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Abstract

Scaled experimentation is an important experimental approach but is known to be limited by scale effects,

which have the undesirable effect of changing the behaviour of a system with scale. Such behavioural changes

with scale can on occasions be so marked to make a scaled experiment almost worthless. Until very recently

there has been no universal solution to this problem with most scaled experiments founded on dimensional

analysis and modified necessarily with ad-hoc scaling rules.

This paper is concerned with the development and application of a new approach to scaled experimenta-

tion called finite similitude for electro-magnetic systems. It is shown how the finite-similitude theory can be

applied to electromagnetism and the governing Maxwell equations in their macroscopic form. The ability of

the theory to account for scale dependencies is investigated to reveal the benefits of performing two scaled

experiments in describing system behaviour.
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1. Introduction

Scaled models of prototypes and processes have a long history with an almost limitless number of applica-

tions across many fields of engineering. Models have been created for marine structures, transport systems,

military applications, manufacturing systems, infrastructure, ecosystems, bio-systems along with a multitude

of specialist mechanical, structural, fluid and electrical systems (see books and recent reviews [1] [2] [3] [4]

[5] [6] [7] [8]). Despite being over one century old the state-of-the-art in scaled experimentation remains

the application of similitude theory involving the dimensionless representation of physics [9]. Similitude

theory is that branch of engineering science concerned with establishing necessary and sufficient conditions

of similarity for phenomena [8]. Scaled models and processes can be classified as true, adequate or distorted

depending on whether they match all the dimensionless quantities, a dominant subset or only some of the

dominant ones, respectively [2]. The reality of complex products and processes is distorted models (i.e., scale

effects) and despite these being used in present-day experiments, they have reduced usefulness and provide

results that often can be difficult to interpret [8].

The importance of scaled experimentation has possibly received fresh impetus with the approach known

as Hardware-In-the-Loop (HIL) simulation, which facilitates the efficient testing of embedded systems. The

renewed impetus comes from the current interest in electrification involving hybrid systems (e.g., see refer-

ences [10][11][12][13]) and the realisation that scaled pieces of kit can form the hardware component enabling

realistic simulations to be performed efficiently and cost effectively [14]. As discussed in reference [14] how-

ever the fundamental drawback with the use of scaled equipment in a HIL simulation is that scale effects can

make behaviours unrealistic and remedial action is invariably required to account for this. The only realistic

remedy at the present time is the application of dimensional analysis and the application of ad-hoc scaling

rules [15]. Although the advantage of HIL simulation is that scaling rules can be easily incorporated, this

aspect invariably adds an element of uncertainly into the investigation being performed.

Scaled experimentation has played and still plays an important role in the investigation of electromechani-

cal systems [16]. The importance of understanding how scaling changes behaviour in micro-electromechanical

systems (MEMS) for example is the topic of the book by Baglio et al. [1]. Similarly Liu and Bar-Cohen [17]

examined the scaling laws relevant to actuation mechanisms (i.e., electrostatic, magnetic, thermal bimetallic,

and piezoelectric) important to MEMS. The most readily observable effect of scaling is scale dependencies

associated with geometric measures, with length scaling linearly, area quadratically and volume cubically.

The fact that there exists scale dependencies however is not the same as scale effects, which are associ-

ated with changes in system behaviour with scale. Fundamental to understanding behaviours requires first

an understanding of the effects of scaling on the governing laws of nature. The focus in this paper is on

the scaling of electromagnetic systems and consequently on the effects of scaling on those laws governing

such systems, which are the renown Maxwell equations. The theory introduced in the paper builds on ex-
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isting work underpinned by Newtonian physics in the areas of impact [18][19][20], powder compaction[21],

bio-mechanics[22] and metal forming[23]. The purpose of the work presented here is for the first time to

examine electromagnetism and its incorporation into a new scaling theory called finite similitude. The work

presented is an important step towards the creation of a scaling theory for the analysis of electromechanics,

facilitating scaled studies into new designs for hybrid machines including traditional devices such as motors

and generators along with micro & nano electromechanical systems.

The scaling of Maxwell equations has of course been considered previously as described by Gustafson in

his book chapter [24] and noted there is the very early work of Sinclair [25]. More recently is the work of Pries

and Hofmann [26], where the scaling of both thermal and Maxwell equations are considered. All previous

studies however can be related directly or indirectly back to dimensional analysis, where the scaling rules

explicitly assume that proportional fields are involved, i.e., any scaled model required to satisfy the rules of

similitude, must have fields that are proportional (see reference [27] for an up-to-date exposition). This rule

is to be broken here by abandoning dimensionless representations and turning instead to the metaphysical

concept of space scaling. The idea has great generality as it can in principle be applied to any physics,

where the system of interest is imagined to be scaled by the contraction of space itself. Although practically

impossible to achieve, what is possible is the interrogation of the effects such a process has on the governing

physics and contrasting these with those equations that describe the scaled experiment.

Finite similitude were first introduced by Davey et al. in reference [23] and has recently been extended

to the areas of impact [28], fracture [29] and earthquake [30] mechanics. In order for Maxwell equations

to be formalised correctly, coordinate systems pertaining to two inertial frames need to be identified. One

frame resides in the physical space, where a full-scale test is to be performed and the other in the trial space,

where the scaled experiment is to be run. The theory starts with the metaphysical concept of space scaling,

which can be defined by forming a differential relationship between the coordinate points in the physical

space xps and those in the trial space xts, i.e, dxts = βdxps, where β quantifies the extent of the scaling

involved with β < 1 for contraction, β = 1 indicating no scaling, and β > 1 for expansion. In addition,

with a focus on Newton physics, a differential relationship between absolute time is assumed to apply, i.e.,

dtts = gdtps where g is a positive function of β. The focus on space naturally gives rise to control volumes,

since these are nothing more than moving/deforming regions of space. Although stationary control-volume

descriptions are common to electromagnetic theory, moving distorting ones are not so prevalent (the authors

could find no reference to them), so some reformulation of the Maxwell equations is required. To achieve this

the macroscopic Maxwell equations are introduced in Sec. 2 along with a generic form of transport equation.

Electromagnetism in transport form is introduced followed by the important step of projecting trial-space

transport equations onto the physical space. This particular mathematical process has the effect of exposing

all scale dependencies in electromagnetism and is critical to the whole approach. Attention is returned to
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finite similitude in Sec. 3, where investigated is an approach to reveal the hidden scale dependencies, which

is achieved by defining a new form of similarity called first-order finite similitude. This takes the form of

a second-order differential equation, which can be readily integrated to reveal field identities. The theory

is applied to relatively simple problems in Sec. 4, which includes a generator, a moving rod in a uniform

magnetic field and a resistor-inductor-capacitor (RLC) circuit. The analysis of these systems is restricted

to analytical studies and a single scaled experiment to illustrate how the finite similitude theory is applied

but additionally to contrast with dimensional analysis. A slightly more involved system is also examined in

this section involving the commercial finite element software Abaqus applied to a time-harmonic problem

concerned with induced Eddy currents. The problem examines the benefit of first-order finite similitude and

two scaled experiments in reducing mismatch between scaled and full-scale responses. The paper ends with

a list of conclusions.

2. A transport approach to the Maxwell equations

Maxwell’s macroscopic equations need little introduction and are of the form:

∇ ·D = ρf (1a)

∇ ·B = 0 (1b)

∇×E = −∂B
∂t

(1c)

∇×H = Jf +
∂D

∂t
(1d)

where for stationary linear materials the electric displacement field D = ϵE and the magnetising field

H = µ−1B, with permittivity ϵ = ϵ0(1 + χe) and permeability µ = µ0(1 + χm), and where χe and χm are

electric and magnetic susceptibility, respectively; additionally, E, B are the electric and magnetic fields, ϵ0,

µ0 are the electric and magnetic constants (also historically referred to as the permittivity and permeability

of free space), ρf and Jf are the charge and current densities for free particles, and the operators ∇ · , ∇×

signify divergence and curl. For a medium moving with velocity v, Eqs. (1) still apply, but the constitutive

rules D = ϵE and H = µ−1B transform into the low velocity approximations D = ϵE∗ and H∗ = µ−1B,

where E∗ = E+ v ×B and H∗ = H− v ×D (see reference [31] for greater details).

The relationships D = ϵE and H = µ−1B can be considered as linear constitutive laws since they provide

a link between the applied fields E and B and the material response. Being constitutive more complex non-

linear forms exist, which are often necessary to capture the complex behaviours of real materials [26]. Observe

that Eqs. (1) are in a form that can be readily integrated over a fixed control volume Ω with the application

of standard integration theorems to arrive at∫
Γ

D ·ndS =

∫
Ω

ρfdV = Qf (2a)
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∫
Γ

B ·ndΓ = 0 (2b)∮
C

E ·dℓ = − ∂

∂t

∫
S

B ·ndS (2c)∮
C

H ·dℓ =

∫
S

Jf ·ndS +

∫
S

∂D

∂t
·ndS = If +

∂

∂t

∫
S

D ·ndS (2d)

where Qf and If is the charge in domain Ω and current passing through surface S with boundary C,

respectively arising from free particles.

Although these equations are physically intuitive and useful for a lot of problems their form is not best

suited to finite similitude, which is founded on transport relationships for moving/distorting control volumes

as discussed in the next subsection.

2.1. Generic Equations

This subsection introduces the generic transport equation pertinent to Maxwell field equations for the

trial space along with corresponding partial differential equation. The generic form of the partial differential

equation is then contrasted with each of Eqs. (1), and through this procedure representative transport

equation are obtained for Maxwell’s famous equations. The motion of a control volume in the trial space

can be readily described by means of the velocity field v∗
ts, which itself is definable in terms of the temporal

derivative D∗

D∗tts
= ∂

∂tts

∣∣
χts

, where χts is a coordinate point in a reference control volume Ω∗ref
ts . It is proposed

here that for the trial space, the generic-transport equation should take the form,

D∗

D∗tts

∫
Ω∗

ts

ΨtsdV
∗
ts −

∫
Γ∗
ts

Ψtsv
∗
ts ·ntsdΓ

∗
ts = −

∫
Γ∗
ts

Jψts ·ntsdΓ
∗
ts +

∫
Ω∗

ts

bψtsdV
∗
ts (3)

were Ψts is a specific vector or scalar density field (i.e., per unit volume), v∗
ts is the control velocity field, Jψts

is a flux density (i.e., transfer rate per unit area), bψts is a source density term, nts is an outward pointing

unit normal on the boundary Γ∗
ts for the control volume Ω∗

ts.

In order to confirm that this equation is of the correct form it is necessary first to derive the partial

differential equation linked to it. Consider then application of standard integral identities:

D∗

D∗tts

∫
Ω∗

ts

ΨtsdVts =

∫
Ω∗

ts

(
D∗Ψts
D∗tts

+Ψts∇ · v∗
ts)dVts (4)

∫
Γ∗
ts

Ψtsv
∗
ts ·ntsdΓts =

∫
Ω∗

ts

∇ · [Ψtsv
∗
ts]dVts (5)∫

Γ∗
ts

Jψts ·ntsdΓts =

∫
Ω∗

ts

∇ · JψtsdVts (6)

to Eq. (3), to reveal the partial differential equation,

D∗Ψts
D∗tts

− v∗
ts ·∇Ψts = −∇ · Jψts + bψts (7)
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which can be returned to a familiar Eulerian form on setting v∗
ts to zero, i.e.,

∂Ψts
∂tts

= −∇ · Jψts + bψts (8)

It is important to appreciate that Eq. (7) is not dependent on the velocity fields v∗
ts since the physics it

captures cannot be dependent of the movement of a control volume as that would be meaningless. In fact,

Eq. (8) is retuned readily on substitution of the identity D∗

D∗tts
≡ ∂

∂tts
+ v∗

ts ·∇, confirming its independence

on v∗
ts.

2.2. Transport Maxwell Equations

The system of Eqs. (1) are required to be transformed into transport-equation form for a moving control

volume as this is required for the finite similitude theory. Although the form of Eqs. (1) is well suited

to vector calculus, as illustrated in the derivation of Eqs. (2), they are not in the form of Eq. (8). The

first step in this transformation process is the representation of these equations in coefficient form, which is

achieved with the aid of the Levi-Civita tensor ϵ̂ijk which takes up the values of one for even permutations

of {ijk}, minus one for odd permutations and zero otherwise. The tensor ϵ̂ijk provides a convenient tool for

the representation of cross product since for example

(∇×E)i = ϵ̂ijk∂jEk = ∂j(ϵ̂
ijkEk) (9)

where ∂j ≡ ∂
∂xj and Ek = δmkE

m, and where δmk is the Kronecker delta symbol and takes up values of zero

or one.

Note that Eq. (9) can be conveniently represented by ∇ × E = ∇ · (ϵ̂ ·E), which is a more convenient

form for representation with the transport equations. Consider then the contrasting of Eq. (7) and Eqs. (1),

which provide the following transport equations:

0 = −
∫
Γ∗
ts

Dts ·ntsdΓts +

∫
Ω∗

ts

ρftsdVts (10a)

0 =

∫
Γ∗
ts

Bts ·ntsdΓts (10b)

D∗

D∗tts

∫
Ω∗

ts

BtsdVts −
∫
Γ∗
ts

Btsv
∗
ts ·ntsdΓts = −

∫
Γ∗
ts

(ϵ̂ ·Ets) ·ntsdΓts (10c)

D∗

D∗tts

∫
Ω∗

ts

DtsdVts −
∫
Γ∗
ts

Dtsv
∗
ts ·ntsdΓts =

∫
Γ∗
ts

(ϵ̂ ·Hts) ·ntsdΓts −
∫
Ω∗

ts

JftsdVts (10d)

Although not independent of the ones consider thus far, an additional transport equation is included here,

and that is the conservation equation for charge, since it recognised that ρf and Jf are not necessarily

independent. This equation is of the form

D∗

D∗tts

∫
Ω∗

ts

ρftsdVts +

∫
Γ∗
ts

(Jf − ρftsv
∗
ts) ·ntsdΓts = 0 (11)
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and it is noted here for a stationary medium that the current density Jfts typically takes the form Jfts = σtsEts

(although not limited to this), where σts is a material property termed electrical conductivity (or simply

conductivity). For a medium moving with relatively low material velocity vts (compared to the speed of

light in vacuo), Ohm’s law Jfts = σtsEts should be replaced by Jfts − ρftsvts = σtsE
∗
ts, where as mentioned

above E∗
ts = Ets + vts ×Bts [31].

Included also for completeness is an equation for volume conservation, which is of the form

D∗

D∗tts

∫
Ω∗

ts

dV ∗
ts −

∫
Γ∗
ts

v∗
ts ·ntsdΓ

∗
ts = 0 (12)

which is of critical importance in the finite similitude theory.

2.3. Projected electromagnetism

The basic idea discussed in this section is critical to the overall scaling philosophy. The idea is to project

scaled versions of Eqs. (10) along with Eq. (11) (and Eq. (12) for completeness) onto the physical space. This

is achieved on substitution of dV ∗
ts = β3dV ∗

ps, ntsdΓ
∗
ts = β2npsdΓ

∗
ps and dtts = gdtps and on multiplication

by g and respectively αG0 , α
M
0 , αF0 , α

A
0 , for Maxwell, αρ

f

0 for charge and α1
0 for volume to provide in slightly

different order:

α1
0T

1
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

α1
0β

3dV ∗
ps −

∫
Γ∗
ps

α1
0β

3v∗
ps ·npsdΓ

∗
ps = 0 (13a)

αρ
f

0 T ρ
f

0 (β) =
D∗

D∗tps

∫
Ω∗

ps

αρ
f

0 β3ρftsdV
∗
ps −

∫
Γ∗
ps

αρ
f

0 β3ρftsv
∗
ps ·npsdΓ

∗
ps+∫

Γ∗
ps

αρ
f

0 gβ2Jfts ·npsdΓ
∗
ps = 0 (13b)

αG0 T
G
0 (β) = −

∫
Γ∗
ps

αG0 gβ
2Dts ·npsdΓ

∗
ps +

∫
Ω∗

ps

αG0 gβ
3ρftsdV

∗
ps = 0 (13c)

αM0 T
M
0 (β) =

∫
Γ∗
ps

αM0 gβ
2Bts ·npsdΓ

∗
ps = 0 (13d)

αF0 T
F
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

αF0 β
3BtsdV

∗
ps −

∫
Γ∗
ps

αF0 β
3Bts(v

∗
ps ·nps)dΓ

∗
ps

+

∫
Γ∗
ps

αF0 gβ
2(ϵ̂ts ·Ets) ·npsdΓ

∗
ps = 0 (13e)

αA0 T
A
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

αA0 β
3DtsdV

∗
ps −

∫
Γ∗
ps

αA0 β
3Dts(v

∗
ps ·nps)dΓ

∗
ps

+

∫
Γ∗
ps

αA0 gβ
2(ϵ̂ts ·Hts) ·npsdΓ

∗
ps −

∫
Ω∗

ps

αA0 gβ
3JftsdV

∗
ps = 0 (13f)
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where use is made of the velocity field relationship v∗
ts = g−1βv∗

ps, which can be shown to synchronise control

volume movement in the trial and physical spaces [28].

These equations are now in a form where the dependency on β is either explicit or implicit and conse-

quently captures scaling from a different perspective. The explicit terms β3 and β2 appearing due to change

in geometrical measures are readily recognized but also the fields Dts(β), Hts(β), Ets(β), Bts(β) and so on

are seen to be implicitly dependent on β. The objective for scaling in this form is the determination of these

hidden dependencies, since once these are known, then scaling is solved. Knowledge about how the fields

depend on β means that scaled information from a scaled experiment can be transferred to the full scale.

Two routes are available for finding these dependencies with one requiring additional information from the

particular physical problem being studied (i.e., boundary conditions, size effects etc.) and the other, a more

generic approach, involving the application of similitude rules, which is the focus here.

3. Similitude rules

Similitude rules take the form of scale invariances for Eqs. (13) and effectively impose assumed behaviours

on how these equations change with β. Undoubtedly for an arbitrary problem such an imposition will not

be correct but nevertheless can in principle form the basis for the design of scaled experiments. In this sense

the problem is one of design-of-experiments with the similitude rules providing the means for guiding of

the design process. The following definition establishes recursively the similitude rules involving differential

identities, where Eqs. (13) are repeatedly scaled and differentiated with respect to β.

Definition 3.1. The lowest value of k satisfying the identity

Tψk+1 =
d(αψk T

ψ
k )

dβ
≡ 0 (14)

∀β > 0 is a similitude rule (termed kth-order finite similitude), where αψk (1) = 1 and αψ0 T
ψ
0 = 0 are projected

transport equations (see Eqs. (13)).

The similitude rules provided by Definition 3.1 are in the form of differential equations with ”initial

conditions” set to be at β = β0 = 1. Note that this means that Eqs. (13) must match the physical-space

equations at β0 and is one reason for the requirement αψk (1) = 1. Note in particular for Eqs. (13) that:

α1
0(1) = αρ

f

0 (1) = αG0 (1) = αM0 (1) = αF0 (1) = αA0 (1) = 1 along with g(1) = 1 since dtts(1) = g(1)dtps = dtps.

Additionally the fields (now assumed dependent on β) must satisfy ρfts(1) = ρfps, Ets(1) = Eps, Bts(1) = Bps,

Hts(1) = Hps and similarly for other fields. The lowest-order similitude rule (termed zeroth-order finite

similitude) provided by Definition 3.1 describes the situation where there is no variation of Eqs. (13) with

β. The rule coincides with what dimensional analysis provides and in mathematical terms is

d

dβ
(αψ0 T

ψ
0 ) ≡ 0 (15)
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where ψ for Eqs. (13) can be set to 1, ρf , G, M , F or A and the equality sign ”≡” means identical, so that

the derivative is identically zero in this identity.

The link to what dimensional analysis gives can be seen on integration Eq. (15) between the limits β1

and β0 = 1 to give the identity αψ0 T
ψ
0 (β1) ≡ αψ0 T

ψ
0 (1) = Tψ0 (1). In essence this equality confirms that the

trial-space transport equations do not change with scale. Note the critical role of the scalars αψ0 in facilitating

a unified approach to all the transport equations, which is similar to making equations dimensionless. Unlike

dimensional analysis however the finite similitude approach is not restricted to a single invariance and

Definition 3.1 provides a countable infinite number of alternatives. Although Eq. (14) has the advantage

of simplicity and infers scale effects (as previously defined) are absent, the reality for most problems is the

presence of such effects. Thus in practice αψ0 T
ψ
0 changes with β and Eq. (14) is not applicable. A solution to

this problem is to consider an alternative similitude rule provided by Definition 3.1. The first-order similitude

rule is recovered on setting Tψ1 = d
dβ (α

ψ
0 T

ψ
0 ) and as outlined in Definition 3.1 apply a new set of scalars αψ1

and consider the identity
d

dβ
(αψ1 T

ψ
1 ) =

d

dβ
(αψ1

d

dβ
(αψ0 T

ψ
0 )) ≡ 0 (16)

which if satisfied is termed first-order finite similitude and is the focus of this study.

Important features are worth noting about the similitude rules provided by Eq. (14) and one is that

lower-order rules are contained in higher-order ones. This feature is an absolute physical necessity as it

enables lower-order fields to play an important role in the higher-order theory. In particular, Eq. (15)

automatically satisfies Eq. (16) and consequently zeroth-order relationships find an important role in Eq.

(16). The order of the derivatives increases with increase in the order of the rule, and it is relative easy to

see the zeroth order involves a single derivative, first order involve a second-order derivative and kth order

involves a maximum derivative of order k+1. This impacts on the number of scaled experiments required

with zeroth order only requiring one, first order requiring two and so on.

3.1. First-order scaling

Since by design, zeroth order is contained in first order, it is necessary and prudent to examine zeroth-

order requirements initially to ascertain what relationships should remain zeroth order in form. Eq. (13a)

satisfies identity Eq. (15) with ψ = 1 on setting uniquely α1
0 = β−3, which satisfies α1

0(1) = 1 as required.

The identity α1
0 = β−3 is in fact a necessary and sufficient solution for Eq. (15) and therefore Eq. (13a)

is automatically satisfied in first-order theory. Necessary (although not sufficient) conditions on the scalars

can be identified on examination of equations with common fields in Eqs. (13). Note that the scalar

field ρfts is common to Eqs. (13b) and (13c) and immediately returns αρ
f

0 β3 = αG0 gβ
3 or more simply

αG0 = g−1αρ
f

0 . Similarly, the displacement field Dts is common to Eqs. (13c) and (13f), which provides

the identity αG0 gβ
2 = αA0 β

3 or more simply αA0 = gβ−1αG0 . Likewise, the magnetic field Bts is common to
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Eqs. (13d) and (13e), which returns αM0 gβ
2 = αF0 β

3 or more simply αF0 = gβ−1αM0 . Finally, the current

density Jfts is common to Eqs. (13b) and (13f) but does not provide a new distinct identity since it returns

αρ
f

0 gβ2 = αA0 gβ
3, which reduces to αρ

f

0 = βαA0 = gαG0 , which is of course αG0 = g−1αρ
f

0 . The identities:

αG0 = g−1αρ
f

0 , αA0 = gβ−1αG0 and αF0 = gβ−1αM0 are taken forward to first-order theory. Note that these

scalars are set in an attempt to eliminate β from transport Eqs. (13). The scalars αψ1 (and higher order

scalars) play an identical role to αψ0 but for the transport equations αψ1 T
ψ
1 = 0 with αψ1 (1) = 1, which

provides further justification for the similitude rules as defined in Definition 3.1.

Integration of Eq. (16) is required for its solution which can be achieved relatively easily by means of

divided differences. Consider first the identities:

αψ1 T
ψ
1 (β1

2) = αψ1
d

dβ
(αψ0 T

ψ
0 )(β1

2) ≡ αψ1 (β
1
2)
αψ0 T

ψ
0 (β1)− αψ0 T

ψ
0 (β2)

β1 − β2
(17a)

αψ1 T
ψ
1 (β0

1) = αψ1
d

dβ
(αψ0 T

ψ
0 )(β0

1) ≡ αψ1 (β
0
1)
αψ0 T

ψ
0 (β0)− αψ0 T

ψ
0 (β1)

β0 − β1
(17b)

with β2 ≤ β1
2 ≤ β1, β1 ≤ β0

1 ≤ β0 (where β0 = 1), and note the application of a mean-value theorem to

ensure exact identities are returned.

The first-order identity (17) means that αψ1 T
ψ
1 (β0

1) ≡ αψ1 T
ψ
1 (β1

2), and consequently substitution of Eqs.

(17) gives

αψ1 (β
0
1)
αψ0 T

ψ
0 (β0)− αψ0 T

ψ
0 (β1)

β0 − β1
≡ αψ1 (β

1
2)
αψ0 T

ψ
0 (β1)− αψ0 T

ψ
0 (β2)

β1 − β2
(18)

which following some manipulation provides

αψ0 T
ψ
0 (β0) ≡ αψ0 T

ψ
0 (β1) +

(
αψ1 (β

1
2)

αψ1 (β
0
1)

)(
β0 − β1
β1 − β2

)
(αψ0 T

ψ
0 (β1)− αψ0 T

ψ
0 (β2)) (19)

or more succinctly

αψ0 T
ψ
0 (β0) ≡ αψ0 T

ψ
0 (β1) +Rψ1 (α

ψ
0 T

ψ
0 (β1)− αψ0 T

ψ
0 (β2)) (20)

where

Rψ1 =

(
αψ1 (β

1
2)

αψ1 (β
0
1)

)(
β0 − β1
β1 − β2

)
(21)

and observe that Rψ1 is a parameter as a consequence of the indeterminacy of αψ1 being an unspecified

function of β.

Eq. (20) confirms that it is possible to produce transport equations in the physical space (i.e., αψ0 T
ψ
0 (β0) =

0) from projected trial-space transport equations, raising the possibility that behaviours can be predicted

exactly (i.e., αψ0 T
ψ
0 (β0 = 1) = Tψps = 0), where Tψps = 0 is a physical space transport equation.

3.2. First-order field relationships

Application of Eq. (20) to transport Eqs. (13) provides relationships of the form

ρf1 = ρfβ1
+Rρ

f

1 (ρfβ1
− ρfβ2

) (22a)
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Jf1 = Jfβ1
+Rρ

f

1 (Jfβ1
− Jfβ2

) (22b)

D1 = Dβ1
+RG1 (Dβ1

−Dβ2
) (22c)

ρf1 = ρfβ1
+RG1 (ρ

f
β1

− ρfβ2
) (22d)

B1 = Bβ1
+RM1 (Bβ1

−Bβ2
) (22e)

B1 = Bβ1
+RF1 (Bβ1

−Bβ2
) (22f)

E1 = Eβ1
+RF1 (Eβ1

−Eβ2
) (22g)

D1 = Dβ1
+RA1 (Dβ1

−Dβ2
) (22h)

H1 = Hβ1
+RA1 (Hβ1

−Hβ2
) (22i)

Jf1 = Jfβ1
+RA1 (J

f
β1

− Jfβ2
) (22j)

where ρfβ = αρ
f

0 β3ρfps, J
f
β = αρ

f

0 gβ2Jfts, Dβ = αG0 gβ
2Dts, Bβ = αM0 gβ

2Bts, Eβ = αF0 gβ
2Ets and Hβ =

αA0 gβ
2Hts, and for a consistent field expressions it is required that Rρ

f

1 = RG1 = RA1 and RM1 = RF1 .

The conditions Rρ
f

1 = RG1 = RA1 and RM1 = RF1 are meaningful and are in a sense separating the

governing equations into two groups, i.e., Eqs. (13b), (13c), (13f) and Eqs. (13d), (13e), where the latter

two equations only involve externally applied fields, i.e., B and E. It is well appreciated that these equations

can be automatically satisfied on application of the gauge identities E = −∇ϕ− ∂A
∂t and B = ∇×A, where

ϕ and A are known as the scalar and vector potentials, respectively. Equations (13b), (13c) and (13f) on

the other hand, being connected by a common R1 value infer that differences between transport equations

and particular fields are proportional. The fields involved are provided by the theory and are ρfβ , J
f
β , Dβ ,

and Hβ and separately Bβ and Eβ . The result is a clear departure from zeroth-order finite similitude and

dimensional analysis, which only involve proportional fields. Note also that all the differences in the right-

hand bracket in Eqs. (22) will be zero if the fields satisfy zeroth-order rules as anticipated by the initial

choices made in Definition 3.1.

Relatively simple case studies are analysed in the next section with the aid of the practical zeroth-order

and first-order identities listed in Table 1. Note that additional relationships are provided in the table (i.e.,

charge Qf , current If , magnetic flux Φ, and voltage V ) each of which are readily derived from the original

identities listed in Eqs. (22). Additionally for a stationary material, the linear material constitutive identities

Dts = ϵtsEts and Hts = µ−1
ts Bts can be substituted respectively into Dβ = αG0 gβ

2Dts and Hβ = αA0 gβ
2Hts

to reveal Dβ = ϵβEβ and Hβ = µ−1
β Bβ , where α

F
0 ϵβ = αG0 ϵts and αM0 µ

−1
β = αA0 µ

−1
ts .

11



Table 1: Zeroth and first order relationships.

Zeroth order First order relationships

ρfps = αρ
f

01β
3
1ρ
f
ts1 ρfps = αρ

f

01β
3
1ρ
f
ts1 +Rρ

f

1 (αρ
f

01β
3
1ρ
f
ts1 − αρ

f

02β
3
2ρ
f
ts2)

Qfps = αρ
f

01Q
f
ts1 Qfps = αρ

f

01Q
f
ts1 +Rρ

f

1 (αρ
f

01Q
f
ts1 − αρ

f

02Q
f
ts2)

Jfps = αρ
f

01g1β
2
1J

f
ts1 Jfps = αρ

f

01g1β
2
1J

f
ts1 +Rρ

f

1 (αρ
f

01g1β
2
1J

f
ts1 − αρ

f

02g2β
2
2J

f
ts2)

Ifps = αρ
f

01g1I
f
ts1 Ifps = αρ

f

01g1I
f
ts1 +Rρ

f

1 (αρ
f

01g1I
f
ts1 − αρ

f

02g2I
f
ts2)

Dps = αG01g1β
2
1Dts1 Dps = αG01g1β

2
1Dts1 +RG1 (α

G
01g1β

2
1Dts1 − αG02g2β

2
2Dts2)

Bps = αM01g1β
2
1Bts1 Bps = αM01g1β

2
1Bts1 +RM1 (αM01g1β

2
1Bts1 − αM02g2β

2
2Bts2)

Φps = αM01g1Φts1 Φps = αM01g1Φts1 +RM1 (αM01g1Φts1 − αM02g2Φts2)

Eps = αF01g1β
2
1Ets1 Eps = αF01g1β

2
1Ets1 +RF1 (α

F
01g1β

2
1Ets1 − αF02g2β

2
2Ets2)

Vps = αF01g1β1Vts1 Vps = αF01g1β1Vts1 +RF1 (α
F
01g1β1Vts1 − αF02g2β2Vts2)

Hps = αA01gβ
2
1Hts1 Hps = αA01gβ

2
1Hts1 +RA1 (α

A
01g1β

2
1Hts1 − αA02g2β

2
2Hts2)

4. Case studies

The efficacy of the new scaling theory for electromagnetism is investigated through the analysis of rela-

tively straightforward case studies, with each study focusing on different aspects of Maxwell equations.

Faraday’s law of induction (Eq. (2c)) is examined first, where it is established that the new scaling theory

provides good replication of full scale behaviours. This is shown through known analytical solutions and also

by contrasting with results obtained from dimensional analysis for pure dimensional scaling (i.e., geometry

and temporal changes only). The objective of this study is to showcase zeroth-order finite similitude and

highlight its ease of applicability by contrasting it against the more familiar theory of dimensional analysis.

The second case study is the scaling of a simple RLC circuit and is designed to showcase the zeroth-order

approach. Replica scaling is considered but scaled behaviour is found to deviate from the full-scale model.

It is confirmed however that the circuit can be successfully scaled with replica scaling of the inductor and

capacitor, but additionally by ensuring that the circuit resistance remains unchanged.

The third case study is designed to test out the first-order theory by means of a numerical study using

the commercial finite element software Abaqus [32]. The problem considered examines Eddy currents and

their response to scaling involving Eq. (1d).

4.1. Case Study I: Scaling Faraday’s Law of Induction

The impact of scaling on Faraday’s law of induction (i.e., Eq. (2c)) is considered and examined by

considering simple analytical examples, one involving a circuit with a moving part in a stationary magnetic

field, and another consisting of a generator involving a rotating circuit, again in a stationary magnetic

12



field. Pure dimensional scaling, involving only changes in geometry, is applied initially to ascertain how the

behaviour of the scaled models differ from the full scale. This is followed by the application of zeroth-order

finite similitude theory, where perfect replication between the scaled and full-scaled models is observed.

The equation of interest is Eq. (2c) but it is useful at this stage to define electromotive force (emf) to be

E =
∫
C
E ·dℓ and magnetic flux by Φ =

∫
S
B ·ndS and consequently Eq. (2c) simplifies to E = −dΦ

dt .

4.1.1. Scaling of an adjustable circuit in a magnetic field

Depicted in Fig. 1 is a circuit containing a moving part and consequently the area contained within the

circuit is changing but the magnetic field B is assumed fixed and accordingly the magnetic flux Φ in the

physical space is given by the relationship Φps = BpsAps = Bpsℓpsxps, where the lengths ℓps and xps are

shown in Fig. 1. It follows therefore that the induced emf Eps is given by [27]

Eps = −dΦps
dtps

= − d

dtps
(Bpsℓpsxps) = −Bpsℓps

dxps
dtps

= −Bpsℓpsvps (23)

and under the assumption that Ohm’s law applies the induced current is given by

Ips =

∣∣∣∣ EpsRps

∣∣∣∣ = Bpsℓpsvps
Rps

(24)

where Rps is the resistance provided by the circuit.

Figure 1: A circuit containing a moving part located in a magnetic field

Pure dimensional scaling

Consider then, geometrically similar small-scale models made out of the same material as the full-scale model.

From a dimensional-analysis perspective the problem is relatively straightforward on specification of the Pi

group Π = Bℓv
IR and the requirement that Πts = Πps. Additionally on adoption of the notation applied in

finite similitude it can immediately be deduced that length scales as ℓts = βℓps, area scales as Ats = β2Aps,

13



and velocity behaves as vts = g−1βvps, which on substitution provides the requirement,

Πts =
Btsℓtsvts
ItsRts

=
β2

g

Btsℓpsvps
ItsRts

=
β3

g

Btsℓpsvps
ItsRps

=
β3

g

Bts
Bps

Ips
Its

Πps (25)

where use is made of Rts = β−1Rps, in view of the relationship for circuit resistance R = ρℓ
A , where ρ is a

material property (resistivity), which remains unchanged by assumption.

It transpires therefore that the dimensionless identity Πts = Πps provides a relationship for the induced

current to be

Its =
β3

g

Bts
Bps

Ips (26)

and under the assumption of a scale invariant magnetic field (i.e., Bts = Bps) the induced current is also

scale invariant provided g = β3, or equivalently rod velocities satisfy vts = β−2vps.

Zeroth-order finite similitude

Finite similitude is not concerned with the forming of dimensionless Pi groups but does provide definitive

identities and associated degrees of freedom. The focus on Faraday’s law means that the projected equation

of particular interest is Eq. (13e) but finite similitude provides solutions for all Maxwell equations. The per-

tinent zeroth-order field relationships in Table 1 are Jfps = αρ
f

0 gβ2Jfts, Bps = αM0 gβ
2Bts, Eps = αF0 gβ

2Ets,

and scalar identity αF0 = gβ−1αM0 . Note that Ohm’s law provides a relationship between electromotive force

E and current I, which in terms of fields (as mentioned above) is equivalent to Jf = σE, where σ is material

conductivity, which is the inverse of resistivity (i.e., σ = ρ−1). The conditions Bps = Bts and Jfps = β2Jfts

(current matching) provides αM0 gβ
2 = 1 and αρ

f

0 gβ2 = β2, respectively and consequently αρ
f

0 = β2αM0 . But

additionally, Ohm’s law for the same material means that Eps = β2Ets and consequently αF0 gβ
2 = β2, which

similarly provides αF0 = β2αM0 , but since αF0 = gβ−1αM0 it follows that g = β3. This result is in accordance

with dimensional analysis providing the relationship vts = β−2vps for rod velocities.

4.1.2. Scaling of a generator

Depicted in Fig. 2 is a circuit rotating in an magnetic field for the purposes of current generation, which

again obeys Faraday’s law, (i.e., Eq. (1c)). The area Aps encircled by the circuit (with unit normal nps) cuts

the magnetic field at an angle θps, i.e., Bps ·nps = cosθps, where θps = ωpstps and ωps is the rate of rotation

in rad/s. The magnetic flux in this situation is Φps =
∫
Sps

Bps ·npsdS = BpsApscos(ωpstps). Consequently

the emf in this case, similar to Eq. (23), is

Eps = −dΦps
dtps

= − d

dtps
(BpsApscos(ωpstps)) = −BpsAps

d

dtps
(cos(ωpstps)) = BpsApsωpssin(ωpstps) (27)

and consequently from Ohm’s law the induced current is

Ips =

∣∣∣∣ EpsRps

∣∣∣∣ = BpsApsωps
Rps

sin(ωpstps) (28)
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Figure 2: A circuit rotating in a magnetic field

where Rps is the resistance provided by the circuit.

Pure dimensional scaling

Consider again the application dimensional analysis where two Pi groups pertinent to this problem are

Π1
ps =

BpsApsωps

IpsRps
and Π2

ps = ωpstps. Invariance to scale requires that Π1
ps = Π1

ts and Π2
ps = Π2

ts, which

provides

Π1
ts =

BtsAtsωts
ItsRts

=
β2

g

BtsApsωps
ItsRts

=
β3

g

BtsApsωps
ItsRps

=
β3

g

Bts
Bps

Ips
Its

Π1
ps (29)

where use is made of ωts = g−1ωps, which follows from Π2
ps = ωtstts = gωtstps = g ωts

ωps
Π2
ps on setting

Π2
ps = Π2

ts.

The analysis follows that provided above and returns g = β3 (or ωts = β−3ωps) under the constraints

that Bts = Bps, Rts = β−1Rps and Its = Ips.

Zeroth-order finite similitude

Finite similitude returns the same result on consideration of the relevant zeroth-order field relationships,

which are Jfps = αρ
f

0 gβ2Jfts, Bps = αM0 gβ
2Bts, Eps = αF0 gβ

2Ets, and the scalar identity αF0 = gβ−1αM0 .

Ohm’s law in field form is Jf = σE, and the condition Jfps = β2Jfts (current matching) provides Eps = β2Ets

(with σts = σps assumed) and consequently αF0 gβ
2 = β2, which provides αF0 = β2αM0 (since by assumption

Bps = Bts), but since α
F
0 = gβ−1αM0 it follows that g = β3. This result is in accordance with dimensional

analysis providing the relationship ωts = β−3ωps for rotational angular velocities.

Note how to all intents and purposes the analysis with finite similitude is unaffected by the change in

problem type. This is a consequence of the field relationships (across the scales) being fixed and rooted to
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the fundamentals of electromagnetism (i.e., Maxwell equations). The degrees of freedom available to any

analysis is clear from the outset and with scale set (i.e., β fixed) the available freedoms is limited to αF0 and

g only. Although αM0 appears (and αρ
f

0 above although not needed) in the analysis it is constrained by the

relationship αF0 = β2αM0 , so is not independent of αF0 .

4.1.3. Scaling of an RLC circuit

Figure 3: Example designs for RLC circuit components

Depicted in Fig. 3 are typical component designs that might commonly be found in RLC circuits.

These types of component are assumed to follow relatively simple standard linear relationships of the form

Vps = IpsRps, Vps = Lps
dIps
dtps

and Ips = Cps
dVps

dtps
, where Vps is voltage (emf), Ips is current, Rps is resistance,

Lps is inductance, and Cps is capacitance. The detailed behaviour of the devices depicted in Fig. 3 satisfy

Maxwell equations but it is the circuit response that is the focus of the study in this section. At first sight

it might appear that finite similitude is at some disadvantage in this type of analysis when contrasted with

dimensional analysis being intimately linked to the fields appearing in Maxwell equations and not voltages

and currents. The purpose of this study therefore to demonstrate that circuit type studies under scaling are

readily analysed under the finite similitude theory. This is achieved by identifying the particular dominating

Maxwell equations that applies to the devices in Fig. 3 and applying the simplifying assumptions invoked

to arrive at the standard linear relationships.

The capacitor depicted in Fig. 3 is a device for storing electrical energy by means of the electric dis-

placement field Dps set up in the dielectric material of permittivity ϵps. The electric displacement field is

related to charge according to Gauss’s relationship Eq. (1a) or equivalently Eq. (10a), which simplifies to

ApsDps = Qfps, where Aps refers to the surface area in contact with the dielectric for one of the conducting

plates, Qfps is the free charge at this surface and Dts is the magnitude of the electric displacement field
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Dps. For the plate capacitor depicted in Fig. 3 it follows that Qfts = ApsDps = CpsV
C
ps , where the capaci-

tance satisfies the relationship Cps =
ϵpsAps

dps
with dps the separation distance between the conductors, and

consequently differentiation of the linear relationship Qfts = CpsV
C
ps with respect to time tps provides the

sought expression Ifps = Cps
dV C

ps

dtps
, where V Cps is the voltage across the capacitor. An inductor of the type

depicted in Fig. 3 is a device for storing magnetic energy by means of the magnetising field Hps set up in

the core of permeability µps. The magnetising field is related to current passing through the coil according

to Ampere’s relationship Eq. (1d) or equivalently Eq. (10d), which simplifies to Hpsℓps = IfpsNpsℓps, where

ℓps is the length of the core, Nps is the number of turns per unit length, and Hps is the magnitude of the

magnetising field Hps. It follows that since Hps = µ−1
ps Bps the magnetic field Bps in the core is of magnitude

Bps = µpsI
f
psNps. Faraday’s law of induction (i.e., Eps = −dΦps

dtps
) for the inductor depicted in Fig. 3 gives

the voltage V Lps = Lps
dIfps
dtps

, where use is made of Φps =
∫
Sps

Bps ·npsdS which equals BpsAps for a single

turn of the coil, and where inductance Lps = µpsN
2
psApsℓps. The resistor depicted in Fig. 3 is a device that

dissipates energy and is assumed to satisfy Ohm’s law V Rps = IfpsRps, where V
R
ps is the voltage across the

resistor.

Forming a series RLC circuit from the devices depicted in Fig. 3 means that the sum of the instantaneous

voltages V Cps , V
L
ps and V

R
ps match the applied voltage V Tps and consequently the governing differential equation

is

V Tps = V Lps + V Rps + V Cps = Lps
dIfps
dtps

+ IfpsRps +
Qfps
Cps

= Lps
d2Qfps
dt2ps

+Rps
dQfps
dtps

+
Qfps
Cps

(30)

where use is made of the relationship Ifps =
dQf

ps

dtps
.

The relationships for inductance, capacitance and resistance (i.e., Lps = µpsN
2
psApsℓps, Cps =

ϵpsAps

dps

and Rps =
ρpsℓps
Aps

) immediately inform on how these quantities change under space scaling on substitution

of ℓts = βℓps, Ats = β2Aps, Nts = β−1Nps, and under the assumption of replica scaling (i.e., no change in

materials) gives Lts = βLps, Cts = βCps and Rts = β−1Rps.

Zeroth-order finite similitude

Since Eq. (30) is concerned with the combination voltages, the expression of particular interest in Table

1 for zeroth order is Vps = αF0 gβVts, which is applicable to each device in the circuit. With the inductor

satisfying V Lps = Lps
dIfps
dtps

(or = Lps
d2Qf

ps

dt2ps
) and since Ifps = αρ

f

0 gIfts (see Table 1) it follows that

V Lps = Lps
dIfps
dtps

= αρ
f

0 gβLps
dIfts
dtts

= αF0 gβV
L
ts = αF0 gβLts

dIfts
dtts

(31)

and consequently αρ
f

0 Lps = αF0 Lts and since replica scaling gives Lts = βLps it follows that αρ
f

= βαF0 .

Similarly, for the capacitor the voltage and charge relationships V Cps = αF0 gβV
C
ts and Qfps = αρ

f

0 Qfts,
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respectively, provide

V Cps =
Qfps
Cps

= αρ
f

0

Qfts
Cps

= αF0 gβV
C
ts = αF0 gβ

Qfts
Cts

(32)

which leads to αρ
f

0 Cts = αF0 gβCps, but since Cts = βCps for replica scaling it follows that αρ
f

0 = αF0 g and

therefore g = β.

Consideration of the resistor however poses a problem for replica scaling since V Rps = αF0 gβV
R
ts and

Qfps = αρ
f

0 Qfts from Table 1 provides

V Rps = Rps
dQfps
dtps

= αρ
f

0 βRps
dQfts
dtts

= αF0 gβV
R
ts = αF0 gβRts

dQfts
dtts

(33)

which leads to αρ
f

0 Rps = αF0 gRts but replica scaling requires Rts = β−1Rps, which suggests that αρ
f

0 =

αF0 gβ
−1 but with g = β this condition provides a conflict and confirms that representative behaviour will

not be achieved with a single experiment with replica scaling.

The problem can be readily remedied however (for a single scaled experiment) by means of physical

modelling where substitution of the condition αρ
f

0 = βαF0 and g = β into αρ
f

0 Rps = αF0 gRts provides

Rps = Rts, which is achieved if the resistivity satisfies ρts = βρps. This fix illustrates that for a circuit

of such relative simplicity there is little motivation to involve an additional scaled experiment with the

application of the first order theory. It is of interest therefore to examine a system of greater complexity

that might benefit from an higher order form of finite similitude. Such a system is considered in the next

section but note that the satisfaction of the relationship Vps = αF0 gβVts for each component in the RLC

circuit provides,

V Tps = V Lps + V Rps + V Cps = αF0 gβ(V
L
ts + V Rts + V Cts ) = αF0 gβV

T
ts (34)

and consequently the satisfaction of Eq. (30) is replicated perfectly by the trial-space model provided

V Tps = αF0 gβV
T
ts .

4.2. Induced eddy current in a rod

In order to elevate the complexity of the problem under scrutiny, numerical simulation is applied, where

in particular, the Abaqus software [32] is employed here to test the efficacy of the first-order finite similitude

theory. The Eddy current problem of interest is suited to a time-harmonic analysis and the Abaqus software

makes use of the scalar and vector potentials ϕ and A, where as mentioned above E = −∇ϕ − ∂A
∂t and

B = ∇×A. Note that the first-order similitude identities for ϕ and A are,

ϕps = αF01g1β1ϕts1 +RF1 (α
F
01g1β1ϕts1 − αF02g2β2ϕts2) (35a)

Aps = αM01g1β1Ats1 +RM1 (αM01g1β1Ats1 − αM02g2β2Ats2) (35b)

which are consistent with E and B in Table 1, where as noted above αF0 = gβ−1αM0 and RF1 = RM1 .
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The equation solved in Abaqus is a low frequency approximation of Eq. (1d) (i.e., it neglects displacement

current) and takes the form

∇× (µ−1∇×A0) + iωσE ·A0 = J0 (36)

where ω is natural frequency, i2 = −1, Ohm’s law Jf = σE ·E is assumed to apply with σE being the

conductivity tensor, and A0 and J0 are the amplitudes of A and −σE ·∇ϕ, respectively.

Figure 4: A conductive cylindrical rod encircled by a current-carrying coil

The particular problem under scrutiny is presented in Fig. 4 consisting of a conductive cylindrical rod

formed from inner and outer components encircled by a rectangular cross-section current-carrying coil. The

pertinent dimensions are a radius and length of the full-scale inner rod of 0.035m and 0.5m, respectively.

The outer component of the rod of identical length has an outer radius equal to 0.05m. Additionally, the

inner and outer radius, and depth of the encircling conductor is 0.09m, 0.11m and 0.02m, respectively. The

medium surrounding the rod and coil being represented by a cylinder of radius and length of 0.2m and 0.5m

is assumed to have the properties of air. All simulated parts in the assembly are merged to facilitate their

representation as a single part of different components. The mesh depicted in Fig. 4 consists of EMC3D8

elements [32] with their sizes given in the figure for the full-scale model. Material properties assigned to the

different sections of the full-scale model are tabulated according to Table 2. The properties for the coil and

air are considered identical since the current in the coil is directly specified as opposed to modelling the source

responsible for the current. The properties of full-scale and small-scale models are listed in Tables 2 and 3.

Note that physical modelling is featured here with a simultaneous change of dimensions and materials for

the scaled models. The objective here is to demonstrate how the first order theory is capable of representing
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Table 2: Electromagnetic properties for coil, air and rod

Air and coil Rod

Model Conductivity Permeability Conductivity Permeability

Ω−1m−1 Hm−1 Ω−1m−1 Hm−1

×10−7 ×107 ×10−7

Inner Outer

Full Scale 1000 4π 6.30 4.11 4π

(Silver) (Gold)

Trial Model 1 1000 4π 1.03 3.77 4π

(Iron) (Aluminium)

Trial Model 2 1000 4π 0.699 5.96 4π

(Carbon Steel) (Copper)

the response of the full-scale model with material properties provided in Table 2. Note additionally that the

scaling factors, frequencies and current densities are tabulated in Table 3, where dimensional scaling factors

for trial models 1 and 2 are respectively set to be equal to β1 = 0.50 and β2 = 0.25. This provides a scaling

of the dimensions of the full-scale model to half and one quarter of its original size. Trial models 1 and 2 are

designed according to the zeroth-order theory, whilst the virtual model being a combination of trial models 1

and 2 is designed according to the first-order theory. In setting the scaling parameters αF0 and g, two material

properties are targeted, which are conductivity σ and permeability µ. Note that permittivity ϵ does not

appear in Eq. (36), so there is no reason to target it for this particular problem. The difficulty posed by the

problem depicted in Fig. 4 is that it involves a rod in two parts (inner and outer) with different materials and

therefore insufficient degrees of freedom for an exact match. Shown above are the constitutive relationships

Dβ = ϵβEβ and Hβ = µ−1
β Bβ , where α

F
0 ϵβ = αG0 ϵts and αM0 µ

−1
β = αA0 µ

−1
ts . Similarly, Ohm’s law provides

Jfβ = σβEβ where αF0 σβ = αρ
f

0 σts, which is readily confirmed on substitution of the identities Jfβ = αρ
f

0 gβ2Jfts

and Eβ = αF0 gβ
2Ets (see Table 1). The application of zeroth-order theory to this problem is the identities

σβ1
= σps and µ

−1
β1

= µ−1
ps or equivalently αF01 = αρ

f

01σts1σ
−1
ps and αρ

f

01g1 = αF01β
2
1µts1µ

−1
ps , respectively for the

determination of αF01 and g1, where use is made of the zeroth-order identities αG0 = g−1αρ
f

0 , αA0 = gβ−1αG0

and αF0 = gβ−1αM0 to arrive at the expression for g1. Note that the zeroth-order values in Table 3 make use

of the conductivities for the outer rod and consequently results for the inner rod can be expected to suffer

the greatest deviation. Taking the zeroth order data forward to first order means that the only unknown is
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RF1 and a first-order improvement on the expression αF01σ
−1
ts1 = αρ

f

01σ
−1
ps is

1

σps
= (

αF01

αρ
f

01

)
1

σts1
+RF1

(
(
αF01

αρ
f

01

)
1

σts1
− (

αF02

αρ
f

02

)
1

σts2

)
(37)

for the determination of RF1 , which is an expression that can be obtained on dividing through the first-order

expression for voltage in Table 1 by Ifpsℓps/Aps (since σ
−1
ps = VpsAps/(I

f
psℓps)) withAps = β−2

1 Ats1 = β−2
2 Ats2,

ℓps = β−1
1 ℓts2 = β−1

2 ℓts2, and under the assumption Ifps = αρ
f

01g1I
f
ts1 = αρ

f

02g2I
f
ts2. No frequency dependency

is assumed for the materials involved, but the frequencies applied satisfy ωps = g1ωts1 = g2ωts2 to ensure

frequency matching between projected, virtual and the full scale model. The magnetic field along a

Table 3: The scaling parameters for trial models 1 & 2 and the virtual model

Scaling parameters Lower and higher Current density

frequencies A/m2

Model Hz ×107

g1 g2 αρ
f

0 αF01 αF02 RF1 First Second First Second

model model model model

Full Scale 50 50

Tri. Mod 1 0.23 1 0.92 218.06 10.96

Tri. Mod 2 0.09 1 1.45 551.88 110.96

Virtual 0.23 0.09 1 0.92 1.45 0.62 218.06 551.88 10.96 110.96

Figure 5: The magnetic field amplitude measured along a longitudinal path on the outer surface of the outer rod

longitudinal path of the outer rod at full size is predicted using scaled trial models 1 and 2 respectively made

from aluminium and copper. The results are presented in Fig. 5, where it is evident that the response of

the full-scale outer rod has been captured using the scaled-down trial models with good replication. The

successful matching of conductivity and permeability has ensured that there is little error in the magnetic
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Figure 6: The magnetic field amplitude measured along a longitudinal path on the outer surface of the inner rod

field prediction for the outer rod. However, examination of Fig. 6, which shows the magnetic field of the

full-scale inner rod of silver, is not predicted to a good accuracy using scaled-down trial models 1 and 2,

respectively made of iron and carbon steel. The large errors involved in predicting the response behaviour

of the full-scale inner rod, which respectively are equal to 11.21% and 35.49% for models 1 and 2, is the

result of the zeroth-order theory having insufficient degrees of freedom to capture the pertinent material

properties. To deal with this problem, the extra degree of freedom (RF1 ) provided by the first-order theory is

used to better match the electrical conductivity of the inner rod. This is achieved by means of Eq. (37) for

the determination of RF1 as tabulated in Table 3 to combine the results of models 1 and 2. The first-order

theory provides the magnetic field of the full-scale inner rod along the longitudinal path with approximately

zero error.

5. Conclusion

This paper introduces a new scaling theory for electromagnetism, which is able to combine information

from more than one scaled experiment. It achieves this by means of new forms of similitude rules, which

facilitate the design of scaled experiments with a particular focus here being one and two distinct scales.

The approach does not require dimensionless equations and consequently is a step away from the well-known

method of dimensional analysis. The following conclusions can be drawn from the work presented in the

paper:

� The theory of finite similitude has been further developed to capture all scale dependencies that arise

in the field of electromagnetism.

� A transport formulation for Maxwell equations has been established to link the theory of electromag-

netism to the finite similitude theory.
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� By design, the new similitude rules for electromagnetism are nested to ensure that single-experiment

rules are contained within two-experiment rules and so on.

� By means of integration, the differential forms of similitude have been shown to capture electromagnetic

field behaviours across one and two scaled experiments.

� Scale effects as defined under the well-known theory of dimensional analysis cease to be scale effects

under the first-order finite similitude rule, which features proportional field differences.

� The new scaling theory for electromagnetism is shown to be equally applicable to analytical and

numerical data.

More specifically, from the simulations performed on the specific electromagnetic systems assesed, it has

been shown that:

� Scaled dependencies for inductors, capacitors and resistors have been established and for replica scaling

the following relationships, respectively apply: Lts = βLps, Cts = βCps and Rts = β−1Rps.

� Analytical analysis revealed that zeroth-order scaling was able to capture the behaviour of simple

systems (e.g., generator, moving rod in a uniform magnetic field) but replica scaling was not possible

for the RLC circuit.

� Reproducible behaviour of the RLC circuit by a single experiment was shown to be possible with replica

scaling of the inductor and capacitor but the circuit resistance was required to be scale invariant.

� First-order theory proved to be critical in accurately capturing the response of a time-harmonic Eddy

current system involving two materials. Errors of some 11.21% and 35.49% obtained with zeroth-order

models was reduced to almost 0% with the application of the first-order theory.
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