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3. Machinic Sensemaking in the Streets : 
More-than-Lidar in Autonomous 
Vehicles
Sam Hind

Abstract
In recent years, lidar has increasingly been deployed in the testing of prototype 
autonomous vehicles. Rather than mapping forest cover or urban terrain, how-
ever, lidar has been used to map driving environments. This chapter explores 
the machinic sensemaking capacities of prototype autonomous vehicles, 
both composite as well as “distributed”, with various, interconnected sensing 
systems and software programmes used for orientation, perception, and 
decision-making. In this, vehicles draw on sensing technologies with different 
observational ranges, prioritizing some over others at particular distances. Yet 
enabling this machinic sensibility involves undervalued, and misunderstood, 
visual responsibilities assumed by so-called “vehicle operators” during tests. 
Without this important work, prototype autonomous vehicles risk ignoring, 
or mis-sensing, other road users – with fatal consequences.

Keywords: sensing, machinic sensibility, recognition, distributed media

Introduction

Short for “light detection and ranging”, lidar has historically been used for 
the aerial mapping of vegetation and for surveying urban environments 
and heritage sites. By emitting pulses of light that bounce back off surfaces 
and objects, spectral images called “point clouds” are generated, derived 
from millions of innocuous lidar pulses. In recent years, however, lidar has 
increasingly been deployed by car manufacturers and technology companies 
in the testing of prototype autonomous vehicles. Rather than mapping 
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forest cover, or urban terrain, lidar has been used as a principal sensing 
system to map driving environments, and aid the detection of other road 
users, signs, and lines.

In this chapter, I suggest that lidar is central to the “sovereign” (Brat-
ton 2015; Gekker and Hind 2019; Pasquale 2017) sensemaking capacities of 
prototype autonomous vehicles, able to “conf igure territory and power” 
(Lovink and Rossiter 2019, 99) in new ways. When taken apart, the sensory 
capacities of prototype autonomous vehicles are both composite as well 
as “distributed”, courtesy of various interconnected sensing systems and 
software programs used for three critical operations: orientation, perception 
and decision-making (McCosker and Wilken 2020). Lidar never acts alone; 
hence I use the phrase “more-than-lidar” to indicate that lidar is reliant 
upon an integrated suite of sensing systems.

It is often suggested that autonomous vehicles “see” (Davies 2018; Metz 
2018; Stilgoe 2017), yet the way they see the world is manifestly different 
to other forms of (human and non-human) sight. Whilst greyscale point 
clouds generated by lidar show the world in a skeletal form, equally common 
technicolour renderings depict it as a kind of parallel hyperreality. Neither 
capture the urban environment as rendered in photographs, maps, or stylized 
illustrations (Figure 3.1). Instead, lidar and its ancillary sensing systems 
render the urban environment anew, in turn affecting how decisions are 
made within cities.

To address this newness, the chapter will build on Sun-ha Hong’s (2016) 
concept of “machinic sensibility”, to consider how autonomous vehicles 

figure 3.1. a stylised rendering of how lidar “sees”, or senses, an urban environment. Courtesy of 
Velodyne lidar.
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“sense” rather than see. In this, I suggest that the autonomous vehicle entails 
four orders of sensing: from feeling the shape, texture and form of phenomena 
in the urban environment, through the rote capture of sense data, to the 
processual calculation of meaning from the processing of such data, before 
arriving at the execution of good or acceptable decisions.

The unceasing flow of information that characterize “distributed media” 
(Munster and Lovink 2005) is rarely the case with prototype autonomous 
vehicles. Whilst the distribution of machinic capacities can be seen to 
generate endless successful relays of integration, offering greater f idelity 
to the sensed environment, this same distribution equally renders relays of 
disintegration. Here, erroneous classif ications and clashing system priorities 
render sensemaking an unevenly distributed activity.

Distinct and distant capacities are operationalized through this distribu-
tion. In this, distance – most notably, the distance between vehicle and 
object(s) – becomes a significant spatial principle through which judgements 
are made, and decisions executed. Yet, for the distant capacities of worldly 
phenomena to become useful, sensing units within such a distributed 
system must be prioritized, such that some assume greater signif icance at 
specif ic moments, or in specif ic situations. In this, the capacities of other 
road users, road surfaces, or entire junctions or road layouts are mobilized 
in ways that might otherwise not be, with these priorities encoded into the 
protocols of onboard software.

It is this uneven distribution of machinic capacities that is reflected in the 
differentiation of “sociotechnical agency” (Rose 2017, 779) at an operational 
level. As Gabrys and Pritchard contend, sensing practices “shift attention 
to formations and processes of experience across multiple entities” (2018, 
n.p., emphasis added). As such, this chapter explores how sensemaking 
in autonomous vehicles generates a differentiation in the distribution of 
experience, affecting some in qualitatively different ways to others.

As the chapter proceeds, I consider different aspects of the sensemaking 
capacities of prototype autonomous vehicles. I begin by focusing on the 
technical features, and operational limits, of specif ic lidar products used 
in developmental autonomous vehicles, considering how different models 
and their possible configurations affect these capacities. I then move on to 
consider a crash in Tempe, Arizona in March 2018, involving a prototype 
autonomous vehicle operated by Uber Advanced Technologies Group (ATG), 
that killed a woman called Elaine Herzberg. I contend that the crash, and 
the subsequent investigation, revealed the contingencies of classif ication, 
as Herzberg was variously re-classif ied as different objects (car, bike etc.) 
but never accurately as a pedestrian, in the moments before the crash.
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In the f inal section, I consider how the nominal “supervisor” of the proto-
type vehicle at the time of the same crash, Rafaela Vasquez, was committed 
to performing an array of duties meant to enable or “f ine-tune” the eventual 
sensemaking capacities of the autonomous vehicle. By studying the US 
National Transportation Safety Board (NTSB) report, I query the significance 
of her own visual sensibilities, and her repeated glances towards the central 
console of the vehicle. The central console was where her personal mobile 
phone was allegedly stored, but also where a tablet computer was similarly 
placed, on which Vasquez was committed to record system errors and driving 
infractions made by the vehicle in autonomous mode.

Machinic Sensibility

As Gabrys argues, “usually, some version of a cognizing human is at the 
centre of work on sensing”, with sensing “tied to particular types of human 
embodiment, engagement, and experience” (2019, 724). Nevertheless, as 
Gabrys continues to suggest that “sensing practices”, as she refers to them, 
extend beyond the human to an often-complex arrangement of “sensing 
entities and modes of experience” incorporating “computational sensors 
that monitor environmental pollution, to organisms that sense and bio-
accumulate environmental toxins, and satellite that remotely sense aquifers” 
(2019, 724).

In this chapter, I want to focus on a particular constellation of sensing 
entities that together form a kind of “machinic sensibility” (Hong 2016), 
within the “driving-machine” (Hind 2019) itself. Machinic sensibility, in 
Hong’s def inition, describes “technical objects’ own ability to sense the 
material world, and derive information through this process, in ways that 
are always entangled with, but ultimately distinct from human sensibility” 
(Hong 2016, 15). Here, media are only “indirectly correlated to human modes 
of experience,” in which “the avenue of their impact on human experience 
and of their implications of humans within their operationality has shifted 
from a direct to an indirect modality” (Hansen 2015, 6, emphasis in original). 
In Hong’s words, “such engineering entirely bypasses, occurs prior to, and in 
sensory regions inaccessible by, the human subject” (Hong 2016, 15, emphasis 
in original).

Machinic sensibility, then, is def ined by an operational agency in which 
kinds, or modes, of sensing occur without direct correlation to, or impact 
on, human experience. Thus, whilst Gabrys (2019) extends the notion of 
sensing practices beyond the strictly human, to all manner of other possible 
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technological and biological agents, both Hong (2016) and Hansen (2015) 
point towards a different kind of sensing operation largely occurring beyond 
or outside the human, in which to some degree, sensemaking is automated 
and/or autonomous (Andrejevic and Burdon 2014). Here the point is not 
that human awareness of, or access to, these sensemaking procedures is 
entirely impenetrable; but that these sensing processes are functionally 
distinct and independent from (human) awareness or access. In other words, 
they do not require direct human involvement to engage in sensemaking 
activities. This is what Hansen alludes to when he discusses the “veritable 
inauguration of new, properly technical domains of sensation” brought into 
being through the development of “machinic sensors that possess sensory 
domains of their own” (2015, 54, emphasis added).

I argue that this machinic sensibility is dependent upon four orders, or 
interpretations of sensing, expanding on Hong’s own two-fold distinction. 
Firstly, this sensibility is a process of feeling, in which the likely forms of 
phenomena are sensed. For lidar, this feeling is enacted at the point of 
contact between individual pulses of light and objects within the urban 
environment. Only after the return of many more pulses do such objects start 
to come into view, with shapes, textures and contours rendered increasingly 
visible as a lidar unit scans the landscape. Secondly, this sensibility also 
invariably entails meaning making, in which phenomena are made sense of, 
or understood. Within autonomous vehicles, as I will discuss, this meaning 
making is distributed, even if lidar is responsible for the bulk of the sensing.

Beyond these two definitions that Hong identif ies, I argue that the term 
machinic sensibility also denotes a process of capture (Agre 1994; Gekker 
and Hind 2019), in which the form (feeling) and comprehension (meaning) 
of phenomena are recorded, stored, and utilized in order to enhance the 
vehicle’s ongoing perceptive capabilities. Lastly, this sensibility is meant to 
arrive at a good decision; that is, a normative outcome deemed “sensible”, as 
it is encoded into decision-making software. This f inal interpretation posits 
that sensemaking is not a neutral pursuit, based only on the application of 
established scientif ic principles (for example, lidar and the speed of light), or 
computational limits (image processing times), but guided by expectations, 
and conventions, on the “social road” (Brown and Laurier 2017).

Automated, or autonomous, sensing operations can thus be said to “broker 
human accessibility” to the urban environment, with machinic sensibility 
constituting a different “domain” of sensibility, in which meaning is derived 
differently (Hansen 2015, 6). This access, I will contend later, is brokered 
through novel modes of machinic supervision within the autonomous 
vehicle, as human drivers become expected to monitor, and document, 
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otherwise “autonomous” sensing operations. Expanding on how machinic 
meaning making is distinctive, Bunz suggests:

Artif icial Intelligence [AI] systems specialized for object recognition in 
images […] identify objects depicted in an image in a very particular way: 
they record the pixel formations i.e., edges and textures of an image, and 
its shades and different regions of colour, to then calculate statistically the 
highest possibility [for] what those formations of edges might illustrate. 
(2019, 272)

In this characterization of AI image recognition processes, AI systems do 
not interpret images in the same way as humans. Rather than scanning an 
image for things that we think resemble familiar objects (a human face, a 
tree, a building), AI systems trained in object recognition instead consider 
the properties of these objects as they are composed in the image itself. In 
such systems, Bunz continues, “meaning is not understood but calculated” 
(2019, 272, emphasis added), with meaning derived instead from statistical 
confidence or likelihood that an object in an image is as it is according to 
its properties. Thus, that the calculation of such meaning occurs through a 
kind of feeling in which edges, textures and shades become critical sources 
of information.

It is this calculated form of feeling that guides lidar, with systems capable 
of measuring the reflectance of surfaces based on the “intensity” of lidar 
returns. However, lidar’s ability to offer such insight is necessarily shaped 
by the technical limitations of the type or model of lidar device. Typical 
products used in prototype autonomous vehicles include Velodyne Lidar’s 
Puck and HDL-64E models. The Puck, as the name suggests, is shaped like 
a hockey puck and has a 100m range, “best-in-class accuracy and calibrated 
intensity” as well as a “sensor-to-sensor interference mitigation feature” 
(Velodyne Lidar 2020a). It is commonly used by manufacturers to provide 
additional lidar sensing support along the side of the vehicle. The HDL-64E, 
on the other hand, is a “high definition real-time 3D lidar” with an enhanced 
120m range, sixty-four channels, a 360° horizontal f ield-of-view, capable of 
generating “up to around 2.2 million points per second” (Velodyne Lidar 
2020b). It is typically used to provide principal lidar capabilities on the 
roof of the vehicle (as illustrated in f igures 3.1 and 3.3), and can usually be 
identified by the rotating casing that exposes the sensors whilst in operation.

As a Velodyne Lidar executive has contended, “the resulting point cloud of 
distance and intensity information is so dense that computer programs can 
identify objects such as street curbs and overhead wires at distances of over 
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100m” (Schwarz 2010, 429). However this claim, of “around 2.2 million points 
per second” is “configuration dependent” (Velodyne Lidar 2018a, 2). It is this 
configurative dimension that is central to the sensing capacities of the lidar 
model in question, allowing it to adapt, or be adapted, to different situations.

The HDL-64E can operate in two modes: single return and dual return. 
Single return mode only offers a density of around 1.3 million points per 
second (a less pointy cloud), where the lidar pulse simply records the f irst 
thing it hits (i.e. a “single” return). Dual return mode provides the magical 
f igure of 2.2 million points per second, recording multiple hits instead. 
The latter, therefore, provides an evidently richer account of the urban 
environment.

On dual return mode, the manufacturer notes that “different environ-
mental conditions require a different priority of the type of distance point 
returns” (Velodyne Lidar 2018b, 15). For instance, the unit can prioritize the 
“strongest” distance points (the default). Or, if desired, the last distance point 
returned can be prioritized. As further suggested, “poor visibility conditions, 
such as fog and dust, benef it from collecting the distance return values 
based on the ‘last return’ scenario”. This means that the “near f ield occluding 
atmosphere is ignored”, i.e. the area containing fog or dust (Velodyne Lidar 
2018b, 15). This is another example of where the sensing capacity of the 
lidar model is conf iguration dependent. In a last return scenario, these 
“near things” are deliberately ignored, constructing an image of the urban 
environment that deliberately discounts the real-world presence of some 
objects.

Thus, both the distance of data collected and the intensity of data collected 
are contingent upon the calibration of the unit itself, radically transforming 

figure 3.2. a lidar point cloud with return “intensity” visualized in colour. Courtesy of Velodyne lidar.
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the ability of the lidar model to feel the urban environment, capture data on 
the nature of these interactions, derive meaning from them, and ultimately 
to execute good, or acceptable decisions.

Distributing capacities

However, this machinic sensing is not performed in a singular location, nor 
executed by a singular entity. Instead, machinic sensibility is dependent 
on the distribution of sensemaking capacities throughout the vehicle itself. 
Here I contend that this sensemaking is, f irstly, spatially distributed: sensing 
not only takes place in different locations but is also “oriented” differently 
towards a surrounding environment. But, secondly, sensemaking is also 
informationally distributed: sensor data is variously distributed to different 
parts of the vehicle in order to execute acceptable decisions. In this section 
I consider how these distributive capacities might be conceived.

As Munster and Lovink (2005) write, “new media are increasingly 
distributed media”, requiring a “distributed aesthetics” that “must deal 
simultaneously with the dispersed and the situated, with asynchronous 
production and multi-user access to artifacts […] on the one hand, and the 
highly individuated and dispensed allotment of information/media, on the 
other”. Sensemaking in the autonomous vehicle is predicated not only on 
such a distributed aesthetics, of which the asynchronous production of, 
and multiuser access to, images is the norm, but also by a distribution of 
capacities through which images can be produced. Thus, the sensemaking 
capacities of autonomous vehicles are more than a kind of “distributed cogni-
tion” in which “machines […] operate with an autonomy that underwrites our 
need to rely on them without understanding them” (Hansen 2009, 310). In 
other words, the “complex distributions of cognition beyond consciousness” 
are enabled, but also made complex, by distributed sensemaking (Hansen 
2009, 310).

More accurately, sensemaking in the autonomous vehicle is dependent 
on what Munster and Lovink refer to as “loops of dispersal”, in which there 
is “no singular or ‘end use’ of/for information but rather the endless relay-
ing of media, practices and experience as successive dispersals” (2005). 
Whether intentional or not, Munster and Lovink valorise both successive 
and successful loops of dispersal, in which the so-called “endless relaying” 
of media results in an indeterminable volume of differentiated images. I 
argue here, however, that whilst distributed sensemaking might embody 
Munster and Lovink’s endless, successful relays, these capacities are perhaps 
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better understood in reference to musical composer William Basinski’s The 
Disintegration Loops. A set of ambient productions completed as the 9/11 
attacks were happening, the records were made when Basinski attempted 
to digitize a set of analogue tape loops. Rather than a f lawless transfer of 
original compositions made by Basinski in the 1980s, a series of altogether 
more ghostly recordings were produced as the metal coating on the tape 
loops proceeded to blister and physically disintegrate (Richardson 2012).

Sensemaking in the autonomous vehicle is very much dependent on an 
endless relay of information between sensing units, systems, and other 
physical components such as brake modules and steering wheels. In other 
words, loops of dispersal. However, in many situations, these relays do not 
always work as intended. Instead, they are better characterized as loops of 
disintegration as sensor units are wrongly calibrated, sensor data is poorly 
captured, objects incorrectly identif ied, and decisions wrongly executed. 
Yet rather than bringing these relays to a halt, like Basinski’s tapes they 
generate entirely new forms: new point clouds, new “clusters” of data points 
(Amoore 2018), new trajectories, and ultimately new decisions.

Yet whilst machinic sensibility is dependent upon a sometimes-disinte-
grative distribution of capacities throughout the autonomous vehicle, it also 
engenders a “functional” (Pasquale 2017) or “infrastructural” (Bratton 2015) 
auto-nomic sovereignty (Gekker and Hind 2019) enabled by the reliability, 
accuracy, and comprehensive qualities of lidar. As Velodyne Lidar contends, 
using lidar alongside cameras and radar, “allows better f ield of view and 
makes more accurate localization and free space detection possible” (Velo-
dyne Lidar 2018c, 6). Moreover, in low light conditions, “lidar signif icantly 
f ill[s] in the gaps created by the limitations of […] other sensors” (2018c, 6). 
In this, lidar’s sovereign status is derived from its ability to produce more 
useful, nominally accurate, data in a variety of situations. The framing of 
lidar as a sovereign actor is not to suggest it either acts alone, or even acts 
at every decidable moment. Instead, it is to suggest that as a sovereign 
actor, other sensing systems work with, for, and under it. Whilst f igure 3.3 
elides the distributed nature of sensemaking in a prototype autonomous 
vehicle, it nonetheless illustrates lidar’s sovereign status, to which other 
modes of sensing are typically subordinated. Rather than being non-existent 
or invisible, as in f igure 3.3, these other modes offer critical support for 
sovereign sensemaking.

The issue of sovereignty and autonomous vehicles has typically been 
couched in moral terms, most evidently through the “moral machine” project 
(Awad et al. 2018) and the “trolley problem” (Ganesh 2017), in which decisions 
around who to “save” and who to “kill” are rendered in utilitarian terms. 
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Yet, limiting the discussion around machinic decision-making to moralistic 
debates ignores how the technical arrangement of sensing systems and 
attendant algorithmic software derive or calculate meaning, as discussed 
earlier. In this, there is no machinic desire to “make moral decisions” (Awad 
et al. 2018, 1); machines only desire arriving at acceptable decisions as they 
are calculated by onboard systems.

To consider how this distribution of capacities operates, I will turn for 
the f irst time to the Uber crash in Tempe, Arizona in March 2018. Here, I 
contend that the sovereign status of lidar is best explained in how sensor 
data captured of the urban environment is used to categorize other road 
users, as the bounding boxes in f igure 3.1 show.

As Elaine Herzberg was walking across Northbound Mill Avenue in Tempe, 
Arizona, she was detected by an Uber ATG developmental automated driving 
system (ADS) onboard a modif ied Volvo XC90 test vehicle. To perceive the 
surrounding environment, the vehicle was equipped with 20 ultrasonic 
sensors, ten cameras, eight radar sensors, and one lidar unit (National 
Transportation Safety Board [NTSB] 2019a, 4). In the 5.6 seconds before 
Herzberg was hit, she was classif ied by the ADS on ten separate occasions, 
with each classif ication yielding a different possible trajectory Herzberg 
might take across the road (NTSB 2019a, 10-11).

On the f irst occasion, Herzberg was detected by the radar system as a 
Vehicle. 0.4 seconds later, she was detected by the lidar system and deemed 
to be a static object, putting her into the category of Other. One second 
later she is classif ied again as a Vehicle, but nonetheless is still presumed 

figure 3.3. a stylised illustration of lidar’s “sovereign” sensing capabilities, eliding its distributed 
nature. Courtesy of Velodyne lidar.
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to be static. 2.6 seconds before impact, the ADS reclassif ies her for a fourth 
time; this time as a Bicycle, deciding the bicycle by her side is being rid-
den. With 2.5 seconds left, the system f inally predicts she is moving, yet 
through a lane adjacent to the test vehicle. 1.5 seconds before impact she 
is again classif ied as Other, and all previous trajectories are “reset”. She is 
once again deemed to be a static object. At 1.2 seconds before impact, she 
is reclassif ied for a f inal time, now as a Bicycle, with the ADS predicting 
she is in the direct path of the test vehicle. Now too late to safely execute 
an emergency avoidance strategy, the ADS initiates “action suppression” 
designed merely to mitigate the effects of an impact. 0.2 seconds before 
Herzberg is hit, action suppression ends and the system issues an auditory 
warning. 0.02 seconds before impact, the vehicle operator (VO), Rafaela 
Vasquez, takes control of the steering wheel; now powerless to prevent the 
fatal crash (2019a, 10-11).

Here, sensemaking capacities are distributed variously. Firstly, through 
the processes of object detection and classif ication built into the ADS. With 
each subsequent classif ication – f irst as a Vehicle, then as Other, f inally as 
a Bicycle – these capacities mutate, rendering Herzberg in different terms 
on each occasion. Secondly, between sensing systems in the vehicle itself, 
most notably between the radar system that f irst identif ies Herzberg, and 
the lidar system that subsequently classif ies, then reclassif ies, her. In this, 
whilst the radar system is the f irst to pick Herzberg up, with its superior 
range detection, it is lidar that ultimately takes over as the vehicle approaches 
her. Thirdly, and belatedly, sensemaking capacities are distributed between 
the vehicle’s sensing systems and the physical components designed to 
prevent a collision, such as the brakes or steering wheel. With this, the 
ADS communicates its decision, principally reliant upon the erroneous 
classif ications based on lidar data, to the relevant components designed to 
perform the necessary actions. Then lastly, and even more belatedly, stepping 
outside of the intended, idealized, closed integration loop between these 
various sensing systems and physical components: the human VO herself 
contributes to the sensemaking capacities of the autonomous vehicle. Across 
these many capacities, sensemaking is not only distributed imperfectly, 
but catastrophically.

Here it becomes obvious that the vehicle in question did not, and was 
not, simply making a single moral decision at a nominal crossroads like in 
the fabled trolley problem. Instead, the system was engaged in an ongoing 
assessment of criteria, evaluating Herzberg at various stages, categorizing 
her differently each time, and making ongoing decisions to act (or not) on 
each occasion. At each stage, a different snapshot of the urban environment 
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is made, with sensor data used to calculate the meaning of the objects in 
view. In sorting Herzberg into different categories the vehicle was reliant 
on the sovereign qualities of lidar. The tragic conclusion that can be drawn 
from this was that Herzberg was not moving “properly” or “normally” enough, 
or indeed, not moving “in the right place” within the urban environment, 
to be made sense of.

Distancing sense, prioritizing “recency”

Autonomous vehicles are being “computationally optimized for terrains 
[…] incorporating the sensing of elemental, atmospheric, and meteorologi-
cal phenomena” (Hind 2019, 402). Consequently, as Gabrys and Pritchard 
(2018) argue, “distinct affective and political capacities are operationalized 
through [such] sensing practices”. I want to argue here that not only are 
distinct capacities operationalized through the sensing operations of the 
autonomous vehicle, as articulated in the previous section. But in addition, 
that distance – most notably, the distance between vehicle and object(s) – 
becomes a signif icant variable in how these capacities are operationalized, 
as made evident in the death of Elaine Herzberg.

Ash argues, in reference to the Tesla Model S, that it is unhelpful to “un-
derstand smart objects’ sensory capacities in the form of metrical distance” 
(2018, 170), despite it being used to promote the vehicle’s “autopilot” driver-
assist feature. Ash contends that such systems should be “def ined by their 
capacity to differentiate between objects and assign the correct references to 
[…] objects to make distance sensible and intelligible” (2018, 170, emphases 
added). Metrical distance alone is no measure of the “smartness” of an 
object, nor indeed, of its sensemaking capacities. As Ash reiterates, “it does 
not matter how ‘far’ a sensor can reach, if that sensor cannot differentiate 
between objects […] and so enable a car or driver to assign the correct 
references to those objects” (2018, 170).

To add to Ash’s analysis, it is important to recognize that whilst the 
“smartness” of an object is not built (only) on its depth perception, neither 
is it based on universal perception. Autonomous vehicles are often touted 
as having “360 degree view” (Oxbotica 2019), or that specif ic systems can 
provide “360° […] coverage” (NTSB 2019a, 4), or can “detect objects in a 
360-degree area” (NTSB 2019a, 5), as illustrated in f igure 3.3. In these state-
ments, distance is mobilized differently, as a capacity of the vehicle to offer 
comprehensive depth perception. What these claims elide, however, is 
not only the composite nature of this apparently seamless and “universal” 
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perception, but also the varying perceptive depth offered in 360 degrees. 
In other words, purported 360 degree vision is offered only through the 
integration of multiple units with specif ic sensing capacities, which in 
doing so, create an uneven depth to this purported capacity. Some sensing 
units may offer greater depth (radar) than others (ultrasonic sensors), whilst 
some may necessarily overlap (forward cameras and lidar) whilst rendering 
distance differently (compare radar and lidar).

Thus, it is only through a technical comprehension of distance that object-
recognition, and therefore object differentiation, occurs. In the case of Uber, 
this is made possible through what it calls a “prioritization schema” that 
promotes “tracking by certain sensory systems over others” (NTSB 2019d, 
12). Such a schema is “also dependent on the recency of an observation”, 
where recency is defined as the “more recent detection of an object” (NTSB 
2019d, 12). In other words, that some sensing systems, and some detection 
events, are prioritized over others at any one time. This is whilst lidar units, 
such as the Velodyne Lidar Puck or HDL-64E models discussed before, 
are also calibrated to prioritize either the strongest or last distance point 
recorded. An acknowledgement of the contestability of such a schema was 
made by Uber, post-crash, when it announced it would change the way the 
system “fuses sensor information” when predicting object trajectories (NTSB 
2019d, 13). In any case, both distance point prioritization and sensor system 
prioritization are critical features of the prototype autonomous vehicle.

Take, once again, the moments before Herzberg was hit. 5.6 seconds 
before impact, she is f irst detected by the vehicle’s radar system. Two radar 
units provide forward scanning and can operate in two modes. Mode one, 
a long-range scan, has “an observational range of up to 180 meters with a 
20-degree f ield of view”, whilst mode two, a medium-range scan, has “an 
observational range of up to 65 meters with a 90-degree f ield of view” (NTSB 
2019a, 5). As the report continues, the “radar processing units conduct the 
initial processing of the [sensed] data, which the ADS then uses to build 
and continually update the representation of the surrounding environment” 
(2019a, 5). Whilst it is unclear which mode was active at the time, Herzberg 
was recognized as a vehicle. Thus, at 5.6 seconds before impact, Herzberg’s 
distant capacities are deemed to resemble a vehicle; likely because she is 
simply present in a vehicle lane. Nevertheless, mere (metrical) distance is 
enough for such a recognition to occur; distant capacities are operationalized 
through the sensing operations of the vehicle. Metrical distance matters 
because, computationally and operationally, the radar unit attached to the 
vehicle has a sensory limit; either up to 180 metres, or 65 metres, depending 
on the operative mode.



70 SaM hinD 

Yet in this integrated process, as contended, some sensor systems take 
priority. At the time of the crash, only the Uber ADS was active. However, 
the Volvo XC90 was also equipped with a parallel advanced driver assistance 
system (ADAS) called City Safety. Although not a fully automated driving 
system, City Safety is designed to detect pedestrians in urban environments; 
comprised of what Volvo calls Forward Collision Warning and Automatic 
Emergency Braking. When the vehicle was being used in manual mode, 
controlled by a VO, “all the Volvo ADAS components were active and operated 
as designed” (NTSB 2019a, 13). Yet when the Uber ADS was activated, “all 
Volvo ADS components were automatically disengaged” (NTSB 2019a, 13). 
Only the vehicle’s passive safety technologies, such as seatbelt pretensioners 
and airbag deployment systems, “remained active” in autonomous mode 
(NTSB 2019a, 14).

Two reasons are given for why the Volvo system was deactivated at the 
time of the crash. Firstly, that because the Uber ADS and Volvo ADAS both 
used radar, there was a “high likelihood of misinterpretation of signals” (NTSB 
2019a, 14) between both. Secondly, that in receiving braking commands from 
either system, the “vehicle’s brake module [would] not [have] been designed 
to assign priority” to either system (NTSB 2019a, 14). Subsequently, two sets 
of unresolvable conflicts occur.

Firstly, there is an identif ied or presumed conflict between sensing ap-
proaches. Here the issue is not that each individual system uses different 
sensing methods (one using lidar, the other radar, for instance), but that 
both use the same approach, i.e. radar. Likely due to respective system 
conf igurations, radar data will be processed and made sense of differ-
ently by each system. The result is differently interpreted data of the same 
phenomena using the same method. Secondly, there is a conflict between 
composite automation/assist systems. Here the issue is that each individual 
system – Uber’s ADS and Volvo’s ADAS – will likely send similar commands 
to the various modules in the vehicle assigned to move physical components 
such as the brakes. The result is possibly conflicting commands issued to 
components not programmed to decide which to listen to or ignore.

Ultimately, this means some sensing units, and some composite sys-
tems, as well as some detection events, are prioritized over others. The 
consequence of these conflicts – presumed or actively identif ied – is that 
some modes of distancing are prioritized over others; meaning only some 
distant capacities are operationalized at any one time. Why this matters is 
that the capacities of other road users in the urban environment are only 
realized through some sensing systems, and those identif ied more recently 
assume greater priority. Understanding when and where particular modes 
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are themselves prioritized is critical to articulating the effect of these 
sensing systems on how the urban environment is variously perceived 
at any one time, according to the registered, and classif ied, capacities of 
other road users.

Enabling machinic sensibility, or “what’s in a glance?”

The result of both a distribution of capacities and a prioritization of sensing 
is a differentiation in experiential effects. In arguing that machinic modes of 
sensing constitute a different “domain” of sensing (Hansen 2015, 6), I have not 
intended to erase the involvement of human actors in the operation-at-large. 
Instead, as outlined before, I argue that these sensing operations “broker 
human accessibility” (Hansen 2015, 6) to the urban environment. As the 
f irst section of this chapter hinted at, human actors in such arrangements 
become supervisors, overseeing how the machine operates. This was a role 
performed by Rafaela Vasquez in the fatal Uber crash in Tempe, Arizona, 
but also by many other VOs employed by the company as nominal machinic 
supervisors. In this f inal section I want to draw attention to the specif ic 
experiences of Rafaela Vasquez as affected by the distribution of capaci-
ties at the time of the crash: both subject to, and an unwitting enabler of, 
machinic sensibility. In other words, the sensing operations of the Volvo 
XC90, equipped as it was with an in-development Uber ADS, were only 
made possible through the interventions, interpretations, and interactions 
of human operators like Vasquez – or, indeed, the lack thereof.

Firstly, as a VO, Vasquez was responsible for carrying out a range of tasks 
before, during, and after testing. When the vehicle was in autonomous mode, 
she would have been expected to do three things: (a) continuously monitor 
the state of the vehicle and the road (b) take control of the vehicle should a 
dangerous situation arise, and (c) document performance-related incidents. 
In order to train VOs to perform these tasks correctly, they are subject to 
a three-week “onboarding process” in multiple locations, where they are 
taught vehicle handling skills, and introduced to various scenarios to “test 
[…] [their] decision making skills and ability to interact with the vehicle 
controls” (NTSB 2019b, 3). Then, VOs are tested on company procedures and 
processes, before being “re-localized” in relation to state driving laws in 
Arizona, and introduced to Uber ATG’s infraction policies and test routes. 
Although Vasquez completed the training in a slightly different order, she 
followed the same three-week training course, intended to equip her with 
the skills to be a VO.
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Yet Vasquez was originally trained on passenger operations (as opposed 
to test operation) according to a pilot/co-pilot model. In this format, two 
VOs would be present in any one test vehicle. One VO would occupy the 
driver’s seat, ready to take control if a situation arose. The other VO would 
occupy the front passenger seat, supervising the vehicle’s path, whilst tagging 
and annotating issues on a laptop that might arise whilst the vehicle was 
in autonomous mode. In this configuration, the three principle tasks for 
each VO, as outlined above, would have been divided between two VOs: 
VO1 (pilot) principally responsible for (a) and (b), whilst VO2 (co-pilot) 
principally responsible for (c). However, in October 2017, things changed. 
As the report details:

Uber ATG integrated much of the co-pilot’s functions into the ‘front seat 
control application’ (FSCA) software, housed on a centre-dash mounted 
tablet computer in the SDV [self-driving vehicle]. The FSCA interface 
was the primary means for the VO to interface with the SDS [self-driving 
system]. Complex functions on the FSCA were locked out once the SDV 
was in motion, and according to Uber ATG, functions that were available 
to the VO while the vehicle was in motion only required one to two taps 
to complete. (NTSB 2019b, 3)

In short, Uber consolidated the role of pilot and co-pilot into one VO and 
the aforementioned FSCA software. The result was that tasks (a), (b) and 
(c) – continuous monitoring, possible control, and performance documenta-
tion – were now expected to be performed by a single VO, sitting in the driver’s 
seat. Not long after, Vasquez was trained on the interface, beginning work as 
a single VO a month later. The previously distinct training paths of passenger 
operations and test operations were now combined to reflect these changes.

Thus, Vasquez and all other VOs were responsible for interacting with 
FSCA software on tablet, aff ixed to the centre dashboard of the vehicle. 
Moreover, VOs were still expected to complete interactive tasks while the 
vehicle was in motion. Whilst, as the excerpt above mentions, “complex 
functions” were “locked out” whilst on the move, VOs were still required 
to perform other functions requiring “one to two taps to complete” (NTSB 
2019b, 3). The report details four such input types, including “tagging an 
object of interest”, “notifying the engineering team of an on-vehicle issue”, 
“tagging incidents or infractions” and “tagging when the SDS performs 
incorrectly” (NTSB 2019b, 8). Thus, whilst each function might only have 
required one or two taps, the combined occurrence of these problems could 
demand repeated interactions with the tablet.
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These functions were visually represented on the interface itself. If a VO 
wanted to tag an object of interest, they could locate the “label” icon in the 
bottom-left corner of the screen. If there was an on-vehicle issue, the VO 
could tap the “ticket” icon at the bottom-centre of the screen. If the vehicle 
had been involved in an incident or infraction, the VO could tap the “attn” 
(attention) icon, again, alongside the ticket option. If the autonomous system 
had acted strangely (although not necessarily dangerously), then the VO 
could press the “autonomy” icon at the bottom-right corner of the screen. 
Thus, in order for the VO to perform their ordinary duties – namely, the 
documentation of vehicle performance – they would have to get used to 
tapping the dashboard-mounted interface whenever necessary. All logged 
incidents would then be dealt with by relevant ATG teams, responsible for 
f ixing or updating the responsible features. Test iterations – and, specif i-
cally, the documentation of incidents during them – were critical stages in 
the development of the sensemaking capacities of the Uber autonomous 
vehicle. Without the recording of these incidents – possibly unencountered 
in other test modes or simulated situations – the vehicle system might well 
be worse at making decisions, recognizing other road users, or obeying 
local traff ic laws.

For the VOs like Vasquez, attention would naturally be divided between 
road and interface, windscreen and dashboard. In the f inal report published 
after an eighteen-month investigation, the probable cause was given as 
“the failure of the vehicle operator to monitor the driving environment and 
the operation of the automated driving system because she was visually 
distracted throughout the trip by her personal cell phone” (NTSB 2019d, 59). 
In records obtained from video streaming providers (including Hulu), NTSB 
determined Vasquez “was continually streaming a television show between 
9.16pm and 9.59pm […] That period covered the entire crash trip, which 
included 39 minutes on a public road” (NTSB 2019d, 24). These conclusions 
were drawn despite Vasquez stating she had “placed her personal phone in 
her purse before driving, and that her company phone was on the passenger 
seat at the time of the crash” (NTSB 2019d, 24).

Here, the intention is to not disagree with the conclusions drawn by the 
NTSB about the crash, after which Vasquez was charged with negligent 
homicide (Levin 2020). Nor is it to believe Vasquez’s account of the crash; 
that her personal phone was in her bag, placed on the back seat of the 
vehicle, both out of sight and out of reach. Rather, the intention is to make 
sense of the tasks required to be performed by any VO whilst the vehicle 
is in autonomous mode, and those not permitted, i.e. like using a personal 
mobile phone. In other words, this chapter seeks to identify the precise 
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role of – and the specif ic risks taken by – a VO ultimately responsible for 
enabling the eventual sensemaking capacities of the autonomous vehicle.

As an interview with Vasquez suggests, the latest VO training “indicated 
that she [VOs] may look at the iPad for 5 seconds and spend 3 seconds 
tagging and labelling” (NTSB 2019c, 6). VOs were expected to look for-
ward at all times, including (indeed, especially) when the vehicle was 
in autonomous mode. Yet, they were also expected to perform tagging 
and labelling tasks as regularly as required, with up to 8 seconds spent 
looking at, and interacting with, the central dash-mounted tablet. As 
interior photos show, the lower console area “where a cell phone could 
be placed” (NTSB 2019b, 7) was directly underneath where the tablet was 
mounted. The NTSB deduced:

From the time the VO exited the parking lot to the time of the crash, the 
VO frequently glanced down towards the lower centre console area. The 
Tempe Police tabulated the number of glances the VO made towards the 
lower centre console area during a 27-minute window, from 9.31pm to 
9.58pm. During this timeframe, the VO glanced down at the same spot 
204 times, of which 166 instances were when the vehicle was in motion. 
The[y also] estimated that […] the VO’s eyes were averted from the roadway 
[for] approximately 32% of the time. (2019b, 7).

Much meaning is attributed to the “glances” made by Vasquez towards the 
lower console area, and the frequency at which these glances occurred 
during the time the vehicle was in autonomous mode. Yet glancing towards 
this area was not against Uber policy. Indeed, as has been suggested, it was 
part of the assumed role of any VO – to look towards, and interact with, a 
tablet mounted on the central dashboard whenever an incident arose that 
required documenting. Necessarily, in doing so, VOs would have to look away 
from the road ahead, and down towards the interior of the vehicle; as well as 
concentrating on making an accurate record of any encountered incident.

Thus, this shift in attention was part of Vasquez’s – and any VOs – assumed 
responsibilities. Without taking such action – repeated glances, diverted 
attention, concentration, tapping, and tagging – the developmental Uber 
vehicle would be without critical operational insights derived from test 
situations. In other words, the vehicle would likely fall short – just like it did 
in this crash – of correctly sensing other road users, and adapting to their 
presence. The future sensemaking capacities of the autonomous vehicle 
being tested were dependent on routine glances, just not the kind Vasquez 
was deduced to have made.
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Conclusion

In this chapter, I have argued that whilst lidar is central to the sensemaking 
capacities of prototype autonomous vehicles, this sensemaking is only made 
possible through the distribution of responsibilities throughout any such 
vehicle. Further, I have contended here that this sensemaking is only enabled 
through the involvement of human operators involved also in the correction, 
and verif ication, of machine-readable driving worlds. This capacity is what 
Hong (2016) refers to as “machinic sensibility”, a process through which 
technical objects recognize things in the world, and derive information 
from this recognition. Importantly, machinic sensibility is entangled with 
other forms of human sensing, visual and otherwise – whether in the form 
of quality control, oversight, or decision-making. Nevertheless, this machinic 
sensibility is better characterized through the figure of the sensing operation 
held at arms-length from human intervention.

In this, I have suggested that the machinic sensibility of lidar in the 
prototype autonomous vehicle is dependent upon four orders of sensing. 
Firstly, through a process of feeling or the interpretation of the shape 
and form of phenomena. Secondly, and necessarily, through a process of 
recording and capturing such phenomena, so that this feeling can be made 
operational. Thirdly, enabling the processual making of meaning through 
which phenomena are “made sense of”. Then, lastly, through the execution 
of good decisions – a normatively-derived outcome deemed “sensible” and 
reasonable to at least some of the involved parties.

Yet, the machinic sensibility of lidar in the prototype autonomous ve-
hicle is not being singularly, and solely, performed by and in the lidar unit 
itself. Instead, this machinic sensibility is dependent on the distribution of 
sensemaking capacities throughout the vehicle. This, I have argued, involves 
both a spatial distribution between components capable of aiding the four 
orders of sensing (feeling, capturing, meaning, good) and an informational 
distribution in which data is variously distributed to enable the smooth 
execution of decisions. Sensing is distributed to verify and authenticate 
sovereignty, exemplifying a case of functional or infrastructural auto-nomic 
sovereignty.

This machinic sensibility, however, is also dependent upon the opera-
tionalization of distant capacities. In this, the nominal distance between 
any lidar-equipped vehicle and objects within the urban environment is a 
critical factor in their being sensed. This operationalization is referred to 
as a “prioritization schema” (NTSB 2019d, 12) in which objects closer to the 
vehicle are prioritized over those further away. Moreover, “recency” (NTSB 
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2019, 12) – or the more recent detection of an object – is given priority over 
objects sensed longer ago.

The distribution, and distance, of machinic sensibility is, I argue, depend-
ent on its enabling. Here, under specific test conditions, machinic sensibility 
as an operation is surfaced, or made available to human operators. In such 
instances, these human operators – and the tasks they are required to 
perform – are not only actively shaped by the operational capacities of 
lidar, but also the various interfaces that allow them to interrogate these 
capacities during test situations. As such, I contend that this surfacing, or 
availability, structures and scripts the experience of those made responsible 
for fine-tuning the sovereign sensemaking capacities of autonomous vehicles.

Throughout this chapter I have drawn on both off-the-shelf lidar products, 
as well as the specific testing of developmental autonomous vehicle systems. 
Most notably, I have focused on the crash in March 2018 in Tempe, Arizona, 
involving a prototype autonomous vehicle, that killed Elaine Herzberg. In 
the f irst instance I have suggested that Herzberg was subject to the ongoing 
assessment of operational criteria that led to her being classif ied, and re-
classif ied, as various objects – from a car to a bike – in the seconds before 
impact. In the second instance, I have argued that this ongoing assessment 
was dependent upon her own “distant capacities”, being variously sensed by 
lidar and other perceptive systems in the prototype autonomous vehicle, at 
different times. In this, Herzberg was interpreted, captured, made sense of, 
and ultimately decided on differently, at different distances to the vehicle 
itself. Then, thirdly, I moved on to Rafaela Vasquez, the nominal operator 
of the prototype vehicle involved in the crash itself. Here, I contended that 
her role as a diagnostician of the sensemaking capacities of the vehicle led 
to scrutiny of the application of her tasks as a certif ied vehicle operator. In 
this, I have queried the signif icance of the “glance”: the repeated actions 
Vasquez is alleged to have made that impaired her ability to take control of 
the vehicle in the seconds before the crash. The sensemaking capacities of 
these prototype autonomous vehicles are dependent upon the interpretive, 
and interactive, work of vehicle operators such as Rafaela Vasquez.

What I have sought to do in this chapter is to give colour to the sensing op-
erations performed by a prototype autonomous vehicle, particularly to how 
it perceives urban space, and to highlight bundled processes and practices 
that coalesce around these operations. What is critical to note, therefore, 
is that the chapter has not speculated on any eventual or hypothetical 
sensemaking capacities of an autonomous vehicle. Instead, it has sought to 
articulate the sensing operations of prototype autonomous vehicles being 
tested at this moment, to make sense of how these operations are not only 
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being performed, but also necessarily upgraded and improved. As such, it 
is a snapshot of the sensemaking capacities of “more-than-lidar” and the 
various loops of interpretation, meaning-making, and decision-making 
that comprise this arrangement. The perception of urban space – includ-
ing perceiving it visually – is enabled or indeed disabled through these 
loops, in which particular objects are sensed, and made sense of, at any 
one time. When these loops short-circuit or disintegrate, as was the case 
in the Uber crash, sensemaking does not stop. Instead, novel, unintended, 
and potentially catastrophic effects result, generating a differentiation of 
experience, whether for other road users or those responsible for supervising 
the work of machines.
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