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A simple finite element implementation of the Mott model for fragmentation of a thin walled ring has
been implemented and used to explore the effect of local variations in fracture strain around the ring.
The model has successfully reproduced the fragment size distributions previously reported, which follow
a characteristic “Mott distribution” form, providing sufficient (1000) simulations are run. It has been
shown that this form is retained even when there are large differences in the random distribution of
fracture strains or a different choice of function used to describe the fracture strain scatter. In these cases,
the strain rate has a much stronger effect than fracture strain distribution the on the average fragment
size and fragment distribution. However, for cases where there are a small number of local defects that
strongly reduce the fracture strain at certain locations around the ring, the predicted fragment size
distribution develops a bimodal character. This is also the case for large but gradual variations in fracture
strain with position around the ring. The results have implications for cases where a small number of
large pre-existing defects exist, or processing has led to macrozones in the microstructure. The utility of a
simple fast running model to study these cases is discussed.
© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

The ability to predict the size and distribution of fragments
when a cylindrical shell is rapidly expanded in the radial direction
has been a long-standing goal of researchers for over 75 years [1].
Early work byMott [1,2] established that in such cases there is to be
expected a characteristic distribution of fragment sizes, which is
related to the imposed strain rate,material properties, and property
scatter.

The modern approach to modelling fragmentation involves
finite element (FE) simulations which have the advantage of being
able to generalize to the realistic geometries and dynamically
evolving loading conditions that reflect the complexity of explo-
sively loaded expanding tubes [3e6]. Even with such sophisticated
models, reliably predicting fragmentation in ductile materials re-
mains a considerable task, both as a result of numerical difficulties
and the highly complex failure mechanisms that occur at high
strain rate [7,8]. Predicting where the fractures will initiate remains
ce Society
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a significant challenge. This can be addressed by randomly pre-
assigning damage to the material [5], or relying on numerical in-
stabilities to initiate fractures [4]. In either case, this is not related to
the real heterogeneities in the microstructure or initial defects that
initiate fracture. An additional constraint of a sophisticated FE
simulation is the high computational overhead and relatively long
run times, making systematic parametric studies time consuming.

Classical analytical models (such as that of Mott [1,9] and Grady
[10]) are more limited in capability and require making simplifying
assumptions. Nevertheless, such classical models have been shown
to predict experimental fragment size distributions (FSDs) quite
well [11]. Various extensions have been made to the Mott method
in an attempt to improve accuracy of prediction for both the
smallest [12] and largest fragments [13], where the observed de-
viation from the Mott FSD observed is greatest.

An advantage of the Mott method is that the relationships be-
tween the material parameters and the FSD is immediately
apparent. Furthermore, since such models can be run very rapidly,
they can be used to quickly perform parametric analysis. Therefore,
there remain scenarios where classical fragmentation models
retain important advantages over more complex FE approaches
[14].
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-
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Fig. 1. A schematic of the 1edimensional Mott problem. Fracture occurs at random
sites in turn (1, 2, then 3) and waves originate at points of fracture and propagate at
finite speed relieving tensile stresses in the surrounding regions (shaded grey). Further
fracture is only possible in regions that are unrelaxed (unshaded).
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Both FE and classical models rely on making assumptions about
the homogeneity and distribution of the material properties that
control fragmentation. For example, in Mott’s original work, the
positions where fracture could occur were pre-defined randomly. It
is also common to assume that the property of importance (for
example, the fracture strain) follows a well behaved statistical
pattern (for example, a Weibull distribution) [2].

In practice, however, thismay not be the case. If fragmentation is
initiated by pre-existing flaws (voids or cracks), this damagemay be
clustered around one location and fracture initiation is not
randomly located. If fragmentation is controlled by the micro-
structure or pre-existing defects, then this can vary in non-random
ways, even over long length scales. For example, elemental segre-
gation can lead to regions with different compositions and hence
different properties (macrosegregation, e.g. Ref. [15]). Variations in
grain size or texture can also occur over the macro-scale (e.g.
macrozones [16]). Defects such as cracks or porosity are often
clustered (e.g. Ref. [17]).

In principle, all of these aspects can be investigated using a high
fidelity FE simulation, but as discussed this is very time consuming
and may not reveal the dependencies of fracture on material
property variation in a simple and transparent way. Instead, the
Mott approach can be extended to explore the effect that non-
random damage will have on fragmentation behaviour. The
development of such a model and its application to predict the
effect of damage distribution on the resultant FSDwas the objective
of the current work.
2. Model development

The model developed in this work is based on the physics-based
statistical fragmentation theory developed by Mott [1]. The origins
of this model, its various extensions, and its applications are dis-
cussed in detail by Grady [2]. The Mott model treats a rapidly
expanding, thin walled ring, which is reduced to a 1-dimensional
problem. The material from which the ring is made is considered
to be rigid/perfectly plastic and subject to radial expansion at a
constant velocity. The Mott method only applies when the ring is
sufficiently thin that the damage causing fragmentation occurs
near the surface and the resultant cracks coalesce with the free
surface before they coalesce with each other [8].

To briefly recap, the Mott model is based on a configuration as
shown schematically in Fig. 1. It is assumed there is a variation of
critical strains to fracture randomly distributed around the ring.
When the imposed strain due to the expansion exceeds the lowest
fracture strain, the first fracture will occur (marked 1 in Fig. 1). This
will produce a relaxation wave (Mott wave) leading to an
expanding region surrounding the fracture that is no longer under
stress and therefore immune from further fracture. The wave ex-
pands with parabolic kinetics (i.e. the velocity of the wave de-
creaseswith increasing time). Meanwhile, other fracture points will
activate in turn (e.g. 2 then 3), which will also produce growing
relaxed regions. Eventually, the whole ring is relaxed, at which
point fragmentation is complete. The fragmentation process is
controlled by the variation in fracture strain with imposed strain
and by the velocity of the Mott wave.

In the model as developed byMott, the scatter in fracture strains
(hazard function) is assumed to follow an exponential law such the
probability of a fracture occurring in a unit length with an incre-
ment in strain dε is given by

dp
dε

¼CexpðgεÞ (1)

where C and g are constants that characterize the distribution of
2

fracture strain. Other assumptions about the distribution of fracture
strains can also be used, such as the Weibull distribution, and this
will be discussed inmore detail later. Note that Eq. (1) has no strong
physical basis but provides a functional form that allows the
increment in probability of fracture to increase with each incre-
ment in strain either strongly or weakly depending on the choice of
the g parameter, as will be demonstrated later.

The probability of a new fracture occurring anywhere in the ring
therefore increases with an increment strain dε according to

dn
dε

¼2prfCexpðgεÞ (2)

where r is the radius of the ring and f is the fraction of the ring that
remains unrelaxed by Mott waves (i.e. is able to participate in the
fracture process).

All material points are assumed to follow the same law, so the
position of the fractures is not predicted but has to be randomly
pre-assigned. As the fraction of the ring relaxed by the passage of
Mott waves increases, the probability of further fracture is reduced
(for a given level of strain). The size of the relaxed regions can be
calculated as a function of time (t) from the velocity of the Mott
waves by

x¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2syrt
rv

s
(3)

where sy is the yield stress, r is thematerial density, and v the radial
expansion velocity.

Mott used a graphical technique to determine the FSD using
these principles, but the advent of the computer also allows this to
be determined iteratively for a very large number of rings, giving
the required statistics [9]. One limitation of all of these methods is
that the material properties (e.g. failure strain) at each position
around the ring are determined by the same statistical relationship.
However, in practice, underlying variations in the defect distribu-
tion, microstructure, or texture around the ring can lead to sys-
tematic variations in fracture strain with position. Locally, on the
micro-scale, the material behaviour at each point is not the same.



Fig. 2. Predicted FSD compared with the modelling results (1000 rings) and experi-
mental data of Wesenberg and Sagartz [9].

Fig. 3. Predicted FSD with changing strain rate relative to the reference strain rate.
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Therefore, in the present work, a spatially dependent fracture strain
is introduced.

The method is a simple 1-dimensional finite element approach
in which the ring is divided into a large number of elements
(100e1000 elements was found to be sufficient for convergence).
Each element has its own fracture strain, which is assumed to be
constant. The fracture strains can be chosen from a statistical dis-
tribution (e.g. Mott or Weibull) or arbitrarily assigned to each
element. This enables (for example) the effect of having certain
regions containing pre-existing flaws (i.e. low fracture strain) to be
simulated. The model runs numerically, and at each time step the
strain in the unrelaxed portion of the ring is compared with the
fracture strains in each element to determine which elements will
initiate fracture in that step. The time-step was reduced until a
convergent solution was reached, leading to steps in the range 2e6
ns. Once fracture starts in an element, it will relax the surrounding
elements controlled by the growth velocity of the Mott waves (Eq.
(3)). Fracture of these relaxed elements will therefore not occur.
Following Mott, it assumed that the fracture process is very rapid
and the material behaves perfectly plastically. The simulation
completes when all the elements are relaxed. The model is
implemented in MATLAB.

As demonstrated byWesenberg and Sagartz [9], a large number
of simulations need to be run to produce a convergent FSD. They
demonstrated that 1000 simulations led to a smooth FSD, whereas
running the model for only 100 rings still produced considerable
scatter in the results [9]. In the present work, 1000 simulations
were performed in each case. This was found to lead to a conver-
gent FSD.

To enable the results to be compared with the numerical
simulation and experimental data of Wesenberg and Sagartz [9],
the same assumptions about thematerial and geometry of the rings
were used. The ring material is AA6061eT6, which is taken to have
a yield strength of 240 MPa and density of 2700 kg/m3 [18]. The
quasi-static strain to failure of this material in a tensile test is
around 12% [18]. The ring outer diameter is taken as 0.127 m. Note
that the predictions are not sensitive to the precise choice of these
parameters.

3. Results

The model is first compared with the experimental data and
simulation results performed by Wesenberg and Sagartz [9]. The
Mott function (Eq. (1)) was used to describe the fracture strain
probability distribution, with a value of g ¼ 20. The model is sen-
sitive to strain rate and the strain rate at fracture is not known (the
initial nominal strain ratewas 104±5� 102 s�1). Therefore, this was
used as a calibration parameter (which, as shown later shifts the
FSD up or down in size). Using a strain rate of 3:16� 103 s�1 gave
good agreement between the results of the present model, the
predictions of Wesenberg and Sagartz, and the experimental data
(Fig. 2). An important parameter defined by Mott is the character-
istic length x0 (see Ref. [1] for the definition of this parameter). The
optimized strain rate here gives a corresponding value of ð2prÞ=
x0 ¼ 13:4, where 2pr is the ring circumference. Finally, it must be
noted that the experimental data is compiled from only 11 rings. As
demonstrated by Wesenberg and Sagartz, at least 1000 rings are
needed to produce a converged FSD. Therefore, there is expected to
be a large scatter in the experimental results and the apparent
minimum due to one point in the experimental distribution is likely
to be a result of this scatter rather than evidence of a truly bimodal
distribution.

As theMott model is very simple, the only variable that captures
the effect of the imposed conditions is the ring expansion velocity
(which determines the strain rate). The effect of strain rate on the
3

prediction of the fragment size distribution is shown in Fig. 3. This
simulation assumes the critical strain to form fractures is inde-
pendent of the strain rate, which has been shown to be reasonable
once a threshold strain rate is exceeded (as is the case here) [4]. As
expected, a higher strain rate leads to smaller fragments and a
tighter distribution of fragment sizes. The average fragment size is
also decreased with increasing strain rate as expected [1]. For
example, the mean and mode fragment size decreases from 11% to
4% of the total circumference length with increasing strain rate. The
average fragment size is also expected to be directly related to x0.
For the results here, the average fragment length increases from
1:6x0 at the lowest strain rate to 2x0 at the highest strain rate. In
previous implementations of theMott model, the average fragment
length is reported as varying from approximately 1:5x0 to 1:8x0
[1,2]. An analytical value for the average fracture length of

ffiffiffi
p

p
x0
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(
ffiffiffi
p

p ¼ 1:77) was derived by Grady [2] using amodified fracture law
that is different to that used here. Given the uncertainty in the
average fragment size associated with the discretization of the FSD
into size bins necessary in the present work, the relationship be-
tween the average fracture length and x0 is in reasonable agree-
ment with this previous work.

As demonstrated by Mott [1] and discussed extensively by
Grady [2], the material property that controls the shape of the FSD
is the scatter in failure strains. For example, if the fracture strain
was identical everywhere in the ring (no scatter), then the Mott
model would expect all points in the ring to break simultaneously.
A wide scatter causes some regions to be susceptible to fracture at
lower strains than others, and once the initial fracture occurs the
relaxation of the surrounding material prevents it from further
fragmentation. The FSD is thus a direct consequence of the distri-
bution of fracture strains.

The shape of the function determining the distribution of frac-
ture strains (Eq. (1)) is controlled by the parameter g. A value of g of
128 gives a root mean squared scatter of 1% in the strain to fracture,
which is typical of that observed in a tensile test. However, the
scatter in quasi-static tensile tests is expected to be much less than
in a high strain rate ring expansion test since in quasi-static testing
extensive work hardening can locally resist failure due to defects.
Good fits to real FSDs are obtained usingmuch lower values of g [2].
Mott considers g values in the range 20e67 for various different
FeeC alloys. The value of g for AA6061eT6 used byWesenberg and
Sagartz also falls below this range (this is not explicitly stated in
their work but can be estimated from their fit for x0 (the charac-
teristic fragment length [1]) asx5). The effect of changing g on the
probability of fracture distributionwith strain and the FSD is shown
in Fig. 4. The probability of fracture was scaled between 0 at a strain
of 0.1 and 1 (100%) at a strain of 0.2.

The effect of changing g on the probability of fracture with
increasing strain is shown in Fig. 4(a). Values of g of 10 or less give a
probability of fracture that scales near linearly with increasing
strain. Increasing g leads to an increase in the rate at which the
probability of fracture increases with strain. These different be-
haviours give different FSDs, as shown in Fig. 4(b). Although the
larger g value gives a greater spread in the fragment lengths, which
is expected, it is noteworthy that even large differences in g give
quite small changes in the mean, mode, and maximum fragment
size. For example, for g ¼ 10, the mean, mode, and maximum
fragment sizes (as a fraction of the total circumference length) are
Fig. 4. (a) Probability of fracture with increasing strain for different values of g in

4

7%, 7%, and 20% respectively. For g ¼ 80, the corresponding values
are 10%, 10% and 22%.

An alternative to the Mott hazard function is to assume that the
probability of fracture follows a more general Weibull distribution
[2]. In this case, the cumulative distribution function (the proba-
bility of failure with increasing strain) is given by

pðεÞ¼1� exp
�
�ε

l

�k
(4)

where the shape and scale parameters are k and l respectively. As
shown by Grady [2], the FSD arising from using the Mott or
generalizedWeibull distribution can be near identical with suitable
choice of parameters. A typical value for k to capture the variation
in fracture strain in metals would be kx12. The effect of changing
this parameter on both the probability of failure with strain and the
resultant FSD is shown in Fig. 5. As shown in Fig. 5(a), a high value
of k leads to a narrow distribution of fracture strains and a low
value a wide distribution. However, Fig. 5(b) shows that even with
the large differences in the distribution of fracture strains, the
resultant FSDs are quite similar (Fig. 5(b)). As expected, the FSD is
broadest when the probability of fracture distribution is also
broadest.

The finite element implementation of the Mott model devel-
oped here enables the effect of spatial variations in fracture strain
to be explored. This is more representative of the most common
physical process of metal fracture in microstructures that contain
defects. Defects can take the form of pre-existing voids, cracks, or
(for example) brittle intermetallic particles. Such defects can lead to
regions where the local fracture strain is less than the overall
fracture strain that would be determined from a tensile test.
Furthermore, these regions may be clustered together or uniformly
distributed. There can also be long-range variations in the fracture
strain due to long-range composition variations (e.g. due to mac-
rosegregation) or texture change (e.g. macrozones). For these
simulations, the baseline distribution of fracture strains was
assumed to follow that used to produce Fig. 2(Mott hazard function,
g ¼ 20). Element specific changes were then made to the fracture
strain to explore various defect scenarios. In each case, 1000 sim-
ulations were run to obtain good statistics for the FSDs.

In the first simulation, it was assumed that pre-existing defects
were present in 1, 2, or 3 elements such that the fracture strain was
reduced by 50% in these elements. This is a very large reduction in
the Mott hazard function. (b) Predicted FSD for the functions shown in (a).



Fig. 5. (a) Probability of fracture with increasing strain for different values of k for a Weibull distribution of fracture strains. (b) Predicted FSD for the functions shown in (a).
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fracture strain, but such effects can be produced by harmful defects
such as inclusion particles or cracks. The results of this simulation
are shown in Fig. 6. An increase in the number of defective elements
leads to an increase in the spread of the FSD. Furthermore, the
shape of the distribution changes and becomes bimodal.

Whether a significant defect (that produces a large local
reduction in fracture strain) leads to a bimodal distribution also
depends on the random scatter in the fracture strains. For example,
Fig. 7 compares two single defect simulations, one with a 0.1
variation and one where this variation is reduced by an order of
magnitude (to 0.01). As expected, the smaller variation leads to a
tighter FSD, but importantly it also leads to amore strongly bimodal
distribution when an initial defect (low fracture strain element) is
present. This effect is also found for an increased number of defects.

The effect of random scatter in the fracture strain on the FSD
when a large pre-existing defect is present.

The effect of random scatter in the fracture strain on the FSD
when a large pre-existing defect is present.

[scatter_effect].
Fig. 6. Predicted FSD for 1, 2, or 3 initial defects. See text for further details.

Fig. 7. The effect of random scatter in the fracture strain on the FSD when a large pre-
existing defect is present.

5

Finally, the effect of a cyclic variation in properties around the
circumference of the cylinder is explored. Although the precise
form of the variation simulated here (a sinewave) is not expected in
a practical situation, this simulation represents a scenario where
there is a long range and progressive variation in the fracture strain
with position. Superimposed on this cyclic variation is a random
variation in fracture strain of up to 0.05, selected from a Weibull
distribution (k ¼ 12). Models in which both one and two wave-
lengths of long range fracture strain variation were compared with
the same case with no long range variation. In each case, 1000
simulations were again run to produce a converged FSD. An
example of the fracture strain distribution for one simulation run of
each of these three scenarios is shown in Fig. 8(a). Similar to the
defect case already explored, the introduction of a long range
progressive change in the strain to fracture leads to a broadening of
the FSD and also the emergence of a bimodal character to the dis-
tribution. In the “2 wave” case, the largest fragments are up to 25%



Fig. 8. (a) Example of the fracture strains input to the model to investigate the effect of a cyclic variation. (b) Resulting FSDs for 1000 repeat simulations comparing with and
without cyclic variation in fracture strain.

J.D. Robson Defence Technology xxx (xxxx) xxx
of the circumference length (x10 cm for the ring diameter used
here).

4. Discussion

In this paper, a simple 1-dimensional finite element imple-
mentation of the classic Mott fragmentationmodel for expansion of
a thin walled ring has been developed and applied to explore the
effect of changing the distribution in fracture strains. An advantage
of the finite element implementation is that it enables local varia-
tions in fracture strain to be imposed, which is more realistic when
considering failure initiated at local inhomogeneities or defects.
The model applies to the conditions considered by Mott, namely a
ring sufficiently thin so it is reasonable to ignore the interaction
between fractures. In such cases, the Mott model has been
demonstrated to give good agreement to the observed fragment
size distribution across a wide range of metals [2].

An important conclusion drawn by Mott is that the fragment
size distribution (normalized by the total ring circumference, as
presented in this paper) is controlled by the scatter in the fracture
strains and not the fracture strains themselves. Therefore, even if
there is a large difference in the strain to failure, providing the
scatter in strains-to-failure are similar, the fragment size distribu-
tionwill be similar. A detailed discussion of FSD and length scales is
given by Grady [19]. Experiments show that the form of distribu-
tion characterized by Fig. 2 (the “Mott distribution”) is seen inmany
different alloys, albeit with a difference in scaling.

The choice of distribution of strains to failure has an effect on the
predicted FSD, but as demonstrated here, even quite large differ-
ences in this choice has only a modest effect on the FSD. Indeed,
although full-field FE simulations demonstrate that the number of
fragments and FSD does depend on material constitutive proper-
ties, it is noteworthy that for even large differences in behaviour
(e.g. a veryweak 1xxx aluminium alloy compared to a high strength
steel) the total number of fragments at a given strain rate is within a
factor 2. This is a much smaller difference than the order of
magnitude increase in the number of fragments when strain rate is
increased [4]. This difference in sensitivity is captured in the Mott
model presented here. A higher strain rate leads to a larger number
of smaller fragments since the time for relaxation (and hence the
proportion of the ring that is relaxed) before the next fracture point
6

is activated (fails) is reduced, and hencemore fracture points can be
activated.

More complex distributions that deviate from Mott were pro-
duced by the present model, but only when the variation in posi-
tion dependent strain to failure was large. Such a situation may
arise in the case of a large defect such as a pore or brittle inter-
metallic particle. In practice, inspection in manufacture is usually
performed to avoid occurrence of such large defects. Wrought
manufacturing routes (e.g. forging, extrusion, rolling) also help to
reduce large defects by mechanically breaking them up or closing
them (in the case of pores or cracks). Typically, in a well produced
and controlled case, the strain to failure variation is within 1% for a
metal [1]. However, recent manufacturing innovations, such as
additive manufacturing do not benefit from this mechanical
working effect and large defects or collections of closely spaced
defects are thus occasionally possible [17].

As the present model shows, for large variations in local fracture
strain, either due to single isolated defects or gradual variation
around the circumference of the ring, a bimodal FSD will be pro-
duced. Bimodal FSDs have been observed in practice in some cases
[2] although these are usually attributed to distinct fracture
mechanisms and fracture intersections. However, the present work
demonstrates that bimodal distributions are also to be expected if
there are a small number of defects that locally produce a large
reduction in the fracture strain. The fragments in the upper peak
(larger fragments) are due to the earliest fractures that occur in the
elements with lowest fracture strain. As the time between first
fracture at defects and initiation of later fracture in the defect-free
ring is increased, the time for the growth of the relaxation zone
around first fracture sites increases. Since no further fracture can
occur in these relaxed regions, they end up becoming the largest
fragments. The lower peak (smaller fragments) corresponds to the
fragments formed in the defect-free ring, at which point small in-
crements in strain lead to an increased rate of fracture and hence
smaller fragment size.

As demonstrated here, whether a bimodal distribution will
emergewith the introduction of local flaws depends not only on the
reduction in fracture strain at the flaw, but also the random fluc-
tuation in fracture strain at all other positions. For example, if the
fluctuations in fracture strain are small, the fragment size distri-
bution is tighter (without a flaw) and thus the introduction of the
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flaw leads more readily to a bimodal FSD.
Finally, it is noted that the Mott model used as the basis of the

work here is obviously an oversimplification of the fragmentation
process seen in reality, especially in the case of thicker walled rings,
tubes, or plates where the interaction between fractures becomes
important [8]. For thin walled rings, the Mott model has been
demonstrated to work well in predicting the FSD [2]. The present
implementation of this model has the advantage of running very
rapidly (1000 repeats can be completed in seconds) and can be used
to explore the effect of variation in initial material flaws orders of
magnitude more quickly than a more physically realistic finite
element model. The failure model used in the present study is also
very simple, and in practice other constitutive parameters such as
the strain hardening rate of the material may have an influence [4].
In principle, more sophisticated hardening and failure models
could be included in the current framework. This is not considered
worthwhile given the approximations elsewhere and the objective
of a simple, very rapid simulation to screen for interesting condi-
tions for more in-depth evaluation. This more physically rigorous,
but time-consuming modelling of selected cases is the subject of
ongoing work.

5. Conclusions

A simple model for high strain rate fragmentation of metals has
been developed based on a 1-dimensional finite element imple-
mentation of the classic Mott method for thin walled rings. The
model allows different elements to be assigned locally different
behaviour (e.g. fracture strain) representing, for example, the
presence of pre-existing flaws. The model has been applied to
explore the effect of different assumptions about the distribution of
fracture strains. The following conclusions may be drawn from this
work:

(1) The fragment size distribution (FSD) produced by the finite
element Mott model developed in this work matches well to
previous analytical and numerical implementations of Mott,
but without the need to pre-assign the locations at which
fractures will occur.

(2) The model demonstrates that the choice of function used to
assign fracture strains to each element does not have a very
large effect on the predicted FSD. The range of fracture
strains and the imposed conditions (e.g. strain rate) are far
more important parameters.

(3) Non-Mott distributions that can become bimodal are pre-
dicted for cases where there are a small number of regions
with greatly reduced fracture strain (simulating the presence
of a large flaw) or where there is a large but more gradual
change in the fracture strain with circumferential position
around the ring.

(4) The present model allows the variation in fracture strain
distribution and initial flaws to be rapidly explored, identi-
fying interesting cases for more faithful fragmentation
modelling.
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