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ASYMPTOTIC EXPANSIONS FOR A CLASS OF FREDHOLM PFAFFIANS
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Motivated by the phenomenon of duality for interacting particle systems,
we introduce two classes of Pfaffian kernels describing a number of Pfaf-
fian point processes in the “bulk” and at the “edge.” Using the probabilistic
method due to Mark Kac, we prove two Szegő-type asymptotic expansion
theorems for the corresponding Fredholm Pfaffians. The idea of the proof is
to introduce an effective random walk with transition density determined by
the Pfaffian kernel, express the logarithm of the Fredholm Pfaffian through
expectations with respect to the random walk, and analyse the expectations
using general results on random walks. We demonstrate the utility of the
theorems by calculating asymptotics for the empty interval and noncrossing
probabilities for a number of examples of Pfaffian point processes: coalesc-
ing/annihilating Brownian motions, massive coalescing Brownian motions,
real zeros of Gaussian power series and Kac polynomials, and real eigenval-
ues for the real Ginibre ensemble.
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1. Introduction. The aim of the paper is to prove rigorously, extend, and generalise a
number of asymptotic formulae for the empty interval and crossing probabilities for sys-
tems of annihilating-coalescing Brownian motions on R obtained in the 1990s by Derrida
and Zeitak [11] and Derrida, Hakim and Pasquier [12]. A very special feature underlying
the computation of each of these probabilities is that the corresponding random process is
actually a Pfaffian point process for arbitrary deterministic initial conditions. This fact is, by
now, well known for coalescing or annihilating Brownian motions on R, [40]. However, it
also holds true for mixed coalescing/annihilating systems, for annihilating systems with pair-
wise immigration, for coelascing systems with branching, and for analogous systems on Z,
[21, 22]. Therefore, asymptotics of the probabilities, studied in [11, 12] can be reduced to the
asymptotic analysis of Fredholm Pfaffians (introduced in [33], or see the Section 2.1.1 below
for a brief review).

Background. For determinantal point processes the empty interval probabilities (also called
gap probabilities) are given by Fredholm determinants of the corresponding kernels; see,
for example, [2] or [30] for a review. If the kernel is translationally invariant (i.e., depends
on the difference of the arguments only), then the Akhiezer–Kac formula [1, 24] gives the
asymptotics for a Fredholm determinant as the length of the interval grows. The Akhiezer–
Kac formula is an extension of Szegő’s theorem [37] for determinants of Toeplitz matrices
to the continuous case. Unfortunately, there seems to be no analogous result for Fredholm
Pfaffians, even though, via operator manipulations, it is often possible to reduce a Fredholm
Pfaffian to a Fredholm determinant of an operator with a scalar kernel; see, for example, [39]
for such a reduction in the case of the Gaussian orthogonal and symplectic ensembles of ran-
dom matrices or [34] for the real Ginibre ensemble. This is probably due to the lack of the
general theory of Pfaffian point processes which would require proving an analogue of Sosh-
nikov’s theorem [35] for determinantal point processes by classifying all skew-symmetric
2 × 2 matrix-valued kernels that give rise to a random point process. Therefore, our task is
to study the asymptotics of Fredholm Pfaffians for a sufficiently large class of kernels which
contains all of the empty-interval probabilities for the Pfaffian point processes in which we
are interested.
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Classes of Pfaffian kernels. Motivated by the duality ideas often employed in integrable
probability to find explicit solutions for exactly solvable interacting particle systems, we
find two classes of such processes, for the translationally invariant (“bulk”) and noninvariant
(“edge”) cases. Asymptotics for these two cases (Theorems 1 and 3) are the first main results
of the paper. As a byproduct of our analysis, we obtain a generalisation of the Akhiezer–Kac
formula for Fredholm determinants for a class of “asymptotically translationally-invariant”
kernels; see Theorem 2.

It turns out that a number of well-known Pfaffian point processes fall into one of our
classes, including all the reaction diffusion systems listed earlier, the exit measure for
annihilating-coalescing Brownian motions (see Section 3.6 below), the law of real eigenval-
ues for the real Ginibre ensemble, both in the bulk and near the edge discovered in [20] and
[6], as well as the law of eigenvalues in the bulk and edge scaling limits for the classical GOE
random matrix ensemble; see [2, 30] for a review. Unfortunately, our theorems have nothing
to say about the last two cases due to the insufficiently fast decay of the corresponding kernels
at infinity.

Approach to the proofs. A notable feature of the class of kernels we consider is the possi-
bility to follow the manipulations carried out in [39] and [34] in order to reduce the corre-
sponding Fredholm Pfaffian to the square root of the product of a Fredholm determinant and
a finite dimensional determinant. We are, therefore, left with a pure analysis problem of com-
puting the asymptotic behaviour of each of these determinants in the limit of large gap sizes.
In principle, this problem can be solved using a combination of a direct computation and
an application of Szegő-type theorems, possibly modified owing to the presence of a Fisher–
Hartwig singularity; see [9] for a review of the discrete (Toeplitz) case. Such an approach runs
into difficulties due to the dearth of sufficiently general asymptotic results for Fredholm de-
terminants in the nontranslationally invariant case. Fortunately, the analysis problem at hand
can be solved using a probabilistic approach. This was used by Mark Kac to formulate the
first asymptotic results for Fredholm determinants, thus generalising Szegő’s original theo-
rems for Toeplitz matrices; see [24]. It turns out that both the finite dimensional determinant
and the Fredholm determinant under consideration can be interpreted as expectations with re-
spect to the law of (time-inhomogeneous) random walk, which can be subsequently analysed
using general results concerning random walks, such as Sparre Andersen’s formula, Spitzer’s
formulae, cyclic symmetry, renewal theory, the invariance principle, and optional stopping.
The essence of Kac’s arguments is very easy to illustrate in the translationally invariant case.
Let KT be an integral operator on L2[0, T ]: KT f (x) = ∫ T

0 ρ(x − y)f (y) dy. Assume that
ρ is nonnegative and such that

∫
R

ρ(x) = 1, that is, a probability density function. Given
some regularity conditions on ρ, for any 0 ≤ λ ≤ 1 the Fredholm determinant of the operator
I − λKT can be computed using the trace-log (Plemelj–Smithies) formula,

log Det(I − λKT ) = −
∞∑

n=1

λn TrKn
T

n
.

Using the convention xn+1 = x1, one can write, for any n ∈ N,

TrKn
T =

∫
[0,T ]n

∏
k=1

ρ(xk+1 − xk) dx1 dx2 . . . dxn =
∫
[0,T ]

Px[τT > n,Xn ∈ dx],

where Px is the law of the R-valued random walk (Xn : n > 0) started at x with the distribu-
tion of increments given by ρ, and τT is the first exit time from the interval [0, T ]. Therefore,
the problem of computing the Fredholm determinant is reduced to the analysis of random
walks constrained not to exit the interval [0, T ] killed independently at every step with prob-
ability 1 − λ. It was Kac’s insight that such an analysis can be carried out for any random
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walk using probabilistic arguments. Varying the parameter λ is very natural for probabilists:
for a point process with (determinantal or Pfaffian) kernel K , the thinned point process, where
each particle is removed independently with probability p, has new kernel pK .

The asymptotic results detailed in Theorems 1, 2, 3 are an example of pure analysis state-
ments proved using probabilistic methods. As happened with Kac’s theorem for Fredholm
determinants, a nonprobabilistic proof of asymptotics for Fredholm Pfaffians will most cer-
tainly appear. Kac’s assumption of positivity ρ ≥ 0 was used to allow probabilistic arguments,
but the final result was subsequently found to be true without this assumption, and we believe
the analogous positivity assumption in our results is unnecessary. Moreover, such a proof is
certainly desirable: at the moment the logarithms of both the finite dimensional and Fredholm
determinants contain terms proportional to the logarithm of the gap size; see Theorem 2. The
logarithmic terms cancel upon taking the final product. In other words, the Fredholm Pfaffian
does not have the singularity present in the corresponding Fredholm determinant. It is likely
that there is a streamlined proof of Theorems 1 and 3 which avoids reexpressing the Fred-
holm Pfaffians in terms of determinants and where the logarithmic terms do not appear at the
intermediate steps.

Application examples. The motivation for the study of Fredholm Pfaffians came from ap-
plications to probability theory. In [11], Derrida and Zeitak study the distribution of domain
sizes in the q-state Potts model on Z for the “infinite temperature” initial conditions (the ini-
tial colours are chosen uniformly independently at each site). They show that, as L/

√
t → ∞,

(1) P
[
The interval [0,L] contains one colour at time t

] = e
−A(q) L√

t
+B(q)+o(1)

,

where A, B are some explicit functions of q . Derrida and Zeitak’s formula is valid for all
q ∈ [1,∞). For Potts models, q ∈ 1 + N. However, as pointed out by the authors, there is
a physical interpretation of (1) for q /∈ 1 + N: it gives the probability that the interval [0, x]
is contained in a domain of positive spins in zero temperature Glauber model on Z started
with independent homogeneous distribution of spins with the average spin (“magnetisation”)
equal to m ∈ [−1,1]. Then, the parameter q = 2

1+m
. The computation method employed in

[11] can possibly be made rigorous for q < 1/2, but it relies on the assumption of analyticity
of the functions A, B in order to obtain the answer for q ≥ 2. These assumptions seem hard
to justify to us. Alternatively, one proves (1) as follows: as is well known, the boundary of
monochrome domains in the (diffusive limit of) Potts model behaves as a system of instan-
taneously coalescing/annihilating Brownian motions on R (denoted CABM) with the anni-
hilating probability 1

q−1 and coalescing probability q−2
q−1 at each collision; see [11] and [21]

for details. Therefore, the distribution of domain sizes in the Potts model corresponds to the
empty interval probabilities for coalescing/annihilating Brownian motions which is known to
be a Pfaffian point process [21]. Moreover, if K is the kernel for the purely coalescing case
(q = ∞), then q−1

q
K is the kernel for CABM. In other words, CABM can be obtained from

coalescing Brownian motions by thinning, that is deleting particles independently with prob-
ability p = q−1

q
(see Section 4 for precise details, including the role of the initial conditions).

Therefore, the gap probability is given by the Fredholm Pfaffian Pf[0,L][J − pK], and apply-
ing Theorem 1, one reaches (1). Notice that the interpretation in terms of gap probabilities
for CABM uses kernel pK for p ≥ 1

2 (“weak thinning”). For p < 1
2 (“strong thinning”) one

can interpret the answer either in terms of gaps between the boundaries of positive spins in
the Glauber model as above, or there is an interpretation in terms of gap sizes for a massive
coalescence model; see Lemma 21 below.

Derrida and Zeitak’s result (1) can be extended as follows. CABM started from half-space
initial conditions is still a Pfaffian point process with a translationally noninvariant kernel
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covered by conditions of Theorem 3. The asymptotics of the corresponding Fredholm Pfaf-
fian can, therefore, be computed yielding the right (left) tail of the fixed time distribution
of the leftmost (rightmost) particle. Notice that the value p = 1

2 of the thinning parameter
corresponds to purely annihilating Brownian motions (ABM). It is known [21, 40] that the
fixed time law of ABM with full-space (half-space) initial conditions is a Pfaffian point pro-
cess coinciding with the bulk (edge) scaling limit of the law of real eigenvalues for the real
Ginibre random matrix model discovered in [5, 6, 20]. This remark allowed a computation
of the tails of the distribution of the maximal real eigenvalue for the edge scaling limit of the
real Ginibre ensemble in [32] and [16]. It is the generalisation of the arguments in the last
two cited papers that led to the asymptotic Theorems 1, 2, 3.

In another influential investigation, Derrida, Hakim and Pasquier [12] compute the fraction
of sites which haven’t changed colour up to time t for a q-state Potts model on Z. Due to the
translation invariance of the “infinite temperature” initial conditions, this is equivalent to the
probability that the colour of the state at the origin hasn’t changed up to time t (also known as
a “persistence” probability; see [7] for a review of the persistence phenomenon in the context
of nonequilibrium statistical mechanics). They show, up to logarithmic precision, that

(2) P
[
The colour at 0 does not change in [0, t]] ∼ t−γ (q) as t → ∞,

where

γ (q) = −1

8
+ 2

π2

[
cos−1

(
2 − q√

2q

)]2
.

The authors derive this result by noticing that this event is equivalent for the domain bound-
aries, which form a system of coalescing/annihilating random walks, to the event that no
boundary crosses zero during the time interval [0, t]. Motivated by (2), we consider CABM
on [0,∞) started from the “maximal” entrance law supported on (a,∞) for some a > 0.
Particles hitting the boundary at x = 0 are removed from the system, and we record the cor-
responding exit times. We show that the resulting exit measure is a Pfaffian point process
with nontranslationally invariant kernel belonging to our class. Then, Theorem 3 applies, and
one can deduce the asymptotics for the probability that the interval [0, T ] contains no exiting
particles in the limit of large time T . This immediately gives the noncrossing probability for
the position of the leftmost particle (Lt : t ≥ 0) for the system of CABM on the whole real
axis started from every point of (a,∞),

P

[
inf

t∈[0,T ]Lt > 0
]
= K(q)

(
T

a2

)−γ (q)/2(
1 + o(1)

)
,

for a known constant K(q) (independent of a) and the exponent γ (q) specified above. If one
starts CABM with particles at every point of (−∞,−a) ∩ (a,∞), the above formula can be
used to derive the following continuous counterpart of (2):

(3) P
[
No particle crosses 0 in [0, T ]] = K(q)2

(
T

a2

)−γ (q)(
1 + o(1)

)
.

As discussed above, the fixed time law for annihilating Brownian motions is closely re-
lated to the real Ginibre ensemble. Similarly, the “bulk” limit of the Pfaffian point process
describing the exit measure for ABM is identical, up to a deterministic transformation, to the
translationally invariant kernel for the Pfaffian point process giving the law of real roots of
the Gaussian power series and also to the large N limit for the real eigenvalues of truncated
orthogonal matrices (where one row/column has been removed to obtain a minor); see [18,
29]. Theorem 1 allows one to compute the corresponding empty interval probability, up to
the constant term, as the endpoints of the interval approach ±1. For example,

P
[
The interval [−1 + 2ε,1 − 2ε] contains no roots

] = ε
3
8 eκ2

(
1 + o(1)

)
as ε ↓ 0,
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where

κ2 = 1

4
log

(
π2

2

)
− γ

2
− 1

4

∫ ∞
0

log(x)
(
tanh(x) + tanh(x/2)

)(
sech2(x) + 1

2
sech2(x/2)

)
dx.

Here, γ is the Euler–Mascheroni constant. Notice that the exponent 3/8 coincides with the
value γ (2) of the persistence exponent (2). This is a reflection of a general property of the
class of Pfaffian kernels we consider: the leading order asymptotics of the gap probability for
a nontranslationally invariant kernel and its translationally invariant “bulk” limit coincide,
while the constant terms differ (but are explicitly known). Notice that the Pfaffian point pro-
cess describing the edge scaling limit of the Gaussian orthogonal ensemble does not seem to
possess this property. Still, it is quite satisfying that there is a rather diverse pool of examples
of Pfaffian point processes which can be all treated using Theorems 1, 2, 3.

Moreover, it turns out that our results can be applied to zeros of random polynomials with
i.i.d. mean zero, but not necessarily Gaussian, coefficients which are no longer described by
a Pfaffian point process. In a remarkable paper [10], Dembo et al. show the probability that
such a random polynomial of degree n has no zeros and decays polynomially as n−b. They
show that this asymptotic is controlled by the case of Gaussian coefficients and characterise
the decay rate in terms of the Gaussian power series. This immediately enables an applica-
tion of our asymptotic results for Fredholm Pfaffians to evaluate the unknown power b; see
Section 3.1 for more details.

Literature review. The analysis of Fredholm Pfaffians is an increasingly active area of re-
search due to applications ranging from interacting particle systems to random matrices. Our
interest in the asymptotics of Fredholm Pfaffians was generated by the work of Peter For-
rester [19] who used the connection between the ABM and the law of real eigenvalues in the
real Ginibre ensemble from [40], and formula (1) of Derrida–Zeitak [11] to calculate the bulk
scaling limit for the corresponding gap probability. In [31] Mikhail Poplavskyi and Gregory
Schehr use the link between Kac polynomials and the ensemble of truncated orthogonal ma-
trices from [18] to calculate the leading order asymptotic for the gap probability for the real
roots of Kac polynomials. It is worth stressing that their work is independent of our own. A
common feature of the Pfaffian point processes related to Kac polynomials, truncated orthog-
onal random matrices and exit measures for interacting particle systems, is the appearing of
the scalar sech-kernel; see Section 2 for a review of “derived” Pfaffian point processes and
the corresponding scalar kernels. Exploiting the integrability of the sech-kernel, Ivan Dor-
nic analyses the asymptotics of a distinguished solution to Painlevé VI equation to rederive
the formula for the empty interval probability for the real roots of Kac polynomials, [13].
Interestingly enough, the integrable structure of kernels associated with the single time law
of CABM and the real Ginibre ensemble is not at all obvious. However, in a recent series
of papers [3, 4] Jinho Baik and Thomas Bothner establish a link between the Pfaffian ker-
nel for the edge scaling limit of the real Ginibre ensemble and Zakharov–Shabat integrable
hierarchy. By analysing the associated Riemann–Hilbert problem using the nonlinear steep-
est descent method, they manage to obtain the right tails of the distribution for the maximal
real eigenvalue for the thinned real Ginibre ensemble up to and including the constant term
(Lemma 1.14 of [4]). The answers we obtain for this regime in Section 3 coincide with the
answers presented in [3, 4]. It is worth pointing out that, at the moment, there seems to be
no link between the integrable structures uncovered in the context of persistence problems
and the laws of extreme particles. However, given that these problems can be treated in a
unified way using Theorems 1 and 3, it is reasonable to conjecture that there is a universal
integrable structure underlying the classes of kernels introduced in the present work. (See
also [25] for an extended study of a class Fredholm determinants appearing as solutions of
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Zakharov–Shabat system which includes not only the real Ginibre case but also the eigen-
value statistics for Gaussian orthogonal and symplectic ensembles.) As mentioned above, our
proof of the asymptotic theorems generalises the probabilistic method of Kac. At the moment
there seem to be very little intersection between the approaches to the analysis of Fredholm
Pfaffians based on integrable systems and integrable probability. Nevertheless, such a con-
nection might well exist. For example, in a recent paper [26] Alexandre Krajenbrink and
Pierre Le Doussal study short time large-deviations behaviour of the solutions to the Kadar–
Parisi–Zhang equation. They find that the corresponding critical point equations are closely
related to the nonlinear Schrödinger equations and can be solved exactly using the inverse
scattering treatment of the corresponding Zakharov–Shabat system. One of the crucial equa-
tions appearing is an integral equation with a quadratic nonlinearity under the integral sign.
Using the probabilistic interpretation, the authors show that this nonlinear equation is equiv-
alent to a linear integral equation typical of the theory of random walks. Subsequently, they
analyse the linear equation using Sparre Anderson’s formula which is a cornerstone of our
probabilistic argument as well.

Paper organisation. In Section 2 we introduce the two classes of Pfaffian point processes
we consider and state, in Theorems 1 and 3, the asymptotic formulae for the correspond-
ing Fredholm Pfaffians. In Section 3 we apply these formulae to calculate gap probabilities
for the range of Pfaffian point processes described above. Section 3.6 studies exit measures
for systems of coalescing/annihilating Brownian motions, establishes their Pfaffian structure,
and determines the corresponding kernels. This is a new result concerning Pfaffian point pro-
cesses which enables the application of the asymptotic theorems to the study of the law of
the leftmost particle for coalescing/annihilating Brownian motions. The rest of the paper is
dedicated to the proof of the stated theorems: in Section 4 we prove the asymptotic formula
for Fredholm Pfaffians for translationally invariant kernels; in Section 5 we prove the asymp-
totic statement for a nontranslationally invariant case; in Section 6 we prove the Pfaffian
point process structure for exit measures. Finally, Section 7 gives details of proofs for some
more technical statements made in the paper, including a Fourier form for the coefficients
of the asymptotic expansion for translationally invariant Fredholm Pfaffians and the analytic
properties of these coefficients with respect to the thinning parameter.

2. Statement of results. We will state two theorems on asymptotics for Fredholm Pfaf-
fians for kernels on R, the first for translationally invariant kernels and the second for a class
of nontranslationally invariant kernels. We start with recalling basic facts about determinantal
and Pfaffian point processes, Fredholm determinants, and Pfaffians and defining two classes
of Pfaffian kernels with which the paper deals.

2.1. Backround.

2.1.1. Definitions: Fredholm determinants and Pfaffians. A determinantal point pro-
cess X on R with kernel T : R2 → C is a simple point process, whose n-point intensities
ρn(x1, . . . , xn) exist for all n ≥ 1 and are given by

ρn(x1, . . . , xn) = det
(
T (xi, xj ) : 1 ≤ i, j ≤ n

)
for all x1, . . . , xn ∈ R.

A Pfaffian point process X on R with kernel K : R2 → M2×2(C) is a simple point process,
whose n-point intensities ρn(x1, . . . , xn) exist for all n ≥ 1 and are given by

ρn(x1, . . . , xn) = pf
(
K(xi, xj ) : 1 ≤ i, j ≤ n

)
for all x1, . . . , xn ∈ R.

We also meet Pfaffian point processes on intervals I ⊂R.
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We will consider real Pfaffian kernels K :R2 → M2×2(R), written as

(4) K(x, y) =
(
K11(x, y) K12(x, y)

K21(x, y) K22(x, y)

)
for all x, y ∈ R.

Recall the antisymmetry requirement on Pfaffian kernels,

(5) Kij (x, y) = −Kji(y, x) for all x, y ∈R, and i, j ∈ {1,2}
which ensures that the matrix (K(xi, xj ) : 1 ≤ i, j ≤ n) is a 2n × 2n antisymmetric matrix.
Recall that the Pfaffian pf(A) of a 2n × 2n antisymmetric matrix is defined by

pf(A) = 1

2nn!
∑

σ∈
2n

sgn(σ )

n∏
i=1

Aσ(2i−1),σ (2i),

and recall the basic properties of Pfaffians: (pf(A))2 = det(A) and pf(BABT ) = det(B)pf(A)

for any B of size 2n × 2n. We usually only list the elements (Aij : i < j ≤ 2n) defining an
anti-symmetric matrix.

For a simple point process X, having all intensities (ρn : n ≥ 1), the gap probabilities,
writing X(a, b) as shorthand for X((a, b)), are given by

P
[
X(a, b) = 0

] =
∞∑

n=0

(−1)n

n!
∫
[a,b]n

ρn(x1, . . . , xn) dx1 . . . dxn

(where the term n = 0 is taken to have the value 1) whenever this series is absolutely con-
vergent (see Chapter 5 of Daley and Vere-Jones [8]). For determinantal or Pfaffian point
processes, this leads to the following expressions, which can be taken as the definitions of the
Fredholm determinant and Fredholm Pfaffian of the kernels T and K, respectively:

Det[a,b](I − T ) =
∞∑

n=0

(−1)n

n!
∫
[a,b]n

det
(
T (xi, xj ) : 1 ≤ i, j ≤ n

)
dx1 . . . dxn,(6)

Pf[a,b](J − K) =
∞∑

n=0

(−1)n

n!
∫
[a,b]n

Pf
(
K(xi, xj ) : 1 ≤ i, j ≤ n

)
dx1 . . . dxn.(7)

Here, the left-hand side is merely a notation for the right-hand side. However, later (see (49))
we exploit operator techniques to manipulate Fredholm Pfaffians. Then, we treat J as an
operator on (L2[a, b])2 defined by J(f, g) = (g,−f ). When T or K are bounded functions
(as in all our results), these series converge absolutely (see Chapter 24 of Lax [28]). We will
also consider semiinfinite intervals [a,∞), and then the series converge absolutely under
suitable decay conditions on T and K. More generally, we will define Det[a,∞)(I − T ) =
limb→∞ Det[a,b](I − T ) and Pf[a,∞)(J − K) = limb→∞ Pf[a,b](J − K) whenever these limits
exist (as they do when they represent gap probabilities).

2.1.2. Classes of Pfaffian kernels considered. We list the hypotheses required on the ker-
nel of the Fredholm Pfaffians for our results. We consider kernels K in derived form (see
[2] Definition 3.9.18 for essentially this notion). For us, this means that K is derived from a
single scalar function K ∈ C2(R2), as follows. There is a simple jump discontinuity along
x = y, and we let S(x, y) = sgn(y − x) (with the convention that S(x, x) = 0) to display this
discontinuity. Then, K has the form

(8) K(x, y) =
(
S(x, y) + K(x,y) −D2K(x,y)

−D1K(x,y) D1D2K(x,y)

)
,
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where DiK denotes the derivative of K in the ith coordinate. The symmetry condition (5)
then implies that K is antisymmetric (i.e., K(x,y) = −K(y,x) for all x, y). All our applica-
tions are Pfaffian point processes with a kernel of the form pK for some p ∈ [0,1], where K
is in the above form.

In order to apply probabilistic methods in our analysis, we will assume that K is given in
terms of a probability density function ρ, that is ρ ≥ 0,

∫
R

ρ(x) dx = 1. In our translationally
invariant examples, K will be given as

(9) K(x,y) = −2
∫ y−x

0
ρ(z) dz, for even ρ ∈ C1(R) ∩ L∞(R)

(the symmetry condition (5) requires that ρ must be an even function).
In our nontranslationally invariant examples, K will be given in terms of a probability

density function ρ ∈ C1(R) ∩ H 1(R) ∩ L∞(R) as

(10) K(x,y) =
∫ 0

−∞

∣∣∣∣∣∣
∫ x−z

−∞
ρ(w)dw

∫ y−z

−∞
ρ(w)dw

ρ(x − z) ρ(y − z)

∣∣∣∣∣∣ dz

(where |A| stands for the 2 × 2 determinant). The required symmetry for K holds without
any symmetry requirement on ρ. Note that

(11) lim
c→−∞K(x + c, y + c) = −2

∫ y−x

0
ρ̃(z) dz, where ρ̃(z) =

∫ ∞
−∞

ρ(w)ρ(w − z) dw

so that the kernel is close to the translation invariant form (9) near −∞. Indeed, our exam-
ples that fit this nontranslationally framework are from: (i) random matrices that are studied
near the right hand edge of their spectrum and (ii) particle systems that are started with
“half-space” initial conditions, that is, where particles are initially spread over the half-space
(−∞,0], and in both these cases the kernels approach the “bulk” form far from the origin.

We remark (see [2] equation (3.9.32)) that the kernel for limiting (N = ∞) GOE Pfaffian
point process of eigenvalues in the bulk is in the derived form 1

2K, with K in the transla-

tionally invariant form (9) for ρ(z) = 1
π

sin(z)
z

(which, while not nonnegative, at least satisfies∫
R

ρ = 1). Moreover (see [2] equation (3.9.41)), the limiting (N = ∞) edge kernel for GOE
eigenvalues is in the derived form 1

2K, with K in the translationally noninvariant form (10)
for ρ(z) = A(z) the Airy functions (which again satisfies

∫
R

ρ = 1).

2.2. Asymptotics for Fredholm Pfaffians: Translationally invariant kernels.

THEOREM 1. Let K be in the derived form (8) using a scalar kernel K in the form (9) for
a density function ρ. Then, for 0 < p < 1 and under the moment assumptions given below,
the asymptotic

log Pf[0,L](J − pK) = −κ1(p)L + κ2(p) + o(1) as L → ∞
holds, where (writing ρ∗n for the n-fold convolution of ρ with itself):

(i) for 0 < p < 1/2, supposing
∫
R

|x|ρ(x) dx < ∞,

κ1(p) =
∞∑

n=1

(4p(1 − p))n

2n
ρ∗n(0),

κ2(p) = log
(√

1 − 2p

1 − p

)
+

∫ ∞
0

x

2

( ∞∑
n=1

(4p(1 − p))nρ∗n(x)

n

)2

dx;
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(ii) for p = 1/2, supposing
∫
R

|x|4ρ(x) dx < ∞,

κ1(1/2) =
∞∑

n=1

1

2n
ρ∗n(0),

κ2(1/2) = log 2 − 1

4
+ 1

2

∞∑
n=2

(
n−1∑
k=1

∫ ∞
0

x
ρ∗k(x)ρ∗(n−k)(x)

k(n − k)
dx − 1

2n

)
;

(iii) for 1/2 < p < 1, supposing there exists φp > 0 so that 4p(1−p)
∫
R

eφpxρ(x) dx = 1
and for which

∫
R

|x|eφpxρ(x) dx < ∞,

κ1(p) = φp +
∞∑

n=1

(4p(1 − p))n

2n
ρ∗n(0),

κ2(p) = log
( √

2p − 1

8p(1 − p)2

)
+

∫ ∞
0

x

2

( ∞∑
n=1

(4p(1 − p))nρ∗n(x)

n

)2

dx

− log
(
φp

∫
R

xeφpxρ(x) dx

)
− 2

∞∑
n=1

(4p(1 − p))n

n

∫ 0

−∞
eφpxρ∗n(x) dx.

REMARK 1. Motivated by our applications, implementation of this theorem for the den-
sities ρ(x) = π−1 sech(x) and ρ(x) = (4πt)−1/2 exp(−x2/4t) will be done in Corollaries
6 and 7, where simpler expressions for κ1, κ2 are calculated. In both cases the function
p → κ1(p) for p ∈ (0,1) turns out to be analytic. We do not know whether this is the general
case for, say, analytic ρ.

REMARK 2. The case p = 1 is not covered by our theorem. In this case the Fredholm
Pfaffian reduces to the (square root) of a 2 × 2 determinant (this is evident from the proof in
Section 4.1). Then, the asymptotics are easier, and they need not be exponential (see Remark 2
in Section 3.2).

REMARK 3. For numerical or theoretical analysis, it may be useful to rewrite the infinite
sums in these formulae in alternate ways. For example, the probabilistic representations (see
(68) for p ∈ (0, 1

2) and (76) for p ∈ (1
2 ,1)) give formulae for κi(p) when p = 1

2 as expecta-
tions. We may also, for suitably good ρ, rewrite some terms in the constants κi(p) usefully
in terms of Fourier transforms. We use the conventions ρ̂(k) = ∫

exp(ikx)ρ(x) dx with in-
version (when applicable) ρ(x) = (2π)−1 ∫ exp(−ikx)ρ̂(k) dk. The exponents κi(p) can be
expressed using the function

(12) Lρ(p, x) = 1

2π

∫
R

e−ikx log
(
1 − 4p(1 − p)ρ̂(k)

)
dk.

We do not look for good sufficient conditions but suppose for the formulae (13), (14) below
that ρ is in Schwartz class. When p = 1

2 , we assume further that there exists μ > 0 so that∫
R

e2μ|x|ρ(x) dx < ∞ which justifies certain contour manipulations in the proof,

κ1(p) =

⎧⎪⎪⎨
⎪⎪⎩

−1

2
Lρ(p,0) for p ∈

(
0,

1

2

]
,

−1

2
Lρ(p,0) + φp for p ∈

(
1

2
,1

)
,

(13)
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κ2(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

log
(√

1 − 2p

1 − p

)
+ 1

2

∫ ∞
0

xL2
ρ(p, x) dx for p ∈

(
0,

1

2

)
,

1

4
log

(
2σ 2)− γ

2
− 1

2

∫ ∞
0

log(x)

(
x2L2

ρ

(
1

2
, x

))′
dx for p = 1

2
,

log
( √

2p − 1

8p(1 − p)2

)
− �p + 1

2

∫ ∞
0

xL2
ρ(p, x) dx for p ∈

(
1

2
,1

)
,

(14)

where

(15) �p = log
(
φp

∫
R

xeφpxρ(x) dx

)
− 1

π

∫
R

φp

φ2
p + k2 log

(
1 − 4p(1 − p)ρ̂(k)

)
dk

and where σ 2 = ∫
R

x2ρ(x) dx and γ is the Euler Mascheroni constant. When p = 1
2 , the

formula for κ2 encodes the slightly arbitrary compensation by − 1
2n

used in Theorem 1 in,
perhaps, a more natural way using the transform. It is tempting to integrate by parts in the term∫∞

0 logx(x2L2
ρ(1

2 , x))′ dx in order to obtain a form closer to those when p = 1
2 , but this is

not justified (e.g., xLρ(1
2 , x) → −1 as x → ∞). The proofs of these alternative formulae are

in the Section 7.1. Notice that the leading order term −1
2Lρ(p,0)L for p < 1

2 is equal to one
half of the leading term in the classical Akhiezer–Kac formula for the Fredholm determinant
of the operator with the kernel ρ. This is due to the Tracy–Widom map between Fredholm
Pfaffians and determinants discussed in Section 4.1.

2.3. Asymptotics for Fredholm Pfaffians: Nontranslationally invariant kernels. We start
with a result on Fredholm determinants, with a kernel in the form that arises in our applica-
tions. Indeed, an operator in the form (16) below arises immediately in the analysis of the
Fredholm Pfaffian of a derived form kernel K in the special nontranslationally invariant form
(10) (see (95)).

THEOREM 2. Suppose that ρ ∈ C(R)∩L2(R)∩L∞(R) is a probability density function.
Define

(16) T (x, y) =
∫ 0

−∞
ρ(x − z)ρ(y − z) dz,

and let ρ̃(z) = ∫∞
∞ ρ(w)ρ(w − z) dw.

For β ∈ [0,1), supposing
∫
R

|x|ρ(x) dx < ∞,

log Det[−L,∞)(I − βT ) = −κ1(β)L + κ2(β) + o(1) as L → ∞,

where

κ1(β) =
∞∑

n=1

βn

n
ρ̃∗n(0)

and

κ2(β) =
∞∑

n=1

βn

n2

∫ ∞
−∞

x
(
ρ∗n(x)

)2
dx +

∫ ∞
0

x

( ∞∑
n=1

βnρ̃∗n(x)

n

)2

dx.

When β = 1, supposing
∫
R

x4ρ(x) dx < ∞,

log Det[−L,∞)(I − T ) = −
∞∑

n=1

1

n
ρ̃∗n(0)L + logL + κ2 + o(1) as L → ∞,
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where, setting σ̃ 2 = ∫
R

x2ρ̃(x) dx,

κ2 = 3

2
log 2 − 1

2
− log σ̃ +

∞∑
n=1

1

n2

∫ ∞
−∞

x
(
ρ∗n(x)

)2
dx

+
∞∑

n=2

(
n−1∑
k=1

∫ ∞
0

x
ρ̃∗k(x)ρ̃∗(n−k)(x)

k(n − k)
dx − 1

2n

)
.

We do not discuss any direct applications of Theorem 2 in this paper. However, note that
Fredholm determinants of integral operators with kernels of the form (16), given by a Hankel
convolution, have recently been linked to integrable hierarchies of partial differential equa-
tions, such as the nonlinear Schrodinger equation; see [25]. Moreover, if ρ is Gaussian, the
corresponding Fredholm determinant appears in the weak noise theory of Kardar–Parisi–
Zhang equation; see [26].

Our main result for nontranslationally invariant Fredholm Pfaffians is as follows.

THEOREM 3. Let K be in the derived form (8) using a kernel in the form (10) for a
probability density function ρ ∈ C1(R) ∩ H 1(R) ∩ L∞(R). Define ρ̃(z) = ∫

R
ρ(w)ρ(w −

z) dw. Then, for 0 < p < 1 and under the moment assumptions given below, the asymptotic

log Pf[−L,∞)(J − pK) = −κ1(p)L + κ2(p) + o(1) as L → ∞
holds, where

(i) for 0 < p < 1/2, supposing
∫
R

|x|ρ(x) dx < ∞,

κ1(p) =
∞∑

n=1

(4p(1 − p))n

2n
ρ̃∗n(0),

κ2(p) = 1

2
log

(
1 − 2p

1 − p

)
+ 1

2

∞∑
n=1

(4p(1 − p))n

n2

∫ ∞
−∞

x
(
ρ∗n(x)

)2
dx

+
∫ ∞

0

x

2

( ∞∑
n=1

(4p(1 − p))nρ̃∗n(x)

n

)2

dx;

(ii) for p = 1/2, supposing
∫
R

|x|4ρ(x) dx < ∞,

κ1(1/2) =
∞∑

n=1

1

2n
ρ̃∗n(0),

κ2(1/2) = 1

2
log 2 − 1

4
+ 1

2

∞∑
n=1

1

n2

∫ ∞
−∞

x
(
ρ∗n(x)

)2
dx

+ 1

2

∞∑
n=2

(
n−1∑
k=1

∫ ∞
0

x
ρ̃∗k(x)ρ̃∗(n−k)(x)

k(n − k)
dx − 1

2n

)
;

(iii) for 1/2 < p < 1, supposing there exists φp so that 4p(1−p)
∫
R

eφpxρ̃(x) dx = 1 and
that the integrals

∫
R

|x|eφpxρ̃(x) dx and
∫
R

eφp|x|ρ(x) dx are finite,

κ1(p) = φp +
∞∑

n=1

(4p(1 − p))n

2n
ρ̃∗n(0),
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κ2(p) = log
( √

2p − 1

16p3/2(1 − p)2

)
+ 1

2

∞∑
n=1

(4p(1 − p))n

n2

∫ ∞
−∞

x
(
ρ∗n(x)

)2
dx

+
∫ ∞

0

x

2

( ∞∑
n=1

(4p(1 − p))nρ̃∗n(x)

n

)2

dx − log
(
φp

∫
R

xeφpxρ̃(x) dx

)

− log
(∫

R

eφpxρ(x) dx

)
− 2

∞∑
n=1

(4p(1 − p))n

n

∫ 0

−∞
eφpxρ̃∗n(x) dx.

REMARK. Implementation of this theorem for the densities ρ(x) = (2πt)−1/2 exp(−x2/

4t) and ρ(x) = 2√
π

exp(x − e2x), both arising from applications, is done in Sections 3.3 and
3.4 where simpler expressions for κ1, κ2 are calculated.

3. Applications. We repeatedly use the following lemma.

LEMMA 4. Suppose X is a Pfaffian point process on an interval A ⊆ R with a kernel
K in the derived form (8), with an underlying scalar kernel K . Suppose φ : A → R is C1

and strictly increasing. Then, the push forward point process X′ of X under φ, given by
X′(·) = X(φ−1(·)), is still a Pfaffian point process on the interval φ(A) with a kernel K′ in
the derived form (8) with the underlying scalar kernel K ′(x, y) = K(φ−1(x),φ−1(y)).

PROOF. The intensities ρ′
n for X′ are given by

ρ′
n(x1, . . . , xn) = ρn

(
φ−1(x1), . . . , φ

−1(xn)
) n∏
k=1

αk where αk = (φ−1)′(xk).

Also,

pf
(
K′(xi, xj ) : 1 ≤ i, j ≤ n

)
= pfi,j≤n

(
S(xi, xj ) + K ′(xi, xj ) −D2K

′(xi, xj )

−D1K
′(xi, xj ) D1D2K

′(xi, xj )

)

= pfi,j≤n

(
S(xi, xj ) + K

(
φ−1(xi), φ

−1(xj )
) −D2K

(
φ−1(xi), φ

−1(xj )
)
αj

−D1K
(
φ−1(xi), φ

−1(xj )
)
αi D1D2K

(
φ−1(xi), φ

−1(xj )
)
αiαj

)
,

and the factors of αk can be extracted, as this is the conjugation with a block diagonal matrix
D with blocks

( 1 0
0 αi

)
for which det(D) = ∏n

k=1 αk . �

3.1. Zeros of Gaussian power series. Let (ak)k≥0 be an independent collection of real
N(0,1) random variables, and define the Gaussian power series f (z) = ∑∞

k=0 akz
k . The

series converges almost surely to a continuous function on |z| < 1, and we consider the real
zeros of f as a point process X on (−1,1). Forrester [18] (see Theorem 2.1 of Matsumoto
and Shirai [29]) showed that X is a Pfaffian point process with kernel 1

2K, with K in derived
form (8) with the choice

K(x,y) = 2

π
sin−1

(√(1 − x2)(1 − y2)

1 − xy

)
− 1 for x < y.

Using Lemma 4, the push forward of the process X under the mapping x �→ �(x) :=
1
2 log(1+x

1−x
) is a Pfaffian point process on R, still in the derived form, with the choice (note

that �−1(x) = tanh(x))

K
(
�−1(x),�−1(y)

) = 2

π
sin−1(sech(y − x)

)− 1 for x < y.
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The problem has now become translationally invariant, and the kernel is in the form (9) with
ρ(z) = π−1 sech(z). Theorem 1 with p = 1

2 leads to (see Corollary 6 below)

(17) logP
[
X(a, b) = 0

] = −3

8

(
�(b) − �(a)

)+ κ2(1/2) + o(1),

where the term o(1) converges to zero whenever b ↑ 1 or a ↓ −1 and κ2(1/2) is given by

1

4
log

(
π2

2

)
− γ

2
− 1

4

∫ ∞
0

log(x)
(
tanh(x) + tanh(x/2)

)(
sech2(x) + 1

2
sech2(x/2)

)
dx.

In particular, (17) implies that

lim
ε↓0

ε− 3
16P

[
X(0,1 − 2ε) = 0

] = lim
ε↓0

ε− 3
8P

[
X(−1 + 2ε,1 − 2ε) = 0

] = eκ2(
1
2 ).

It is possible that the remaining integral in (24) can be expressed in terms of special functions,
but it is also not hard to calculate it numerically which gives κ2(1/2) ≈ 0.0247.

As an application of the results obtained in this section, let us prove the following statement
which completes the theorem of Dembo, Poonen, Shao and Zeitouni [10] concerning the
zeros of random polynomials.

PROPOSITION 5. Let fn : x �→ ∑n−1
i=0 aix

i be a random polynomial on R, where (ai)i≥0
is a sequence of i.i.d. random variables with zero mean, unit variance such that moments
of all orders exist. Let pn = P[fn(x) > 0 ∀x ∈ R] be the probability that fn stays positive
(“persistence probability”). Then,

(18) lim
n→∞

logp2n+1

logn
= −3

4
.

PROOF. All the hard work is done in [10], where strong approximations are used to show
the asymptotic will follow from the Gaussian case, and the approximation of the Gaussian
polynomial by the Gaussian power series is controlled. We are left with an easy task: by
Theorem 1.1 of [10], the limit

(19) b := − lim
n→∞

logp2n+1

logn

exists and can be characterised in terms of the Gaussian power series, as follows. Let
(Yt )t∈R be a centered stationary continuous Gaussian process with the correlation R(t) :=
E[Y0Yt ]/E[Y 2

0 ] = sech(t/2). Then,

(20) b = −4 lim
T →∞

1

T
logP

[
sup

0≤t≤T

Yt ≤ 0
]
.

In other words, the constant b is universal.
The process Y can be realised as a rescaling of the Gaussian power series f , followed by

pushing it forward to a process on R by the function 2�−1 = 2 tanh−1,

Ỹt := f (tanh(t/2))

(E[f 2(tanh(t/2))])1/2 , t ∈ R.

Indeed, (Ỹt )t∈R is a continuous centered Gaussian process on R with with the correlation
function

E[Ỹ0Ỹt ]/E[Ỹ 2
0
] = E[Ỹ0Ỹt ] = sech(t/2)

which also implies the stationarity of Ỹ . Therefore, the law of Y coincides with the law of a
constant multiple of Ỹ , meaning that the laws of real zeros of Y and Ỹ coincide. It follows
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from the theorem of Forrester above that the law of real zeros of Y is a translationally invariant

Pfaffian point process with ρ(·) = sech( 1
2 ·)

2π
, where the factors of 2 appear because Y is the

pushforward of the Gaussian power series of by 2�−1 rather than �−1. As a consequence of
the Fourier formula (13) for κ1 and the p = 1/2 statement of Corollary 6 below,

(21) logP[Yt = 0 ∀0 ≤ t ≤ T ] = −κ1

2
T + o(T ) = − 3

16
T + o(T ).

Therefore, using (20),

b = −4 lim
T →∞

1

T
logP

[
sup

0≤t≤T

Yt ≤ 0
]

= −4 lim
T →∞

1

T
logP

[
sup

0≤t≤T

Yt < 0
]

= −4 lim
T →∞

1

T
logP[Yt = 0 ∀0 ≤ t ≤ T ] = 2κ1 = 3

4
.

The second equality is due to the fact that zeros of Y are almost surely simple; the third is
due to the reflection symmetry of the process Y ; the fourth uses (21). �

REMARK. It is worth stressing that Theorem 1.1 is just one of the universality results
presented in [10]: the case where E[ai] = 0 was also treated; the probability that random
polynomials have exactly k real zeros or the number of real zeros is o(logn/ log logn) were
analysed. For all of the cases, formulae analogous to (19) were proved (with b → b/2 when
means are nonzero). However, the value of the limit b could only be calculated numerically
as b = 0.76 ± 0.03 and bounded rigorously as 0.4 ≤ b ≤ 2. For all of these statements, the
unknown constant b can now be replaced with 3/4.

We record now the concrete application of Theorem 1 for the specific kernel based on
ρ(x) = π−1 sech(x) for all p ∈ (0,1). The case p = 1/2 yields the above application to
Gaussian power series. The case p ∈ (0,1/2) would correspond to a gap probability for the
thinning of the point process formed by the zeros of a Gaussian power series (should this ever
be needed). However, the sech kernel arises completely independently (as far as we know) in
a later application in Section 3.3, where the problem of a system of coalescing/annihilating
particles on R never crossing the origin by time t is studied. That probability is related to a
Fredholm Pfaffian with a nontranslationally invariant kernel but which asymptotically agrees
with the kernel based on ρ(z) = π−1 sech(z). The corollary below then becomes needed for
all p ∈ (0,1). It is also our first chance to study the regularity of p → κi(p).

COROLLARY 6. Let K be a derived form kernel, in the translationally invariant form (9)
with ρ(x) = π−1 sech(x). Then, for p ∈ [0,1),

log Pf[0,L](J − pK) = −κ1(p)L + κ2(p) + o(1) as L → ∞,

where

(22) κ1(p) = 2

π2

(
cos−1 1 − 2p√

2

)2
− 1

8

is real analytic for p ∈ [0,1) and κ2(p) is given by

1

2

∫ ∞
0

xL2
ρ(p, x) dx + log

(√
1 − 2p

1 − p

)
p <

1

2
,(23)



2424 W. FITZGERALD, R. TRIBE AND O. ZABORONSKI

1

4
log

(
π2

2

)
− γ

2
− 1

8

∫ ∞
0

log(x)
((

tanh(x) + tanh(x/2)
)2)′

dx p = 1

2
,(24)

1

2

∫ ∞
0

xL2
ρ(p, x) dx − log

(
cos−1(4p(1 − p)

))

− log
(√(2p − 1)(1 + 4p − 4p2)

2p

)
(25)

+ 1

π

∫
R

1

1 + k2 log
(
1 − 4p(1 − p) sech

(
cos−1(4p(1 − p)

)
k
))

dk p >
1

2
,

where, for p = 1
2 and x = 0,

(26) Lρ(p, x) =
cosh(x) − cosh( 4

π
cos−1(

|2p−1|√
2

)x)

2x sinh(x) cosh(x)
.

PROOF. We calculate κ1(p), κ2(p) from the Fourier transform representations (13), (14),
as follows. The Fourier transform of ρ(x) = π−1 sech(x) is ρ̂(k) = sech(kπ/2). For |φ| < 1,
the exponential moments are given by

∫
R

eφxρ(x) dx = sec(πφ/2) so that the solution φp to
4p(1−p)

∫
R

eφxρ(x) dx = 1 is given by φp = (2/π) cos−1(4p(1−p)). The Fourier integral
formula (12) can be evaluated using the integral

(27) Iλ(x) := 1

2π

∫
R

e−ikx log
(
1 − λ sech(kπ/2)

)
dk, for x ∈ R, λ ∈ (0,1].

Note, Iλ(x) is continuous and even in x. Integrating by parts, we find

Iλ(x) = 1

2πix

∫
R

e−2ikx/π

(
sinh(k)

cosh(k)
− sinh(k)

cosh(k) − λ

)
dk.

For x > 0, this integral can be computed by closing the integration contour in the lower half
plane and applying Cauchy’s residue theorem. The only singularities of the first term of the
integrand are the first order poles at z

(1)
m = (π

2 +πm)i for m ∈ Z. For λ ∈ (0,1), the singulari-

ties of the second term are also first order poles at z
(2)
m = (α+2πm)i and z

(3)
m = (−α+2πm)i

for m ∈ Z, where α ∈ (0, π) satisfies cosα = λ, sinα = √
1 − λ2. The corresponding residues

are e−2ixz
(k)
m /π . Summing up the three resulting geometric progressions of residues, one finds,

for x > 0,

Iλ(x) = 1

2x

cosh(x) − cosh(2x(1 − α
π
))

sinh(x) cosh(x)
.

Note also that

(28) 1 − α

π
= 1 − cos−1(λ)

π
= 2

π
cos−1

√
1 − λ

2
.

The value at λ = 1 can be rewritten, for x > 0, as

I1(x) = 1

2x

cosh(x) − cosh(2x)

sinh(x) cosh(x)
= − 1

2x

(
tanh(x) + tanh(x/2)

)
.

The value at x = 0, by continuity, is

Iλ(0) = 1

4
−

(
1 − cos−1(λ)

π

)2
= 1

4
− 4

π2

(
cos−1

√
1 − λ

2

)2
.
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Using Lρ(p, x) = I4p(1−p)(x), the expression (13) leads to the following formulae for κ1:

κ1(p) = 2

π2

(
cos−1 |2p − 1|√

2

)2
− 1

8
+ I(p > 1/2)

2

π
cos−1(4p(1 − p)

)
.

We can remove the indicator to reveal the analyticity of this formula; indeed we use
cos−1(x) = π − cos−1(−x) and cos−1(x) = 1

2 cos−1(2x2 − 1) to see, for p ∈ (1/2,1),

κ1(p) = 2

π2

(
cos−1 2p − 1√

2

)2
+ 2

π
cos−1(4p(1 − p)

)− 1

8

= 2

π2

(
cos−1 2p − 1√

2

)2
+ 2 − 2

π
cos−1(−4p(1 − p)

)− 1

8

= 2

π2

(
cos−1 2p − 1√

2

)2
+ 2 − 4

π
cos−1

(
2p − 1√

2

)
− 1

8

= 2

π2

(
π − cos−1 2p − 1√

2

)2
− 1

8
= 2

π2

(
cos−1 1 − 2p√

2

)2
− 1

8

agreeing with the expression for κ1(p) when p ∈ (0,1/2). Using the exponential moments,
we find, for p ≥ 1/2,

∫
R

xeφpxρ(x) dx = π

2

sin(πφp/2)

cos2(πφp/2)
= (2p − 1)π

√
1 + 4p − 4p2

32p2(1 − p)2 ,

and the formula for κ2 then follows from (14). �

REMARK. We do not investigate the regularity of κ2, but the numerics in Figure 1 suggest
that it is at least in C1.

3.2. Gap probabilities for coalescing/annihilating Brownian motions. This section dis-
cusses the result that arose in Derrida and Zeitak [11] in their study of domain sizes for Potts
models. Consider an infinite system of reacting Brownian motions on R, where each collid-
ing pair instantly annihilates with probability θ or instantly coalesces with probability 1 − θ

(independently at each collision). We will refer to this system as CABM(θ ). Suppose the ini-
tial positions form a Poisson point process with bounded intensity λ(x) dx. The positions of
the particles at time t > 0 form a Pfaffian point process Xt with a kernel (1 + θ)−1K in the
derived form (8), where

(29) K(x,y) =
∫ ∞
−∞

∫ y′

−∞
(
e
−(1+θ)

∫ y′
x′ λ(z) dz − 1

) ∣∣∣∣pt

(
x, x′) pt

(
x, y′)

pt

(
y, x′) pt

(
y, y′)

∣∣∣∣ dx′ dy′

where pt(x, x′) is the transition density for Brownian motion on R. When λ is constant, this
reduces to

(30) K(x,y) =
∫ ∞

0

(
e−λ(1+θ)z − 1

) 1√
4πt

(
e−(z−y+x)2/4t − e−(z+y−x)2/4t )dz.

This scalar K(x,y) is in the translationally invariant form (9) with

(31) ρ(x) =
∫
R

λ(1 + θ)

2
e−λ(1+θ)|z| 1√

4πt
e−|x−z|2

4t dz,

that is the density for the convolution of a Gaussian N(0,2t) variable with a two sided
Exponential(λ(1 + θ)) variable. One may also let λ ↑ ∞, starting the process as an entrance



2426 W. FITZGERALD, R. TRIBE AND O. ZABORONSKI

FIG. 1. Left pane: The leading coefficient p �→ κ1(p) for the sech kernel from Corollary 6 in Section 3.1. Right
pane: The subleading coefficient p �→ κ2(p) for the same kernel (labelled “bulk”) and for the nontranslationally
invariant kernel based on ρ(x) = 2√

π
exp(x − e2x) discussed in Corollary 8 in Section 3.4 (labelled “edge”).

law (which we informally call the maximal entrance law), and where ρ becomes just Gaus-
sian N(0,2t) density.

A derivation of the kernel (29) is not quite in the literature. The maximal entrance law
and its kernel are derived in [40] for annihilating or coalescing Brownian motions. Discrete
analogues of CABM(θ ) are discussed in [21], together with the kernels for continuum limits,
but for deterministic initial conditions. We go through all the (analogous) steps when deriving
the kernel for the novel case of exit measures in Section 6.

Our interest here is to explore the gap probability asymptotics. For constant intensity
Poisson(λ) initial conditions, we may apply Theorem 1 to deduce for θ > 0 that, setting
pθ = (1 + θ)−1,

logP
[
Xt(0,L) = 0

] = −κ1(pθ )L + κ2(pθ ) + o(1) as L → ∞,

where κ1(p), κ2(p) are given in (13) and (14) using ρ̂(k) = λ2

λ2+k2 exp(−T k2). For the maxi-
mal entrance law, that is, where λ ↑ ∞, the underlying density ρ is Gaussian and the formulae
for κ1 and κ2 become more tractable, as shown in the upcoming corollary.

Note that, as θ ranges over (0,1] the value pθ ranges over [1/2,1). However, the kernel
pK for p ∈ (0, 1

2) also has a use for the study of massive coalescing particles; see Lemma 21.
Therefore, we now examine the behaviour of κi(p) for all p ∈ (0,1). Brownian scaling would
reduce the two parameters t , L in ρ to one, but we leave both parameters so we can align our
results with those in [11].

COROLLARY 7. Let K be a derived form kernel, in the translationally invariant form (9)
with ρ(x) = (4πt)−1/2 exp(−x2/4t). Then, for p ∈ [0,1),

log Pf[0,L](J − pK) = −κ1(p)L + κ2(p) + o(1) as L → ∞,
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where κ1(p) is given by

(32) κ1(p) = 1

4
√

πt
Li3/2

(
4p(1 − p)

)+ I(p > 1/2)
(−t−1 log 4p(1 − p)

)1/2

using the poly-logarithm function Lis(x) = ∑
n≥1 xn/ns , and κ2(p) is given by

log
(√

1 − 2p

1 − p

)
+ 1

4π

∞∑
n=2

(4p(1 − p))n

n

n−1∑
k=1

1√
k(n − k)

for p ∈
(

0,
1

2

)
,(33)

log 2 − 1

4
+ 1

4π

∞∑
n=2

1

n

(
n−1∑
k=1

1√
k(n − k)

− π

)
for p = 1/2,(34)

1

2
log

(
2p − 1

16(1 − p)2

)
+ 1

4π

∞∑
n=2

(4p(1 − p))n

n

n−1∑
k=1

1√
k(n − k)

(35)

− log
(− log

(
4p(1 − p)

))−
∞∑

n=1

1

n
erfc

(√−n log
(
4p(1 − p)

))
for p ∈

(
1

2
,1

)
.

The function κ1 is analytic, and the function κ2 is C1 for p ∈ (0,1).

PROOF. We use (13) to calculate κ1(p). We have ρ̂(k) = exp(−tk2) so that

Lρ(p,0) = 1

2π

∫
R

log
(
1 − 4p(1 − p)e−tk2)

dk = − 1√
4πt

Li3/2
(
4p(1 − p)

)
.

The factor φp = (−t−1 log(4p(1 −p)))1/2 and (32) follows from (13). For κ2(p), we use the
expressions in Theorem 1, where all the integrals can be evaluated using the explicit Gaussian
densities ρ∗n.

The regularity of κ1, κ2 is not immediately evident from these expressions, but follows
after some manipulation which we detail in the Section 7.2. �

REMARK 1. The formulae for κ2(p) are independent of t : (33) agrees with Derrida and
Zeitak [11] equation (50); (34) agrees with [11] equation (51); (35) agrees with [11] equation
(53). The formulae for κ1(p) depend on t ; with the choice t = p2/π , we find (32) agrees
with [11] equations (49) and (52). This choice of t is also consistent with space scaling used
in [11], as it makes the one-point density take the constant value 1.

REMARK 2. Figure 2 plots p → κ1(p), κ2(p) from Corollary 7 at t = 1
2 . As expected,

κ1(p) increases with p which corresponds to weaker thinning. Note that κ1(p) → ∞, as

p ↑ 1 (indeed κ1(p) = (−2 log(4(1 − p)))
1
2 + O(1 − p).) This is good sense, since at p = 1

we are studying coalescing Brownian motions where gap probability have Gaussian tails not
exponential tails. Indeed, gap probabilities for p = 1 can be read off from the Brownian web
in terms of a single pair of dual Brownian motions (see Section 2 of [40]). This simplic-
ity corresponds in the analytic approach to the fact that the Fredholm Pfaffian reduces (see
Proposition 10) to a 2 × 2 determinant.

3.3. Half-space initial conditions for coalescing/annihilating Brownian motions. Con-
sider the same system CABM(θ ) of reacting Brownian motions on R as in Section 3.2, but
with a a “maximal” entrance law on (−∞,0], defined as the limit of Poisson(μ) initial con-
ditions on (−∞,0] as μ → ∞. This example fits into the framework for Theorem 3. Indeed,
the positions of the particles at time t > 0 form a Pfaffian point process Xt with a kernel
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FIG. 2. Left pane: The leading coefficient p �→ κ1(p) for the Gaussian kernel from Corollary 7 in Section 3.2
at t = 1

2 . Right pane: The subleading coefficient p �→ κ2(p) for the same kernel (labelled “bulk”) and for the
nontranslationally invariant kernel discussed in Section 3.3 (labelled “edge”).

(1+θ)−1K in the derived form (8). Taking λ(z) = λ0I(z ≤ 0) in (29) and then letting λ0 ↑ ∞,
we find the underlying scalar kernel K(x,y) is given by

(36) K(x,y) =
∫ ∫

x′<y′
I
(
x′ ≤ 0

) ∣∣∣∣pt

(
x, x′) pt

(
x, y′)

pt

(
y, x′) pt

(
y, y′)

∣∣∣∣ dx′ dy′.

This scalar K(x,y) is in the nontranslationally invariant form (10) with ρ(x) = pt(x). Note
that ρ̃(z) = ∫

R
ρ(w)ρ(w − z) dw = p2t (z). Thus, as expected, the kernel for the half-space

initial condition converges to the kernel for the full space initial condition near −∞. We,
therefore, compare the answers given by Theorem 3 for the half-space maximal initial condi-
tion,

(37) logP
[
Xt(−L,∞) = 0

] = −κ
edge
1 (pθ )L + κ

edge
2 (pθ ) + o(1) as L → −∞,

with those for the full space maximal initial condition, given by Theorem 1 in Section 3.2,

(38) logP
[
Xt(−L,0) = 0

] = −κbulk
1 (pθ )L + κbulk

2 (pθ ) + o(1) as L → ∞
(using the random matrix terminology for analogous problems on random spectra). The ex-
pression for κ1 in Theorems 1 and 3 show, as expected, that κ

edge
1 (p) = κbulk

1 (p). The change
in the O(1) constant κ2 can be evaluated exactly for this Gaussian kernel, and we find

κ
edge
2 (p) = κbulk

2 (p) + 1

2
log(1 − p) for all p ∈ (0,1).

Thus, the regularity properties of κ1, κ2 for p ∈ (0,1) are unchanged when switching from the
bulk to edge case. Figure 2 plots κ

edge
2 (p) and κbulk

2 (p). According to Corollary 6, they are at
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least C1 functions on [0,1), which is consistent with the shape of the presented graphs. Near
p = 1, κbulk

2 (p) = − log(1 − p) − log(− log(1 − p)) + O((1 − p)0), κ
edge
2 (p) = −1

2 log(1 −
p) − log(− log(1 − p)) + O((1 − p)0), so each coefficient approaches +∞ as p → 1−.

REMARK 1. As already mentioned in the Introduction, the answers for κ1, κ2 for p ∈
[0,1/2) correspond to the thinning of the real Ginibre ensemble with the thinning parameter
γ = 2p investigated in [4]. Under this substitution the answer for the constant term, given in
Lemma 1.14 of the cited paper, coincides with the answers presented above.

REMARK 2. For half-space initial condition it is natural to write the results in terms of
the rightmost particle. Let Rt denote the position of the rightmost particle alive at time t ≥ 0
so that P[Rt ≤ −L] = P[Xt(−L,∞) = 0]. The limit, as L → ∞, involves events where there
are large numbers of annihilations by time t . The easier asymptotic probability P[Rt ≥ L],
as L → ∞, involves a particle moving a large distance by time t . Indeed, using I(X ≥ 1) =
X − (X − 1)+ and ρ1, it is straightforward to see that

logP[Rt ≥ L] = log
∫ ∞
L

ρ1(x) dx + o(1) as L → ∞.

3.4. Noncrossing probabilities for coalescing/annihilating Brownian motions. Here and
in Section 3.6, we study the problem by Derrida, Hakim and Pasquier [12], which arose
in their study of persistence for Potts models, as discussed in the Introduction. We again
consider the system CABM(θ ) of reacting Brownian motions on R as in Section 3.3, started
from the “maximal” entrance law on [0,∞). We denote the position of the leftmost particle
by (Lt : t ≥ 0). The noncrossing probability

P
[
Lt > −a,∀t ∈ [0, T ]]

turns out to be exactly given by a Fredholm Pfaffian. Indeed we believe the entire law of
(Lt : t ≥ 0) should be determined by Fredholm Pfaffians. This is explained and proved in
Section 3.6 where we show that the particles that reach the line x = −a form an exit measure
point process that is Pfaffian. Its kernel fits into the hypotheses for Theorem 3, and we will
deduce, for all a > 0 and θ ∈ [0,1], that

(39) logP
[
Lt > −a,∀t ∈ [0, T ]] = −1

2
κ1(pθ ) log

(
2T/a2)+ κ2(pθ ) + o(1),

as T/a2 → ∞ (again, Brownian scaling shows that this probability depends only on the
combination T/a2). Here, pθ = (1+θ)−1 and the coefficient κ1(p), κ2(p) are given below in
Corollary 8. Using an initial condition that is “maximal” entrance law on (−∞, a] ∪ [a,∞),
the probability that no particle crosses the origin is the square of the probability in (39), since
on this event the particles to the right and to the left of the origin evolve independently. This
confirms the result (3), described in the Introduction, that is closest to those in [12].

Corollary 8 below is a direct application of Theorem 3 to the nontranslationally invariant
kernel, based on ρ(x) = 2√

π
exp(x−e2x). Note that ρ̃(z) = ∫

R
ρ(w)ρ(w−z) dw = 1

π
sech(z)

so that the leading coefficient κ1(p) agrees with that in Corollary 6 for the sech kernel. It is,
at the moment, a coincidence that the sech kernel arises in this problem and also for Gaussian
power series. The corollary is proved in Section 3.6.

COROLLARY 8. Let K be a derived form kernel, in the nontranslationally invariant form
(10), based on the probability density ρ(x) = 2√

π
exp(x − e2x). Then, for p ∈ [0,1],

log Pf[−L,∞)(J − pK) = −κ1(p)L + κ2(p) + o(1) as L → ∞,
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where κ1(p) is given by

(40) κ1(p) = 2

π2

(
cos−1 |2p − 1|√

2

)2
− 1

8
+ 2

π
cos−1(4p(1 − p)

)
I(p > 1/2),

for p ∈ [0,1/2),

κ2(p) = 1

2
log

(
1 − 2p

1 − p

)
+ 1

2

∫ ∞
0

xL2
ρ(p, x) dx

+ 1

8π

∫ ∞
−∞

ψ(0)((1 + ik)/2
)

log
(
1 − 4p(1 − p) sech(kπ/2)

)
dk;

κ2(1/2) = 1

4
log

(
π2

8

)
− γ

2
− 1

8

∫ ∞
0

log(x)
((

tanh(x) + tanh(x/2)
)2)′

dx

+ 1

8π

∫ ∞
−∞

ψ(0)((1 + ik)/2
)

log
(
1 − sech(kπ/2)

)
dk,

and for p ∈ (1/2,1], using φp = 2
π

cos−1(4p(1 − p)),

κ2(p) = 1

2

∫ ∞
0

xL2
ρ(p, x) dx − log

(
cos−1(4p(1 − p)

))

− log
(√

(2p − 1)(1 + 4p − 4p2)

πp
�
(
(1 + φp)/2

))

+ 1

π

∫
R

1

1 + k2 log
(
1 − 4p(1 − p) sech(πφpk/2)

)
dk

+ 1

8π

∫ ∞
−∞

ψ(0)((1 + ik)/2
)

log
(
1 − 4p(1 − p) sech(kπ/2)

)
dk,

where Lρ(p, x) is given in (26) and ψ(0)(z) is the digamma function.

REMARK. Figure 1 plots p → κ1(p), κ2(p) from Corollary 8. When p = 1, the ex-
ponents correspond to coalescing Brownian motions and take the values κ1(1) = 1 and
κ2(1) = log(2/

√
π). giving, in (39) that

P
[
Lt > −a,∀t ∈ [0, T ]] =

√
2a2

πT

(
1 + o(1)

)
.

The leftmost particle is just a Brownian motion started at 0, and the result is then consistent
with the exact formula found from the reflection principle.

Figure 1 also allows a comparison between the coefficients κ
edge
2 from Corollary 8 with

κbulk
2 from Corollary 6 for the sech kernel. An exact computation shows that κbulk

2 (1) =
2 log(2/

√
π) = 2κ

edge
2 (1), a relation that requires an independent derivation.

3.5. Real eigenvalues for real Ginibre matrices. This example is treated in [16] using the
techniques that are generalised in this paper. Moreover, it coincides exactly with examples
discussed above by considering the purely annihilating case (θ = 1, pθ = 1

2 ) in Sections 3.2
and 3.3. However, we record the results here again, as examples of both Theorem 1 and
Theorem 3 that are of interest to the random matrix community.

A real Ginibre ensemble matrix MN has i.i.d. real Gaussian N(0,1) entries. Let XN be the
point process created by the positions of the real eigenvalues of MN . Then, XN converges
to a limit point process X on R as N → ∞. Also, the shifted point process X̃N( dx) =
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XN(N1/2 + dx) (i.e., shifted to the position of the the right-hand edge of the spectrum) also
converge to a limit X̃ on R as N → ∞. Then,

logP
[
X(0,L) = 0

] = − 1√
8π

ζ(3/2)L + κbulk
2 + o(1) as L → ∞,

and

logP
[
X̃(−L,∞) = 0

] = − 1√
8π

ζ(3/2)L + κ
edge
2 + o(1) as L → ∞,

where

κbulk
2 = log 2 + 1

4π

∞∑
n=1

(
−π +

n−1∑
m=1

1√
m(n − m)

)
= κ

edge
2 + 1

2
log 2.

The point is that the Pfaffian kernels for the bulk limit (respectively, the edge limit) for the
real eigenvalues in the real Ginibre ensemble coincide with those for annihilating Brownian
motions at time t = 1

2 started from the maximal initial condition (respectively, the half-space
maximal initial condition).

3.6. Exit measures for particle systems.

3.6.1. Exit kernels. To reach the applications above to persistence problems, we will
study exit measures for particle systems. We consider particle systems evolving in a region
D ⊆ R × [0,∞) where, whenever a particle hits the boundary ∂D, it is frozen at its exit
position and plays no further role in the evolution. This leads to a collection of frozen particles
on the boundary ∂D, which we call the exit measure. Such exit measures have been used
commonly in the study of branching systems, but they are also straightforward to construct for
our coalescing and annihilating systems (first for finite systems and then by approximation for
certain infinite systems, see the discussion in Section 6.2). We use only the special example
of the exit measure from a half-space.

THEOREM 9. Let Xe be the exit measure for the domain D = (0,∞) × [0,∞) for a
system CABM(θ ) of coalescing/annihilating particles, as described in example 3.2, started
from μ a (deterministic) locally finite simple point measure on (0,∞). Then, the exit measure
Xe on {0} × [0,∞) is a Pfaffian point process with kernel (1 + θ)−1K, where K is in the
derived form (10), given by, when s < t ,

(41) K
(
(0, s), (0, t)

) =
∫ ∫

0<y1<y2

(
(−θ)μ(y1,y2) − 1

) ∣∣∣∣∣p
R
s (0, y1) pR

t (0, y1)

pR
s (0, y2) pR

t (0, y2)

∣∣∣∣∣ dy1 dy2,

where pR
t (x, y) is the transition density for reflected Brownian motion on [0,∞). When the

initial condition is Poisson with a bounded intensity λ : (0,∞) → R, the exit measure Xe

remains a Pfaffian point process, as above, with

(42) K
(
(0, s), (0, t)

) =
∫ ∫

0<y1<y2

(
e− ∫ y2

y1 λ(x) dx − 1
) ∣∣∣∣∣p

R
s (0, y1) pR

t (0, y1)

pR
s (0, y2) pR

t (0, y2)

∣∣∣∣∣ dy1 dy2.

REMARK 1. Note that kernel (42) can be obtained by averaging the kernel (41) for deter-
ministic initial conditions, considering μ as Poisson. However, this is not true for all random
initial conditions, and the Pfaffian point process structure does not hold in general.
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FIG. 3. The exit measure can be transported by ballistic motion to the halfline (−∞, g(t)) × {t}.

REMARK 2. We believe that the Pfaffian property holds also for the exit measures
on more general regions D, and we explain this informally here. Consider the domain
D = {(x, s) : x > g(s), s ∈ [0, t]} for some continuous g ∈ C1([0, t],R). We now allow par-
ticles that hit ∂D to continue with constant negative drift μ. Choosing μ < −‖g′‖∞, the
particles can never reenter the region D. This yields a new reacting system on R × [0, t]
with spatially inhomogeneous motion, where particles to the left of the graph of g move
deterministically and never reenter D nor ever again collide (see Figure 3). For coalesc-
ing/annihilating spatially inhomogeneous systems on R, we believe the particles at a fixed
time t > 0 will form a Pfaffian point process (started from suitable initial conditions). In-
deed, in [21] a class of interacting particle systems on the lattice Z are shown to be Pfaffian
point processes at fixed times t ≥ 0. These include spatially inhomogeneous coalescing and
annihilating random walks where the right and left jump rates and the coalescence and anni-
hilation parameters may be site dependent. By a continuum approximation, one expects that
the analogous systems of continuous diffusions should retain the Pfaffian property. The point
process formed at time t by the particles alive on the half-line (−∞, g(t)] can be mapped (by
a deterministic bijection) onto the exit measure of the original system on ∂D, and so this exit
measure should itself be a Pfaffian point process. The gap probabilities for this exit measure
will coincide (see the discussion in the next section) with P[Ls > gs, s ≤ t], and by varying
the function, g will determine the law of the leftmost particle {Lt : t ≥ 0} for a process on R.

3.6.2. Noncrossing probability. In this section we prove Corollary 8. For specific choices
of initial condition, the underlying scalar kernels K((0, s), (0, t)) in Theorem 9 can be com-
puted more precisely. They become most tractable for the entrance laws constructed as the
limit of Poisson initial conditions with increasing intensities. The existence of these entrance
laws is discussed in Section 6.2. Starting with constant Poisson(λ) initial conditions on (0,∞)

and taking the limit as λ ↑ ∞, the CABM(θ ) starts according to a “maximal” entrance law.
The exit measure Xe remains Pfaffian with a kernel, as expected, that is the limit of the cor-
responding kernels for finite Poisson intensity (this can be checked by passing to the limit
in the duality identity (132)). Taking this limit in (42), we find the kernel for Xe under the
maximal entrance law on (0,∞) has underlying scalar kernel

K(∞)((0, s), (0, t)
) = −

∫ ∫
0<y1<y2

∣∣∣∣∣p
R
s (0, y1) pR

t (0, y1)

pR
s (0, y2) pR

t (0, y2)

∣∣∣∣∣ dy1 dy2

= −
∫ ∞

0

∫ ∞
0

sgn(y2 − y1)p
R
s (0, y1)p

R
t (0, y2) dy1 dy2 dy1 dy2

= − 2

π

∫ ∞
0

∫ ∞
0

sgn(
√

ty2 − √
sy1)e

−(y2
1+y2

2 )/2 dy1 dy2(43)

= − 2

π

∫ π/2

0
sgn(

√
t sin θ − √

s cos θ) dθ
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= 4

π
tan−1

√
s

t
− 1 for s < t,

where in the third equality we have used pR
t (0, y) = √

2/πt exp(−y2/2t) and in the fourth
polar coordinates. Under the map (0, t) → 1

2 log t , the exit measure Xe is pushed forward to
a translation invariant point process on R, and the kernel (43) is mapped to a translationally
invariant kernel in the form (9) with ρ(z) = π−1 sech(z). This is exactly the kernel for the
zeros of the Gaussian power series in example 3.1, showing that the zeros of the random
power series agree in law, after a change of variable, with the exit measure of annihilating
Brownian motions. The asymptotics for the probability Pr(Xe({0} × (s, t)) = 0) (as s ↓ 0
or t ↑ ∞) can be read off from Corollary 6. Note, however, that the exit measure Xe gives
infinite mass to any interval {0} × [0, δ) if δ > 0.

To study the persistence problem from Section 3.4, we choose a > 0 and start the process
from Poisson(λ0I(a,∞)), then let λ0 ↑ ∞, to obtain another entrance law Poisson(∞I(a,

∞)), that is, “maximal on (a,∞).” Then,

(44)
{
Xe

({0} × [0, T ]) = 0
} = {Lt > 0, for t ≤ T },

where Lt denotes the position of the leftmost particle at time t , and the probability of this
event agrees with the event (39) in Corollary 8 (by translating by a). The parameters a, T are
linked, and we choose a = √

2 and will restore the final answers by Brownian scaling

P[Lt > 0,∀t ≤ T ] under Poisson
(∞I(a,∞)

)
= P

[
Lt > 0,∀t ≤ 2T/a2] under Poisson

(∞I(
√

2,∞)
)
.

Choosing λ(x) = λ0I(x >
√

2) in (42) and letting λ0 ↑ ∞, we find the kernel under the
entrance law Poisson(∞I(a,∞)) is

K
(
(0, s), (0, t)

) = −
∫ ∫

0<y1<y2

I(y2 >
√

2)

∣∣∣∣∣p
R
s (0, y1) pR

t (0, y1)

pR
s (0, y2) pR

t (0, y2)

∣∣∣∣∣ dy1 dy2

=
∫ ∞
√

2

∫ y2

0

2

π
√

st

(
e− y2

2
2s

− y2
1

2t − e− y2
1

2s
− y2

2
2t
)
dy1 dy2

=
∫ 0

−∞

∫ −z2

−∞
4ez1−z2

π
√

st

(
e− e−2z2

s
− e2z1

t − e− e2z1
s

− e−2z2
t

)
dz1 dz2

using the substitutions y1 = √
2 exp(z1) and y2 = √

2 exp(−z2). Under the map (0, t) →
−1

2 log t , the exit measure Xe is pushed forward to a point process X̃ on R. The new kernel
for X̃ is K̃(x1, x2) = K((0, e−2x2), (0, e−2x1)) for x1 < x2, which becomes∫ 0

−∞

∫ −z2

0

4

π
ez1−z2+x1+x2

(
e−e−2(z2−x2)−e2(z1+x1) − e−e2(z1+x2)−e−2(z2−x1))

dz1 dz2

=
∫ 0

−∞

∣∣∣∣∣∣
∫ x1−z

−∞
ρ(w)dw

∫ x2−z

−∞
ρ(w)dw

ρ(x1 − z) ρ(x2 − z)

∣∣∣∣∣∣ dz,

for the probability kernel ρ(x) = 2√
π

exp(x − e2x). This is in the nontranslationally in-
variant form (10) so that we may apply Theorem 3 which gives, for the initial condition
Poisson(∞I(a,∞)),

(45)
logP[Lt > 0,∀t ≤ T ] = logP

[
X̃
(− log

(
2T/a2)/2,∞) = 0

]
= −κ1(pθ )

1

2
log

(
2T/a2)+ κ2(pθ ) + o(1),
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as T → ∞, where pθ = (1 + θ)−1 and κ(p), κ2(p) are given by Theorem 3 using the density
ρ(x). To evaluate κ(p), κ2(p), we first calculate ρ̃(z) = ∫

R
ρ(w)ρ(w − z) dw = 1

π
sech(z).

This shows that the leading order asymptotics, that is, κ1(p), will coincide with those for
the translationally invariant sech kernel in Corollary 6. This immediately gives the value
of κ1(p) in (40) (we need to consider only p ∈ [1/2,1] since this is the range of pθ for
θ ∈ [0,1]). The terms in the formulae for κ2(p) in Theorem 3 that involve ρ̃ have been
rewritten using Fourier transforms in (14). We continue this with the terms that involve ρ, so
we will use ρ̂(k) = 1√

π
�((1 + ik)/2). Expressing ρ∗n via the Fourier inversion formula and

then performing the integral in x, we find

1

2

∞∑
n=1

(4p(1 − p))n

n2

∫ ∞
−∞

x
(
ρ∗n(x)

)2
dx

= − 1

4πi

∞∑
n=1

(4p(1 − p))n

n2

∫ ∞
−∞

n
(
ρ̂(k)

)n−1
ρ̂′(k)

(
ρ̂(−k)

)n
dk

= 1

4πi

∫ ∞
−∞

ρ̂′(k)

ρ̂(k)
log

(
1 − 4p(1 − p) sech(kπ/2)

)
dk

= 1

8π

∫ ∞
−∞

ψ(0)((1 + ik)/2
)

log
(
1 − 4p(1 − p) sech(kπ/2)

)
dk,

using ρ̂(k)ρ̂(−k) = ˆ̃ρ(k) = sech(kπ/2) and

ρ̂′(k)

ρ̂(k)
= i

2

�′((1 + ik)/2)

�((1 + ik)/2)
= i

2
ψ(0)((1 + ik)/2

)
,

where ψ(0)(z) is the digamma function. Finally,∫
R

eφpxρ(x) dx = ρ̂(−iφp) = 1√
π

�
(
(1 + φp)/2

)

which completes all the terms contributing to κ2(p) for p > 1
2 .

4. The proof of Theorem 1. In this section we will derive the asymptotic expressions
for Fredholm Pfaffians stated in the translationally invariant case. The proofs consists of the
following steps: (i) represent the square of the Fredholm Pfaffian at hand as a product of a
Fredholm determinant and a finite dimensional determinant; (ii) interpret each factor as an
expectation of a function of a random walk with the transition density determined by the
Pfaffian kernel; (iii) calculate each expectation using general theory of random walks.

4.1. Operator manipulation. The first step is a calculation that was used by Tracy and
Widom [39] in their analysis of the Pfaffian kernels for GOE and GSE. It exploits the special
derived form (8) of the Pfaffian kernel.

PROPOSITION 10. Let K be a kernel in the derived form (8), based on kernel K ∈
C2[a, b], for a finite interval [a, b]. We suppose that the operator I + 2p(1 − p)D2K on
L2[a, b] has an inverse R = (I + 2p(1 − p)D2K)−1 for which R − I itself has a C1 kernel.
Then,

(46)
(
Pf[a,b](J − pK)

)2 = Det[a,b]
(
I + 2p(1 − p)D2K

)
deta,b

2 (K),
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where deta,b
2 (K) is the 2 × 2 determinant det

(
1+k(1)(a) k(1)(b)

k(2)(a) 1+k(2)(b)

)
with entries given in terms

of the functions

(47)
k(1) = (

p − p2)RK(·, a) + p2RK(·, b),

k(2) = (
p2 − p

)
RK(·, b) − p2RK(·, a).

This proposition does two things. It represents the square of the Pfaffian in terms of deter-
minants. However, the main point is to exploit the derived form as follows. In the finite Pfaf-
fians that define a Fredholm Pfaffian, there are integrals over [a, b] of products of K , D1K ,
D2K , D12K . Each occurrence of a term K(xi, xj ) can be paired with a term D12K(xj , xk),
and then integration by parts yields terms that only involve D1K or D2K . Moreover, D1K

and D2K are related by the symmetry conditions. Repeated integration by parts leaves an
expression that is mostly expressible only in terms of D2K . This is all best done at the op-
erator level. Since this is a key starting point for this paper (as it was also for the study for
the specific case of the real Ginibre ensemble in [34] and [16]) and since we will also need a
modification when we treat the nontranslationally invariant case, we include a proof.

PROOF. The proof exploits results on determinants for trace class operators. We may
consider a kernel (K(x, y) : x, y ∈ [a, b]) as an operator on L2[a, b] via the map K(f ) =∫ b
a K(x, y)f (y) dy (we need only finite intervals). The references [23, 28] contain most of

the results that we need, in particular, that the Fredholm determinant Det[a,b](I + K) agrees
with the trace class determinant DetL2[a,b](I + K) whenever K : L2[a, b] → L2[a, b] is a
trace class operator and that K will be trace class if it is sufficiently smooth.

We need to consider operators A ∈ L(H1,H2) between two different Hilbert spaces. In
particular, an operator A ∈ L(H1,H2) is called trace class if it satisfies ‖A‖tr := ∑

n sn < ∞,
where (sn) are the singular values of A, that is, the eigenvalues of

√
A∗A : H1 → H1. For

A ∈ L(H1,H2) and B ∈ L(H2,H1) with operator norms ‖A‖, ‖B‖, we have

‖AB‖tr ≤ ‖A‖‖B‖tr and ‖AB‖tr ≤ ‖A‖tr‖B‖.
Thus if one of the operators A or B is trace class then the compositions AB and BA are trace
class. Moreover the Sylvester identity

(48) DetH2(1 + AB) = DetH1(1 + BA)

(see [23] Chapter 4 for the case H1 = H2 where A, B are both trace class) also holds in the
case where A is bounded and B is trace class, a result which can, as in [23], be checked by
approximating by finite rank operators.

The finite interval [a, b] is fixed throughout this proof. We first suppose that K is smooth.
The discontinuity S(x, y) in our kernels means that the entries in K, as in (8), are not trace
class operators and, as in Tracy and Widom [39], we first make a smooth approximation.
We may choose smooth antisymmetric approximations S(ε)(x, y) that converge pointwise,
as ε → 0 to S(x, y), and are uniformly bounded by 1. Then Kε , defined as in (8) with S, is
replaced by S(ε), can be considered a trace class operator on (L2[a,b])2 → (L2[a,b])2 (and we
do this without changing the notation).

For finite dimensional matrices we have (Pf(J −K))2 = det(J −K) = det(I +JK), where

J is block diagonal matrix made from blocks (
0 1

−1 0
) (so that J 2 = −I and det(J ) = 1).

The analogue for us is the relation

(49)
(
Pf[a,b]

(
J − pK(ε)))2 = Det(L2[a,b])2

(
I + pJK(ε))
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where the left-hand side is the Fredholm Pfaffian given by the infinite series (7) and the right-
hand side is the trace class determinant on (L2[a, b])2 and J is the bounded operator defined
by J(f, g) = (g,−f ). To derive the identity (49), it is natural to argue by finite rank approxi-
mations. Indeed, K can be approximated by a polynomial KN(x, y) = ∑

n,m≤N cn,mxnym so
that KN converges both uniformly over [a, b]2 and also in trace norm as operators. For the
operator KN the identity reduces to the finite dimensional result.

Tracy and Widom then exploit block manipulations in the operator determinant. Write, in
block operator notation,

JK(ε) =
(

0 I

−I 0

)(
S(ε) + K −D2K

−D1K D12K

)

=
( −D1K D12K

−S(ε) − K D2K

)

=
(

0 ∂

−I I

)(
S(ε) 0
−K D2K

)
,

where ∂ : H 1[a,b] → L2[a,b] is the derivative operator ∂(f ) = Df . This expresses JK(ε) as

the composition of two operators AB where A : (H 1[a,b])2 → (L2[a,b])2 and B : (L2[a,b])2 →
(H 1[a,b])2. Moreover, A is bounded, and B is trace class, again by the smoothness of the
kernels; hence, the compositions AB and BA are trace class. Now, we apply the Sylvester
identity (48) to find

Det(L2[a,b])2

(
I + pJK(ε)) = Det(H 1[a,b])2(I + pBA)

= Det(H 1[a,b])2

((
I 0
0 I

)
+ p

(
0 S(ε)∂

−D2K −K∂ + D2K

))
(50)

= DetH 1[a,b]
(
I − pK∂ + pD2K + p2D2KS(ε)∂

)
,

where the last step uses a simple manipulation for determinants of block operators.
Now, we let ε → 0. On the left-hand side of (49) the absolute convergence of the series for

the Fredholm Pfaffian allows us to check that Pf[a,b](J − pK(ε)) → Pf[a,b](J − pK). On the
right-hand side of (50), we rewrite various terms. We have

K∂(f )(x) =
∫ b

a
K(x, y)f ′(y) dy

= K(x,b)f (b) − K(x, a)f (a) +
∫ b

a
D2K(x,y)f (y) dy

so that K∂ = −D2K + K(·, b) ⊗ δb − K(·, a) ⊗ δa , as an operator mapping H 1[a,b] → L2[a,b],
where a tensor operator h ⊗ δa , for h ∈ L2, acts via h ⊗ δa(f ) = f (a)h. Similarly, again
using integration by parts, S∂ = 1 ⊗ (δa + δb) − 2I . Then,

∥∥S(ε)∂f + 2f − (
f (a) + f (b)

)∥∥2
L2 =

∥∥∥∥
∫ b

a

(
S(ε)(·, y) − S(·, y)

)
f ′(y) dy

∥∥∥∥2

L2

≤ ‖f ‖2
H 1

∫ b

a

∫ b

a

(
S(ε)(x, y) − S(x, y)

)2
dx dy

showing the convergence S(ε)∂ → 1 ⊗ (δa + δb)− 2I in operator norm from H 1[a,b] → L2[a,b].
Hence, the composition D2KS(ε)∂ converges in trace norm from H 1[a,b] → L2[a,b]. Using
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the continuity of the determinant with respect to the trace norm, the right-hand side of (50)
converges, and we reach

(51)
(
Pf[a,b](J − pK)

)2 = DetH 1[a,b]
(
I + 2p(1 − p)D2K + F

)
,

where F : H 1[a,b] → H 1[a,b] is the finite rank operator

(52)
F = pK(·, a) ⊗ δa − pK(·, b) ⊗ δb + p2D2K(1) ⊗ (δa + δb)

= ((
p − p2)K(·, a) + p2K(·, b)

)⊗ δa + ((
p2 − p

)
K(·, b) − p2K(·, a)

)⊗ δb

(using D2K(1)(x) = ∫ b
a D2K(x, z) dz = K(x, b) − K(x, a)). The assumption on the resol-

vent R = (I + 2p(1 − p)D2K)−1 now allows us to split this as the product

DetH 1[a,b]
(
I + 2p(1 − p)D2K + F

) = DetH 1[a,b]
(
I + 2p(1 − p)D2K

)
DetH 1[a,b]

(I + RF)

= Det[a,b]
(
I + 2p(1 − p)D2K

)
deta,b

2 (K),

where the finite rank determinant DetH 1[a,b]
(I + RF) is evaluated as a 2 × 2 determinant

deta,b
2 (K) by examining the operator RF on its two-dimensional range.
Finally, if K is only C2, we approximate by smooth anti-symmetric kernels Kε so that the

first two derivatives converge uniformly. If I + 2p(1 − p)D2K is invertible and I − R has a
C1 kernel, then the same is true for Kε for small ε, and one may conclude by passing to the
limit in the conclusion (46) for Kε . �

4.2. Probabilistic representation. Throughout this section we suppose a kernel K is in
derived form and has the special translationally invariant form (9), based on a probability
density ρ. We aim to apply Proposition 10 to the kernel K on an interval [a, b].
Notation. In this subsection only, we write T for the convolution operator on L∞(R) with
kernel ρ(y − x), and we write Ta,b for the convolution operator restricted to L2[a, b], that is
Ta,b(f )(x) = ∫ b

a ρ(y − x)f (y) dy.
Note, from (9), that

I + 2p(1 − p)D2K = I − βpT , where βp := 4p(1 − p).

We first check the resolvent hypothesis for Proposition 10. Since ρ is a probability density,
we have γ0 := supx∈[a,b]

∫
[a,b] ρ(y − x)dy ≤ 1, and when βp < 1 (that is when p = 1

2 ) or
when γ0 < 1, the series ∣∣∣∣∣

∞∑
n=1

βn
pT n

a,b(x, y)

∣∣∣∣∣ ≤
∞∑

n=1

βn
pγ n−1

0 ‖ρ‖∞

is uniformly convergent, and hence the operator I − βpTa,b has the inverse R = I +∑∞
k=1 βk

pT k
a,b. Similarly, since ρ ∈ C1, the series for the first derivatives of (R − I )(x, y)

also converge uniformly implying that R − I has a C1 kernel. In the case p = 1
2 , we may

choose n0 ≥ 1 so that

(53) γ1 := sup
x∈[a,b]

∫
[a,b]

T
n0
a,b(x, y) dy < 1.

Repeating the arguments above for
∑∞

k=1 T
kn0
a,b , we see that R = I + (I + Ta,b + · · · +

T
n0−1
a,b )

∑∞
k=1 T

kn0
a,b so that we may apply Proposition 10.
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Notation. Let S = (Sn : n ≥ 0) be a random walk, with increments distributed according to
the law with density ρ(x) dx, and started at x ∈ R under the probability Px .

We write Mn for the running maximum Mn = max1≤k≤n Sk .
We write τA = inf{n ≥ 1 : Sn ∈ A} for the positive hitting time of A ⊆R.
We write τa− as shorthand for τ(−∞,a] and τa+ as shorthand for τ[a,∞).
We will now rewrite the Fredholm determinant and small determinant deta,b

2 (K) from
Proposition 10 as expectations for this random walk. First, we follow Kac’s probabilistic
representation for the Fredholm determinant from [24] (where the result is established for
small β only).

LEMMA 11. For all β ∈ [0,1]
(54) log Det[a,b](I − βT ) = −Ea

[
βτa−δa(Sτa−)(b − Mτa−)+

]
,

where (z)+ = max(z,0) and δa stands for the Dirac delta function concentrated at a.

PROOF. The trace-log formula (sometimes called the Plemelj–Smithies formula)

(55)

log Det[a,b](I − βT )

= −
∞∑

n=1

βn

n
Tr
(
T n

a,b

)

= −
∞∑

n=1

βn

n

∫
[a,b]n

ρ(x2 − x1) . . . ρ(xn − xn−1)ρ(x1 − xn) dx1 . . . dxn

always holds for |β| > 0 small (see [23] Theorem 3.1). Also, the Fredholm determinant
Det[a,b](I − βT ) is a real-analytic function of β ∈ R. We now show the trace-log expan-
sion is also real-analytic for β ∈ [0,1] by estimating the growth of the traces. Indeed, the
estimate (53) implies that |Tr(T kn0+j

a,b )| ≤ (b − a)j‖ρ‖j∞γ k
1 , implying the series is analytic

for |β| < γ −1
1 , so that we may apply (55) for all β ∈ [0,1].

The derivative below has n equal contributions,

d

da
Tr
(
T n

a,b

) = −n

∫
[a,b]n−1

ρ(x2 − a) . . . ρ(xn − xn−1)ρ(a − xn) dx2 . . . dxn

= −nEa

[
δa(Sn); τb+ > τa− = n

]
.

Subsitituting this into (55), we find

d

da
log Det[a,b](I − βT ) = Ea

[
βτa−δa(Sτa−); τb+ > τa−

]
= Ea

[
βτa−δa(Sτa−);Mτa− < b

]
.

Integrating this equality over [a, b] gives

log Det[a,b](I − βT ) = −
∫ b

a

d

dc
log Det[c,b](I − βT )dc

= −Ea

[
βτa−δa(Sτa−)(b − Mτa−)+

]
. �

LEMMA 12. When K has the translationally invariant form (9), based on a (symmetric)
probability density ρ, the factor deta,b

2 (K) from Proposition 10 has the following probabilistic
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representation, recalling βp = 4p(1 − p); when p = 1
2or1,

deta,b
2 (K) =

(
1 + 2p

2p − 1
Ea

[
β

τ(a,b)c−1
p − 1

])

×
(

1 + 1

2(1 − p)

(
Ea

[
β

τb+
p ; τb+ < τa−

]−Ea

[
βτa−

p ; τa− < τb+
]))

.

Also, deta,b
2 (K) = 2Pa[τb+ < τa−], when p = 1

2 , and deta,b
2 (K) = 4Pa[τb+ = 1]2 when

p = 1.

PROOF. We rewrite the functions k(1), k(2) that define deta,b
2 (K) in terms of the kernel

T (x, y) = φ(y − x). Using the form (9) and the symmetry of ρ,

K(x, a) = −2
∫ a−x

0
ρ(z) dz

=
∫ ∞
a

ρ(z − x)dz −
∫ a

−∞
ρ(z − x)dz

= T I(a,b)(x) + T I[b,∞)(x) − T I(−∞,a](x).

Similarly, K(x, b) = −T I(−∞,a](x) − T I(a,b)(x) + T I[b,∞)(x). Also, for n ≥ 0,

T n
a,bT I(−∞,a](x) = Px[τ(a,b)c = n + 1, Sn+1 < a]

so that, using R = ∑∞
n=0 βn

pT n
a,b,

RT I(−∞,a](x) = Ex

[
β

τ(a,b)c−1
p ;S(a,b)c < a

] = Ex

[
βτa−−1

p ; τa− < τb+
]
.

Similarly, RT I[b,∞)(x) = Ex[βτb+−1
p ; τb+ < τa−]. Also, T n

a,bT I[a,b](x) = Px[τ(a,b)c ≥ n+2]
so that

RT I[a,b](x) = 1

βp − 1
Ex[βτ(a,b)c−1

p − 1] when p = 1

2
.

The symmetry of ρ allows us to rewrite

Eb

[
βτa−

p ; τa− < τb+
] = Ea

[
β

τb+
p ; τb+ < τa−

]
,

Eb

[
β

τb+
p ; τb+ < τa−

] = Ea

[
βτa−

p ; τa− < τb+
]
,

as well as Ea[βτ(a,b)c

p ] = Eb[βτ(a,b)c

p ]. The lemma follows, after some manipulation, by sub-
stituting the above representations into the expressions given in Proposition 10 for k(1), k(2)

and then deta,b
2 (K). �

4.3. Asymptotics. We will derive the asymptotics in Theorem 1. These rely on some clas-
sical results about general random walks, which we recall here. We include some derivations
since we will need slight variants in Section 5 for the nontranslationally invariant results. The
identities below hold for walks whose steps have a density ρ; we state explicitly when, in
addition, they require symmetry and/or continuity of ρ.

4.3.1. Random walk results.

Overshoots. Many of the classical results we need follow from the fact that, when the walk
starts from the origin, the joint law of (τ0+, Sτ0+) can be calculated in terms of the step
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distribution. Indeed, supposing only that the step distribution has a density ρ,

(56) 1 −E0
[
βτ0+e

ikSτ0+
] = exp

(
−

∞∑
n=1

βn

n

∫ ∞
0

eikxρ∗n(x) dx

)
for k ∈ R, 0 ≤ β < 1

(see Lemma 1 of XVIII.3 from Feller [15]).
We use various consequences of this joint law. Choosing k = 0 and letting β ↑ 1 yields the

entrance probability

(57) P0[τ0+ = ∞] = exp

(
−

∞∑
n=1

1

n
P0[Sn > 0]

)
.

When ρ is in addition symmetric, one has Sparre Andersen’s formula (Theorem 1 in Section
XII.7 of [15]),

(58) E0
[
βτ0+] = 1 −

√
1 − β for β ∈ [0,1].

When E0[S1] > 0 and E0[S2
1 ] < ∞, one has

(59) E0[Sτ0+] = E0[S1] exp

( ∞∑
n=1

1

n
P0[Sn < 0]

)
= E0[S1]/P0[τ0− = ∞].

When ρ is symmetric, this is replaced by Spitzer’s formula (Theorem 1 in Section XVIII.5 of
[15]): if σ 2 = E0[S2

1 ] < ∞, then

(60) E0[Sτ0+] = σ√
2
.

We give a derivation of (59) since we do not find it in [15]. We can rewrite (56) as

1 −E0
[
βτ0+e

ikSτ0+
] = exp

(
−

∞∑
n=1

βn

n

∫ ∞
−∞

eikxρ∗n(x) dx +
∞∑

n=1

βn

n

∫ 0

−∞
eikxρ∗n(x) dx

)

= (
1 − βE0

[
eikS1

])
exp

( ∞∑
n=1

βn

n

∫ 0

−∞
eikxρ∗n(x) dx

)
.

Differentiating in k and then setting k = 0 yields

E0
[
βτ0+Sτ0+

] = exp

( ∞∑
n=1

βn

n
P0[Sn < 0]

)(
βE0[S1] − (1 − β)

∞∑
n=1

βn

n

∫ 0

−∞
xρ∗n(x) dx

)
.

The positive mean E0[S1] > 0 and finite variance imply that 1
n

∫ 0
−∞ xρ∗n(x) dx → 0, and

letting β ↑ 1 leads to (59).

Cyclic symmetry. We use several formulae whose proofs exploit cyclic symmetry of the
increments of the walk. For these, we suppose ρ is both symmetric and continuous. The first
(which can also be derived from (56)) is

(61) E0
[
δ0(Sn); τ0+ = n

] = 1

n
E0

[
δ0(Sn)

]
.

We give a direct proof using cyclic symmetry since we apply this technique on other similar
identities. Let (X0, . . . ,Xn−1) be the first n increments of the walk, that is, Sk = ∑k

j=1 Xj−1.

Let S(p), for p = 0,1, . . . , n − 1, be the n-step random walk constructed from the same
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increments (X0, . . . ,Xn−1) but with a cyclical permutation of the increments: that is, S
(p)
0 =

0, and

S
(p)
k =

k∑
j=1

Xp⊕(j−1) for 1 ≤ k ≤ n,

where p ⊕ (j − 1) is addition modulo n. Note that (S
(0)
k ) coincides with the original walk

(Sk). Moreover, S
(p)
n = Sn is independent of p. Furthermore,

(62) S
(p)
k = Sp⊕k − Sp for all k, p whenever Sn = 0.

Let τ
(p)
0+ = inf{k ≥ 1 : S(p)

k > 0}. The law of each of the (S
(p)
k )0≤k≤n is identical so that

E0
[
I(τ0+ = n)δ0(Sn)

] = 1

n

n−1∑
p=0

E0
[
I
(
τ

(p)
0+ = n

)
δ0
(
S(p)

n

)]

= 1

n

n−1∑
p=0

E0
[
I
(
τ

(p)
0+ = n

)
δ0
(
S(0)

n

)]
.

The proof of (61) is completed by noting that the sum
∑n−1

p=0 I(τ
(p)
0+ = n) = 1 almost surely;

this follows from (62) because {τ (p)
0+ = n} holds if and only if the index p is chosen such that

Sp is the global maximum of the random walk (S0, S1, . . . , Sn−1) (this global maximum is
almost surely unique since the increments have a continuous density).

Recall that Mn := max{Sk : 1 ≤ k ≤ n}. A lemma from [24] (or see the short proof, also
based on cyclic symmetry, in the Appendix of [16]) states that, for all n,

(63) E0
[
Mnδ0(Sn)

] = Kacρ(n) := n

2

∫ ∞
0

x

n−1∑
k=1

ρ∗k(x)ρ∗(n−k)(x)

k(n − k)
dx,

where the right-hand side is taken as zero for n = 0 or n = 1. We call this Kac’s formula,
as it was originally derived in Kac’s work on Fredholm determinants and it enters all our
asymptotics.

One final consequence of cyclic symmetry: let mn := min{Sk : 1 ≤ k ≤ n}, then

(64) E0
[
min{L,Mn}δ0(Sn); τ0− = n

] = 1

n
E0

[
min{L,Mn − mn}δ0(Sn)

]
,

and therefore, letting L ↑ ∞ and using the symmetry of ρ,

(65) E0
[
Mnδ0(Sn); τ0− = n

] = 2

n
E0

[
Mnδ0(Sn)

]
.

To prove (64), note that

E0
[
min{L,Mn}δ0(Sn)I(τ0− = n)

]
= E0

[
min{L,Mn − mn}δ0(Sn)I(τ0− = n)

]

= 1

n

n−1∑
p=0

E0
[
min

{
L,M(p)

n − m(p)
n

}
I
(
τ

(p)
0− = n

)
δ0(Sn)

]
When Sn = 0, then, using (62),

M(p)
n − m(p)

n = max
1≤k≤n

(Sp⊕k − Sp) − min
1≤k≤n

(Sp⊕k − Sp) = Mn − mn

is constant in p and, as above, that there is exactly one value of p with {τ (p)
0− = n}, establishing

(64).
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4.3.2. Asymptotics for p ∈ (0, 1
2). Combining Proposition 10 and Lemmas 11 and 12 for

the interval [0,L], we have the probabilistic representation (recall βp = 4p(1 − p))

2 log Pf[0,L](J − pK)

= log Det[0,L]
(
I + 2p(1 − p)D2K

)+ log det0,L
2 (K)

= −E0
[
β

τ0−
p δ0(Sτ0−)(L − Mτ0−)+

]
(66)

+ log
(

1 + 2p

2p − 1
E0

[
β

τ(0,L)c−1
p − 1

])

+ log
(

1 + 1

2(1 − p)

(
E0

[
β

τL+
p ; τL+ < τ0−

]−E0
[
β

τ0−
p ; τ0− < τL+

]))
.

We split the first term in (66), using the identity (L − M)+ = L − min{L,M}, as follows:

E0
[
β

τ0−
p δ0(Sτ0−)(L − Mτ0−)+

]
= LE0

[
β

τ0−
p δ0(Sτ0−)

]−E0
[
β

τ0−
p δ0(Sτ0−)min{L,Mτ0−}](67)

= LE0
[
β

τ0−
p δ0(Sτ0−)

]−E0
[
β

τ0−
p δ0(Sτ0−)Mτ0−

]+ o(1),

as L → ∞, where the o(1) asymptotic follows by monotone convergence, provided that
E0[βτ0−

p δ0(Sτ0−)Mτ0−] is finite, which follows from the explicit finite formula below.
For the second and third terms in (66), we use Sparre Andersen’s formula (58) to see that

E0[βτ0−
p ] = 1 −

√
1 − βp = 2p when p < 1

2 . Thus, we can write

E0
[
β

τ0−
p ; τ0− < τL+

] = E0
[
β

τ0−
p

]+ o(1) = 2p + o(1).

Similarly, E0[βτL+
p ; τL+ < τ0−] = o(1) and E0[βτ(0,L)c

p ] = E0[βτ0−
p ] + o(1).

Substituting in all these asymptotics into (66), we reach

(68)

2 log Pf[0,L](J − pK)

= −LE0
[
β

τ0−
p δ0(Sτ0−)

]+E0
[
β

τ0−
p δ0(Sτ0−)Mτ0−

]+ log
(

1 − 2p

(1 − p)2

)
+ o(1)

which gives a probabilistic formula for the constants κ1(p), κ2(p) when p < 1
2 . Also,

(69) E0
[
β

τ0−
p δ0(Sτ0−)

] =
∞∑

n=1

βn
pE0

[
δ0(Sn); τ0 = n

] =
∞∑

n=1

βn
p

n
ρ∗n(0)

using the cyclic symmetry formula (61). This gives the form for κ1(p) stated in Theorem 1.
For κ2(p) we use the cyclic symmetry (65) and then Kac’s formula (63) as follows:

(70)

E0
[
β

τ0−
p Mτ0−δ0(Sτ0−)

] =
∞∑

n=1

βn
pE0

[
Mnδ0(Sn); τ0− = n

]

=
∞∑

n=1

2βn
p

n
E0

[
Mnδ0(Sn)

]

=
∞∑

n=1

βn
p

∫ ∞
0

x

n−1∑
k=1

ρ∗k(x)ρ∗(n−k)(x)

k(n − k)
dx

=
∫ ∞

0
x

( ∞∑
n=1

βn
pρ∗n(x)

n

)2

dx.
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This gives the form for κ2(p) stated in Theorem 1. The expression is finite, since we as-
sumed ρ was bounded, so that we may bound supn ‖ρ∗n‖∞ ≤ ‖ρ‖∞ < ∞ and that ρ has first
moment so that

∫∞
0 xρ∗n(x) dx ≤ Cn for all n.

4.3.3. Asymptotics for p ∈ (1
2 ,1). The identity (66) holds for p ∈ (1

2 ,1), and the asymp-
totic for the Fredholm determinant (67) still holds. The asymptotic for the small determinant
det0,L

2 (K) is more complicated and contributes to the leading term O(L). We use Sparre

Andersen’s formula (58) to see that E0[βτ0−
p ] = 1 −

√
1 − βp = 2(1 − p) when p > 1

2 . This
allows us to rewrite the final two terms in (66), using

1 + 1

2(1 − p)

(
E0

[
β

τL+
p ; τL+ < τ0−

]−E0
[
β

τ0−
p ; τ0− < τL+

])

= 1 + 1

2(1 − p)

(
E0

[
β

τL+
p ; τL+ < τ0−

]−E0
[
β

τ0−
p

]+E0
[
β

τ0−
p ; τL+ < τ0−

])
(71)

= 1

2(1 − p)

(
E0

[
β

τL+
p ; τL+ < τ0−

]+E0
[
β

τ0−
p ; τL+ < τ0−

])
,

and

1 + 2p

2p − 1
Ea

[
β

τ(0,L)c−1
p − 1

]

= 2p

(2p − 1)βp

(
E0

[
β

τL+
p ; τL+ < τ0−

]+E0
[
β

τ0−
p

]−E0
[
β

τ0−
p ; τL+ < τ0−

])− 1

2p − 1
(72)

= 1

2(2p − 1)(1 − p)

(
E0

[
β

τL+
p ; τL+ < τ0−

]−E0
[
β

τ0−
p ; τL+ < τ0−

])
.

Note that

0 ≤ E0
[
β

τ0−
p ; τL+ < τ0−

] = E0
[
β

τL+
p ESτL

[
β

τ0−
p

]; τL+ < τ0−
]

≤ E0
[
β

τL+
p ; τL+ < τ0−

]
sup
x≥L

Ex

[
β

τ0−
p

]
(73)

= E0
[
β

τL+
p ; τL+ < τ0−

]
sup
x≤0

Ex

[
β

τL+
p

]
.

An exact calculation shows that Px[τL+ = k] → 0 as L → ∞ uniformly over x ≤ 0. This
implies that supx≤0 Ex[βτL+

p ] → 0 and hence that we need the asymptotics only for one part
of the terms (71) and (72). Using this, (66) can be rewritten as

2 log Pf[0,L](J − pK)

= −E0
[
β

τ0−
p δ0(Sτ0−)(L − Mτ0−)+

]
(74)

+ 2 logE0
[
β

τL+
p ; τL+ < τ0−

]− log
(
4(2p − 1)(1 − p)2)+ o(1).

It remains only to find the asymptotics of E0[βτL+
p ; τL+ < τ0−] which are as follows.

LEMMA 13. Suppose there exists φp > 0 so that βp

∫
eφpxρ(x) dx = 1 and that∫ |x|eφpxρ(x) dx < ∞. Let P(p)

x , E(p)
x be the tilted probability and expectation, where the

random walk (Sn) has i.i.d. increments under the tilted density ρ(p)(x) = βp exp(φpx) ×
ρ(x) dx. Then,

(75) lim
L→∞ eφpL

E0
[
β

τL+
p ; τL+ < τ0−

] =
√

1 − βp

φpE
(p)
0 [S1]

(
P

(p)
0 [τ0− = ∞])2

.
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Before the proof we confirm that we have completed part (iii) of Theorem 1. The lemma,
combined with (67) and (74), gives

2 log Pf[0,L](J − pK)

= −LE0
[
β

τ0−
p δ0(Sτ0−)

]− 2φpL +E0
[
β

τ0−
p δ0(Sτ0−)Mτ0−

]
(76)

− log
(
4(2p − 1)(1 − p)2)+ 2 log

( √
1 − βp

φpE
(p)
0 [S1]

(
P

(p)
0 [τ0− = ∞])2

)
+ o(1)

which gives the probabilistic representation of κ1(p), κ2(p) when p ∈ (1
2 ,1). The expres-

sions in the statement of Theorem 1 emerge after using (69), (70) and the exact formula for
P

(p)
0 [τ0− = ∞] given in (57).

PROOF OF LEMMA 13. The process Xn = βn
p exp(φpSn) is a martingale under P0

and dP
(p)
0 /dP0 = Xn on Fn = σ(S1, . . . , Sn). Since P0[τL+ < ∞] = 1, this extends to

dP
(p)
0 /dP0 = XτL+ on FτL+ . Hence,

E
(p)
0

[
e
−φpSτL+ ; τL+ < τ0−

] = E0
[
e−φpSτL+XτL+; τL+ < τ0−

]
= E0

[
β

τL+
p ; τL+ < τ0−

]
so that

(77) eφpL
E0

[
β

τL+
p ; τL+ < τ0−

] = E
(p)
0

[
e
−φp(SτL+−L); τL+ < τ0−

]
.

By conditioning on the value of Sτ0+ , we see that V (L) = E
(p)
0 [exp(−φp(SτL+ − L))], an

exponential moment of the overlap at L, satisfies the renewal equation

V (L) =
∫ L

0
V (L − z)G(dz) + h(L), for h(x) =

∫ ∞
x

e−φp(z−x)G(dz),

where G(dz) is the law of the variable Sτ0+ on [0,∞) under P(p)
0 . By the renewal theorem

(see [14] Theorem 2.6.12—h is directly Riemann integrable),

(78) V (L) → Ch :=
∫∞

0 h(x) dx∫∞
0 xG(dx)

= E
(p)
0 [1 − e

−φpSτ0+ ]
φpE

(p)
0 [Sτ0+]

as L → ∞.

Conditioning (77) on σ(Sτ0−), we see, as L → ∞,

eφpL
E0

[
β

τL+
p ; τL+ < τ0−

] = V (L) −E
(p)
0

[
e
−φp(SτL+−L); τ0− ≤ τL+

]
= V (L) −E

(p)
0

[
V (L − Sτ0−); τ0− ≤ τL+

]
→ Ch − ChP

(p)
0 [τ0− < ∞] = ChP

(p)
0 [τ0− = ∞].

This shows the existence of the desired limit, and it remains to rewrite this limit in an easier
form. The identity (56) holds for all k ∈ C with �(k) > 0, since both sides are analytic there.
Using this identity for the density ρ(p), choosing k = iφp , and letting β ↑ 1, gives

1 −E
(p)
0

[
e
−φpSτ0+

] = exp

(
−

∞∑
n=1

1

n

∫ ∞
0

e−φpx(ρ(p))∗n
(x) dx

)

= exp

(
−1

2

∞∑
n=1

1

n

∫ ∞
−∞

e−φpx(ρ(p))∗n
(x) dx

)
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= exp

(
−1

2

∞∑
n=1

1

n
E

(p)
0

[
e−φpSn

])
(79)

= exp(
1

2
log

(
1 −E

(p)
0

[
e−φpS1

])
=

√
1 − βp,

where the second equality follows from an explicit calculation using ρ(p)(x) = βp ×
exp(φpx)ρ(x) dx and the symmetry of ρ that shows∫ ∞

0
e−φpx(ρ(p))∗n

(x) dx =
∫ 0

−∞
e−φpx(ρ(p))∗n

(x) dx.

Together (79), (59), and (78) lead to the desired form for the limit. �

4.3.4. Asymptotics for p = 1
2 . When p = 1

2 , we find, again, by applying Propositions 10
and 11 and Lemma 12 for the interval [0,L] (and noting that the probabilistic representation
for the small determinant is different),

(80) 2 log Pf[0,L]
(

J − 1

2
K
)

= −E0
[
δ0(Sτ0−)(L − Mτ0−)+

]+ log 2 + logP0[τL+ < τ0−].
The optional stopping theorem is applicable to the martingale (Sn)n≥0 and the stopping time
τ0− ∧ τL+ (see [27] Lemma 5.1.3), giving

0 = E0[SτL+∧τ0−]
= E0[Sτ0−; τ0− < τL] +E0[SτL+; τL+ < τ0−]
= E0[Sτ0−] −E0[Sτ0−; τL+ < τ0−] +E0

[
(SτL+ − L); τL+ < τ0−

]+ LP0[τL+ < τ0−]
so that

(81) P0[τL+ < τ0−] = −E0[Sτ0−]
L

+ E0[Sτ0− − (SτL+ − L); τL+ < τ0−]
L

≤ −E0[Sτ0−]
L

.

The overshoots Sτ0− and SτL+ − L have in general less moments than the underlying step
distribution. However, Lemma 5.1.10 from [27] shows that when

∫
x4ρ(x) dx < ∞, then the

overshoots have finite second moment (bounded independently of the starting point). Then,
for example,

E0
[
(SτL+ − L); τL+ < τ0−

] ≤ (
E0

[
(SτL+ − L)2])1/2(

P0[τL+ < τ0−])1/2
,

and we deduce from (81) that P0[τL+ < τ0−] = −E0[Sτ0−]/L + O(L−3/2). Hence, using
Spitzer’s formula (60) for E0[Sτ0−],

(82) logP0[τL+ < τ0−] = − logL + logσ − 1

2
log 2 + o(1).

As before, we have

(83) E0
[
δ0(Sτ0−)(L − Mτ0−)+

] = LE0
[
δ0(Sτ0−)

]−E0
[
δ0(Sτ0−)min{L,Mτ0−}]

which, as in the case p < 1
2 , gives the value of the constant κ1(1/2) in the leading order

O(L) asymptotic. The following lemma shows that E0[δ0(Sτ0−)min{L,Mτ0−}] is of form
logL+C0 +o(1), leading to the cancelation of the − logL term in (82). This lemma, together
with (80), (82), (83), completes the p = 1

2 case of Theorem 1.



2446 W. FITZGERALD, R. TRIBE AND O. ZABORONSKI

LEMMA 14.

E0
[
δ0(Sτ0−)min{L,Mτ0−}]

= logL + 3

2
log 2 − logσ +

∞∑
n=1

(
n−1∑
k=1

∫ ∞
0

x
ρ∗k(x)ρ∗(n−k)(x)

k(n − k)
dx − 1

2n

)
+ o(1).

PROOF. We follow the strategy used in [16] which considers a walk with Gaussian incre-
ments; in this general case the asymptotics differ only in the part of the constant term arising
from Kac’s formula (63). Write

(84) E0
[
δ0(Sτ0−)min{L,Mτ0−}] =

∞∑
n=1

p(n,L),

where, using the cyclic symmetry technique (64),

p(n,L) = E0
[
δ0(Sn)min{L,Mn}I(τ0− = n)

]
= 1

n
E0

[
δ0(Sn)min{L,Mn − mn}].

While n ≤ L2−ε (we will soon choose ε ∈ (1
2 ,2)), the walk is unlikely to have reached

L, and we will approximate min{L,Mn − mn} ≈ Mn − mn. For n ≥ L2−ε , we will use a
Brownian approximation, using a Brownian motion (W(t) : t ≥ 0) run at speed σ 2 (that
is [W ](t) = σ 2t) and the running extrema W ∗(t) = sups≤t W(s) and W∗(t) = infs≤t W(s).
These approximations lead to

p(n,L) = 1

n
E0

[
δ0(Sn)(Mn − mn)

]+ E(1)(n,L),(85)

p(n,L) = 1

n
E0

[
δ0
(
W(n)

)
min

{
L,W ∗(n) − W∗(n)

}]+ E(2)(n,L),(86)

where, for some η > 0, C < ∞
E(1)(n,L) ≤ CnL−3 for n ≤ L2−ε ,(87)

E(2)(n,L) ≤ Cn−1−η for n ≥ L2−ε .(88)

We delay the detailed proof for the error bounds (87), (88) to the Section 7.3.
Kac’s formula (63) and the symmetry of ρ give

(89)
1

n
E0

[
δ0(Sn)(Mn − mn)

] = 2

n
E0

[
δ0(Sn)Mn

] = 2

n
Kacρ(n).

The asymptotic

E0
[
δ0(Sn)Mn

] = 1

2π

∫
R

E0
[
eiθSnMn

]
dθ

= 1

2π

∫
R

E0

[
eiθSn/

√
n Mn√

n

]
dθ

→ E0
[
δ0
(
W(1)

)
W ∗(1)

] = 1

4

(using an explicit calculation with the joint density for (W ∗(t),W(t))) can be quantified,
using the local central limit theorem; see the details in the Section 7.3 to give

(90) Kacρ(n) = 1

4
+ O

(
n−1/4).
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Thus, the series
∑ 2

n
Kacρ(n) is divergent, and we will need to compensate the terms to gain a

convergent series. This completes all parts of this lemma that are different from the Gaussian
case in [16], and we now refer the reader to that paper for some of the subsequent calculations.

The Brownian expectation (86) can be calculated (see Section 3.2.2 of [16]) using the joint
distribution of (W(t),W ∗(t),W∗(t)), yielding

(91) E0
[
δ0
(
W(n)

)
min

{
L,W ∗(n) − W∗(n)

}] = 1

2
−

√
2L2

πσ 2n
�

(
2L2

πnσ 2

)
,

where �(t) = ∑
k≥1 exp(−πk2t) is a special function (related to Jacobi’s θ -function). From

(85), (86) we find, as in [16], the asymptotic for L → ∞,

(92)
∞∑

n=1

p(n,L) = ∑
n≤L2−ε

2

n
Kacρ(n) + ∑

n>L2−ε

1

2n
−

√
2L2

πσ 2n3 �

(
2L2

πnσ 2

)
+ o(1).

The error terms E(i)(n,L) contribute only to the o(1) term, but for this we must choose
ε ∈ (1

2 ,2) (in [16] the error term E(1)(n,L) was exponentially small as we dealt with a walk
with Gaussian increments; here, we suppose only fourth moments).

We compensate, using (90),

∑
n≤L2−ε

2

n
Kacρ(n) = ∑

n≤L2−ε

2

n

(
Kacρ(n) − 1

4

)
+ ∑

n≤L2−ε

1

2n

= ∑
n≥1

2

n

(
Kacρ(n) − 1

4

)
+ ∑

n≤L2−ε

1

2n
+ o(1)

= ∑
n≥1

2

n

(
Kacρ(n) − 1

4

)
+ 1

2
logL2−ε + γ

2
+ o(1),

using the asymptotic
∑

n≤N
1
n

= logN + γ + O(N−1), where γ is the Euler–Mascheroni
constant. An analysis of the error in a Riemann block approximation implies

∑
n>L2−ε

1

2n
−

√
2L2

πσ 2n3 �

(
2L2

πnσ 2

)

=
∫ ∞
L−ε

(
1

2x
−

√
2L2

πσ 2x3 �

(
2L2

πxσ 2

))
dx + o(1)

=
∫ ∞

1

(
1

2x
−

√
2L2

πσ 2x3 �

(
2L2

πxσ 2

))
dx

−
∫ 1

0

√
2L2

πσ 2x3 �

(
2L2

πxσ 2

)
dx + ε

2
logL + o(1).

The asymptotics �(t) = 1
2
√

t
− 1

2 + o(1), as t ↓ 0, and �(t) ∼ exp(−πt), as t → ∞, justify
the convergence of these integrals. Substituting these into (92), we find the dependence on ε

vanishes, and we reach

∞∑
n=1

p(n,L) = logL + ∑
n≥1

2

n

(
Kacρ(n) − 1

4

)
+ C0 + o(1),
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where

C0 = γ

2
+

∫ ∞
1

(
1

2x
−

√
2L2

πσ 2x3 �

(
2L2

πxσ 2

))
dx −

∫ 1

0

√
2L2

πσ 2x3 �

(
2L2

πxσ 2

)
dx.

Amazingly, certain identities for γ and the function �(t) imply that C0 = 3
2 log 2− logσ (see

Section 2 of [16]), and this completes the proof. �

5. The proof of Theorem 3. Throughout this section we suppose we have a kernel K in
the derived form (8), based on a scalar kernel in the form (10), that is,

(93) K(x,y) =
∫ 0

−∞

∣∣∣∣∣∣
∫ x−z

−∞
ρ(w)dw

∫ y−z

−∞
ρ(w)dw

ρ(x − z) ρ(y − z)

∣∣∣∣∣∣ dz

for a probability density ρ ∈ C1(R) ∩ H 1(R) ∩ L∞(R). This is sufficient to allow differenti-
ation under the integral and integration by parts showing that K , D1K , D2K , D12K are all
continuous and, in particular,

D2K(x,y) = −2
∫ 0

−∞
ρ(x − z)ρ(y − z) dz − ρ(y)

∫ x

−∞
ρ(w)dw.

We now write T for the integral operator on L∞(R) with kernel

(94) T (x, y) =
∫ 0

−∞
ρ(x − z)ρ(y − z) dz.

Then, recalling βp = 4p(1 − p),

(95) 2p(1 − p)D2K(x,y) = −βpT (x, y) − 2p(1 − p)ρ(y)

∫ x

−∞
ρ(w)dw.

Note the last term in (95) is a finite rank kernel. The operator T still can be interpreted
in probabilistic terms using a random two-step walk, where pairs of increments have the
density ρ(−x) and ρ(x). To our surprise, it is possible to follow fairly closely the strategy
used in the translationally invariant case, namely: (i) represent the Fredholm Pfaffian in terms
of determinants, (ii) represent these in terms of the random two-step walk, and (iii) derive
asymptotics from probabilistic results for a two-step walk. Each of these steps requires slight
modifications (and becomes slightly messy), due to the different operator T and due to the
extra finite rank term above. (The thesis [17] contains an exploration of more general kernels
where T (x, y) = ∫ 0

−∞ ρ(1)(x − z)ρ(2)(y − z) dz for two probability densities ρ(1), ρ(2), and
shows that many of the steps above go through; however, we have yet to find applications).

5.1. Operator manipulation. We again write Ta,b for the integral operator restricted to
L2[a, b], that is, Ta,bf (x) = ∫ b

a T (x, y)f (y) dy. Our first aim is an analogue of the Tracy
Widom manipulations in Proposition 10 for this nontranslationally invariant setting. The rea-
soning at the start of Section 4.2 extends to this case to show that 1 − βpTa,b has the inverse
R = I +∑∞

k=1 βk
pT k

a,b and that R − I has a C1 kernel.

LEMMA 15. With the above notation we have

(96)
(
Pf[a,b](J − pK)

)2 = Det[a,b](I − βpT )deta,b
3 (K),
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where deta,b
3 (K) is the 3×3 determinant with entries δij + (Rei , fj ), where (e, f ) is the dual

pairing between H 1[a,b] and its dual, for the elements

f1 = βpρ, e1 = −1

2
�ρ,

f2 = δa − δb, e2 = pT I[b,∞) − pT I(−∞,a] + p

2

(
2 − �ρ(b) − �ρ(a)

)
�ρ,

f3 = δa + δb, e3 = −p(2p − 1)T I(a,b) − p(2p − 1)

2

(
�ρ(b) − �ρ(a)

)
�ρ,

where �ρ(x) = ∫ x
−∞ ρ(x) is the distribution function for ρ.

PROOF. We follow the proof of Proposition 10 up to (51), (52). Then, using (95), we
have(

Pf[a,b](J − pK)
)2 = DetH 1[a,b]

(I − βpT + F) = DetH 1[a,b]
(I − βpT )DetH 1[a,b]

(I + RF),

where F is the finite rank operator

−βp

2
�ρ ⊗ ρ + ((

p − p2)K(·, a) + p2K(·, b)
)⊗ δa

+ ((
p2 − p

)
K(·, b) − p2K(·, a)

)⊗ δb

= −βp

2
�ρ ⊗ ρ + p

2

(
K(·, b) + K(·, a)

)⊗ (δa − δb)

+ p(2p − 1)

2

(
K(·, b) − K(·, a)

)⊗ (δa + δb).

This gives the rank 3 form for F and the values of f1, f2, f3, e1, as stated. Again, using (95),
we have

K(·, b) − K(·, a) =
∫ b

a
D2K(·, z) dz = −2T I(a,b) −

∫ b

a
ρ(w)dw�ρ,

giving the value of e3. The limits K(x,−∞) = 1 and K(x,∞) = �ρ(x)− 1 follow from the
definition (93). Then,

K(·, b) + K(·, a)

= (
K(·, a) − K(·,−∞)

)− (
K(·,∞) − K(·, b)

)+ K(·,∞) + K(·,−∞)

= −2T I(−∞,a] −
∫ a

−∞
ρ(w)dw�ρ + 2T I[b,∞) +

∫ ∞
b

ρ(w)dw�ρ + �ρ

which gives the value of e2. �

5.2. Probabilistic representation. We need two different two-step random walks. These
have independent increments but alternate between a step distributed as ρ(−x)dx and then,
as ρ(x) dx, as follows.

Notation. Let (Xk) and (Yk) be two independent families of i.i.d. variables, where Xk have
density ρ(−x)dx and Yk have density ρ(x) dx.

Under Px the variables (Sn : n ≥ 0) and (S̃n : n ≥ 1) are defined by S0 = x and

S̃k = Sk−1 +Xk, Sk = S̃k +Yk for k = 1,2, . . . .
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We write τA = inf{n ≥ 1 : Sn ∈ A}, τ̃A = inf{n ≥ 1 : S̃n ∈ A} and the special cases

τa+ = inf{n ≥ 1 : Sn > a}, τa− = inf{n ≥ 1 : Sn < a},
τ̃a+ = inf{n ≥ 1 : S̃n > a}, τ̃a− = inf{n ≥ 1 : S̃n < a},

and the running maxima and minima

Mn = max{Sk : 1 ≤ k ≤ n}, mn = min{Sk : 1 ≤ k ≤ n},
M̃n = max{S̃k : 1 ≤ k ≤ n}, m̃n = min{S̃k : 1 ≤ k ≤ n}.

Note that, under Px , the process (Sn) is a random walk whose increments have the density
ρ̃(z) = ∫

R
ρ(w)ρ(w − z) dw.

LEMMA 16. For β ∈ [0,1], when T (x, y) = ∫ 0
−∞ ρ(x − z)ρ(y − z) dz for a probability

density ρ ∈ C(R) ∩ L2(R) ∩ L∞(R),

(97) log Det[−L,∞)(I − βT ) = −E0
[
βτ0−δ0(Sτ0−)(L − M̃τ0−)+

]
.

PROOF. Arguing, as in Lemma 11, the log-trace formula formula

log Det[a,b](I − βT )

= −
∞∑

n=1

βn

n
Tr
(
T n

a,b

)
(98)

= −
∞∑

n=1

βn

n

∫
[a,b]n

T (x1, x2) . . . T (xn−1, xn)T (xn, x1) dx1 . . . dxn

holds for all β ∈ [0,1]. The derivative

d

da
Tr
(
T n

a,b

) = −n

∫
[a,b]n−1

T (a, x2)T (x2, x3) . . . T (xn, a) dx2 . . . dxn

= −n

∫
[a,b]n−1

dx2 . . . dxn

∫
(−∞,0]n

dz1 . . . dzn

× ρ(a − z1)ρ(x2 − z1)ρ(x2 − z2)ρ(x3 − z2) . . . ρ(xn − zn)ρ(a − zn)

= −nPa

[
S̃1 < 0, S1 ∈ (a, b), . . . , S̃n < 0, Sn ∈ da

]
= −nEa

[
δa(Sn); τ(a,b)c = n, M̃n < 0

]
.

Subsitituting this into (98), we find

d

da
log Det[a,b](I − βT ) = Ea

[
βτa−δa(Sτa−); τb+ > τa−, M̃τa− < 0

]
.

Integrating this equality over [a, b] gives

log Det[a,b](I − βT ) = −
∫ b

a
Ec

[
βτc−δc(Sτc−); τb+ > τc−, M̃τc− < 0

]
dc.

Both side of this identity are decreasing in b. Setting a = −L and letting b → ∞, we reach

log Det[−L,∞)(I − βT ) = −
∫ ∞
−L

Ec

[
βτc−δc(Sτc−); M̃τc− < 0

]
dc

= −
∫ ∞
−L

E0
[
βτ0−δ0(Sτ0−); M̃τ0− < −c

]
dc

= −E0
[
βτ0−δ0(Sτ0−)(L − M̃τ0−)+

]
. �
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LEMMA 17. The limit deta,∞
3 (K) = limb→∞ deta,b

3 (K) of the finite rank determinant
from Lemma 15 exists and is given, when p = 1

2 , by

deta,∞
3 (K) = 2

1 − 2p

∣∣∣∣∣∣∣
1 − p − 1

2
Ea

[
βτa−

p ; τ̃0+ > τa−
] −1

2
Ea

[
β

τ̃0+−1
p ; τa− ≥ τ̃0+

]
−pEa

[
β

τ̃0+−1
p ; τ̃0+ ≤ τa−

] 1

2
− pEa

[
βτa−−1

p ; τa− < τ̃0+
]
∣∣∣∣∣∣∣

and by Pa[τ̃0+ ≤ τa−] when p = 1
2 .

PROOF. We will represent each term (Rei , fj ) in terms of the two-step walk. All nine
terms are somewhat similar, and we detail just a few. For example,

(R�ρ, δx0) = R�ρ(x0) =
∞∑

n=0

βn
pT n

a,b�ρ(x0)

=
∞∑

n=0

βn
p

∫
[a,b]n

dx1 . . . dxnT (x0, x1) . . . T (xn−1, xn)�ρ(xn)

=
∞∑

n=0

βn
p

∫
[a,b]n

dx1 . . . dxn

∫
(−∞,0]n

dy1 . . . dyn

∫ ∞
0

dz

× ρ(x0 − y1)ρ(x1 − y1)ρ(x1 − y2)

× ρ(x2 − y2) . . . ρ(xn−1 − yn)ρ(xn − yn)ρ(xn − z)

=
∞∑

n=0

βn
pPx0

[
S̃1 < 0, S1 ∈ (a, b), . . . , S̃n < 0, Sn ∈ (a, b), S̃n+1 > 0

]

=
∞∑

n=0

βn
pPx0[τ̃0+ = n + 1, τ(a,b)c ≥ n + 1]

= Ex0

[
β

τ̃0+−1
p ; τ(a,b)c ≥ τ̃0+

]
.

(99)

A similar exact calculation shows that, for bounded f ,

(RTf, δx0) =
∞∑

n=0

βn
pEx0

[
f (Sn+1); τ̃0+ ≥ n + 2, τ(a,b)c ≥ n + 1

]
.

Using this for f = I[b,∞) gives

(RT I[b,∞), δx0) =
∞∑

n=0

βn
pPx0[Sn+1 > b, τ̃0+ ≥ n + 2, τ(a,b)c ≥ n + 1]

=
∞∑

n=0

βn
pPx0[τ̃0+ ≥ n + 2, τb+ = n + 1, τb+ < τa−](100)

= Ex0

[
β

τb+−1
p ; τb+ < τa− ∧ τ̃0+

]
and similarly, using f = I(−∞,a],
(101) (RT I(−∞,a], δx0) = Ex0

[
βτa−−1

p ; τa− < τb+ ∧ τ̃0+
]

and, using f = I(a,b), when p = 1
2 ,

(RT I(a,b), δx0) =
∞∑

n=0

βn
pPx0

[
Sn+1 ∈ (a, b), τ̃0+ ≥ n + 2, τ(a,b)c ≥ n + 1

]
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=
∞∑

n=0

βn
pPx0[τ̃0+ ≥ n + 2, τ(a,b)c ≥ n + 2](102)

= 1

βp − 1
Ex0

[
β

(τ(a,b)c∧τ̃0+)−1
p − 1

]
.

The entries of the form (Rei , f1) = βp(Rei , ρ) start with an integral against ρ(w)dw and
need a reflection x → −x to be written in terms of the two-step walk which start with an
increment with density ρ(−w)dw. For example,

(RTf,ρ) =
∞∑

n=0

βn
p

∫ b

a
dwρ(w)T n

a,bTf (w)

=
∞∑

n=0

βn
p

∫
[a,b]n+1

dw dx1 . . . dxnρ(w)T (w,x1) . . . T (xn−1, xn)Tf (xn)

=
∞∑

n=0

βn
p

∫
[a,b]n+1

dw dx1 . . . dxn

∫
(−∞,0]n+1

dy1 . . . dyn dz′
∫ ∞
−∞

dz

× ρ(w)ρ(w − y1)ρ(x1 − y1) . . . ρ(xn−1 − yn)

× ρ(xn − yn)ρ
(
xn − z′)ρ(z − z′)f (z)

=
∞∑

n=0

βn
p

∫
[−b,−a]n+1

dw dx1 . . . dxn

∫
[0,∞)n+1

dy1 . . . dyn dz′
∫ ∞
−∞

dz

× ρ(−w)ρ(y1 − w)ρ(y1 − x1) . . . ρ(yn − xn−1)

× ρ(yn − xn)ρ
(
z′ − xn

)
ρ
(
z′ − z

)
f (−z)

=
∞∑

n=0

βn
pE0

[
f (−S̃n+2); S̃1 ∈ (−b,−a), S1 > 0, . . . , S̃n+1 ∈ (−b,−a), Sn+1 > 0

]

=
∞∑

n=0

βn
pE0

[
f (−S̃n+2); τ0− ≥ n + 2, τ̃(−b,−a)c ≥ n + 2

]

=
∞∑

n=0

βn
pEa

[
f (a − S̃n+2); τa− ≥ n + 2, τ̃(a−b,0)c ≥ n + 2

]
.

Using this for f = I[b,∞) gives

(RT I[b,∞), ρ) =
∞∑

n=0

βn
pPa[τ̃(a−b)− = n + 2, τ̃0+ > n + 2, τa− ≥ n + 2]

= Ea

[
β

τ̃(a−b)−−2
p ; τ̃(a−b)− < τ̃0+ ∧ (1 + τa−)

]− β−1
p Pa[τ̃(a−b)− = 1](103)

= Ea

[
β

τ̃(a−b)−−2
p ; τ̃(a−b)− < τ̃0+ ∧ (1 + τa−)

]− β−1
p

(
1 − �ρ(b)

)
,

where the final subtracted term emerges since the sum over n does not include the event
{τ̃(a−b)− = 1}. Similarly, using f = I(−∞,a],

(104) (RT I(−∞,a], ρ) = Ea

[
β

τ̃0+−2
p ; τ̃0+ < τ̃(a−b)− ∧ (1 + τa−)

]− β−1
p �ρ(a)

and, using f = I(a,b), when p = 1
2 ,

(RT I(a,b), ρ) =
∞∑

n=0

βn
pPa[τ̃(a−b,0)c ≥ n + 3, τa− ≥ n + 2]
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= 1

βp − 1
Ea

[
β

(τ̃(a−b,0)c−2)∧(τa−−1)
p − 1

]+ 1

βp

Pa[τ̃(a−b,0)c = 1](105)

= 1

βp − 1
Ea

[
β

(τ̃(a−b,0)c−2)∧(τa−−1)
p − 1

]+ 1

βp

(
1 + �ρ(a) − �ρ(b)

)
.

The final representation needed is derived in a similar manner,

(106) (R�ρ,ρ) = Ea

[
βτa−−1; τ̃(a−b,0)c > τa−

]
.

The formulae (99),. . . ,(106) can be substituted into the matrix elements (Rei, fj ), and each
has a limit as b → ∞. Before evaluating these limits, it is convenient first to do two row
operations to convert e1, e2, e3 to ê1 = e1, ê2 = e2 + p(2 − �ρ(b) − �ρ(a))e1, and ê3 =
e3 − p(2p − 1)(�ρ(b) − �ρ(a))e1 so that

ê1 = −1

2
�ρ, ê2 = pT I[b,∞) − pT I(−∞,a], ê3 = −p(2p − 1)T I(a,b),

f1 = βpρ, f2 = δa − δb, f3 = δa + δb.

Under these operations we change

deta,b
3 (K) = det

(
I + (

(Rei, fj ) : i, j ≤ 3
)) = det

(
Î + (

(Rêi, fj ) : i, j ≤ 3
))

,

where

Î =
⎛
⎝ 1 0 0

p
(
2 − �ρ(b) − �ρ(a)

)
1 0

−p(2p − 1)
(
�ρ(b) − �ρ(a)

)
0 1

⎞
⎠ .

Using (99), we have

(Rê1, f2) = −1

2
(R�ρ, δa − δb)

= 1

2
Eb

[
β

τ̃0+−1
p ; τ(a,b)c ≥ τ̃0+

]− 1

2
Ea

[
β

τ̃0+−1
p ; τ(a,b)c ≥ τ̃0+

]

→ 1

2
− 1

2
Ea

[
β

τ̃0+−1
p ; τa− ≥ τ̃0+

]
as b → ∞

since Pa[τb+ → ∞] = 1 and Pb[τ̃0+ = 1] → 1, as b → ∞. The limiting entry for and
(Rê1, f3) differs only by a sign. Using (102), we have, when p = 1

2 ,

(Rê3, f2) = −p(2p − 1)(RT I(a,b), δa − δb)

= p

2p − 1

(
Ea

[
β

(τ(a,b)c∧τ̃0+)−1
p − 1

]−Eb

[
β

(τ(a,b)c∧τ̃0+)−1
p − 1

])

→ p

2p − 1
Ea

[
β

(τa−∧τ̃0+)−1
p − 1

]
as b → ∞.

The limiting form for the entry (Rê3, f3) is the same. Using (100) and (101), we have

(Rê2, f2) = p(RT I[b,∞) − RT(−∞,a], δa − δb)

= pEa

[
β

τb+−1
p ; τb+ < τa− ∧ τ̃0+

]− pEb

[
β

τb+−1
p ; τb+ < τa− ∧ τ̃0+

]
− pEa

[
βτa−−1

p ; τa− < τb+ ∧ τ̃0+
]+ pEb

[
βτa−−1

p ; τa− < τb+ ∧ τ̃0+
]

→ −pEa

[
βτa−−1

p ; τa− < τ̃0+
]
, as b → ∞
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and the limiting form for (Rê2, f3) is the same. Using (106) and Pa[τ̃b− → ∞] = 1, as
b → ∞, we have

(Rê1, f1) = −1

2
Ea

[
βτa−

p ; τ̃(a−b,0)c > τa−
] → −1

2
Ea

[
βτa−

p ; τ̃0+ > τa−
]
.

Using (105), we have, when p = 1
2 ,

(Rê3, f1) = −p(2p − 1)βp(RT I(a,b), ρ)

= −p(2p − 1)

βp − 1
Ea

[
β

(τ̃(a−b,0)c−1)∧τa−
p − βp

]− p(2p − 1)
(
1 + �ρ(a) − �ρ(b)

)

→ p

2p − 1
Ea

[
β

(τ̃0+−1)∧τa−
p

]− 4p2(1 − p)

2p − 1
− p(2p − 1)�ρ(a) as b → ∞.

Using (103) and (104), we have

(Rê2, f1) = pβp(RT I[b,∞) − RT I(−∞,a], ρ)

= pβpEa

[
β

τ̃(a−b)−−2
p ; τ̃(a−b)− < τ̃0+ ∧ (1 + τa−)

]− p
(
1 − �ρ(b)

)
−pβpEa

[
β

τ̃0+−2
p ; τ̃0+ < τ̃(a−b)− ∧ (1 + τa−)

]+ p�ρ(a)

→ −pEa

[
β

τ̃0+−1
p ; τ̃0+ ≤ τa−

]+ p�ρ(a) as b → ∞.

Combining with the entries in Î , this completes the limiting values for all nine terms for
deta,∞

3 (K) as the determinant, when p = 1
2 ,∣∣∣∣∣∣∣∣

1 − 1

2
Ea

[
β

τa−
p ; τ̃0+ > τa−

] 1

2
− 1

2
Ea

[
β

τ̃0+−1
p ; τa− ≥ τ̃0+

] −1

2
− 1

2
Ea

[
β

τ̃0+−1
p ; τa− ≥ τ̃0+

]
p − pEa

[
β

τ̃0+−1
p ; τ̃0+ ≤ τa−

]
1 − pEa

[
β

τa−−1
p ; τa− < τ̃0+

] −pEa
[
β

τa−−1
p ; τa− < τ̃0+

]
p

2p − 1
Ea

[
β

(τ̃0+−1)∧τa−
p

]− p

2p − 1

p

2p − 1
Ea

[
β

(τa−∧τ̃0+)−1
p − 1

]
1 + p

2p − 1
Ea

[
β

(τa−∧τ̃0+)−1
p − 1

]

∣∣∣∣∣∣∣∣
.

Row and column operations considerably simplify this: after the column operation C2 →
C2 − C3 and then the row operation R3 → R3 + 2p

2p−1R1 + 1
2p−1R2, we reach, when p = 1

2 ,

deta,∞
3 (K) = 1

2p − 1

∣∣∣∣∣∣∣∣∣
1 − 1

2
Ea

[
βτa−

p ; τ̃0+ > τa−
]

1 −1

2
− 1

2
Ea

[
β

τ̃0+−1
p ; τa− ≥ τ̃0+

]
p − pEa

[
β

τ̃0+−1
p ; τ̃0+ ≤ τa−

]
1 −pEa

[
βτa−−1

p ; τa− < τ̃0+
]

2p 2 −1

∣∣∣∣∣∣∣∣∣
.

After C1 → C1 − pC2 and C3 → C3 + 1
2C2, we reach, when p = 1

2 ,

deta,∞
3 (K) = 1

2p − 1

∣∣∣∣∣∣∣∣∣∣

1 − p − 1

2
Ea

[
βτa−

p ; τ̃0+ > τa−
]

1 −1

2
Ea

[
β

τ̃0+−1
p ; τa− ≥ τ̃0+

]
−pEa

[
β

τ̃0+−1
p ; τ̃0+ ≤ τa−

]
1

1

2
− pEa

[
βτa−−1

p ; τa− < τ̃0+
]

0 2 0

∣∣∣∣∣∣∣∣∣∣
which reduces to the form stated in the Lemma for p = 1

2 . When p = 1
2 , the calculation is

easier and is omitted. �

5.3. Asymptotics. We will derive the asymptotics in Theorems 2 and 3.

5.3.1. Random walk results. We need some variants of the random walk results in Sec-
tion 4.3.1 that hold for our two-step walk (Sn, S̃n). We use the construction and notation from
Section 5.2. Recall that ρ̃(z) = ∫

R
ρ(w)ρ(w − z) dw which is automatically symmetric.
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Two-step Kac’s formula. We extend Kac’s formula (63) to show that, for all n ≥ 1,

(107) E0
[
M̃nδ0(Sn)

] = 1

n

∫
R

x
(
ρ∗n(x)

)2
dx + Kacρ̃ (n).

Note that

(108) E0
[
Mnδ0(Sn)

] = −E0
[
mnδ0(Sn)

] = Kacρ̃ (n)

by a direct application of Kac’s formula to (Sn). The extra term in (107) arises due to the
maximum M̃n being taken over (S̃n) rather than (Sn). Indeed,

(109)
M̃nδ0(Sn) = max{X1,X1 +Y1 +X2, . . . ,X1 +Y1 + · · · + · · ·Yn−1 +Xn}δ0(Sn)

=X1δ0(Sn) + max{0,Y1 +X2, . . . ,Y1 + · · · + · · ·Yn−1 +Xn}δ0(Sn).

Since

Sn = (Y1 +X2) + (Y2 +X3) + · · · + (Yn−1 +Xn) + (Yn +X1),

the second term in (109) involves only the maximum of a one-step walk with increments
equal to Xk +Yk and hence has expectation Kacρ̃ (n) by Kac’s formula (63). The expectation
of the first term in (109) equals, by a cyclic symmetry argument,

E0
[
X1δ0(Sn)

] = 1

n

n∑
k=1

E0
[
Xkδ0(Sn)

] = 1

n
E0

[
X δ0(X +Y)

]
,

where X = ∑n
k=1 Xk has density ρ∗n(x) dx and Y = ∑n

k=1 Yk has density ρ∗n(−x)dx which
leads to the stated formula.

Cyclic symmetry. We will use cyclic symmetry to show

(110) E0
[
min{L,M̃n}δ0(Sn); τ0− = n

] = 1

n
E0

[
min{L,M̃n − mn}δ0(Sn)

]
and hence its L → ∞ limit

(111) E0
[
M̃nδ0(Sn); τ0− = n

] = 1

n
E0

[
(M̃n − mn)δ0(Sn)

]
.

The proof is similar to the one-step version (64). Indeed, we consider the n cyclic permu-
tations of the variables ((X1,Y1), (X2,Y2), . . . , (Xn,Yn)). We define, as in Section 5.2, n

different two-step walks (S
(p)· , S̃

(p)· ) for p = 0,1, . . . , n − 1 as follows: S
(p)
0 = 0 and

S̃
(p)
k = S

(p)
k−1 +Xp⊕k, S

(p)
k = S̃

(p)
k +Yp⊕k for k = 1, . . . , n,

where p ⊕ k is addition modulo n. Then, the law of (S
(p)· , S̃

(p)· ) is the same for all p. More-
over, the final value S

(p)
n = ∑

k≤n(Xk +Yk) is independent of p.

We define the maxima, minima, and stopping times M̃
(p)
n , m(p)

n , τ (p)
0− , as in Section 5.2, but

indexed by the superscript p when they are for the two-step walk (S
(p)· , S̃

(p)· ). Then, using
mn = 0, whenever Sn = 0 and τ0− = n,

E0
[
min{L,M̃n}δ0(Sn)I(τ0− = n)

] = E0
[
min{L,M̃n − mn}δ0(Sn)I(τ0− = n)

]

= 1

n

n−1∑
p=0

E0
[
min

{
L,M̃(p)

n − m(p)
n

}
I
(
τ

(p)
0− = n

)
δ0
(
S(p)

n

)]

= 1

n

n−1∑
p=0

E0
[
min{L,M̃n − mn}I(τ (p)

0− = n
)
δ0(Sn)

]
,
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where the final equality comes from the identities

S
(p)
k = Sp⊕k − Sp and S̃

(p)
k = S̃p⊕k − Sp for all k, p, whenever Sn = 0,

so that M̃
(p)
n −m

(p)
n is independent of p whenever Sn = 0. Finally, there is exactly one cyclic

permutation with {τ (p)
0− = n}, establishing (111).

5.3.2. Proof of Theorem 2. We note that an assumption that
∫
R

|x|kρ(x) dx < ∞ implies
that

∫
R

|x|kρ̃(x) dx < ∞. Suppose first that β ∈ [0,1). From Lemma 16 we have

log Det[−L,∞)(I − βT )

= −E0
[
βτ0−δ0(Sτ0−)(L − M̃τ0−)+

]
(112)

= −LE0
[
βτ0−δ0(Sτ0−)

]+E0
[
βτ0−δ0(Sτ0−)min{L,M̃τ0−}]

= −LE0
[
βτ0−δ0(Sτ0−)

]+E0
[
βτ0−M̃τ0−δ0(Sτ0−)

]+ o(1)

(where we show below the variable βτ0−M̃τ0−δ0(Sτ0−) is integrable). The first expectation
involves only the walk (Sn) and so is given, as in (69), using the increment density ρ̃, giving
the desired formula for κ1(β). The second expectation is given, using the cyclic symmetry
(111), the Kac formulae (107) and (108), and then the argument from (70) by

E0
[
βτ0−M̃τ0−δ0(Sτ0−)

]
=

∞∑
n=1

βn
E0

[
M̃nδ0(Sn); τ0− = n

]

=
∞∑

n=1

βn

n
E0

[
(M̃n − mn)δ0(Sn)

]

=
∞∑

n=1

βn

n2

∫
R

x
(
ρ∗n(x)

)2
dx + 2

∞∑
n=1

βn

n
Kacρ̃ (n)

=
∞∑

n=1

βn

n2

∫
R

x
(
ρ∗n(x)

)2
dx +

∫ ∞
0

x

( ∞∑
n=1

βnρ̃∗n(x)

n

)2

dx,

which is finite by the first moment assumption and the boundedness of ρ, completing the
formula for κ2(β).

When β = 1, we follow, with small changes, the argument from Lemma 14. Write

(113) E0
[
δ0(Sτ0−)min{L,M̃τ0−}] =

∞∑
n=1

p̃(n,L),

where, using the cyclic symmetry technique (110),

p̃(n,L) := E0
[
δ0(Sn)min{L,M̃n}; τ0− = n

] = 1

n
E0

[
δ0(Sn)min{L,M̃n − mn}],

and we approximate

p̃(n,L) = 1

n
E0

[
δ0(Sn)(M̃n − mn)

]+ Ẽ(1)(n,L),(114)

p̃(n,L) = 1

n
E0

[
δ0(Wnσ 2)min

{
L, sup

t≤nσ 2
Wt − inf

t≤nσ 2
Wt

}]
+ Ẽ(2)(n,L).(115)
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We verify in the Section 7.3 that the same error bounds (87) and (88) hold in this case, and
then the argument of Lemma 14 goes through, with the only change being the extra term in
the two-step Kac’s formula (107). This leads to

E0
[
δ0(Sτ0−)min{L,M̃τ0−}] = logL + 3

2
log 2 − log σ̃

+ ∑
n≥1

2

n

(
Kacρ̃ (n) − 1

4

)
+ 1

n2

∫
R

x
(
ρ∗n(x)

)2
dx + o(1),

where σ̃ 2 = ∫
x2ρ̃(x) dx. Using this in (112) completes the proof. �

5.3.3. Proof for Theorem 3 when p ∈ (0, 1
2). We apply Lemma 15 for the interval

[−L,b] and take b → ∞, giving

2 log Pf[−L,∞)(J − pK) = log Det[−L,∞)(I − βpT ) + log det−L,∞
3 (K).

Lemma 17 gives a probabilistic representation for det−L,∞
3 (K) where it is simple to let L →

∞. Indeed, in this limit we get

(116)

det−L,∞
3 (K)

= 2

1 − 2p

∣∣∣∣∣∣∣
1 − p − 1

2
E−L

[
β

τ(−L)−
p ; τ̃0+ > τ(−L)−

] −1

2
E−L

[
β

τ̃0+−1
p ; τ(−L)− ≥ τ̃0+

]
−pE−L

[
β

τ̃0+−1
p ; τ̃0+ ≤ τ(−L)−

] 1

2
− pE−L

[
β

τ(−L)−−1
p ; τ(−L)− < τ̃0+

]
∣∣∣∣∣∣∣

= 2

1 − 2p

∣∣∣∣∣∣∣
1 − p − 1

2
E0

[
β

τ0−
p ; τ̃L+ > τ0−

] −1

2
E0

[
β

τ̃L+−1
p ; τ0− ≥ τ̃L+

]
−pE0

[
β

τ̃L+−1
p ; τ̃L+ ≤ τ0−

] 1

2
− pE0

[
β

τ0−−1
p ; τ0− < τ̃L+

]
∣∣∣∣∣∣∣

→ 2

1 − 2p

∣∣∣∣∣∣∣
1 − p − 1

2
E0

[
β

τ0−
p

]
0

0
1

2
− pE0

[
β

τ0−−1
p

]
∣∣∣∣∣∣∣ =

1 − 2p

1 − p
,

where we shifted the starting position for the expectations, then used P0[τ̃L+ → ∞] = 1 to
take the limits, and finally evaluated the expectations using Sparre Andersen’s formula (58)
(since the stopping times τ0− involve only the walk (Sn) which is a one step random walk
with symmetric increments) which gives E0[βτ0−

p ] = 2p when p ∈ (0, 1
2). Combined with

Theorem 2, which gives the asymptotic for the Fredholm determinant, this gives the values
of κ1(p), κ2(p), as required.

5.3.4. Proof for Theorem 3 when p ∈ (1
2 ,1). For p ∈ (1

2 ,1), Sparre Andersen’s formula

(58) gives E0[βτ0−
p ] = 2(1 − p) which, as in (116), implies that limL→∞ det−L,∞

3 (K) =
0. Indeed, as in the translationally invariant case, this small determinant contributes to the
leading order asymptotic. To resolve the asymptotic, we use Sparre Andersen’s formula via

E0
[
β

τ0−
p ; τ̃L+ > τ0−

] = E0
[
β

τ0−
p

]−E0
[
β

τ0−
p ; τ0− ≥ τ̃L+

]
and then argue that E0[βτ0−

p ; τ0− ≥ τ̃L+] = o(E0[βτL+
p ; τ0− ≥ τ̃L+]), as in (73). Using these

in (116), we reach

det−L,∞
3 (K) = 2

1 − 2p

∣∣∣∣∣∣∣∣
1

2
E0

[
β

τ0−
p ; τ0− ≥ τ̃L+

] −1

2
E0

[
β

τ̃L+−1
p ; τ0− ≥ τ̃L+

]
−pE0

[
β

τ̃L+−1
p ; τ0− ≥ τ̃L+

] p

βp

E0
[
β

τ0−
p ; τ0− ≥ τ̃L+

]
∣∣∣∣∣∣∣∣

= p

(2p − 1)β2
p

(
E0

[
β

τ̃L+
p ; τ0− ≥ τ̃L+

])2(1 + o(1)
)
.
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The nontranslationally invariant analogue of Lemma 13 is as follows.

LEMMA 18. Suppose there exists φp > 0 so that βp

∫
eφpxρ̃(x) dx = 1, and that both∫ |x|eφpxρ̃(x) dx and

∫
eφp|x|ρ(x) dx are finite. Then,

(117) lim
L→∞ eφpL

E0
[
β

τ̃L+
p ; τ0− ≥ τ̃L+

] = β+

√
1 − βp

φpE
(p)
0 [S1]

(
P

(p)
0 [τ0− = ∞])2

,

where β−1+ = ∫
R

eφpxρ(x) dx.

Combined with Theorem 2, which gives the asymptotic for the Fredholm determinant, and
the exact formula (57), this lemma leads to the stated forms for κ1(p), κ2(p).

PROOF OF LEMMA 18. Choose β−, β+ so that β−
∫
R

ρ(−x)eφpx dx = β+
∫
R

ρ(x) ×
eφpx dx = 1. Then, βp = β−β+. Let P

(p)
x , E

(p)
x be the tilted probability and expecta-

tion, where the two-step walk (S̃n, Sn) uses increments Xi , Yi with the tilted densities
β− exp(φpx)ρ(−x)dx and β+ exp(φpx)ρ(x) dx. Then, defining

Z̃n = β−βn−1
p eφpS̃n, Zn = βn

peφpSn for n ≥ 1

the process (1, Z̃1,Z1, Z̃2,Z2, . . .) is a martingale. Moreover,

E
(p)
0

[
e
−φpS̃τ̃L+ ; τ0− ≥ τ̃L+

] = E0
[
e
−φpS̃τ̃L+Z̃τ̃L+; τ0− ≥ τ̃L+

]
= E0

[
β−β

τ̃L+−1
p ; τ0− ≥ τ̃L+

]
so that

(118) eφpL
E0

[
β

τ̃L+
p ; τ0− ≥ τ̃L+

] = β+E(p)
0

[
e
−φp(S̃τ̃L+−L); τ0− ≥ τ̃L+

]
.

By conditioning on the value of S̃1, we see that

Ṽ (L) := E
(p)
0

[
e
−φp(S̃τ̃L+−L)] =

∫ L

−∞
ρ(−x)V (L − x)dx +

∫ ∞
L

ρ(−x)e−φp(x−L) dx,

where V (L) = E
(p)
0 [exp(−φp(SτL+ −L))]. We know from (78) that V (L) → Ch as L → ∞,

and we deduce that Ṽ (L) → Ch. Conditioning on σ(Sτ0−), we see

E
(p)
0

[
e
−φp(S̃τ̃L+−L); τ0− ≥ τ̃L+

] = Ṽ (L) −E
(p)
0

[
e
−φp(S̃τ̃L+−L); τ0− < τ̃L+

]
.

= Ṽ (L) −E
(p)
0

[
Ṽ (L − Sτ0−); τ0− < τ̃L+

]
→ Ch − ChP

(p)
0 [τ0− < ∞] = ChP

(p)
0 [τ0− = ∞].

With (118) this implies that eφpL
E0[βτ̃L+

p ; τ0− ≥ τ̃L+] → β+ChP
(p)
0 [τ0− = ∞], and the de-

sired form for the limit follows from the expression for Ch in Lemma 13. �

5.3.5. Proof for Theorem 3 when p = 1
2 . Applying Lemma 15 for the interval [−L,b],

taking b → ∞, and then using the probabilitistic representation in Lemma 17 for det−L,∞
3 (K)

gives

(119) 2 log Pf[−L,∞)(J − pK) = log Det[−L,∞)(I − T ) + logP0[τ̃L+ ≤ τ0−].
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Comparing with the translationally invariant analogue (80), we see there is a missing log 2.
This and the slightly different form for the two-step Kac’s formula (107) turn out to be the
only differences between the two asymptotics when p = 1

2 .
Let μ = ∫

R
xρ(−x)dx. Then, the process

(0, S̃1 − μ,S1, S̃2 − μ,S2, . . .)

is a martingale under P0. The optional stopping theorem implies

0 = E0[Sτ0−; τ0− < τ̃L+] +E0[S̃τ̃L+ − μ; τ̃L+ ≤ τ0−]
= E0[Sτ0−] −E0[Sτ0−; τ̃L+ ≤ τ0−] +E0[S̃τ̃L+ − L; τ̃L+ ≤ τ0−] + (L + μ)P0[τ̃L+ ≤ τ0−]

(the argument from Lemma 5.1.1 in [27] justifies the optional stopping theorem being valid).
Rearranging gives

P0[τ̃L+ ≤ τ0−] = −E0[Sτ0−]
L + μ

+ o(1) as L → ∞

by arguing as in Section 4.3.4. Together with the asymptotics from Theorem 2 for the Fred-
holm determinant in (119) and Spitzer’s formula (60), this finishes the calculation.

6. The proof of Theorem 9. In this section we will establish the Pfaffian structure for
exit measures and find the corresponding kernels. The arguments broadly follow those in [40]
and [21] which derive the Pfaffian kernels from duality identities. The new feature here is that
the dual process, which is a system of annihilating motions, has immigration of particles.

6.1. Product ratio moments. The starting point that shows that the Pfaffian structure still
holds is the following Pfaffian formula for product moments for annihilating particle systems
with immigration.

Consider the following finite particle system: between reactions particles evolve as inde-
pendent strong Markov process motions on R; upon collision, any pair of particles instanta-
neously annihilate. The processes starts from immigrated particles, starting at the space-time
points zi = (yi, ti) ∈ [0, t] × R for i = 1, . . . ,2n for some n ≥ 0. We list the positions of
all surviving particles at time t as Y 1

t < Y 2
t < · · · in increasing order. Note that number of

particles alive at time t will be even since the total number of immigrated particles is even,
and we remove particles in pairs upon annihilation. Some restriction is needed on the motion
process, for example, to ensure no triple collisions occur. Since we need only the two exam-
ples of Brownian motions on R and Brownian motions with reflection on [0,∞), we restrict
to these two cases below (which also makes some of the p.d.e. arguments straightforward),
but the proof makes it clear that the result should hold more generally.

We write Yt for this point process at time t . We write P
A
z , where z = (z1, . . . , z2n), for the

law of this annihilating process (Yt : t ≥ 0).

LEMMA 19. Let g,h : [0,∞) →R be bounded and measurable. For the finite annihilat-
ing system described above with immigration at z = (z1, . . . , z2n) ∈ ([0, t] ×R)2n, define an
alternating product moment by

(120) Mg,h(Yt ) = ∏
i≥1

g
(
Y 2i−1

t

)∏
i≥1

h
(
Y 2i

t

)
,

where an empty product is taken to have value 1. Then,

E
A
z
[
Mg,h(Yt )

] = pf
(
E(zi,zj)

[
Mg,h(Yt )

] : i < j ≤ 2n
)
.
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Note that the terms in the Pfaffian use systems with just two particles, and so the double
product moment Mg,h(Yt ) takes either the value g(Y 1

t )h(Y 2
t ) or the value 1, depending on

whether the two particles have annihilated.

PROOF. We give the proof in the case of reflected Brownian motions on R and indicate
the slight simplifications for the full space case. The proof follows those in [40] and [21],
where the Kolmogorov equation for the expectation is shown to be solved by the Pfaffian.
Due to us immigrating particles over the time interval [0, t], we will solve the equation in the
intervals between immigration times. For this we need more detailed notation, used only in
this proof. The final time t , the number of particles 2n, and the immigration positions z are
fixed throughout the proof. We suppose the points zi = (yi, ti) are listed so that yi ≥ 0 and
t = t0 > t1 > · · · > t2n > 0; we will establish the result for such z, and when there are one or
more equalities between the time points ti , the result follows by continuity in these variables.
We write zp for the vector ((y1, t1), . . . , (yp, tp)) when 1 ≤ p ≤ 2n (and z0 = ∅). Also, we
take g, h to be continuous, and the measurable case can be established by approximation.

We write V +
k = {x = (x1, . . . , xk) : 0 ≤ x1 < · · · < xk} for a cell in R

k and define xq =
(x1, . . . , xq) ∈ V +

q when q ≤ k. From an element x ∈ V +
k , we define a set of space-time

points by

(x, s) = (
(x1, s), . . . , (xk, s)

)
for s ∈ [0, t].

Define the system of functions

m
(p,q)
s,t

(
zp, (x, s)

) = E
A
((y1,t1),...,(yp,tp),(x1,s),...,(xq ,s))

[
Mg,h(Xt)

]
for p,q ≥ 0, p + q ≤ 2n and p + q even, x ∈ V +

q , and s ∈ [0, tp).

Thus, (xq, s) will describe the positions particles alive at time s, and zp describes the remain-
ing positions for particles to be immigrated after time s. Each of these functions satisfies a
backward heat equation with reflected boundary condition(

∂s + 1

2

q∑
i=1

∂2
xi

)
m

(p,q)
s,t

(
zp, (x, s)

) = 0 for s ∈ [0, tp) and x ∈ V +
q ,(121)

∂x1m
(p,q)
s,t

(
zp, (x, s)

) = 0 for s ∈ [0, tp) and 0 = x1 < x2 < · · · < xq .(122)

(In the case of Brownian motions on R, we remove the boundary condition (122) and allow
x ∈ Vk = {x = (x1, . . . , xk) : x1 < · · · < xk}.)

The function m
(p,q)
s,t (zp, (x, s)) extends continuously to x ∈ V

+
k , s ∈ [0, tp) and satisfies

the boundary conditions, for i = 1, . . . , q − 1,

m
(p,q)
s,t

(
zp, (x, s)

) = m
(p,q−2)
s,t

(
zp,

(
xi,i+1, s

))
,

(123)
when s ∈ [0, tp) and 0 < x1 < · · · < xi = xi+1 < · · · < xq ,

where xi,i+1 = (x1, . . . , xi−1, xi+1, . . . , xq) is the vector x with the coordinates xi , xi+1 “an-
nihilated.” (Conditions on other parts of the boundary ∂V +

k are not needed to ensure unique-
ness.) Finally, they satisfy final conditions

lim
s↑t

m
(0,2n)
s,t

(
∅, (x, s)

) = ∏
i≥1

g(x2i−1)
∏
i≥1

h(x2i ) for x ∈ V +
2n,

lim
s↑tp

m
(p,q)
tp,t

(
zp, (x, s)

) = m
(p−1,q+1)
tp,t

(
zp−1, (x|yp, s)

)
(124)

when p ≥ 1, x ∈ V +
q , and yp /∈ {x1, . . . , xq},

where x|yp is the element of V +
q+1 with coordinates x1, . . . , xq, yp listed in increasing order.
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We claim the system (121), (122), (123), (124) of equations for (m(p,q) : even p + q ≤ 2n)

has unique bounded solutions, where m(p,q) ∈ C([0, tp) × V
+
q ) ∩ C1,2([0, tp) × V +

q ). This
is an inductive proof, working downward in p = 2n,2n − 1, . . . ,1,0, and for each fixed p

working upward in q = 0,1, . . . ,2n − p (subject to p + q being even), as indicated in the
following diagram. The functions to the left of right arrows determine the boundary condi-
tions for the functions on the right; the functions to the northeast of southwest arrows play the
role of the final conditions for the functions to the southwest of these arrows. Vertical arrows
correspond to the final conditions for the functions m

(0,2n)
s,t at the top layer:

g(x1)h(x2) . . .

n−1∏
k=1

g(x2k−1)h(x2k)

n∏
k=1

g(x2k−1)h(x2k)

↓ ↓ ↓

1 = m
(0,0)
s,t �→ m

(0,2)
s,t �→ . . . �→ m

(0,2n−2)
s,t �→ m

(0,2n)
s,t

↙ ↙ ↙

m
(1,1)
s,t �→ . . . �→ m

(1,2n−3)
s,t �→ m

(1,2n−1)
s,t

↙ ↙ ↙

1 = m
(2,0)
s,t �→ · · · �→ m

(2,2n−4)
s,t �→ m

(2,2n−2)
s,t

↙ ↙

· · · ·
We will now claim that, when p + q ≤ 2n is even, that, for s ∈ [0, tp] and x ∈ V +

q ,

(125) m
(p,q)
s,t

(
zp, (x, s)

) = pf

⎛
⎜⎜⎜⎜⎝

m
(2,0)
s,t ((yi, ti), (yj , tj )) m

(1,1)
s,t ((yi, ti), (xj , s))

1 ≤ i < j < p i = 1, . . . , p, j = 1, . . . , q

m
(0,2)
s,t ((xi, s), (xj , s))

1 ≤ i < j < q

⎞
⎟⎟⎟⎟⎠ ,

where we have listed the upper triangular elements of this (p + q) × (p + q) antisymmetric
block matrix. Specialising to p = 2n, q = 0 and s = 0, we find the conclusion of the lemma.

The claim (125) follows by uniqueness once we verify that the Pfaffian expression on the
right-hand side also solves the equations (121), (122), (123), (124). The arguments that the
Pfaffian solves the p.d.e (121), (122) and the boundary conditions (123) is the same as for the
simpler one time period case in [40]. The final conditions (124) for m

(0,2n)
t,t require that∏

i≥1

g
(
x2i−1)∏

i≥1

h
(
x2i) = pf

(
g(xi)h(xj ) : i < j ≤ 2n

)
for x ∈ V +

2n,

which follows since the antisymmetric matrix in the Pfaffian is of the form DT J2nD, where
D is the diagonal matrix with entries (g(x1), h(x2), . . . , g(x2n−1)h(x2n)) and J2n is the block
diagonal matrix with n blocks of the form

( 0 1
−1 0

)
along the diagonal (so that pf(J2n) = 1).

The final conditions for all other m
(p,q)
tp,t , when p ≥ 1, follow inductively. �

6.2. Dualities and thinning. We now follow the steps used in [40] (to which we will
refer for some details) using the Brownian web on a half-space developed in [38]. This gives
a duality formula for a coalescing system on (0,∞) together with its exit measure on {0} ×
[0,∞).
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Let (Xt : t ≥ 0) be a system of (instantaneously) coalescing Brownian motions on
(0,∞) × [0,∞), frozen upon hitting the boundary, and let Xe be the exit measure on
{0} × [0,∞). We consider Xt as a locally finite simple point measure on (0,∞) at each
t ≥ 0. We start by considering the case where the initial condition X0 = μ is deterministic
and contains a finite number μ(0,∞) of particles. We write P

C
μ for the law of this process.

The following lemma follows immediately from the noncrossing properties of the half-
space Brownian web and dual Brownian web paths (which are reflected Brownian motions).
It characterises the joint law of Xt and Xe|{0}×[0,t]. We use, from Section 6.1, the law P

A
z

of a finite annihilating system of Brownian motions (Yy) with reflection on [0,∞) and with
immigrated particles at z.

LEMMA 20 (Toth and Werner [38]). Let I1 = {0}× [a1, a2], . . . , In = {0}× [a2n−1, a2n],
for a ∈ V +

2n, n ≥ 0 be disjoint intervals inside {0} × [0, t]. Let J1 = {0} × [b1, b2], . . . , Jn =
{0} × [b2m−1, b2m], for b ∈ V +

2m, m ≥ 0, be disjoint intervals inside [0,∞). Then,

(126) P
C
μ

[
Xe(I1 ∪ · · · ∪ In) = 0,Xt (J1 ∪ · · · ∪ Jm) = 0

] = P
A
z
[
μ(St ) = 0

]
,

where zi = (0, t − ai) for i = 1, . . . ,2n and zi = (bi−2n,0) for i = 2n + 1, . . . ,2n + 2m and
where

St = (
Y 1

t , Y 2
t

)∪ (
Y 3

t , Y 4
t

)∪ . . .

formed from all remaining annihilating particles at time t (and St = ∅ if there are no parti-
cles).

We can obtain a corresponding duality statement for mixed coalescing/annihilating sys-
tems CABM(θ ) by thinning. We recall a colouring argument. Consider first initial conditions
with finitely many particles, that is, μ([0,∞)) < ∞. Fix an evolution of (Xt : t ≥ 0),Xe

under PC
μ and colour particles red or blue as follows: at time zero, let each particle indepen-

dently be red R with probability 1/(1 + θ) and blue B with probability θ/(1 + θ); colour the
particles at later times by following the colour change rules:

B + B → B, R + B → R, R + R →
{
B with probability θ ,

R with probability 1 − θ ,

independently at each of the finitely many collisions. The particles coloured red form a
CABM(θ ) system. Moreover, the particles in Xt alive at time t , together with the frozen
particles in Xe({0}× [0, t]), remain independently red R with probability 1/(1 + θ) and blue
B with probability θ/(1 + θ). This can be shown by checking that, after each collision, this
property is preserved.

Write �(μ) for the thinned random measure created by deleting each particle of μ in-
dependently with probability 1/(1 + θ). Writing P

CABM(θ)
� for the law of the mixed CABM

system started at a (possible random) finite initial condition �, the colouring procedure above
implies the equality in distribution, for finite μ,

(127) (Xt ,Xe|{0}×[0,t])) under PCABM(θ)
�(μ)

D= (�(Xt),�(Xe|{0}×[0,t]))) under PC
μ.

Thinning a finite set of n ≥ 1 particles leaves B(n, (1 + θ)−1) a Binomial number of remain-
ing particles. Note, when θ ∈ (0,1], that E[(−θ)B(n,(1+θ)−1)] = 0 for all n ≥ 1. Then, we
have, writing E� for the expectation over the thinning,

E�E
CABM(θ)
�(μ)

[
(−θ)Xe(I1∪···∪In)(−θ)Xt (J1∪···∪Jm)]

= E�E
C
μ

[
(−θ)�(Xe)(I1∪···∪In)(−θ)�(Xt )(J1∪···∪Jm)], using (127),
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= P
C
μ

[
Xe(I1 ∪ · · · ∪ In) = 0,Xt(J1 ∪ · · · ∪ Jm) = 0

]
(128)

= P
A
z
[
μ(St ) = 0

]
, using (126),

= E�E
A
z
[
(−θ)�(μ)(St )

]
.

This implies the duality

(129) E
CABM(θ)
μ

[
(−θ)Xe(I1∪···∪In)(−θ)Xt (J1∪···∪Jm)] = E

A
z
[
(−θ)μ(St )

]
for finite μ; this can be checked by induction on the number μ(0,∞) of initial particles by
expanding the identity (128) into the sum over terms where different size subsets of particles
in μ remain after the thinning. Note that the duality (129) contains the duality (126) as the
limit θ ↓ 0. Indeed, henceforth we shall take 00 = 1 so that (−θ)k = I(k = 0) when θ = 0 to
allow a unified treatment over θ ∈ [0,1].

The extension of (129) to the case of infinite initial conditions μ can be established by
approximation arguments. This is (somewhat tersely) sketched in the appendix to [40], and
we summarize some points here. We can consider the measure Xt as living in the space M
of locally finite point measures on [0,∞), which we give the topology of vague convergence.
Due to the instantaneous reactions, we restrict to the subset M0 of simple point measures.
The arguments in [40] show that there is a Feller semigroup on this space, allowing us to
construct the law P

CABM(θ)
μ for the CABM(θ ) process starting from any μ ∈ M0. Moreover,

there is an entrance law that is the limit of Poisson(λ) initial conditions as λ ↑ ∞, which
we informally call the maximal entrance law. (For the case θ = 0 of coalescing particles,
this corresponds to the point set process in the Brownian web starting from the set [0,∞).)
The exit measure Xe also exists under PCABM(θ)

μ and is the limit of the exit measures for any
approximating finite system—the point is the formulae (129) characterise the laws of the pair
(Xt ,Xe|{0}×[0,t])) as simple locally finite point measures.

REMARK. We digress here to record a lemma, based on the same tools, that shows thin-
nings are useful in the study of massive CBMs, where masses add upon coalescence. This
process yields a point process in position/mass space R×N0 (in the case of integer masses).
The lemma below gives only a very partial description of the process, and a full tractable
multi-particle description for this model is still lacking (though, notably, the one point distri-
bution has been obtained [36]).

LEMMA 21. Consider a system (Xt) of massive coalescing Brownian motions where
each particle has an integer mass and masses add upon coalesence. Suppose the masses
of particles at t = 0 are independent uniform random variable on {1,2, . . . , q} for a fixed
q ∈ {2,3, . . .}. Let (Rt ) be the positions of particles present at time t with labels not divisible
by q; let (Bt ) be the positions of particles present at time t with labels divisible by q . Then,
the process (Rt ,Bt , t ≥ 0) is a two-species particle system where the evolution of types at a
collision time is governed by the following rules: for θ = 1/(q − 1)

(130) B + B → B, B + R → R, R + R
θ→ B, R + R

1−θ→ R.

Moreover, at a fixed t ≥ 0, the positions (Bt ) are a 1/q thinning, and the positions (Rt ) are a
(q − 1)/q thinning of the positions of the full system (Xt).

We have not detailed the initial positions or state space for (Xt) which play no part in
the simple proof; consider finite systems on R to be specific. The proof consists of check-
ing that, for two colliding particles whose masses are independent and uniform modulo(q)
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on {1, . . . , q}, the resultant coalesced particle still has mass that is uniform modulo(q) on
{1, . . . , q}. This then implies that the (Rt ) system evolves as a CABM(θ ) system, as in (130).

The point of including this lemma is to show that both strong thinning (p < 1/2) and weak
thinning (p ≥ 1/2) of CBM has an interpretation in terms of interacting particle systems:
here, weak thinning with probability (q −1)/q singles out particles with masses not divisible
by q , whereas strong thinning with probability 1/q singles out particles with masses divisible
by q .

6.3. Pfaffian kernels. We can now read off the Pfaffian kernels in Theorem 9 from the
duality (129) and the alternating product moment formulae in Lemma 19. For μ ∈ M0 and
θ ∈ (0,1], the duality (129) in the case where b = ∅ so that we are only interested in the exit
measure and, when t = a2n, gives

E
CABM(θ)
μ

[
(−θ)Xe(I1∪···∪In)] = E

A
z
[
(−θ)μ(Sa2n

)],
where zi = (0, a2n − ai) for i = 1, . . . ,2n. The right-hand side is an alternating product
moment (120) where g(x) = (−θ)μ[0,x] and h(x) = (−θ)−μ[0,x]. When μ is finite, then g, h

are bounded, and Lemma 19 gives

E
CABM(θ)
μ

[
(−θ)Xe(I1∪···∪In)] = pf

(
H(ai, aj ) : i < j ≤ 2n

)
,

where

H(ai, aj ) = E
A
(zi,zj )

[
(−θ)μ(Sa2n

)] = E
A
(0,0),(0,aj−ai)

[
(−θ)

μ(Saj
)]

.

The same conclusion holds for μ ∈ M0 by taking limits μ|[0,n] → μ. To derive the correla-
tion function, we differentiate in the variables a2, . . . , a2n and then let a1 ↑ a2, . . . , a2n−1 ↑
a2n (details of this calculation are given in [40]). We reach, writing ρ

CABM(θ)
n for the n point

intensity of Xe under ECABM(θ)
μ ,(−(1 + θ)

)n
ρCABM(θ)

n (a2, a4, . . . , a2n)

= pf
((

H(a2i , a2j ) D2H(a2i , a2j )

D1H(a2i , a2j ) D12H(a2i , a2j )

)
: i < j ≤ n

)
.

To massage this into the stated derived form in Theorem 9, we first conjugate the kernel with
the block matrix A with entries ±1 down the diagonal (using pf(AT BA) = (−1)n) and then
define K = H − 1 to allow for the jump discontinuity in the derived form (8). This leads to
ρ

CABM(θ)
n (t1, . . . , tn) = Pf(K(ti, tj ) : i < j ≤ n), where

(131) K(s, t) = 1

1 + θ
E

A
(0,0),(0,t−s)

[(
(−θ)μ(Y 2

t −Y 1
t ) − 1

)
I(τ > t)

]
for 0 < s < t ,

where τ is the hitting time of the pair Y 1, Y 2.
For the cases where the initial condition is a Poisson measure �, with bounded intensity

λ(x) dx, we restart with the duality (129) which gives

E
CABM(θ)
�

[
(−θ)Xe(I1∪···∪In)] = E�E

A
z
[
(−θ)X0(St )

]

= E
A
z
[
e
−(1+θ)

∑
i

∫ Y2i
t

Y
2i−1
t

λ(z) dz]
= E

A
z
[
M(g,h)(Yt )

]
for g(x) = exp(−(1 + θ)

∫ x
0 λ(z) dz) and h(x) = 1/g(x). When λ is compactly supported, g,

h are bounded, and the product moment Lemma 19 gives

(132) E
CABM(θ)
�

[
(−θ)Xe(I1∪···∪In)] = pf

(
H(ai, aj ) : i < j ≤ 2n

)
,
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where

H(ai, aj ) = E
A
(zi ,zj )

[
e
−(1+θ)

∫
St

λ(z) dz] = E
A
(0,0),(0,aj−ai)

[
e
−(1+θ)

∫
Saj

λ(z) dz]
.

Approximating λI [0, n] → λ allows the same conclusion for bounded λ. Now, we repeat the
steps above to extract the kernel showing that, under E

CABM(θ)
μ , the exit measure Xe is a

Pfaffian point process with kernel K(s, t) in derived form based on the scalar kernel

(133) K(s, t) = 1

1 + θ
E

A
(0,0),(0,t−s)

[(
e
−(1+θ)

∫ Y2
t

Y1
t

λ(z) dz − 1
)
I(τ > t)

]
,

where τ is the hitting time of the pair Y 1, Y 2. The distribution for (Y 1
t , Y 2

t ) is given (e.g.,
by conditioning at time t − s and then using the Karlin–McGregor formula for noncolliding
Markov processes) by

(134) P
A
(0,0),(0,t−s)

[
Y 1

t ∈ dy1, Y
2
t ∈ dy2, τ > t

] =
∣∣∣∣∣p

R
s (0, y1) pR

t (0, y1)

pR
s (0, y2) pR

t (0, y2)

∣∣∣∣∣ dy1 dy2

(recall pR
t (x, y) is the transition density for reflected Brownian motion on [0,∞)). Rewriting

the kernels using this density gives the form stated in Theorem 9. Note that all derivatives
exist of K(s, t) exist and are bounded in the region 0 < s ≤ t . The density in (134) is of the
form φ(s)ψ(t) − ψ(s)φ(t), and this allows one to check that the antisymmetric extension
of K(s, t) to s, t > 0 is a C2. For deterministic locally finite μ or Poisson � with a smooth
intensity λ, the kernel extends to a C2 function on s, t ≥ 0.

7. Further proofs. Here, we collect proofs of more technical statements made in Sec-
tions 2 and 3.

7.1. Proof of Fourier transform formulae for κ1(p), κ2(p). We derive the formulae (13)
and (14). Recall, we are assuming, for simplicity, that ρ is in Schwarz class. Since ρ is
symmetric, then ρ̂ is symmetric and real valued. For k ∈ R, ρ̂(k) < 1 for all k = 0 and decays
faster than polynomially, and near zero has an expansion

(135) ρ̂(k) = 1 − σ 2k2

2
+ O

(|k|4).
These imply that the integral (12) defining Lρ(p, x) is well defined and absolutely integrable
for all p.

Fourier inversion and Fubini’s theorem imply that
∞∑

n=1

(4p(1 − p))n

n
ρ∗n(0) =

∞∑
n=1

(4p(1 − p))n

2πn

∫
R

(
ρ̂(k)

)n
dk

= − 1

2π

∫
R

log
(
1 − 4p(1 − p)ρ̂(k)

)
dk = −Lρ(p,0)

which completes identity (13) for κ1(p). Similarly, when p = 1
2 ,

∫ ∞
0

x

( ∞∑
n=1

(4p(1 − p))nρ̃∗n(x)

n

)2

dx =
∫ ∞

0
xL2

ρ(p, x) dx

and
∞∑

n=1

(4p(1 − p))n

n

∫ 0

−∞
eφpxρ∗n(x) dx
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= − 1

2π

∫ 0

−∞

∫
R

e(φp−ik)x log
(
1 − 4p(1 − p)ρ̂(k)

)
dk dx

= − 1

2π

∫
R

φp

φ2
p + k2 log

(
1 − 4p(1 − p)ρ̂(k)

)
dk,

completing the formula (14) for κ2(p) in the cases p = 1
2 .

The case p = 1/2 needs some care. Recall that we suppose that ρ has a finite exponential
moment. Therefore, ρ̂(k) is analytic in a strip |k| < 2μ, and the small k expansion (135) also
holds for k ∈ C. By (90) the infinite series for κ2(1/2) is absolutely convergent so that

κ2

(
1

2

)
− log 2 = 1

2

∞∑
n=2

(
n−1∑
k=1

∫ ∞
0

x
ρ∗k(x)ρ∗(n−k)(x)

k(n − k)
dx − 1

2n

)
− 1

4

= lim
ε↓0

1

2

∞∑
n=2

(1 − ε)n

(
n−1∑
k=1

∫ ∞
0

x
ρ∗k(x)ρ∗(n−k)(x)

k(n − k)
dx − 1

2n

)
− 1

4
(136)

= lim
ε↓0

log ε

4
+ 1

8π2

∫ ∞
0

x(

∫
R

e−ikx log
(
1 − (1 − ε)ρ̂(k) dk

)2
dx

= lim
ε↓0

log ε

4
− (1 − ε)2

8π2

∫ ∞
0

x−1
(∫

R

e−ikx ρ̂′(k)

1 − (1 − ε)ρ̂(k)
dk

)2
dx

where we have integrated by parts in the dk integral to help understand the divergence in ε.
Indeed, the function

(137) fε(x) = 1

2πi

∫
R

e−ikx ρ̂′(k)

1 − (1 − ε)ρ̂(k)
dk

has an integrand with two poles that approaches the real axis as ε ↓ 0,and this will lead to
the cancellation of the term 1

4 log ε. The asymptotics (135) allow us to fix μ > 0 so that the
denominator 1 − (1 − ε)ρ̂(k) has, for small enough ε, only two zeros on |k| ≤ μ, at ±rεi,
where

(138) rε =
√

2ε

σ
+ O(ε).

We move the contour defining fε from the real axis to the curve Cμ, consisting of the seg-
ments (−∞,−μ), (μ,∞) on the real axis and the half circle {−μeit : t ∈ [0, π]}. This move
crosses the the pole at −rεi so that, evaluating the residue at −rεi, we have

(139) fε(x) = 1

1 − ε
e−rεx + f̃ε(x), where f̃ε(x) = 1

2πi

∫
Cμ

e−ikx ρ̂′(k)

1 − (1 − ε)ρ̂(k)
dk.

Substituting this into the the expression (136), we find

κ2(1/2) − log 2

= lim
ε↓0

log ε

4
+ (1 − ε)2

2

∫ ∞
0

x−1f 2
ε (x) dx

= lim
ε↓0

log ε

4
− (1 − ε)2

∫ ∞
0

logxfε(x)f ′
ε(x) dx

= lim
ε↓0

log ε

4
− (1 − ε)2

∫ ∞
0

logx

(
1

1 − ε
e−rεx + f̃ε(x)

)( −rε

1 − ε
e−rεx + f̃ ′

ε(x)

)
dx
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= 1

4
log

(
σ 2

8

)
− γ

2
(recall γ = −

∫ ∞
0

e−x logx dx)

− lim
ε↓0

(1 − ε)2
∫ ∞

0
logx

(
−f̃ε(x)

rε

1 − ε
e−rεx +

(
1

1 − ε
e−rεx + f̃ε(x)

)
f̃ ′

ε(x)

)
dx

= 1

4
log

(
σ 2

8

)
− γ

2
−

∫ ∞
0

logx
(
1 + f̃0(x)

)
f̃ ′

0(x) dx.

To justify passing to the limit in the last equality one can verify (by integrating by parts in the
definition of f̃ε and f̃ ′

ε and noting that 1 − ρ̂ does not vanish on Cμ) that there exists ε0, C

so that |f̃ε(x)| ∨ |f̃ ′
ε(x)| ≤ C(1 + x2)−1 for all x ≥ 0 and all 0 ≤ ε ≤ ε0.

The last step is to rewrite f̃0(x) in terms of Lρ . We move the contour of integration in

f̃0(x) = 1
2πi

∫
Cμ

e−ikx ρ̂′(k)
1−ρ̂(k)

dk back to the real line. The integrand ρ̂′(k)
1−ρ̂(k)

has a simple at the
pole at the origin so that, letting μ ↓ 0, we get half the residue at the origin and the principle
value for the integral around the origin, that is,

f̃0(x) = 1

2πi

∫
Cμ

e−ikx ρ̂′(k)

1 − ρ̂(k)
dk = 1 + 1

2πi
P .V .

∫
R

e−ikx ρ̂′(k)

1 − ρ̂(k)
dk.

It is not hard to check that one may integrate by parts to identify

1

2πi
P .V .

∫
R

e−ikx ρ̂′(k)

1 − ρ̂(k)
dk = −xLρ(1/2, x),

completing the proof.

7.2. Regularity of p → κi(p) for the Gaussian kernel. We complete the proof of Corol-
lary 7. We recall the expression (32) for κ1(p),

(140) κ1(p) = 1

4
√

πt
Li3/2

(
4p(1 − p)

)+ I(p > 1/2)
(−t−1 log 4p(1 − p)

)1/2
.

This shows that κ1(p) is a smooth function of p ∈ (0, 1
2) ∪ (1

2 ,1). To examine the behaviour
at p = 1

2 , we use a series representation (Section 9 of [41]) for Lis , for s = 1,2, . . .,

(141) Lis(β) = �(1 − s)
(− log(β)

)s−1 +
∞∑

n=0

ζ(s − n)
logn(β)

n! ,

where ζ is Riemann’s zeta function and the infinite series converges for | log(β)| < 2π . Using
this for s = 3/2 and taking p = 1

2 + ε in (140), we reach

t1/2κ1

(
1

2
+ ε

)
= 1

2

√
− log

(
1 − 4ε2

)
sgn(ε) + A(ε),

where A is analytic for ε ∈ (−1
2 , 1

2) and given by A(ε) = 1
4
√

π

∑∞
n=0 ζ(3

2 − n)
logn(1−4ε2)

n! .
Also,

1

2

√
− log

(
1 − 4ε2

)
sgn(ε) = ε�1/2(4ε2) where �(z) = − log(1 − z)

z

showing that κ1(p) is analytic for p ∈ (0,1).
The infinite series in (33) and (35) for κ2(p), together with their derivatives in p, converge

uniformly for p in compacts inside [0, 1
2)∪ (1

2 ,1). This implies the continuous differentiabil-
ity of κ2, except at the point p = 1/2. For p < 1

2 , the formula (33) can be rewritten as

log
1

1 − p
− p(1 − p) + 1

4π

∞∑
n=2

(4p(1 − p))n

n

(
n−1∑
k=1

1√
k(n − k)

− π

)
.
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The absolute convergence of the sum over n for all p, using
∑n−1

k=1
1√

k(n−k)
− π = O(n−1/2),

implies the left continuity of κ2(p) as p ↑ 1
2 . A straightforward rearrangement of the terms

in (35), constituting κ2(p) for p > 1/2, leads to

(142) lim
p↓ 1

2

κ2(p) = κ2(1/2) − 2 log 2 − lim
δ↓0

(
log δ +

∞∑
n=1

1

n
erfc(

√
nδ)

)

(using the complementary error function erfc(x) = 2√
π

∫∞
x exp(−t2) dt = 1 − erf(x)). To

compute the limit in the right-hand side, we fix c > 0 and write

lim
δ↓0

(
log δ +

∞∑
n=1

1

n
erfc(

√
nδ)

)

= lim
δ↓0

(
log δ + ∑

n≥c/δ

1

n
erfc(

√
nδ) + ∑

n<c/δ

1

n

(
1 − erf(

√
nδ)

))

= log c + γ + lim
δ↓0

( ∑
n≥c/δ

1

n
erfc(

√
nδ) − ∑

n<c/δ

1

n
erf(

√
nδ)

)

= log c + γ +
∫ ∞
c

1

x
erfc(

√
x)dx − lim

δ↓0
Ec,δ,

(143)

where we have used
∑N

n=1
1
n

= logN + γ + O(N−1) for γ the Euler–Mascheroni constant
and we may estimate (using erf(x) ≤ x)

0 ≤ Ec,δ = ∑
n<c/δ

1

n
erf(

√
nδ) ≤ √

δ
∑

n<c/δ

n−1/2 ≤ 2
√

c.

Integrating by parts,∫ ∞
c

1

x
erfc(

√
x)dx = 1√

π

∫ ∞
c

logx√
x

e−x dx − erfc(
√

c) log c.

Therefore, taking the limit as c ↓ 0 in (143),

lim
δ↓0

(
log δ +

∞∑
n=1

1

n
erfc(

√
nδ)

)
= γ + 1√

π

∫ ∞
0

logx√
x

e−x dx = −2 log 2,

using the known special value of the digamma function ψ(0)(1
2) = 1√

π

∫∞
0

logx√
x

e−x dx. From
(142) the right continuity of κ2 at 1/2 is proved.

We may directly calculate κ ′
2(p) for p ∈ [0, 1

2) ∪ (1
2 ,1) from the formulae (33) and (35),

leading to (and writing βp = 4p(1 − p))

(144) κ ′
2(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2p − 1) + 1

1 − p
+ 1 − 2p

π

(
1

βp

Li21
2
(βp) − πβp

1 − βp

)
p <

1

2
,

(2p − 1) + 1

1 − p
+ 1 − 2p

π

(
1

βp

Li21
2
(βp) − πβp

1 − βp

)

− 1 − 2p

βp

√
− logβp

(
1√
π

Li 1
2
(βp) − 1√

− logβp

)
p >

1

2
.

Using the series representation (141) for L 1
2
(β) and computing the limits, one finds

lim
p↓ 1

2

κ ′
2(p) = 2 + 2√

π
ζ(1/2) = lim

p↑ 1
2

κ ′
2(p)

which establishes the continuous differentiability of κ2 at 1
2 .
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7.3. Proof of error bounds for p = 1
2 asymptotics. We give the proofs of the error bound

for the asymptotic (90), the error bounds (87), (88), and their analogues needed for the non-
translationally invariant case in (114), (115).

We use a local central limit theorem in the form (see Theorem 2 of XVI.2 [15], using the
symmetry of ρ to imply the third moment μ3 is zero)

(145)
∣∣ρ∗n(x) − gn(x)

∣∣ ≤ Cn−3/2 for all n ≥ 1, x ∈ R,

for the Gaussian density gt (x) = (2πσ 2t)−1/2 exp(−x2/2σ 2t). We, therefore, approximate

Kacρ(n) = n

2

∫ ∞
0

x

n−1∑
k=1

ρ∗k(x)ρ∗(n−k)(x)

k(n − k)
dx

= n

2

∫ ∞
0

x

n−1∑
k=1

gk(x)gn−k(x)

k(n − k)
dx + En(146)

= 1

4π

n−1∑
k=1

1√
k(n − k)

+ En.

The error En is bounded by

En ≤ n
∑

1≤k≤n/2

∫ ∞
0

x

k(n − k)

∣∣ρ∗k(x)ρ∗(n−k)(x) − gk(x)gn−k(x)
∣∣dx.

Letting C depend on σ and vary from line to line, we bound the sum over k ≤ n1/2, using
ρ(n−k)∗(x) ≤ Cn−1/2 and gn−k(x) ≤ Cn−1/2, by

Cn1/2
∑

1≤k≤n1/2

∫ ∞
0

x

k(n − k)

(
ρ∗k(x) + gk(x)

)
dx ≤ Cn−1/2

∑
1≤k≤n1/2

1

k1/2 = O
(
n−1/4),

and the sum over n1/2 < k ≤ n/2, using (145), by

Cn
∑

n1/2<k≤n/2

∫ ∞
0

x

k(n − k)

(
ρ(n−k)∗∣∣ρ∗k − gk

∣∣+ gk

∣∣ρ∗(n−k) − gn−k

∣∣)(x) dx

≤ Cn
∑

n1/2<k≤n/2

∫ ∞
0

x

k(n − k)

(
ρ(n−k)∗(x)k−3/2 + gk(x)n−3/2)dx

≤ Cn
∑

n1/2<k≤n/2

(
1

n1/2k5/2 + 1

n5/2k1/2

)
= O

(
n−1/4).

The sum in (146) is a Riemann approximation to the Beta integral (4π)−1B(1
2 , 1

2) = 1
4 with

a further error that is O(n−1/2). This completes the asymptotic (90).
For the error term bound (13) we start with

E(1)(n,L) = p(n,L) − 1

n
E0

[
δ0(Sn)(Mn − mn)

]

= 1

n
E0

[
δ0(Sn)min{L,Mn − mn}]− 1

n
E0

[
δ0(Sn)(Mn − mn)

]

= −1

n
E0

[
δ0(Sn)

(
(Mn − mn) − L

)
+
]
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so that, using (a + b)+ ≤ a+ + b+,

∣∣E(1)(n,2L)
∣∣ ≤ 1

n
E0

[
δ0(Sn)(Mn − L)+

]+ 1

n
E0

[
δ0(Sn)(−mn − L)+

]

= 2

n
E0

[
δ0(Sn)(Mn − L)+

]

= 2

n
E0

[
δ0(Sn)(Mn−1 − L)+

]

≤ 2‖ρ‖∞
n

E0
[
(Mn−1 − L)+

]

≤ 2‖ρ‖∞
n

E0
[
(Mn − L)+

]
,

where in the penultimate step we bounded the density of the single step Sn − Sn−1. Then,

E0
[
(Mn − L)+

] ≤ CL−3
E0

[|Mn|4]
≤ CL−3

E0
[|Sn|4] by Doob’s inequality,

≤ CL−3n2 by a Marcinkiewicz-Zygmund inequality,

which completes the proof of (87). The changes needed for Ẽ(1)(n,L) in the nontranslation-
ally invariant case are minor: the only new term that arises is

E0
[
δ0(Sn)(M̃n − L)+

] ≤ ‖ρ‖∞E0
[
(M̃n − L)+

]
(by again averaging over the final step Sn − M̃n = Yn). It is not difficult to check that the
bound E0[(M̃n − L)+] ≤ CL−3n2 still holds.

For the second error term E(2)(n,L), we use a Skorokhod embedding of the walk into a
Brownian motion (W(t) : t ≥ 0) run at speed σ 2. We choose stopping times (T1, T2, . . .) so

that (S1, S2, . . .)
D= (W(T1),W(T2), . . .) and so that T1, (T2 − T1), (T3 − T2), . . . are an i.i.d.

set of nonnegative variables with E[Tk] = k and E[(Tk − Tk−1)
2] ≤ 4E[X4

1]/σ 4 < ∞. Let
n̂ = �n − nα� for some α ∈ (1

2 ,1), and let

�n =
{
max
k≤n̂

|Tk − k| ≤ nβ
}

for some β ∈ (1
2 , α). Since (Tk − k) is a square integrable martingale, Doob’s inequality

implies that P [�c
n] = O(n1−2β). Then, we make the following approximations:

E0
[
δ0(Sn)min{L,Mn − mn}]

= E0
[
δ0(Sn)min{L,Mn̂ − mn̂}

]+ E1

= E0
[
δ0(Sn)min{L,Mn̂ − mn̂};�n

]+ E2

= E0
[
δ0
(
W(n)

)
min{L,Mn̂ − mn̂};�n

]+ E3(147)

= E0
[
δ0
(
W(n)

)
min

{
L,W ∗(n̂) − W∗(n̂)

};�n

]+ E4

= E0
[
δ0
(
W(n)

)
min

{
L,W ∗(n̂) − W∗(n̂)

}]+ E5

= E0
[
δ0
(
W(n)

)
min

{
L,W ∗(n) − W∗(n)

}]+ E6.

Thus, we aim to estimate |E(2)(n,L)| = 1
n
|E6|. The reason for this slightly messy set of

approximations is in order to be able to use the local central limit theorem to estimate the
expectation of the delta functions δ0(Sn), δ0(W(n)) by conditioning at an earlier time.
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Using first |min{L,x} − min{L,y}| ≤ |x − y|, the symmetry of ρ, and then the simple
inequality |max{x, y} − x| ≤ y for x, y ≥ 0, we have

|E1| ≤ 2E0
[
δ0(Sn)|Mn − Mn̂|

]
≤ 2E0

[
δ0(Sn)max{Sk : n̂ < k ≤ n}]

= 2E0
[
δ0(Sn)max{Sk : k ≤ n − n̂}]

≤ 2E0[Mn−n̂]
∥∥ρn̂∗∥∥∞,

where we have used time reversal and symmetry of the increments in the equality above and
then conditioned at time n − n̂ in the final step. By Doob’s inequality E0[Mn] ≤ Cn1/2; by
(145) we have |ρ∗n(x)| ≤ Cn−1/2; using n− n̂ = O(nα), we conclude that E1 = O(n(α−1)/2).
The bound |E6 − E5| = O(n(α−1)/2) is similar.

Next, also by similar steps,

|E2 − E1| ≤ 2E0
[
δ0(Sn)Mn̂I

(
�c

n

)]
≤ 2E0

[
Mn̂I

(
�c

n

)]∥∥ρ(n−n̂)∗∥∥∞
≤ 2

(
E0

[
M2

n̂

])1/2(
P
[
�c

n

])1/2∥∥ρ(n−n̂)∗∥∥∞ = O
(
n1−β− α

2
)
.

The bound |E5 − E4| = O(n1−β− α
2 ) is similar.

Next, recall that we have embedded Mn̂ = maxk≤n̂ W(Tk). Conditioning on FW
Tn̂

, we see

|E3 − E2| = ∣∣E0
[
min{L,Mn̂ − mn̂}I(�n)

(
δ0
(
W(n)

)− δ0(Sn)
)]∣∣

= ∣∣E0
[
min{L,Mn̂ − mn̂}I(�n)

(
gn−Tn̂

(Sn̂) − ρ(n−n̂)∗(Sn̂)
)]∣∣

≤ 2E0
[
Mn̂I(�n)

∥∥gn−Tn̂
− ρ(n−n̂)∗∥∥∞

]
≤ 2E0

[
Mn̂I(�n)

(‖gn−Tn̂
− gn−n̂‖∞ + ∥∥gn−n̂ − ρ(n−n̂)∗∥∥∞

)]
.

On the set �n, we have |n̂ − Tn̂| ≤ nβ and then ‖gn−Tn̂
− gn−n̂‖∞ ≤ Cnβ− 3

2 α . Combined

with (145), we find |E3 − E2| = O(n
1
2 +β− 3

2 α).
Finally, we use the modulus of continuity for a Brownian motion showing, for ε > 0,

there is a variable Hε with finite moments so that |W(t) − W(s)| ≤ Hεn
ε |t − s| 1

2 −ε for all
0 ≤ s, t ≤ n, almost surely. The last errror is

|E4 − E3| ≤ 2E0

[
δ0
(
W(n)

)∣∣∣max
k≤n̂

W(Tk) − W ∗(n̂)
∣∣∣;�n

]

≤ Cn− α
2 E0

[∣∣∣max
k≤n̂

W(Tk) − W ∗(n̂)
∣∣∣;�n

]
(148)

≤ Cn− α
2 E0

[∣∣∣max
k≤n̂

W(Tk) − W ∗(Tn̂)
∣∣∣+ ∣∣W ∗(Tn̂) − W ∗(n̂)

∣∣;�n

]
.

On the set �n, using the modulus of continuity, we have |W ∗(Tn̂) − W ∗(n̂)| ≤ Hεn
( 1

2 −ε)β+ε .
Also, ∣∣∣max

k≤n̂
W(Tk) − W ∗(Tn̂)

∣∣∣ ≤ Hεn
ε max

k<n̂
|Tk − Tk+1| 1

2 −ε

≤ Hεn
ε
(
1 + 2 max

k≤n̂
|Tk − k|

) 1
2 −ε

≤ CHεn
( 1

2 −ε)β+ε
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(by the triangle inequality |Tk −Tk+1| ≤ |Tk −k|+1+|(k+1)−Tk+1|). Using these estimates

in (148), we reach |E4 −E3| = O(n− α
2 +( 1

2 −ε)β+ε). Collecting all error estimates and choosing

α = 5
6 and β = 2

3 leads to an overall error |E6| = O(n− 1
12 +ε), completing the proof of (88).

The changes needed for |Ẽ(2)(n,L)| in the nontranslationally invariant case are again
small. We leave the chain of approximations (147) exactly as before, except that it starts with
the expectation E0[δ0(Sn)min{L,M̃n − mn}]. This implies that we only need to reestimate
the error in the first step which requires a bound on the new term

(149) E0
[
δ0(Sn)|M̃n − Mn̂|}

] ≤ E0
[
δ0(Sn)|M̃n − M̃n̂|}

]+E0
[
δ0(Sn)|M̃n̂ − Mn̂|}

]
.

The second term in (149) is estimated as O(n(α−1)/2), using the local central limit theorem
to bound the density of Sn − Sn̂ as before. For the first term we use time reversal again,

E0
[
δ0(Sn)|M̃n − M̃n̂|}

] ≤ E0
[
δ0(Sn)max{S̃k : n̂ < k ≤ n}]

= E0
[
δ0(Sn)max{S̃k : 1 ≤ k ≤ n − n̂}]

≤ Cn−1/2
E0

[
max{S̃k : 1 ≤ k ≤ n − n̂}] = O

(
n(α−1)/2),

where in the final inequality we have estimated the density ρ̃n̂∗ ∗ ρ of (Sn − S̃n−n̂), again by
the local central limit theorem.
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