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The Conjugacy Growth of the Soluble
Baumslag-Solitar Groups

Laura Ciobanu, Alex Evetts
and Meng-Che “Turbo” Ho

Abstract. In this paper we give asymptotics for the conjugacy growth
of the soluble Baumslag-Solitar groups BS�1, k�, k C 2, with respect to
the standard generating set, by providing a complete description of ge-
odesic conjugacy representatives. We show that the conjugacy growth
series for these groups are transcendental, and give formulas for the
series. As a result of our computation we also establish that in each
BS�1, k� the conjugacy and standard growth rates are equal.
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1. Introduction

For any n C 0, the conjugacy growth function cG,S�n� of a finitely gen-
erated group G, with respect to some finite generating set S, counts the
number of conjugacy classes intersecting the ball of radius n in the Cayley
graph of G with respect to S. The conjugacy growth series of G with re-
spect to S is then the generating function for the sequence cG,S�n�. There
are numerous results in the literature about the asymptotics of conjugacy
growth [9, 10, 16, 18], as well as about the behaviour of conjugacy growth
series [1, 5, 6, 11, 19, 20], for important classes of groups. Of particular rele-
vance here is the work [2] of Breuillard and Cornulier, who showed that the
function cG,S�n� grows exponentially for finitely generated soluble groups
that are not virtually nilpotent, such as the soluble Baumslag-Solitar groups
BS�1, k� � `a, t S tat�1 � ake, k C 2.

In this paper we give finer asymptotics for cBS�1,k�,�a,t��n�, compute ex-
plicitly the conjugacy growth series of BS�1, k� with respect to the standard
generating set �a, t�, and show that this series is transcendental. We estab-
lish the transcendental behaviour from the fact that, up to multiplicative
constants, cG,S�n� is asymptotically of the form αn

n for a constant α A 1,
which is interestingly similar to hyperbolic groups [1] and several classes of
acylindrically hyperbolic groups [15], despite BS�1, k� being among the first
examples of groups that are not acylindrically hyperbolic.
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This paper provides further confirmation for the conjecture (see [11])
that the only groups with rational conjugacy growth series are the virtu-
ally abelian ones. It also provides further confirmation for the conjecture
that the conjugacy and standard growth rates in finitely presented groups
are equal; this was already observed for hyperbolic [1], relatively hyperbolic
[15], most graph products [7] and lamplighter groups [19].

The structure of the paper is as follows. We give the background on
conjugacy growth functions and series in Section 2, where we also provide
descriptions of normal forms in the Baumslag-Solitar groups that will be
used to describe the conjugacy representatives later in the paper. In Sec-
tion 3 we completely describe the conjugacy representatives and give the
conjugacy growth series for those elements in the maximal abelian normal
subgroup of BS�1, k�, and then in Section 4 we describe geodesic conjugacy
representatives for the remaining conjugacy classes of BS�1, k�.

The main result appears in Section 5, where we show (Corollary 23) that
the conjugacy growth series of BS�1, k�, with respect to the standard gen-
erating set, is transcendental. In Section 5 we also show that the conjugacy
and standard growth rates are equal, in Corollary 24. Finally, in Section 6
we give the formulas for the conjugacy growth series of BS�1, k�.

2. Preliminaries

2.1. Conjugacy growth and series. Throughout this subsection, fix a
group G and a finite generating set S of G. The (word) length of an element
g > G, denoted by SgS, is the length of a shortest word in S that represents
g, i.e. SgS � min�SwS S w > S�,w �G g�. In this case, we say w is a geodesic
word, or simply a geodesic.

We will often write g � h to denote that g and h are conjugate, and write
�g� for the conjugacy class of g. The length of �g�, denoted by S�g�S, is the
shortest length among all elements in �g�, i.e. S�g�S � min�ShS S h � g�. We
say that a word w is a conjugacy geodesic for �g� if it is a geodesic, and if it
moreover represents an element of shortest length in �g�.

We define the cumulative conjugacy growth function of G with respect
to S to be the number of conjugacy classes whose length is at most n, and
the strict conjugacy growth function, denoted as c�n� � cG,S�n�, to be the
number of conjugacy classes whose length is equal to n, i.e.

c�n� � #��g� S S�g�S � n�.

For ease of computation we shall work only with the strict version, and call
that the conjugacy growth function. The conjugacy growth series C�z� �

CG,S�z� is defined to be the (ordinary) generating function of c�n�, so

C�z� �
ª

Q
n�0

c�n�zn.
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All results in this paper can be easily extended to the cumulative version of
the conjugacy growth function and series (see [1]).

We call a formal power series f�z� rational if it can be expressed (for-
mally) as the ratio of two polynomials with integral coefficients, or equiv-
alently, the coefficients of f�z� satisfy a finite linear recursion. In the lan-
guage of polynomial rings, this is to say f�z� > Q�z�. Furthermore, f�z� is
irrational if it is not rational.

A formal power series is algebraic if it is in the algebraic closure of Q�z�,
i.e. it is the solution to an polynomial equation with coefficients from Q�z�.
It is called transcendental if it is not algebraic.

2.2. Baumslag-Solitar groups. Throughout the rest of the article, we
will write

G � BS�1, k� � `a, t S tat�1 � ake

where k C 2 is a natural number, and will write the conjugation as at � tat�1.
Let Zk � �x > Q S knx > Z for some n > Z� and consider the semidirect
product Zk # Z, where the action of Z on Zk is multiplication by k. Then
BS�1, k� � Zk # Z, with the isomorphism given by a � �1,0� > Zk and
t� �0,1� > Z where we write an element of G in the semidirect normal form
�x,m�.

Suppose that m A 0. Since

(1) �tm�a � atma�1 � a � a�k
m

tm � �1 � km,m�

and at � ak, we get that conjugation by generators amounts to:

(2) �x,m�a � �x � �1 � km�,m� and �x,m�t � �kx,m�.

The form of geodesics in the soluble Baumslag-Solitar groups has been
studied in several articles, and we summarise here the results in a form
convenient for further use. The following propositions are derived from
section 4 of [8]. We restrict for now to only those elements with zero t-
exponent sum.

Proposition 1. Let k � 2r � 1 for some positive integer r. The set Eo of
words in the following forms comprises a set of unique geodesic representa-
tives for the elements of the subgroup Zk.

Oa. �ε, a�1, . . . a��r�1��
Ob. �ax0tax1�taxdt�d S d C 1, xd x 0,A�
Oc. �t�bax0tax1�taxdt�c S b, c, d C 1, d � b � c, x0 x 0, xd x 0,A�
Od. �t�dax0tax1�taxd S d C 1, x0 x 0,A�

Here A signifies the conditions SxdS B r � 1, SxiS B r for i @ d, and if xd�1 � �r
then xd x �1.

Proposition 2. Let k � 2r for some r C 2. The set Ee of words in the
following forms comprise a set of unique geodesic representatives for the
elements in Zk.

Ea. �ε, a�1, . . . , a��r�1��
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Eb. �ax0tax1�taxdt�d S d C 1, xd x 0,A,B�
Ec. �t�bax0tax1�taxdt�c S b, c, d C 1, d � b � c, x0 x 0, xd x 0,A,B�
Ed. �t�dax0tax1�taxd S d C 1, x0 x 0,A�

Here, A signifies the conditions SxdS B r � 1, and for each 0 B i @ d, SxiS B r,
if xi�1 � r then 0 B xi @ r for i @ d, and if xi�1 � �r then �r @ xi B 0. And
B signifies that the following subwords are forbidden: a�rta��r�2�ta�1t�1,
a��r�1�ta�1t�1.

Proposition 3. Let k � 2, i.e. G � BS�1,2�. The set E2 of words in the
following forms comprise a set of unique geodesic representatives for the
elements in Zk.

2a. �ε, a�1, a�2, a�3�
2b. �ax0tax1t�taxdt�d S d C 1, SxdS > �2,3�,A�
2c. �t�bax0tax1�taxdt�c S b, c, d C 1, d � b � c, x0 x 0, SxdS > �2,3�,A�
2d. �t�dax0t�taxd S d C 1, x0 x 0,A�

Here, A signifies the conditions SxiS B 1 for i @ d, if xi�1 x 0 then xi � 0 for
i @ d, if xd A 0 then xd�1 C 0, and if xd @ 0 then xd�1 B 0.

2.3. Context-free languages. We will need some formal language theory
(see for example [17]) in order to calculate the growth series of Zk in Section
3.

Definition 4. Let V be a set of variables (usually denoted by upper case
letters), and T a set of terminals (usually denoted by lower case letters). A
context-free grammar consists of a finite set of production rules of the form

V � w1 S w2 S � S wn

where V > V, each wi > �V 8 T ��, and the S symbol stands for exclusive ‘or’.
We nominate one variable to be the starting variable.

A context-free grammar produces a language in the following way. Start
at the nominated starting variable, and perform substitutions according
to the production rules, until the word consists only of terminals. The
language L ` T � of all words that can be produced from the grammar is
called a context-free language. If each word is only produced in one way
(i.e. via a unique sequence of production rules) then the language is called
unambiguous context-free.

Theorem 5 (Chomsky-Schützenberger [4]). If L is an unambiguous context-
free language, its growth series is algebraic.

There is a method for explicitly calculating the series, known as the DSV
method, which is as follows. Convert the grammar into a system of equations
by replacing:

Y the empty word ε with the integer 1,
Y each terminal with the formal variable z,
Y each variable V with a function V �z�,
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Y the or S with addition �,
Y concatenation with multiplication,
Y the production arrow with �.

Solving the system of equations for the initial variable then gives the growth
series, an algebraic function of z.

3. The conjugacy classes ��x,0�� in BS�1, k�

In this section we show that the conjugacy growth series of the subgroup
Zk, relative to G � BS�1, k�, is rational with respect to the generating set
�a, t�. We explicitly calculate the series via context-free grammars, and
extract the growth rate. We note that Freden, Knudson, and Schofield
[14] also use context-free grammars to calculate growth series, but they
are concerned primarily with the so-called horocyclic subgroup, `ae in our
notation, which is a proper subgroup of Zk. In fact, Zk is the normal closure
of `ae.

We treat the cases of odd and even k separately.

3.1. Odd case. Let k � 2r � 1 for some integer r C 1.

Proposition 6. In BS�1,2r � 1� the set of words

Co � �ε, a�1, . . . a��r�1�� 8 �ax0tax1t�taxdt�d S d C 1, x0 x 0, xd x 0,A�,

where A signifies the conditions SxdS B r�1, SxiS B r for i @ d, and if xd�1 � �r
then xd x �1, comprises a set of unique geodesic representatives for the
conjugacy classes of G that lie in Zk.

Proof. Let Eo be as in Proposition 1 and note that Co ` Eo. We use the
following key observation: if an element is represented by a word in Eo � Co,
then it cannot be represented by a word in Co, by the uniqueness condition
on Eo. We will first prove that no pair of words in Co represent the same
conjugacy class, and then prove that every word in Eo is conjugate to a
word in Co with at most the same length. Then since every group element
is represented in Eo, every conjugacy class is represented (uniquely) in Co.
Furthermore, this unique representative has length at most that of each of
the corresponding (element-minimal) representatives in Eo. This proves the
proposition.

Proposition 1 implies that no two words in Co represent equal elements.
We show that no two words represent conjugate group elements either. Sup-
pose, on the contrary, that w, v > Co represent conjugate elements. So there
exists a non-zero integer m such that tmwt�m �G v (since a commutes with
every element of Zk, and hence with every element of Co). First suppose
that w � an for SnS B r � 1. Then tmantm�1 is a word in either (Ob.) (with
x0 � 0) or (Oc.), depending on the sign of m, and thus by the above ob-
servation the word v ¶ Co, which is a contradiction. Now suppose that
w � ax0tax1t�axdt�d for d C 1, x0 x 0, with conditions A and B. So
v � tmwt�m � tmax0tax1t�axdt�d�m. If m A 0, v is a word in (Ob.) (and
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not in Co). If m @ 0, v is a word in either (Oc.) or (Od.). In both cases
v ¶ Co, which is again a contradiction.

Now let w > Eo. We show that there exists v > Co such that w and v
represent conjugate group elements, and moreover SwS C SvS (as words). We
assume that w ¶ Co (otherwise the claim is trivial). First, suppose that w
is in form (Ob.), and let i A 0 be such that xi is the left-most non-zero
power of a. Then the word v � axitaxi�1t�taxdt�d�i is in Co and represents
a conjugate of w. Further, the number of a�1s in v is the same as that in
w, and the number of t�1s in v is �d� i�� �d� i� @ 2d and therefore SvS @ SwS.
Now suppose w is of the form Oc. (resp. Od.). Let v � ax0tax1t . . . axdt�d.
Since v is a leftward cyclic permutation of w by b (resp. d) places, the words
represent conjugate elements and are of equal length. �

Proposition 7. Let k � 2r � 1, where r C 1.

(1) In BS�1, k� the set Co is unambiguous context-free.
(2) The subgroup Zk has rational relative conjugacy growth.

Proof. (1) First note that Co is not regular since the exponent-sum of t has
to be 0, and this cannot be achieved by a finite state automaton.

We show the language is context-free by exhibiting an explicit grammar.
We use capital letters for variables and lower case for terminals. Write
a�n as shorthand for the concatenation of n copies of the terminal a�1. It is
straightforward to see that the following context-free grammar, starting from
S, produces the set in question unambiguously. Each production rule either
replaces a variable with an appropriate power of a, or adds corresponding
instances of t and t�1, together with appropriate powers of a (including a0).
If ar or a�r are produced, restrictions apply via V and W .

S � ε S A S T, A� a�r�1 S � S a�1 S a S � S ar�1

B � a�r�1 S � S a�1 S a S � S ar�1, T � BtUt�1 S artV t�1 S a�rtWt�1

U � A S tUt�1 S T, V � tUt�1 S T S a�r�1 S � S a�2 S a S � S ar�1

W � tUt�1 S T S a�r�1 S � S a�1 S a2 S � S ar�1.

(2) By Theorem 5 the growth series of the language Co, and hence the
relative conjugacy growth series of the subgroup Zk, is algebraic. However, a
stronger result holds here. Applying the DSV method to the grammar above
gives the growth series of the language Co. The production rules become the
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equations:

S�z� � 1 �A�z� � T �z�, A�z� � 2
r�1

Q
i�1

zi � 2
z � zr�2

1 � z
,

B�z� � 2
r�1

Q
i�1

zi � 2
z � zr

1 � z
, T �z� � B�z�U�z�z2 � V �z�zr�2 �W �z�zr�2,

U�z� � A�z� �U�z�z2 � T �z�, V �z� � U�z�z2 � T �z� � 2
r�1

Q
i�1

zi � z,

W �z� � U�z�z2 � T �z� � 2
r�1

Q
i�1

zi � z.

Solving these equations for S�z� we find that

(3) So�z� � S�z� �
2zr�6 � 2zr�5 � 4zr�4 � 2zr�2 � 3z3 � z2 � z � 1

z3 � 2zr�3 � z2 � z � 1
.

�

Example 8. For illustrative purposes, we derive an element of Co using the
grammar described above. The table below lists, on the left, the production
rules used to produce the word at2arta�2t�3, and the result of applying each
rule on the right.

production rule result
S � T T
T � BtUt�1 BtUt�1

B � a atUt�1

U � tUt�1 at2Ut�2

U � T at2Tt�2

T � artV t�1 at2artV t�3

V � a�2 at2arta�2t�3

Corollary 9. The conjugacy classes in Zk, for k � 2r � 1, have growth rate
in the range �43 ,2�.

Proof. Denote by do the denominator of S�z� in (3), that is, do�z� � z
3
�

2zr�3 � z2 � z � 1 � z3�1 � zr� � z�1 � zr�2� � �z2 � 1�, which implies that for
z > ��1,0�, do�z� @ 0. Also, do�

1
2� � �

1
8 �

1
2r�2

@ 0 and do�
3
4� �

47
64 �

27
32�

3
4�
r A 0,

so there is a smallest root ρo > �12 ,
3
4� of do. Furthermore, do�0� � �1 and

d�o�z� A 0 for z > �0, 12�, so ρo is the real root with smallest absolute value.
Write a � ρ0 for ease of notation. The fact that a is a root of the de-

nominator gives 2ar�3 � a3 � a2 � a � 1. Using this identity we can substi-
tute each aCr by the appropriate expression into the numerator and obtain
2ar�6 � 2ar�5 � 4ar�4 � 2ar�2 � 3a3 � a2 � a � 1 � a7 � 2a5 � a4 � a3 � 2a2 � 1.
Furthermore, a7 � 2a5 � a4 � a3 � 2a2 � 1 � 0 only for a � �1, which is not the
case, as a > �12 ,

3
4�. Thus ρo is not a root of the numerator of S�z� in (3), so

the growth rate, which is the reciprocal of ρo, lies in the given range. �
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3.2. Even case. Let k � 2r, for some integer r C 2.

Proposition 10. In G � BS�1,2r�, r C 2, the set of words

Ce � �ε, a�1, . . . , a��r�1�� 8 �ax0tax1�axdt�d S d C 1,A,B,x0 x 0�

comprises a set of unique geodesic representatives for the conjugacy classes
of G that lie in Zk. Here, A signifies the conditions SxdS B r � 1, and for
each 0 B i @ d, SxiS B r, if xi�1 � r then 0 @ xi @ r for i @ d, and if xi�1 � �r
then �r @ xi @ 0. And B signifies that the following subwords are forbidden:
a�rta��r�2�ta�1t�1, a��r�1�ta�1t�1.

Proof. Let Ee be as in Proposition 2 and note that Ce ` Ee. We use the
following key observation: if an element is represented by a word in Ee � Ce,
then it cannot be represented by a word in Ce, by the uniqueness condition
on Ee. We will first prove that no pair of words in Ce represent the same
conjugacy class, and then prove that every word in Ee is conjugate to a
word in Ce with at most the same length. Then since every group element
is represented in Ee, every conjugacy class is represented (uniquely) in Ce.
Furthermore, this unique representative has length at most that of each of
the corresponding (element-minimal) representatives in Ee. This proves the
proposition.

Proposition 2 implies that no two words in Ce represent equal elements.
We show that no two words represent conjugate group elements either. Sup-
pose, on the contrary, that w, v > Ce represent conjugate elements. So there
exists a non-zero integer m such that tmwt�m �G v. First suppose that
w � an for SnS B r � 1. Then tmantm�1 is a word in either (Eb.) (with
x0 � 0) or (Ec.), depending on the sign of m, and thus by the above ob-
servation the word v ¶ Ce, which is a contradiction. Now suppose that
w � ax0tax1t�axdt�d for d C 1, x0 x 0, with conditions A and B. So
v � tmwt�m � tmax0tax1t�axdt�d�m. If m A 0, v is a word in (Eb.) (and
not in Ce). If m @ 0, v is a word in either (Ec.) or (Ed.). In both cases, we
have v ¶ Ce, which is again a contradiction.

Now let w > Ee. We claim that there exists v > Ce such that w and v
represent conjugate group elements, and moreover SwS C SvS (as words). We
assume that w ¶ Ce (otherwise the claim is trivial).

There are two exceptional cases. First, suppose

w � t�dax0tax1�axd�2ta��r�1�ta�1

with d C 1 and conditions A (so in particular w is in the form (Ed.)). Then

w is conjugate to the element represented by ax0tax1�axd�1ta��r�1�ta�1t�d.
This word contains a forbidden subword and therefore does not satisfy con-
dition B, so is not in Ce. However, it represents the same element as v ��
ax0tax1�axd�1ta��r�1�t�d�1 > Ce. We also have SwS � Pd�2i�0 xi��r�1��1�2d A

Pd�2i�0 xi � �r � 1� � 2�d � 1� � SvS.
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For the second exceptional case, suppose

w � t�dax0tax1�axd�3ta�rta��r�2�ta�1.

Then w is conjugate to the element represented by

ax0tax1�axd�3ta�rta��r�2�ta�1t�d,

which contains a forbidden subword, but represents the same element as
v �� ax0tax1�axd�3ta�rta��r�1�t�d�1 > Ce. In this case we have

SwS �
d�3

Q
i�0

xi � r � �r � 2� � 1 � 2d �
d�3

Q
i�0

xi � r � �r � 1� � 2�d � 1� � SvS.

For the general case, where w is in the form (Eb.), (Ec.), or (Ed.) (ex-
cluding the exceptional cases) and is not already an element of Ce, it is clear
that conjugation by t�1 an appropriate number of times takes w to a word
in Ce, which has at most the same length as w. �

Proposition 11. Let k � 2r, r C 2.

(1) In G � BS�1, k�, the set Ce is an unambiguous context-free language.
(2) The subgroup Zk has rational conjugacy growth.

Proof. (1) We claim that the following grammar, with S as the starting
point, generates Ce unambiguously.

S � ε S A S T, A� a��r�1� S a�r S � S a�1 S a S � S ar�1

T � BtUt�1 S artV t�1 S a�rtWt�1 S ar�1tXt�1 S a��r�1�tY t�1

B � a��r�2� S a��r�3� S � S a�1 S a S � S ar�2, U � tUt�1 S T

V � a S a2 S � S ar�1 S tUt�1 S atUt�1 S � S ar�3tUt�1 S ar�2tXt�1 S ar�1tXt�1

W � a�1 S a�2 S � S a��r�1� S tUt�1 S a�1tUt�1 S �

� S a��r�3�tUt�1 S a��r�2�tY t�1 S a��r�1�tY t�1

X � a��r�1� S a�r S � S a�2 S a S a2 S � S ar�1 S U

Y � a��r�1� S a�r S � S a�2 S a�1 S a2 S � S ar�1 S U

Starting from S, this grammar produces words in Ce by choosing the values
of the powers xi from left to right, while keeping track of the number d of
such powers. If xi is chosen to be �r or ��r � 1�, restrictions apply to the
following power.



10 LAURA CIOBANU, ALEX EVETTS AND MENG-CHE “TURBO” HO

(2) We use the grammar above to explicitly calculate the growth function.
The grammar yields the following system of equations.

S�z� � 1 �A�z� � T �z�, A�z� � 2
r�1

Q
i�1

zi �
2�z � zr�2�

1 � z
,

T �z� � t2B�z�U�z� � 2zr�2V �z� � 2zr�1X�z�,

B�z� � 2
r�2

Q
i�1

zi �
2�z � zr�1�

1 � z
, U�z� � z2U�z� � T �z�,

V �z� �W �z� �
r�1

Q
i�1

zi � z2U�z�
r�3

Q
i�0

zi � z2X�z��zr�2 � zr�1�

�
z � zr

1 � z
� z2U�z�

1 � zr�2

1 � z
� z2X�z��zr�2 � zr�1�,

X�z� � Y �z� � 2
r�1

Q
i�1

zi � z �U�z� �
2�z � zr�2�

1 � z
�U�z�.

Solving these for S�z� yields the following rational expression:

Se�z� �
n�z�

d�z�
�
�1 � 2zr�2 � 2z3 � z4 � 2z2 � 4z3r�6 � 4z3r�8 � 2z2r�8 � 4z3r�4 � 4zr�6

�2z2r�4 � 2zr�4 � z3 � 2zr�2 � z2 � z � 1��z � 1�
(4)

�

4z6�2r � 2z2r�7 � 2z2r�2 � 2zr�5 � 6z2r�4 � 6zr�3 � 6zr�4

�2z2r�4 � 2zr�4 � z3 � 2zr�2 � z2 � z � 1��z � 1�
.

That is, the denominator of S�z� is d�z� � �2z2r�4 � 2zr�4 � z3 � 2zr�2 � z2 �
z � 1��z � 1� and the numerator n�z� � �1 � 2z2 � 2z3 � z4 � 2zr�2 � 6zr�3 �
6zr�4�2zr�5�4zr�6�2z2r�2�6z2r�4�4z6�2r�2z2r�7�2z2r�8�4z3r�4�4z3r�6�
4z3r�8. �

Corollary 12. The conjugacy classes in Zk have growth rate in the range
�43 ,2�.

Proof. For z > ��1
2 ,0�, d�z� � 2z2r�4 � 2zr�4 � z3 � 2zr�2 � z2 � z � 1 �

�1 � z� � z2�1 � z2r�2� � z3�1 � z2r�1� � 2zr�2�1 � z2� C 1 �
1
4 �

1
16 A 0, so

there is no root in ��1
2 ,0�. Similarly, for z > ��3

4 ,�
1
2�, we have that d�z� �

�1 � z� � z2�1 � z2r�2� � z3�1 � z2r�1� � 2zr�2�1 � z2� C 3
2 �

4
9 � 2�34�

4 A 0, so

there is no root in ��3
4 ,�

1
2�.

We also have d�12� �
1
8 �

1
22r�3

�
1

2r�3
�

1
2r�1

A 0 and d�34� @ 0. So there is a

root > �12 ,
3
4� of d. Furthermore, d�0� � 1 and d��z� @ 0 for z > �0, 12�, so the

real root with smallest absolute value lies in �12 ,
3
4�.

Write a to be the real root with smallest absolute value of d�z�. The fact
that a is a root of the denominator gives 2a2r�4�2ar�4�2ar�2�a3�a2�a�1 � 0.
In particular, 2a2r�4 � 2ar�4 � 2ar�2 � a3 � a2 � a � 1 � 0 and a3 � a2 � a � 1 �
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2a2r�4 � 2ar�4 � 2ar�2. Using these identities we get that

n�a� � �1 � 2a2
� 2a3

� a4
� 2ar�2

� 6ar�3
� 6ar�4

� 2ar�5
� 4ar�6�2a2r�2

� 6a2r�4
� 4a6�2r

� 2a2r�7
� 2a2r�8

� 4a3r�4
� 4a3r�6

� 4a3r�8

��a � 1��a3
� a2

� a � 1� � 2ar�2
� 6ar�3

� 6ar�4
� 2ar�5

� 4ar�6
� 2a2r�2

� 6a2r�4
� 4a6�2r

� 2a2r�7
� 2a2r�8

� 2a2r�4
�2ar

� 2ar�2
� 2ar�4

�

��a � 1��2a2r�4
� 2ar�4

� 2ar�2
� � 2ar�2

� 6ar�3
� 6ar�4

� 2ar�5

� 4ar�6
� 2a2r�2

� 6a2r�4
� 4a6�2r

� 2a2r�7
� 2a2r�8

� �2ar�4
� 2ar�2

� a3
� a2

� a � 1��2ar
� 2ar�2

� 2ar�4
�

�2ar
�a � 1��a � 1�2��a3

� a � 1�ar�2
� a4

� a2
� 1�

However, a > �12 ,
3
4� implies a3 � a � 1 @ 0 and a4 � a2 � 1 @ 0, so ��a3 � a �

1�ar�2 �a4 �a2 �1� @ 0. Also a x �1,0,1, so a is not a root of the numerator
of S�z� in (4), and thus the growth rate, which is the reciprocal of a, lies in
the given range.

�

3.3. The case k � 2. Let G � BS�1,2�.

Proposition 13. In BS�1,2� the set of words

C2 � �ε, a�1, a�3� 8 �ax0tax1t�taxdt�d S d C 1, SxdS > �2,3�, x0 x 0,A�

comprises a set of unique geodesic representatives for the conjugacy classes
of G that lie in the subgroup Zk. Here, A signifies the conditions SxiS B 1 for
i @ d, if xi�1 x 0 then xi � 0 for i @ d, if xd A 0 then xd�1 C 0, and if xd @ 0
then xd�1 B 0.

Proof. Let E2 be as in Proposition 3 and note that C ` E2. As above, we
use the following key observation: if an element is represented by a word in
E2 � C2, then it cannot be represented by a word in C2, by the uniqueness
condition on E2. We will first prove that no pair of words in C2 can represent
the same conjugacy class, and then prove that every word in E2 is conjugate
to a word in C2 of at most the same length, proving the proposition.

We show that no pair of words in C2 represent conjugate elements. Let
w > C2 and suppose on the contrary that it represents the same conjugacy
class as some v > C2. Since no pair of words in E2 represent the same
element, there exists m x 0 with tmwt�m �G v. First consider the case where
w > �ax0tax1t�taxdt�d S d C 1, SxdS > �2,3�, x0 x 0,A�. Then tmwt�m has
the form (2b.) with x0 x 0, or (2c.), or (2d.), which contradicts the key
observation. Now consider the case w � a�1, with m � 1. Then twt�1 �

ta�1t�1 �G a
�2, and hence the word twt�1 cannot be in C2 by the uniqueness

condition on E2. In the case w � a�1, with m � �1, we have t�1wt in the
form (2d.), again a contradiction. Next, consider w � a�1 with SmS C 2. We

have tma�1t�m �G tm�1a�2t��m�1�, which is a word in the form (2b.) with
x0 x 0, or (2c.), or (2d.), again contradicting the key observation. Finally
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consider the case w � a�3. Then tma�3t�m is in the form (2b.) with x0 x 0,
or (2c.), or (2d.), again contradicting the key observation.

Now let w > E2. We show that there exists v > C2 such that w and
v represent conjugate elements, and that SwS C SvS. We assume w ¶ C2.
Firstly, a�2 is conjugate to a�1 > C2, which has strictly shorter length. Now
suppose w � t�dax0t�axd�1ta > (2d.), where xd�1 > �0,1�. Then w is con-
jugate, via td, to ax0t�taxd�1tatd, which has the same length. This word
represents the same element as ax0t�taxd�1�2td�1 > C2 which has strictly
smaller length. Similarly, if w � t�dax0t�axd�1ta�1 > (2d.), we must have
xd�1 > ��1,0�, and w represents the same conjugacy class as the shorter
word ax0t�taxd�1�2td�1 > C2. In all other cases, w is clearly conjugate, via
an appropriate number of t�1s, to a word in C2 of equal or shorter length. �

Proposition 14. The subgroup Z2 B BS�1,2� has rational conjugacy growth.

Proof. It is straightforward to see that the following grammar, starting
from S, produces C2 unambiguously.

S � ε S A S T, A� a�3 S a�1 S a S a3,

T � at2Ut�2 S a�1t2Ut�2 S ata2t�1 S ata3t�1 S a�1ta2t�1 S a�1ta3t�1,

U � tUt�1 S T S a�3 S a�2 S a2 S a3

The grammar becomes the following system of equations.

S�z� � 1 �A�z� � T �z�, A�z� � 2�z � z3�,

T �z� � 2z5U�z� � 2z5 � 2z6, U�z� � z2U�z� � T �z� � 2�z2 � z3�.

Solving these yields the following rational expression:

(5) S�z� �
1 � 2z � z2 � 2z5 � 2z6 � 2z7 � 2z8

1 � z2 � 2z5
.

�

Corollary 15. The conjugacy classes in Z2 B BS�1,2� have growth rate
approximately 1.348.

Proof. The only real root of the polynomial 1�z2�2z5, the denominator of
(5), is approximately 0.742. Denote this root by a, so that 1 � a2 � 2a5 � 0.
Using this identity, we find that the numerator of (5) is equal to a�a2�a4�a6

when z � a. Since a4 @ a2, we see that a is not a root of the numerator.
Therefore the growth rate is the reciprocal of a, approximately 1.348. �

4. The conjugacy classes ��x,m��, m x 0, in BS�1, k�

In this section we find and describe a set of minimal representatives for
the conjugacy classes of the form �x,m� with m x 0.
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4.1. The conjugacy geodesics. We first need the following result by
Collins-Edjvet-Gill, which although stated for k even, also holds for k odd.

Lemma 16. [8, Lemma 2.2] Let w be a geodesic word. Then:

(1) If w has a subword of the form t�rai0tai1t�taint�s, where i0, in x 0,
r, s, n C 1, then r � s B n.

(2) If w has a subword of the form trai0t�1ai1t�1�t�1aints, where i0, in x
0, r, s, n C 1, then r � s B n.

(3) w has at most one subword of the form t�1ait where i x 0, and at
most one subword of the form tait�1 where i x 0.

The following proposition shows that a conjugacy geodesic w has no
‘pinches’, that is, no subwords of the form t�1ait or tait�1 where i x 0.

Proposition 17. Every conjugacy geodesic w for ��x,m�� with m A 0
must be, up to a cyclic permutation, of the form ax0tax1t�axm�1t for some
x0,�, xm�1 > Z.

Proof. Let w be a conjugacy geodesic for ��x,m��.
Suppose that w contains t�1 non-trivially. By Lemma 16 (3), after cycli-

cally permuting w if necessary, we may assume that

w � ax0tax1t�axn�1taynt�1ayn�1t�1�aym�1t�1

with x0, yn x 0, and n Am. Since a commutes with any word with t-exponent
sum equal to zero, we can rewrite w as follows, without increasing its length:

w � ax0tax1t�taxn�1�taynt�1�ayn�1t�1ayn�2�aym�1t�1

� ax0tax1t�axn�2�t2aynt�1axn�1�yn�1t�1�ayn�2�aym�1t�1

�

� ax0tax1t�axmtn�maynt�1axn�1�yn�1t�1�axm�1�ym�1t�1.

For ease of notation we will rename exponents so that

w � ax0tax1t�axmtn�maynt�1ayn�1t�1�aym�1t�1,

and note that its cyclic permutation

ax1t�axmtn�maynt�1ayn�1t�1�aym�1t�1ax0t

has a subword tn�maynt�1ayn�1t�1�aym�1t�1ax0t which contradicts Lemma
16 (2). So, w cannot contain any t�1.

Thus, w must have the form ax0tax1t�axm�1t, up to a cyclic permutation.
�

Now by checking through the list of geodesics in [8, Section 4], we see
a conjugacy geodesic must be of the form (MWe1a). Translating this to
our language and using the fact that a cyclic permutation of a conjugacy
geodesic is still a geodesic, we obtain the following proposition:
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Proposition 18. In BS�1, k�, every conjugacy geodesic w for ��x,m�� with
m A 0 must be, up to a cyclic permutation, of the form ax0tax1t�axm�1t for
some x0,�, xm�1 > Z such that:

Y If k � 2r � 1 is odd, then SxiS B r for every i.
Y If k � 2r is even, then SxiS B r, and for each i, if xi�1 � r then

0 B xi @ r, and if xi�1 � �r then �r @ xi B 0. (Here and henceforth in
this section, we use the convention that x�1 � xm�1.)

4.2. The conjugacy representatives. We now give conjugacy represen-
tatives for a fixed m A 0. Recall that by (2) two elements �x,m� and �y, n�
are conjugate only if m � n, so it suffices to restrict the analysis to elements
of the form �x,m�, with m fixed, in the following arguments.

Lemma 19. Suppose k � 2r � 1 and m A 0. Let

Am � �ax0tax1t�axm�1t S SxiS B r� � ��a�rt�m�.

Then two words in Am are conjugate if and only if they are cyclic permuta-
tions of each other, and every word in Am is a conjugacy geodesic.

The proof of the odd case is the same as the proof for even case, but
simpler. Thus, we shall only prove the even case.

Lemma 20. Suppose k � 2r and m A 0. Let Am be the set of words
ax0tax1t�axm�1t satisfying

(1) SxiS B r,
(2) for each i, if xi�1 � r then 0 B xi @ r, and if xi�1 � �r then �r @ xi B 0,

(3) if m is even, �a��r�1�ta�rt�
m
2 and �a�rta��r�1�t�

m
2 are excluded from

Am.

Then two words in Am are conjugate if and only if they are cyclic permuta-
tions of each other, and every word in Am is a conjugacy geodesic.

Proof. We first show that two distinct words, ax0tax1t�axm�1t and
ay0tay1t�aym�1t, in Am cannot be conjugate by a`, ` x 0. Suppose we have
such a pair, and suppose these two words represent the elements �x,m� and

�y,m�. Since x �
m�1

P
i�0

xik
i, (1) implies that SxS B �km�1� k

2�k�1� , and similarly

SyS B �km � 1� k
2�k�1� . The conjugation by a` translates into x � y � `�km � 1�,

which together with the above inequalities forces S`S � 1. Without loss of
generality, we will assume that ` � 1.

Now as ` � 1, x�y �
m�1

P
i�0

�xi�yi�k
i � km�1 � �k�1���k�1�k����k�1�km�1.

Suppose xi � yi x k � 1 for some i, and let i1 be the smallest such index. By
taking

(6)
m�1

Q
i�0

�xi � yi�k
i
� �k � 1� � �k � 1�k �� � �k � 1�km�1
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modulo ki1�1, we must have xi1 � yi1 � �1 since all higher terms are 0
�mod ki1�1�, all lower terms on both sides cancel, and so �xi1 �yi1�k

i1 � �k�
1�ki1 �mod ki1�1� (and Sxi1 �yi1 S B k). By taking equation (6) modulo ki1�2,
similar computations show that xi1�1�yi1�1 � 0 �mod k�. If xi1�1�yi1�1 � 0,
then the same argument implies xi1�2 � yi1�2 � 0 �mod k�, etc. Suppose i2
is the first index such that xi2 � yi2 x 0.

Y If xi2 �yi2 � k, this forces xi2 � r and yi2 � �r. By (2), this means 0 B

xi2�1 @ r and 0 C yi2�1 A �r, so 0 B xi2�1 � yi2�1 B k � 2. But equation
(6) modulo ki2�2 implies xi2�1 �yi2�1 � �1 �mod k�, a contradiction.

Y If xi2 � yi2 � �k, this forces xi2 � �r and yi2 � r. By (2), this
means 0 C xi2�1 A �r and 0 B yi2�1 @ r, so 0 C xi2�1 � yi2�1 C �k � 2.
But equation (6) modulo ki2�2 implies xi2�1 � yi2�1 � 1 �mod k�, a
contradiction.

This means that we actually have xi � yi � k � 1 � 2r � 1 for all i. Thus,
�xi, yi� � �r,�r � 1� or �r � 1,�r� for every i. But by (2), m must be
even since the r and r � 1 need to alternate in w as a cyclic word, and
ay0tay1t�aym�1t � �a�rta�r�1t�

m
2 or �a�r�1ta�rt�

m
2 . This violates (3), and

thus any two distinct words in Am cannot be conjugate by a`.
Now let w � ax0tax1t�axm�1t > Am and suppose some word u in Am

is conjugate to w, that is, w � u�x,l�, where �x, l� > BS�1, k�. Consider
the cyclic permutation w� of w ending in t given by w� � wv, where v �

ax0tax1t�axl�1t and xp � xp mod m, for any p > N. Clearly w� is also in Am,

and v has the form �y, l�. Then u�x,l��1�y,l� � w�, so u is conjugate to w�

by a power of a since �x, l��1�y, l� � �z,0� for some z > Zk, which gives a
contradiction to our previous claim. Thus u must be a cyclic permutation
of w, proving the first assertion of the lemma.

Suppose w � ax0tax1t�axm�1t > Am, and take a conjugacy geodesic u of
�w�. By Proposition 18, u is a word in Am if it is not excluded by (3) and
by the first assertion of this lemma, w is a cyclic permutation of u, thus also
a conjugacy geodesic. If u is of the form described in (3), then by the proof

above, w � �ar�1tart�
m
2 or �artar�1t�

m
2 and has the same length as u, so is

also a conjugacy geodesic. �

The above discussion concerns the case when m A 0. The antiautomor-
phism �x,m�( �x,m��1 � �� x

km ,�m� provides a bijection between elements

of the form �x,m� and those of the form �y,�m�. Since g�1 has the same
length as g, and taking inverses preserves conjugacy, the results above trans-
late to the case when m @ 0. Thus, writing A� � �

mA0
Am and A� � A

�1
�

, we

have the following description of conjugacy representatives:

Corollary 21. The set A, modulo cyclic permutations, gives a set of min-
imal length conjugacy representatives for the conjugacy classes of the group
BS�1, k� that are not in the base group Zk.
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(1) Let k � 2r � 1, r C 1. Then A � A� 8A�, where

A� ��a
x0tax1t�axm�1t Sm C 1, SxiS B r for 0 B i Bm � 1� � ��a�rt�m Sm C 1�,

A� ��t
�1ax0t�1ax1�t�1axm�1 Sm C 1, SxiS B r� � ��t�1a�r�m Sm C 1�.

(2) Let k � 2r, r C 1. Then A � A� 8A�, where

A� ��a
x0tax1t�axm�1t Sm C 1, SxiS B r,¦i�xi�1 � �r Ô� 0 B �xi @ r��

� ��a�r�1ta�rt�
m
2 , �a�rta�r�1t�

m
2 Sm C 2,m � 0 �mod 2��,

A� ��t
�1ax0t�1�t�1axm�1 Sm C 1, SxiS B r,¦i�xi � �r Ô� 0 B �xi�1 @ r��

� ��t�1art�1ar�1�
m
2 , �t�1ar�1t�1ar�m Sm C 2,m � 0 �mod 2��.

Proof. We have shown that the elements of A are conjugacy geodesics,
unique up to cyclic permutation. It remains to show that every conjugacy
class of BS�1, k� not contained in Zk has a representative in A.

By the observation above, we only need to show that for m A 0, every
element of the form �x,m� is conjugate to an element represented by a word
in A�. Again, we will only prove this for the more complicated case of k � 2r.

First, we show that any element of the form �x,m� is conjugate to an
element represented by a word of the form ax0tax1t�axm�1taxm (where xi >
Z). From [8], the element �x,m� has a (geodesic) representative in one of
the following forms:

Y MWe1a: ax0tax1t�taxm

Y MWe2a: t�nax0tax1t�taxm�n , some 1 B n @m
Y MWe3a: ax0tax1t�taxm�nt�n, some 1 B n @m
Y MWe4a: t�lax0tax1t�taxm�n�lt�n, some n, l C 1, n � l @m.

Words in MWe1a are already of the required form. Cyclic permutation
ensures that words in MWe2a or MWe4a are conjugate to words in MWe3a.
Such a word can be expressed as follows:

ax0tax1t�taxm�nt�n � ax0tax1t�taP
n
j�0 xm�jk

j

by expressing the suffix axmtaxm�1t�axm�nt�n in terms of a only. This is in
the required form.

Next, we show that any element of the form ax0tax1t�axm�1taxm is con-
jugate to an element of the form ay0tay1t�aym�1t, where SyiS B r for all i. To
see this, consider the following procedure:

(1) Choose i @ m such that SxiS A r. Modify the word using the rewrite

a��r�1�t ( a��r�1�ta�1 (which doesn’t change the group element).
Repeat this step until there is no such i.

(2) Cyclically permute the (now possibly altered) axm to the front of
the word (which doesn’t change the conjugacy class). If there is now
some i @ m with SxiS A r, return to step 1. Otherwise the procedure
terminates.
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Clearly if this process terminates we will have a word in the desired form. To
see that it does indeed terminate, consider the quantity h �� Pmi�0 SxiS. The
rewrite in step 1, applied to axi say, reduces SxiS by 2, and modifies Sxi�1S by
�1, depending on signs, thus step 1 always reduces h. Step 2 cannot increase
h, it either keeps it constant or reduces it, depending on the signs of x0 and
xm. Since h can never be negative, the process must terminate.

Finally, we show that any element of the form ay0tay1t�aym�1t, where
SyiS B r for all i, is conjugate to an element of A�. Consider the following
procedure:

(1) If there are any is with xi�1 � �r and �xi @ 0, rewrite the left-most
occurrence according to the rule a�rtaxit ( a�rtaxi�1t. Repeat this
step until there are no such i.

(2) If there are any subwords of the form a�rta�rt, rewrite the left-most

such subword to a�rta��r�1�ta�1. Repeat this step until there are no
such subwords.

(3) If the previous steps have resulted in a new a�1 appearing at the end
of the word, cyclically permute it to the front. Return to step 1.

It is clear that if this process terminates, the new word will either be an
element of A�, or will be in the set ��a�r�1ta�rt�

m
2 , �a�rta�r�1t�

m
2 S m C

2,m � 0 �mod 2��. In the latter case, the word is conjugate to an element
of A�. This finishes the proof.

To see that the process terminates, note that since we work from left to
right, each step will only be repeated a finite number of times before moving
onto the next step. Furthermore, working left to right in step 1 also ensures
that no additional candidates for step 2 are created. Repeating step 2 any
number of times will result in at most one a�1 appearing at the right hand
end of the word. After cyclically permuting, and returning to step 1, there
may be a subword of the form a�rta�rt at the start of the word. However,
after repeating step 2 as many times as necessary, any letter appearing at
the right hand end of the word will have the same sign at the previous time,
and thus when cyclically permuted cannot result in another subword of the
form a�rta�rt. Thus the process will terminate. �

5. The conjugacy growth series of BS�1, k�

In this section we show, in Corollary 23, that the conjugacy growth se-
ries of BS�1, k� with respect to its standard generating set is transcenden-
tal. This follows from determining the asymptotics (and transcendental
behaviour) of conjugacy growth outside Zk in the following proposition.

Proposition 22. The generating function for the number of conjugacy
classes in BS�1, k� of the form ��x,m��, with m x 0, is transcendental.

Proof. We compute the asymptotics for the number of conjugacy classes of
length n in BS�1, k� by finding the growth of the set A in Corollary 21.
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We start with the odd case k � 2r � 1 and apply Corollary 21 (1).
Since there is a length-preserving bijection between A� and A�, it suf-
fices to consider the asymptotics for A�. Moreover, since the set No �

��a�rt�m S m C 1� being removed has negligible size (there is at most
one word in No of length n for fixed r and n), it is sufficient to com-
pute the growth of Ao �� �ax0tax1t�axm�1t S m C 1, SxiS B r�. Let So ��

�t, at, a�1t, a2t, a�2t, . . . , art, a�rt�. Then Ao is equal to S�o , so the generat-
ing function for Ao is Ao�z� �

1
1�So�z�

, where

(7) So�z� � z � 2z2 � � � � � 2zr�1 � z � 2z2
1 � zr

1 � z

is the generating function of So (see Flajolet, Theorem I.1, p. 27). We get

(8) Ao�z� �
1

1 � z � 2z2 1�z
r

1�z

�
1 � z

1 � 2z � z2 � 2zr�2
.

The denominator of Ao�z�, that is, the polynomial p�z� � 1�2z�z2�2zr�2,
satisfies p�0� � 1 A 0 and p�12� @ 0 (and p�12� � 0 for r � 1), so it has a root ρo >

�0, 12� (and ρo �
1
2 for r � 1). Moreover, p��α� � �2� 2α� 2�r � 2�αr�1 @ 0 for

0 @ α @ 1
2 , so ρo is a simple root. Also, 1�2z�z2�2zr�2 � �1�z2��2z�1�zr�1�,

so it has no root in ��1,0�. Thus the growth rate of the set Ao is 1
ρo

A 2,

which implies that the number of words of length n in Ao, and therefore
also A, is asymptotically co�r�ρ

�n
o , where co�r� is a constant depending on

r.
Now let k be even, k � 2r. The counting is similar, except that we impose

on the set Ao �� �ax0tax1t�axm�1t Sm C 1, SxiS B r� considered above the con-
ditions from Corollary 21(2), that is, art and a�rt can each be followed only
by r words out of the total 2r�1 in S. Call the set with these restrictions Ae,
and let Se � �t, at, a�1t, . . . , ar�1t, a�r�1t, a�rtt, a�rta�1t, . . . , a�rta��r�1�t�
(and Se � �t, a�1tt� for r � 1). Note that S�e does not include any words
that end in art or a�rt, but since we need to consider the set Ae up to cyclic
permutations, the set S�e will in fact suffice to give the asymptotics for Ae

up to cyclic permutations, since it ensures only ‘legal’ occurrences of art or
a�rt appear when cyclically permuting the words.

Then since

Se�z� � z � 2z2 � � � � � 2zr � 2zr�2 � � � � � 2z2r�1(9)

� z � 2z2
z2r � 1

z � 1
� 2zr�1 �

�z � z2 � 2zr�1 � 2zr�2 � 2z2r�2

z � 1
we have

S
�

e �
1 � z

1 � 2z � z2 � 2zr�1 � 2zr�2 � 2z2r�2
.(10)

For r A 1, the denominator p�z� of (10) satisfies p�0� � 1 A 0 and p�12� @ 0,

so it has a root ρe > �0, 12�. Moreover, p��α� � �2 � 2α � 2�r � 1�αr � 2�r �

2�αr�1�2�2r�2�α2r�1 @ 0 for 0 @ α @ 1
2 , so ρe is a simple root, and the growth
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of the languages S�e , and consequently Ae, is 1
ρe

A 0. (For r � 1, ρe � 0.590.)

Also, 1� 2z � z2 � 2zr�1 � 2zr�2 � 2z2r�2 � �1� z2�� 2z�1� zr�1��1� zr�, so it
has no root in ��1,0�. This implies that the number of words of length n in
Ae, is asymptotically ce�r�ρ

�n
e , where ce�r� is a constant depending on r.

Now in order to find the growth of the conjugacy classes for m x 0, we
need to count the number of representatives of length n in Ao or Ae, up to
the cyclic permutation of the subwords in So or Se. For each word in Ao or
Ae there are m possible distinct cyclic permutations unless that word is a
non-trivial power. Given that the number of powers is negligible compared
to the total number of words (to see this, suppose that an alphabet X
consists of x A 1 letters; while the number of words of length n over X is xn,

the number of proper powers of length n is PdSn x
d @ P

n~2
i�1 x

i @ xn~2 � 1, and
xn~2

xn � 0 as n �ª), for fixed n and m the number of cyclic representatives

of words in Ao and Ae is approximately co�r�
ρ�no
m and ce�r�

ρ�ne
m , respectively.

Since each word of length n in Ao or Ae consists of m ‘syllables’ of bounded
length we get n

r�1 Bm B n in the odd case and n
r� 1

2

Bm B n in the even case,

so the number aon of cyclic representatives in the odd case satisfies

(11) co�r�
ρ�no
n

B aon B co�r�
�r � 1�ρ�no

n
and in the even case the number aen of cyclic representatives satisfies

(12) ce�r�
ρ�ne
n

B aen B ce�r�
�r � 1

2�ρ
�n
e

n

Finally, by [12, Theorem D] the generating function for any sequence with
asymptotics of the form (11) or (12), that is, bounded on both sides by terms
ρn

n (up to multiplicative constants), is transcendendal. �

Corollary 23. The conjugacy growth series for BS�1, k�, with respect to
the generating set �a, t�, is transcendental.

Proof. By Propositions 7, 11, 14, the conjugacy growth series for Zk (when
m � 0) is rational, and by Proposition 22 the generating function for con-
jugacy classes of the form ��x,m�� with m x 0 is transcendental. Since the
sum of a transcendental function and a rational function is transcendental,
we obtain the result. �

Corollary 24. The conjugacy and standard growth rates of BS�1, k�, with
respect to the generating set �a, t�, are equal.

Proof. We start with the odd case. By [8, Theorem (iii)] (see also [3,
Lemma 11(b)]) the standard growth rate is the inverse of the smallest abso-
lute value of the real roots of the polynomial 1�2t� t2�2tr�2 which appears
in the denominator of the standard growth series. But the same polynomial
appears in the denominator of (8), and since the smallest absolute value of
real roots is ρo B 1

2 , this will dominate the growth rate of the conjugacy
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classes in Zk, which is smaller than 2 by Corollary 9. Thus the standard
and the conjugacy growth rates are equal.

In the even case with k A 2, note that the second factor in the denom-
inator in [8, Theorem (i)] is identical to that in formula (10), and both
denominators have the same smallest absolute value of real roots ρe @ 1

2
which dominates the growth rate of the conjugacy classes in Zk, which is
smaller than 2 by Corollary 12, so the two rates are equal.

In the case when k � 2, note that the second factor in the denominator
in [8, Theorem (ii)] is also a factor to that in formula (10), and both de-
nominators have the same smallest absolute value of real roots ρe � 0.590
which dominates the growth rate of the conjugacy classes in Zk, which is
approximately 1

0.742 � 1.348 by Corollaries 15, so the two rates are equal. �

We note that it follows from work of Valiunas [21] that the relative stan-
dard growth of the subgroup Zk is bounded above by the standard growth
of BS�1, k� � Zk. Since conjugacy growth is bounded above by standard
growth, this is sufficient to prove Corollary 24, without using the specific
bounds for Zk we computed in Corollaries 9 and 12. However, the computa-
tion of those bounds adds to the quantitative understanding of the conjugacy
growth asymptotics and the formulas for the conjugacy growth series of Zk
are necessary for the computations in the next section.

6. Conjugacy growth series formulas

In this section we give formulas for the growth series of the conjugacy
classes of BS�1, k� outside the normal abelian subgroup Zk. That is, we
compute the generating function for the set A, up to cyclic permutation,
given in Corollary 21.

In the description of A in Corollary 21 there is a length-preserving bijec-
tion between A� and A�, so it suffices to consider the generating function
for the set A� up to cyclic permutations.

In the odd k � 2r�1 case, as the set No � ��a�rt�m Sm C 1� has generating

function No�z� � PmC1 z
�r�1�m, it is sufficient to compute the generating

function of Ao �� �ax0tax1t�axm�1t Sm C 1, SxiS B r� up to cyclic permutation.

In the k � 2r case as the set Ne � ��a�r�1ta�rt�
m
2 , �a�rta�r�1t�

m
2 S m C

2,m � 0 �mod 2�� has generating function Ne�z� � PmC1 z
�2r�1�m, it is suf-

ficient to compute the generating function of Ae � �ax0tax1t�axm�1t S m C

1, SxiS B r,¦i�xi�1 � �r Ô� 0 B �xi @ r�� up to cyclic permutation.
This is exactly the cycle construction (see page 26 in [13]) applied to the

sets

So � �t, at, a�1t, a2t, a�2t, . . . , art, a�rt�

and

Se � �t, at, a�1t, . . . , ar�1t, a�r�1t, a�rtt, a�rta�1t, . . . , a�rta��r�1�t�,
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respectively, defined in the proof of Proposition 22. Thus by applying the
formula in [13, Theorem I.1], we get that

(13) Cyc�Ao��z� �
ª

Q
k�1

�φ�k�

k
log�1 � So�z

k��,

where So�z� is given in (7), and in the odd case we get

(14) Cyc�Ae��z� �
ª

Q
k�1

�φ�k�

k
log�1 � Se�z

k��,

where Se�z� is given in (9). We thus obtain (note So and So etc are different):

Proposition 25. The conjugacy growth series for BS�1,2r�1� is the series

So�z� �Cyc�Ao� �No�z�,

where So�z� is given by (3), and the conjugacy growth series for BS�1,2r�
is

Se�z� �Cyc�Ae� �Ne�z�,

where Se�z� is given by (4).

7. Conjectures and open questions

While this paper establishes qualitative and quantitative results for con-
jugacy growth in BS�1, k� with respect to the standard generating set, we
conjecture that the same characterisations of conjugacy growth should hold
for all generating sets. More generally, we expect the following to be true.
Clearly the second conjecture implies the first.

Conjecture 26. The conjugacy growth series of the groups BS�1, k� with
respect to any generating set are transcendental.

Conjecture 27 (see also [11]). The conjugacy growth series of any finitely
presented group that is not virtually abelian is transcendental.

Regarding growth rates, we ask the following question.

Question 28. If the conjugacy and standard growth rates of a group are
equal for some generating set, are they equal for all generating sets?

The question is related to the conjecture below, which, as we pointed out
in the introduction, holds in many important classes of groups.

Conjecture 29. For any choice of generating set, the conjugacy and stan-
dard growth rates of a finitely presented group are equal.
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