, normal cecum,
normal pylorus, normal z-line, polyps, and ulcerative colitis. We divided the
dataset into three partitions: training, validation, and test. Each partition has
4800, 2000, and 1200 images, respectively.

3.2 Optimized CNN

We performed hyperparameter optimization on o�-the-shelf CNNs based on the
genetic algorithm presented in [6]. This approach automatically generates CNNs
for image classi�cation. The algorithm performs in parallel the training of the
CNNs using gradient-based optimization and hyperparameter optimization with
a genetic algorithm. The two optimization procedures have di�erent optimization
targets and use distinct partitions of the dataset to promote the generalizability
of the resulting models. The hyperparameters of the resulted CNN are listed in
table 1.
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Table 1. Hyperparameters of the resulting CNN using the approach described in [6].

Resulted hyperparameters
aγ bγ cγ aδ bδ cδ Architecture Loss function Optimizer

0.0867 6.1762 0.5883 0.5547 2.9659 0.6659 ResNext-50 32x4d Logit penalty AdaMax

The hyperparameters aγ , bγ , and cγ control the magnitude of the learning
rate as a function of the training epoch and the total number of epochs. Similarly,
aδ, bδ, and cδ control the trainable layers of the CNN during training. The CNN
architecture is the base CNN model. The loss function and optimizer are the
hyperparameters used for the training using gradient-based optimization.

3.3 Grad-CAM

We used the Grad-CAM technique [23] to produce visual explanations of the
classi�cations made by our CNN. This method is based on the fact that deeper
layers in CNNs specialize in higher-level visual features and that convolutional
layers maintain the spatial information of the input data [23].

Grad-CAM uses the gradients of the logit (of the class that is desired to
know the Grad-CAM) with respect to the activations of the last convolutional
layer [23]. Then, these gradients are global-average-pooled over the height and
width [23]. These values function as weights that denote the importance of the
feature maps in the last layer with respect to the given logit [23]. Then the linear
combination of the weighted activations of the last layer is calculated. Finally,
these values pass though a ReLU activation function to eliminate the negative
values [23]. This is because the Grad-CAM focuses on elucidating the regions
in the image that evoke a positive value for the given class's logit, and negative
values of the weighted activations are assumed to represent regions in the input
data that promote a positive value for the logits of other classes [23].

4 Results

4.1 Experimental settings

The experiments were carried out using the following hardware speci�cations:
AMD Ryzen 5 3400G CPU, one NVIDIA GeForce GTX 1660 Ti GPU, 16 GB
RAM, and 476 GB system memory. All the algorithms were implemented in
Python 3.8.5, using the environment Spyder 4.1.5 and Pytorch 1.7.1 for the
CNN modules and gradient-based optimization algorithms.

4.2 Optimized CNN classi�cation performance

The Optimized CNN resulted of the implementation of the method described
in Section 3.2 is a ResNext-50 32x4d. We evaluated the classi�cation perfor-
mance of the optimized CNN using the standar evaluation metrics: recall (REC),
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speci�city (SPEC), accuracy (ACC), precision (PREC), Matthews correlation
coe�cient (MCC), and F1 value (F1).

REC =
TP

TP + FN
(1)

SPEC =
TN

TN + FP
(2)

PREC =
TP

TP + FP
(3)

ACC =
TP + TN

TP + FP + TN + FN
(4)

MCC =
(TP × TN)− (FP × FN)

√
ρ

(5)

with ρ = (TP + FN)(TN + FP )(TP + FP )(TN + FN)

F1 = 2× PREC ×REC
PREC +REC

(6)

In the above, TP, TN, FP and, FN stand for true positive, true negative, false
positive and, false negative, respectively. Table 2 shows the evaluation metrics
of the optmized CNN using the three partitions of the dataset. Figure 1 shows
the confusion matrix of the optimized CNN using the test partition. Figure 2
shows the evaluation metrics of the optimized CNN using the test partition
as recommended in [26] to facilitate the visualization of the CNN classi�cation
performance.

Table 2. Evaluation metrics of the optimized CNN using the test set.

Data partition ACC REC SPEC PREC F1 MCC

Train 0.9962 0.9850 0.9978 0.9850 0.9850 0.9828
Validation 0.9853 0.9415 0.9916 0.9415 0.9415 0.9331

Test 0.9860 0.9441 0.9920 0.9441 0.9442 0.9362

4.3 Visual explanations using Grad-CAM

Using the Grad-CAM technique and image processing, we generated heat map-
like images to aid the visualization of the zones in the input images that evoke
the CNN classi�cation output. Figure 3 shows an example of the heat map-like
images for a correctly classi�ed image per class in the dataset.

We can also construct these heat map-like images to analyze the misclassi-
�cation made by the optimized CNN. Figure 4 shows examples of misclassi�ed
images and compares the heat map-like of the input images for the output logitt
of the wrong prediction and the output logit of the true class.
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Fig. 1. Confusion matrix of the optimized CNN using the test partition. The classes'
codes are: 0-dyed lifted polyps, 1-dyed resection margins, 2-esophagitis, 3-normal ce-
cum, 4-normal pylorus, 5-normal z-line, 6-polyps, and 7-ulcerative colitis.

Fig. 2. Evaluation metrics of the optimized CNN using the test partition.

5 Discussion and conclusions

The classi�cation performance of our optimized CNN is state-of-the-art. Table 3
shows the evaluation metrics of other recent papers using AI models to classify
images of the same dataset.

The work presented by Hicks et.al [8] also used a CNN to classify the KVASIR
dataset images and the Grad-CAM technique for visualization. The main dif-
ference between that paper and ours is the method used to develop the CNN.
Hicks et.al [8] used a VGG-19 with no reported methodology to choose the other
hyperparameters. Instead, we performed hyperparameter optimization based on
genetic algorithms with the speci�c aim of improving the model classi�cation
performance and generalizability [6], taking into account that high classi�cation
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Fig. 3. Examples of every class correctly classi�ed using the optimized CNN and its
corresponding Grad-CAM: "a" correspons to the original image, "b" is the Grad-CAM
rezied to match "a", and "c" is the superimpossed Grad-CAM "b" over "a".

performance is always desired, and the lack of generalization is currently one
focal limitation for the adoption of these kind of systems into clinical practice.

Hicks et.al [8] used the visualizations generated with the Grad-CAM to �nd
properties in the input images that were evoking misclassi�cations. Then, with
this information, they used a preprocessing designed to correct the CNN be-
havior on the misclassi�ed images, achieving a signi�cant improvement in the
CNN classi�cation performance, proving that the visualizations generated us-
ing Grad-CAM can help understand both the areas in an image that evoke a
speci�c classi�cation and posible misbehaviors of the model. Table 4 provides
a comparison of the highest evaluation metrics achieved by Hicks et.al. [8] and
ours.

From the confusion matrix of our optimized CNN (Figure 1), we can observe
that the majority of misclassi�cation involve an anatomical landmark (normal z-
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Fig. 4. Examples of misclassi�cations. The subscript a is for the original images super-
imposed with the Grad-CAM of the true class, and the subscript b is for the original
images superimposed with the Grad-CAM of the predicted class. In parenthesis is the
output logit for the given class. The classes' codes are: 0-dyed lifted polyps, 1-dyed
resection margins, 2-esophagitis, 3-normal cecum, 4-normal pylorus, 5-normal z-line,
6-polyps, and 7-ulcerative colitis.
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Table 3. Evaluation metrics of recent studies using the KVASIR dataset.

Study Year ACC REC SPEC PREC F1 MCC FPS

Lafraxo et.al. [12] 2020 0.9680 0.8770 � 0.874 0.876 � �
Ozturk et.al. [18] 2020 0.9790 0.9232 0.9910 0.9446 0.9264 � �

Our optimized CNN 2022 0.9860 0.9441 0.9920 0.9441 0.9442 0.9362 35.5

Table 4. Evaluation metrics of studies that use a CNN to classify images of the
KVASIR dataset and use a visualization technique for interpretability.

Study Year ACC REC SPEC PREC F1 MCC FPS

Hicks et.al. [8] 2018 0.9440 0.7980 0.7530 0.9680 0.7780 0.7780 �
Our optimized CNN 2022 0.9860 0.9441 0.9920 0.9441 0.9442 0.9362 35.5

line) and a pathological �nding (esophagitis), and the misclassi�cation examples
shown in Figure 4 illustrated that the CNN is focusing in di�erent regions of
the images for the classi�cation of that two classes. Also, both classes have
a positive logit in the examples of misclassi�cation shown in Figure 4. That
means that the CNN determines that the image belongs to both classes, but the
current operation mode of the CNN is to classify the image only in the class
with the highest logit. Since the z-line is in the esophagus and the esophagitis
is a pathology of it. It would be interesting to have a gastroenterologist assess
if the misclassi�ed images between these two classes, in fact, have both �ndings
(esophagitis and normal z-line), as the positive logits suggest.

In this work, we used the existing techniques in the literature to develop
a system for endoscopy image classi�cation with interpretability criteria. Our
optimized CNN has state-of-the-art classi�cation performance, delivering higher
evaluation metrics than other recent papers that use AI models to classify images
from the same dataset. The visualizations constructed using the Grad-CAM
provide information on the regions that evoke a given output logit. However, it
is important to collaborate with physicians to fully understand the implications
of the visualizations. In future work, we can explore other approaches, such as
Prototype-based interpretation to provide explanations by example or adopt a
holistic approach, combining di�erent forms of explanation.
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