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Preface

How does inequality emerge, and why is it (or was it) increasing? These were the two
questions I asked myself and tried to tackle in this dissertation. Conceptually, I envision
three stages during which inequality can materialize and which require different policy
instruments: after, during, and before the labor market (very roughly speaking). After
the labor market, there is the tax and benefits system. At this stage, policy-makers can
address inequality by redistributing resources from those who have to those who haven’t.
During the labor market, policy-makers can intervene in how much people receive for their
work, e.g. by introducing a minimum wage. And before the labor market, human capital is
accumulated, which later becomes relevant for generating income. Investments in education
can ensure that skills—and, by extension, incomes—are distributed more equally.

I was and still am fascinated by this before stage. From a policy perspective, it is a
welcome opportunity to address resource disparities: no one has to be taken something
away, and there is broad political support for investing in the next generation. From an
economic perspective, this stage is also highly efficient. It’s cheaper to make sure that
someone doesn’t become unemployed than to help an unemployed find a job. Investments
in early childhood education can even be self-financing, as e.g. Hendren and Sprung-Keyser
(2020) show. Not only is it less likely that someone becomes unemployed, this person also
generates revenues for the state via income taxes.

This thesis is titled "School, Parents & Genes". Each chapter discusses one of these
(co-)determinants of children’s success in life: chapter 1 is on school finance reforms in the
U.S. and investigates whether they were able to level the playing field for students (they
were not). Chapter 2 is on parenting styles and asks whether child-rearing practices are
relevant for the formation of cognitive and non-cognitive skills (they are). Chapter 3 asks
whether school investments interact with genetic endowments (they do).

Chapter 1: As a European, I was always perplexed by the difficult standing school
financing has in the United States. After all, the U.S. played a pivotal role in advancing
mass elementary schooling (Goldin and Katz, 2010). To me, it felt like a no-brainer
that public schools ought to be well-funded, and not only because doing so is crucial
for distributive justice. But apparently, not everyone sees it this way. Still, I assume that
a certain group of legal scholars in the 1960s would have agreed with me. At their time, a
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district’s school finances were tightly linked to the local property tax revenues, such that
affluent districts were able to spend more per student. Encouraged by writings such as
Coons et al. (1970), Horowitz (1965), or Wise (1968), legal suits challenged these regimes,
often successfully so. Courts agreed that the finance regimes created unequal educational
opportunities for students and, as such, violated state constitutions. The resulting court-
ordered school finance reforms (SFRs) dramatically changed the state education funding
formulas.

Since the 1970s, numerous states have introduced such reforms, and in broadly in two
waves. During the "equity" era—the 1970s and 1980s—the SFRs aimed at equalizing re-
sources across districts. Their goal was to break the link between property tax revenues
and school spending capacity. This worked, albeit sometimes hurting the intended ben-
eficiaries along the way (Hoxby, 2001). The 1976 reform in California is a particularly
spectacular case of levelling-down, where spending equality also resulted in fewer resources
for low-income districts. Beginning in the late 1980s, reforms during the "adequacy" era
aimed at equalizing opportunities instead of resources. To compensate for the disadvan-
tages students in low-income districts face, these districts should receive relatively more
resources.

Naturally, economists disagree about the reforms’ benefits (or harms). On the one hand,
Card and Payne (2002), Lafortune et al. (2018), or Rothstein and Schanzenbach (2021)
attest to their positive impacts on educational achievement and labor market outcomes. On
the other hand, researchers like Caroline Hoxby or Eric Hanushek—the latter a co-author
of chapter 1, nota bene—are more sceptical. Personally, I have sympathy for both sides.
Reforms mandated by a court presumably pay little attention to the actual usefulness of
policies other than restoring constitutional rights (which is, of course, important in and of
itself). It is probably not desirable to distribute funds using the "watering can" principle:
neither is it guaranteed that school funding is the bottleneck in the first place, nor are there
incentives to spend the money efficiently (except if coupled with accountability elements,
as Buerger et al., 2021, highlights). Yet, this does not mean that court-ordered SFRs
cannot do good. They may not be the most efficient policy, but they may still improve the
outcomes of disadvantaged students.

The starting point of chapter 1 is a puzzle in Lafortune et al. (2018): they find that the
SFRs during the adequacy era reduced the achievement gap between low- and high-income
districts, but not between low- and high-income students. Intuitively, this is weird. One
would expect that the income of a district is a proxy for the income of families living there.
Closing the achievement gap by region would then imply a closing of the achievement gap
by family income. Yet, as it turns out, the region is an inadequate proxy for the individual
in this case: because of within-district inequality, low-income families don’t necessarily live
in low-income districts. Targeting a policy based on the average income level of a region
is then inappropriate as it misses the people who should actually benefit from it. At least
this is the explanation of Lafortune et al. (2018) for their puzzling finding.
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Alternatively, income gaps may just miss the positive effects of the SFRs. It is possible
that, although there is no effect on the income gradient, there are effects on broader
measures. This is what Eric Hanushek, Paul Hufe, Marc Piopiunik, and I investigate
in chapter 1. We construct a measure of inequality of educational opportunity (IEOp)
based on the theoretical concept of Roemer (1998). Intuitively, we distinguish between
circumstances and effort as the two determinants of educational achievement. The former
are characteristics outside individual control, such as race, assigned gender at birth, or
parental income. The latter are the factors that students have control over. Achievement
differences due to differences in circumstances are unfair, whereas achievement difference
due to differential effort are not (roughly speaking). As such, our measure of IEOp is a
generalization of the achievement gap that Lafortune et al. (2018) use. The question that
chapter 1 tries to answer is straightforward: did the SFRs of the adequacy era reduce IEOp?
Or put differently, we investigate whether the SFRs were able to reduce the importance of
circumstances for educational achievement.

Descriptively, we find that IEOp has increased between 1990 and 2015 in most states.
This is worrying but doesn’t mean that the SFRs were ineffective. It is, of course, possible
that IEOp would have increased even more in the absence of the reforms. To assess the
causal effect of the SFRs on IEOp, we make use of the fact that court-ordered school
finance reforms can be seen as a natural experiment because the exact timing cannot be
anticipated by legislatures. This is because of the idiosyncrasies of judicial processes, which
make it impossible (or at least very hard) to predict how long a legal suit will take. Under
this assumption, the causal effect of the SFRs on IEOp can be estimated in an event-study
framework. In particular, we estimate standard two-way fixed effects models and recently
proposed alternatives (including Callaway and Sant’Anna, 2020, Sun and Abraham, 2020,
and Roth and Sant’Anna, 2021).

Irrespective of the model, we find the same result: the SFRs did not affect IEOp
whatsoever. This is a depressing finding, given the massive policy changes the reforms
initiated. It is, however, not entirely unexpected (and in line with Lafortune et al., 2018).
The natural follow-up question is why the SFRs were not able to equalize opportunities.
We can only speculate about this, but one possibility is that the benefits of the reforms
materialize only later in the students’ lives. Maybe, for some reason, attending a post-
reform school doesn’t matter initially but becomes relevant once the student enters the
labor force. This is not entirely implausible, as such phenomena have been documented
for other policies as well. But at the end of the day, we have no definite answer to why the
SFRs did not level the playing field for students.

Chapter 2: Maybe parents threw a wrench in the works—which brings me to the next
chapter. In the summer of 2020, I discovered a phenomenal audio series produced by the
New York Times titled "Nice White Parents". In it, reporter Chana Joffe-Walt follows the
story of the Boerum Hill School for International Studies, a public school that was built
with the explicit goal to improve the educational prospects of Black children. The school
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was strategically located in a White neighborhood in an effort to desegregate classrooms.
Yet, even if they helped build the school, White parents did not send their children there.
In interviews with the school’s founders, Joffe-Walt finds out that the reason for this is as
simple as it is distressing: although the White parents were in support of desegregation,
they still didn’t want to jeopardize their children’s academic career—and sent them to
different schools. That is, parents react to policy, thereby potentially counteracting its
purpose. This nexus of public policy and parenting sparked an interest in me. Maybe
education policy is futile if parents are not taken into account? I’m exaggerating, of course,
but still. After listening to the audio series, I decided to add parents to my research agenda.

Around the same time, I read Matthias Doepke’s and Fabrizio Zilibotti’s fantastic book
"Love, Money & Parenting" (Doepke and Zilibotti, 2019). In the book, they argue that
parents matter for macroeconomics and should have their place in economic modelling. As
a case in point, in Doepke and Zilibotti (2017), they develop a model where the choice of
a parenting style is affected by the socioeconomic environment. Roughly speaking, if the
environment becomes more competitive, the stakes are higher for children, and parents
adjust their parenting accordingly. In particular, they become more demanding. Through
the lens of their model, Doepke and Zilibotti connect the rise of authoritative parenting
with increasing inequality. Indeed, both within- and across-country comparisons expose
a striking correlation between inequality and demandingness. In this sense, tiger moms
and helicopter parents may have become so popular because the environment of the 21st

century incentivized them. A competitive world requires a particular skill set, with which
parents are willing to equip their children.

Research in developmental psychology proves those parents right: again and again, par-
enting styles have been shown to be essential for child outcomes. Authoritative parenting
in particular, a combination of demandingness and responsiveness, is associated with the
most favourable outcomes: authoritative parenting is beneficial for the development of self-
regulatory skills, and the verbal give-and-take of responsive parents fosters cognitive and
social skills (Steinberg, 2001). Causally identifying the effect of parenting styles on child
skills is challenging, however. Early research such as Baumrind (1971, 1978, 1989) relies
on observational studies and more or less only reports correlations. More causal evidence
based on experimental settings exists but is scarce and leaves plenty of room for contri-
butions. From an economic perspective, we particularly know little about the dynamic
processes how parenting styles affect child development and how economic decisions play
into them.

In my single-author paper—chapter 2 of this thesis—I address this last point. Earlier
research, such as Del Bono et al. (2016), tackle a similar question with respect to parental
investments, but for parenting styles, things are trickier. From an econometric point of
view, investments are easy to envision as being time-varying (the number of hours spent
on childcare can be different in two time periods), but parenting styles are typically not
thought of in this way. A parent either is authoritative or is not. Yet, time-varying
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measures would allow using dynamic panel estimators that control for the main sources of
endogeneity. So this is where I deviate from existing research: I use detailed information
from a U.K. cohort study and construct time-varying measures of parenting styles. Doing
so makes significant improvements in causal identification possible.

Specifically, I construct measures of parental demandingness and responsiveness, two
well-established parenting dimensions in psychology that form the basis of much of con-
temporary research. I construct these measures for child ages 3 to 14, i.e. for a period
covering both early and middle childhood. Using value-added models and dynamic panel
estimators, I find that demandingness is negatively associated with child cognitive and
non-cognitive skills, whereas responsiveness is positively associated. I also show that the
effects are heterogeneous across child ages, i.e. that the effects are different at different
ages.

An essential contribution of chapter 2 is that I can address feedback effects, i.e. parents
reacting to child skills shocks. Well, almost anyway: I can address parents reacting to past
skill shocks, but contemporaneous reversed causality may still be an issue. Nonetheless,
I find little evidence of feedback effects in the first place, which lends credence to the
assumption that there are no simultaneous responses either. Still, I am actively working
on an extension for chapter 2, which precisely addresses this issue of contemporaneous
reversed causality. But these are dreams of the future and not part of this thesis.

Chapter 3: The final chapter is a combination of the first two chapters, in some sense:
Benjamin Arold, Paul Hufe, and I investigate how school investments interact with genetic
endowments. In a nutshell, we aim at answering the following question: given a student’s
genetic endowment, does the school matter he or she is going to? Or, put differently, can
schools moderate the effects of genetics?

When I first heard questions like these, I was confused. Wasn’t the question about
nature versus nurture rather than nature with nurture? As it turns out, it was not.
The notion of whether there exists a blank slate or whether we are pre-determined by
our genetics is badly outdated. Instead, the relevant question is about gene-environment
interactions (G×E): how genetic endowments and environments influence each other to
produce outcomes (Domingue et al., 2020). G×E can arise if the genetic potential can
be better expressed in some environments than others. The Scarr-Rowe hypothesis is a
prominent example of this, according to which the heritability of cognitive abilities is higher
in more privileged socioeconomic conditions (Tucker-Drob and Bates, 2016). Roughly
speaking, having a high genetic potential is useless if you don’t have the means to exploit
it.

Together with Benjamin and Paul, I tried to shed light on the nexus between genetics
and education policy. In particular, in chapter 3, we estimate the complementarity of stu-
dents’ genetic endowments and school investments. Prior research showed that educational
attainment is highly heritable, and we are interested in how teacher quality and class size
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play into this. Is it the "genetically advantaged" students that benefit from good teachers
and small classes, or the "genetically disadvantaged" students? (Note that there is no value
judgement in the term genetically (dis-)advantaged. By being genetically advantaged, I
mean that a student has inherited genetic variations that are positively associated with
educational attainment.)

We leverage recent advances in molecular biology to measure genetic endowments and
use so-called polygenic scores (PGS). PGSs are individual-level measures for the genetic
propensity to an outcome of interest (educational attainment, in our case). Basically, a
PGS aggregates the genetic variations associated with the outcome. Their predictive power
is impressive: the PGS by Lee et al. (2018) can explain more than 12% of the variation
in educational attainment. Some geneticists go even so far as to call them fortune tellers
(Plomin, 2018).

Using a between-family design, we find that genetic endowments and teacher quality
act as substitutes in the production of educational attainment (on the other hand, for
class size, we find no significant interaction effects). Intuitively, the substitution effect
we find means that genetically disadvantaged students benefit relatively more from high-
quality teachers. This implies that improvements in the quality of teachers may reduce the
genetic gradient in educational attainment. A substitution effect is great news because it
also implies that there is no trade-off between equity and efficiency concerns: from both
perspectives, school investments are desirable.

It is difficult to say what the mechanisms behind the substitution effect are. When we
take a closer look at transitions in the educational system, we find that the substitutability
of genetic endowments and teacher quality is largest at the stage of college education. One
interpretation of this could be that high-quality teachers help disadvantaged students to
go to college, e.g. by providing them with information or nudging them to apply.

Now what to do with this result? Although a policy can moderate the effect of genetics,
this doesn’t imply that this policy should be implemented because of that. I am sceptical
that it would be sensible to base policy decisions on the population’s genetic endowments,
even when intentions are good. Luckily, at least in the case of school investments, our
results suggest that no policy change is required anyway. Because there is no trade-off
between equity and efficiency, arguing for investments based on efficiency grounds is already
sufficient.

With this, I conclude the preface to my thesis. What I take from my work on the
three chapters is this: children’s success in life is co-determined by factors outside their
responsibility—the schooling system, the household they grow up in, their genetics—but
this does not mean that their success is pre-determined. Policy still can, and should, aim
at increasing equality of opportunity. The question is just which policy is the right one.
And as it is so beautifully said in virtually every paper’s last paragraph: more research is
needed to answer this.



Chapter 1

The Impact of School Finance Reforms
on Inequality of Educational
Opportunity∗

1.1 Introduction

Educational achievement in the U.S. is not only the result of effort but also significantly
influenced by factors outside individual responsibility—exemplified by the sizable achieve-
ment gap between students from high and low socioeconomic backgrounds (Hanushek et
al., 2019). Since the Coleman Report (Coleman et al., 1966), a vast literature has studied
policies that try to break the link between these factors and student outcomes. Finding
effective policies is of key importance because skills acquired during childhood and ado-
lescence are crucial for economic and social outcomes during adulthood. Inequality of
educational opportunity (IEOp) will then translate into unfair inequalities later in life.

In the 1960s, legal scholars argued that the school finance regimes at the time created
unequal educational opportunities for students and that these regimes violated federal and
state constitutions (Coons et al., 1970; Horowitz, 1965; Wise, 1968). Because public schools
were financed primarily via local property taxes, affluent districts were able to spend more
per student (Hoxby, 2001). Legal suits followed that were often successful, resulting in
court-ordered school finance reforms (SFRs) in many states. In a first wave of reforms,
SFRs aimed at equalizing resources across districts by changing the state education funding
formulas. In a second wave, beginning in the late 1980s, the goal shifted from equalization
of resources to adequate funding. In an effort to create equal opportunities, SFRs during
this second wave sought to equalize outcomes instead of inputs, resulting in higher relative

∗This chapter is based on joint work with Eric Hanushek, Paul Hufe, and Marc Piopiunik.
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spending in low-income districts.

In this study, we focus on the second wave of SFRs and investigate whether they were
successful in increasing equality of educational opportunity. We follow a series of recent
studies that exploit court-ordered SFRs as a source of exogenous shocks to school finances
(Biasi, forthcoming; Jackson et al., 2015; Lafortune et al., 2018; Rothstein and Schanzen-
bach, 2021). Our framework of IEOp is based on Roemer (1998), who differentiates between
effort and circumstances as the two determinants of outcomes. Intuitively, unfair inequal-
ity is outcome differences due to circumstances—factors that individuals cannot influence
and thus cannot be held responsible for. In this sense, our paper asks whether the SFRs
were able to reduce the influence of circumstances on student outcomes.

Our analysis is based on data from the National Assessment of Educational Progress
(NAEP). Since 1990, NAEP administers standardized and state-representative tests in
math and reading every two years on average. Tests are administered to around 100,000
students in each subject, grade, and year. We use NAEP test scores to measure IEOp
along the lines of Bourguignon et al. (2007) and Ferreira and Gignoux (2011), who propose
to estimate a linear model as a function of circumstances and effort, and to simulate a
counterfactual outcome distribution with the estimated model. The counterfactual distri-
bution is then used to compute the inequality of opportunity measure. We additionally
employ a machine learning approach proposed by Brunori et al. (2021) using conditional
inference forests. Descriptively, we find that IEOp has increased slightly since 1990 in most
states. That is, variation in students’ circumstances increasingly explains the variation in
test scores.

The question is whether IEOp would have increased even more in the absence of SFRs.
We rely on an event-study framework to answer this question. Court-ordered reforms
represent natural experiments because of the idiosyncrasies of the judicial process: the
exact timing of the reforms cannot be anticipated by legislatures and is thus plausibly
exogenous (Lafortune et al., 2018; Rothstein and Schanzenbach, 2021). We employ recently
developed methods to address issues related to staggered treatment adoption in event-study
designs (see De Chaisemartin and D’Haultfoeuille, 2021, for a review). In particular, we
focus on the proposed solution by Callaway and Sant’Anna (2020).

We don’t find an effect of SFRs on IEOp, irrespective of the model. This null result
is robust to a battery of robustness checks. Although it was the reforms’ explicit goal to
increase equality of educational opportunity, we find no evidence that they were successful,
at least with respect to reducing the influence of circumstances on achievement test scores.

Several other studies exploit court-ordered SFRs for identification. Evidence suggests
that the earlier reforms during the 1970s and 1980s narrowed the spending gap between
richer and poorer districts as well as the SAT gap between families from different socioe-
conomic backgrounds (Card and Payne, 2002). Lafortune et al. (2018) and Rothstein and
Schanzenbach (2021) are closest to our study from an econometric point of view and provide
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evidence for the impact of the court-ordered SFRs since the late 1980s. Also using NAEP
data, Lafortune et al. (2018) find that the reforms increased the achievement of students in
low-income districts, thus reducing the achievement gap between low- and high-income dis-
tricts. Rothstein and Schanzenbach (2021) additionally find positive effects on educational
attainment for students that were affected by the reforms. Interestingly—but consistent
with our null result—Lafortune et al. (2018) find no effect of reforms on statewide achieve-
ment gaps between high- and low-income students (in contrast to achievement gaps between
high- and low-income districts). They argue that this is because low-income students are
not highly concentrated in low-income districts. That is, because of within-district income
inequality, targeting low-income districts by reforming funding formulas may fail to bene-
fit low-income students that live in high-income districts. This begs the question whether
SFRs actually served their intended purpose—after all, their goal was to increase opportu-
nities, which is not the same as the achievement gap between districts (but between groups
of individuals).1

Our study contributes to the understanding of the effects of SFRs on student outcomes.
In particular, we directly address the puzzling finding of Lafortune et al. (2018) that the
reforms had no effect on achievement gaps between high- and low-income students. Our
measure of IEOp is a broader measure of the distribution of educational opportunities and
goes beyond gaps by income or race. Intuitively, although the SFRs may have had no effect
on the income gradient, they may have affected other dimensions of IEOp.

We also contribute to the literature on Roemerian inequality of opportunity in at least
two ways. First, the focus of the current literature is predominantly on the overall impact
of circumstances on either income, wealth, or health-related issues (see e.g. Hufe et al.,
forthcoming; Hufe and Peichl, 2019). Yet, although we know that circumstances play
an important role for life success, we know much less about the dynamic processes that
generate these outcomes. Our study sheds light onto the role of the educational system,
and whether school finance reforms can mitigate the increasing inequality in educational
achievement. Second, our study is one of the few with a causal identification strategy. This
allows us to not only describe the evolution of inequality of opportunity, but also to assess
whether policy was successful in leveling the playing field.2

The remainder of this paper is as follows. In section 1.2, we discuss the school finance
reforms since the 1970s and their effects on student outcomes. In section 1.3, we describe
our measure of IEOp, and in section 1.4, we describe our data. In section 1.5, we introduce
the empirical strategy, and in section 1.6, we discuss the results. Section 1.7 concludes.

1On the other hand, Biasi (forthcoming) finds that revenues equalization across school districts had a
large effect on intergenerational mobility of low-income students. Note, however, that mobility is mea-
sured by comparing outcomes of two generations during adulthood, which is not directly comparable with
achievement tests during high school.

2Camarero Garcia (2022) also investigates Roemerian inequality of opportunity in education. He ex-
ploits a school reform in Germany that shortened the duration of secondary school in several federal states
and that increased learning intensity.
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1.2 Background: School Finance Reforms

Over the last few decades, school finance reforms dramatically changed the state-level fi-
nance regimes in the United States. In a first wave during the 1970s and 1980s, the so-called
equity era, SFRs aimed at reducing resource disparities across districts. Because public
schools were financed primarily via local property taxes, SFRs during this era explicitly
intended to redistribute from districts with high to districts with low per-pupil property
values (Hoxby, 2001). At the time, affluent districts were able to spend more per student
because the local property tax base is typically higher in those areas. Some of the SFRs
during the equity era were implemented in response to court orders: legal scholars brought
and won legal suits arguing that the school finance regime violated the responsibility of
the state to provide quality education to all children (Jackson et al., 2015). Other SFRs
were implemented by legislatures without a court order, sometimes to prevent potential
legal battles (Lafortune et al., 2018).

The equity reforms were controversial, not least because the Coleman Report implied
that additional revenues for districts with low per-pupil property values were not pro-
ductive for increasing equality of educational opportunity (Coleman et al., 1966). Also,
because redistribution across districts was based on endogenous property values, they have
sometimes led to a levelling-down, where greater spending equality was accompanied by
lower average spending (Hoxby, 2001). In the extreme case, per-pupil spending even fell in
districts that were intended beneficiaries of equalization, as in the 1976 reform in Califor-
nia. Nonetheless—efficiency concerns aside—evidence suggests that the SFRs during the
equity era were partly successful in reducing within-state inequality in spending (Murray
et al., 1998), and in narrowing the achievement gap between different family background
groups (Card and Payne, 2002).

Beginning in the late 1980s, finance regimes were challenged on adequacy instead of
equity grounds. The adequacy era began with the 1989 Kentucky Supreme Court ruling
that the constitution requires the state to provide each child with an equal opportunity to
have an adequate education. To compensate for the disadvantages students in low-income
districts face, the Court emphasized that the state ought to provide funding to equalize
outcomes instead of inputs. As a result, many SFRs during the adequacy era aimed at
higher spending in low-income than in high-income districts. Indeed, Lafortune et al.
(2018) show that since 1990, real per-pupil revenues rose significantly more in the lowest
income districts compared to the highest income districts. Specifically, they show that the
districts in the bottom quintile of the state-wide income distribution collected about 20
percent less revenues in 1990 than districts in the top quintile, but that they are in parity
since the 2000s.

The effects of the SFRs during the adequacy era on educational opportunities are am-
biguous, however. On the one hand, Buerger et al. (2021) and Lafortune et al. (2018)
find positive effects on educational achievement for students from low-income districts.
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Rothstein and Schanzenbach (2021) find that the reforms also lead to increases in educa-
tional attainment and earnings, particularly for Black students and men.3 On the other
hand, Lafortune et al. (2018) find no effects on state-level average achievement, nor on
the achievement gaps between high- and low-income students. That is, while Rothstein
and Schanzenbach (2021) find evidence that the SFRs improved equality of educational
opportunity, Lafortune et al. (2018) do not.

There are several explanations for this discrepancy. First, Rothstein and Schanzenbach
(2021) have a significantly larger sample, which allows them to better detect state-level
effects. Second, they focus on outcomes later in life instead of educational achievement.
Not only does this allow them to detect effects of SFRs that materialize with a delay,
but also to detect effects mediated by non-cognitive skills. Third, the gradients under
consideration by Lafortune et al. (2018) may not be sufficient to capture the full effects of
the SFRs on educational opportunities.

Our study addresses this third point. By using a broader measure of IEOp, we may
detect effects on the distribution of opportunities that are being missed when focusing on
income or racial gradients separately.

1.3 Inequality of Opportunity

1.3.1 Conceptual Framework

Roemer (1998) distinguishes between two determinants of individual outcomes: circum-
stances and effort. Circumstances are characteristics outside individual control—e.g. race,
assigned gender at birth, or parental education—and are the source of unfair inequalities
in outcomes. On the other hand, effort includes all factors that are relevant in the produc-
tion of outcomes that the individual has control over and is personally responsible for. In
contrast to circumstances, inequalities that are the result of differential effort are justified.

More formally, assume that an outcome of individual i is produced by that individual’s
set of P (time-invariant) circumstances, Ωi = {C1

i , . . . , C
P
i }, and effort, ei:

yi = f(Ωi, ei). (1.1)

3Pooling SFRs from the equity and adequacy eras, Biasi (forthcoming) also finds positive effects of
revenue equalization on intergenerational mobility. Moreover, in a recent meta-analysis on studies exploring
the distribution of the causal effects of public K-12 school spending on student outcomes, Jackson and
Mackevicius (2021) find that increases in per-pupil public school spending increases test scores, high
school graduation, and college-going. Some but not all of the studies in their meta-analysis use SFRs for
identification.
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Further assume that a finite population indexed by i ∈ {1, . . . , N} can be partitioned
into k non-overlapping subgroups called types,

∏
= {T1, . . . , Tk}, such that individuals

within each subgroup share the same set of circumstances (Ferreira and Gignoux, 2011).
For example, if there are two circumstance variables—assigned gender at birth and parental
education—that each have two possible realizations—male/female and high education/low
education, respectively—there are k = 4 possible types. Each type-specific distribution
of the outcome represents the opportunity set which can be achieved by exerting different
degrees of effort.4

Equality of opportunity (EOp) is achieved if the aggregate values of opportunity sets
are equalized across types. We focus on the ex-ante egalitarian approach of EOp, where
the value of the opportunity set of a type is given as the expected value of its outcomes,
E[y|Ω] (Ferreira and Gignoux, 2011; Fleurbaey and Peragine, 2013).5 This implies that the
distribution of opportunities in a population can be expressed as follows (Brunori et al.,
2021):

yc = (yc1, . . . , y
c
i , . . . , y

c
N) = (E[y1|Ω1], . . . , [yi|Ωi], . . . , [yN |ΩN ]), (1.2)

where yc denotes a counterfactual distribution of y. The ex-ante egalitarian approach
thus focuses on between-type differences in the value of opportunity sets without paying
attention to the specific effort realizations of individual type members.

By applying an inequality measure I() to yc, one obtains an ex-ante utilitarian measure
of inequality of opportunity. We rely on the variance of yc as our benchmark measure.6
That is, inequality of opportunity for a population is given as the variance of the counter-
factual distribution of that population:

IOp = I(yc) = σ2(yc). (1.3)

Alternatively, IOp can be expressed in relative terms:

IOprel =
I(yc)

I(y)
, (1.4)

which yields the share of overall inequality that is unfair.

Note that because in empirical applications, there will always be unobserved circum-
stances, the empirical IOp is weakly smaller than the true value. Measures of IOp are thus
interpreted as lower-bound estimates.

4Note that "degree of effort" is not the same as "level of effort" for Roemer, 1998. The former refers to
the quantile of the type-specific effort distribution, whereas the latter refers to the absolute level of exerted
effort. This implies that outcome differences between two individuals may not necessarily be justified by
differences in the exerted effort.

5For an overview of alternative approaches, see Ramos and Van de Gaer (2016).
6In robustness analyses, we also apply the Gini index, the mean log deviation, and percentile ratios.
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1.3.2 Measuring Inequality of Educational Opportunity

Implementing Equation (1.3) requires a partitioning of the population into types,
∏

, and an
estimate of the counterfactual outcome, yc. To obtain the latter, we rely on the parametric
approach (Bourguignon et al., 2007; Ferreira and Gignoux, 2011). Specifically, we first
estimate the following model:

yi = β0 +
P∑

p=1

βpC
p
i + εi, (1.5)

where yi is an outcome of individual i, and Cp
i is the p-th circumstance variable. β0 and

βp are coefficients, and εi is an error term. Equation (1.5) is estimated with OLS, and the
predicted values yield the counterfactual outcomes:

yci =
P∑

p=1

β̂pC
p
i . (1.6)

The parametric approach has two crucial shortcomings. First, it makes strong assump-
tions about the functional form of Equation (1.1). Importantly, Equation (1.5) may miss
interdependencies or non-linearities. Second, the researcher is forced to make arbitrary
choices about which circumstance variables to include in the model. This can be prob-
lematic because IOp estimates are sensitive to the number of types considered (Brunori
et al., 2021; Ferreira and Gignoux, 2011). We therefore also apply the approach by Brunori
et al. (2021), who propose computing yci using conditional inference regression forests. In
contrast to the parametric approach, where the researcher has to specify the functional
form and manually select the circumstance variables, regression forests rely on machine
learning algorithms that make data-driven decisions. Moreover, forests are well-suited to
balance the bias-variance trade-off, i.e. the problem that the model might be either over-
or underfitted.7 We describe the approach by Brunori et al. (2021) in section A.2 in the
Appendix.

7A model with low bias and high variance yields good in-sample predictions, but bad out-of-sample pre-
dictions (overfitting). For a model with high bias and low variance, the opposite is the case (underfitting).
Regression forests incorporate algorithms that balance the bias and variance of a model.



8

1.4 Data

1.4.1 NAEP

We construct IEOp measures from restricted-use microdata from the National Assessment
of Educational Progress (NAEP). NAEP administers standardized tests in grades 4, 8, and
12 that are comparable both across states and years. The first state-level assessments were
conducted in 1990 in 38 states and have been repeated roughly every two years since (see
Table 1.1). For each state and year, a stratified sample of approximately 100 grade-eligible
public schools is selected within each jurisdiction, plus about 700 private schools across
all states. Within each school, about 60 students are selected for assessment. In the most
recent assessment in our sample in 2015, 49 states participated, with on average 5,219
students per state. We restrict the sample to 8th grade NAEP scores because important
student characteristics are not available for 4th graders, and 12th graders are only assessed
in one year. We also restrict our sample to the math and reading assessments because
these subjects are available for multiple years.

The math assessments consist of 25-minutes blocks that cover five mathematics con-
tent strands: number properties and operations; measurement; geometry; data analysis,
statistics, and probability; and algebra. Similarly, the reading assessments consist of 25-
minutes blocks that cover three reading targets: locate/recall; integrate/interpret; and
critique/evaluate. Assessments take place in a testing environment with fewest possible
distractions, such as the students’ own classrooms. Due to time constraints, students don’t
receive all blocks but only a subset. A set of plausible values—imputed values that resemble
individual test scores—are therefore provided for each student. We use the first plausible
value in our analysis.8

Our concept of IEOp is based on the idea that circumstances affect test scores. NAEP
collects the following student-level circumstances that are available in all assessment waves
(and that we recode as indicated in parentheses to harmonize them across waves): gender
(female; male), books at home (more than 25; less or equal than 25), highest degree
mother and father (no high school; high school; some college after high school; college),
ethnicity (Hispanic; Black; White; Asian; Indian; other), and limited English proficiency
(yes; no).9,10 Information about gender, books at home, parental education, and ethnicity
is self-reported by the student. Limited English proficiency is reported by their schools.

8We restrict ourselves to the first plausible value due to computation time constraints.
9We exclude eligibility for free lunch, a proxy for low-income students, because of missing values. In

particular, if a school did not participate in the National School Lunch Program, all sampled students in
that school are assigned a missing value ("information not available"). Because of this, information about
free lunch eligibility is a bad proxy for low-income status in NAEP.

10Limited English proficiency is a borderline case of whether it should be considered a circumstance
variable. On the one hand, it is an indicator for migration status. On the other hand, English proficiency
is an indicator of effort among immigrants.
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Table 1.1: NAEP Overview

Subject and grade

Year Math, 8th grade Reading, 8th grade Number of states Number of students

1990 X 38 97,890
1992 X 42 105,280
1996 X 43 103,880
2000 X 41 87,310
2002 X 45 113,770
2003 X X 50 288,870
2005 X X 50 298,200
2007 X X 50 296,940
2009 X X 50 306,670
2011 X X 50 317,240
2013 X X 50 325,620
2015 X X 49 255,710

Note: The table reports the NAEP assessment years (math and reading, 8th grade) and the sample sizes. The table excludes
Alaska, Utah in 2015, and state-subject-year cells with less than 1,000 observations in NAEP. The table also excludes the
1994 NAEP assessment. In the final column, students are pooled across subjects and rounded to the nearest 10. Data: U.S.
Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of
Educational Progress (NAEP), Mathematics and Reading Assessments, Selected Years. Own calculations.

1.4.2 Inequality of Educational Opportunity

Figure 1.1 shows the benchmark estimates for math IEOp in 1992 and 2013, where IEOp is
measured using conditional inference forests (see corresponding Figure A.1 in the Appendix
for reading IEOp).11 In section A.2 in the Appendix, we describe how we have implemented
the forests. The estimates in Figure 1.1 (Figure A.1) refer to overall IEOp, given as the
weighted variance of the counterfactual NAEP math (reading) test score distribution.12

We compute Equation (1.3) separately for each state-subject-year cell. As circumstance
variables we include gender, books at home, highest degree mother, highest degree father,
ethnicity, and limited English proficiency.

Figure 1.1 shows that math IEOp increased for the majority of states. Inequality
increased most in the South West (Utah and Colorado), Midwest (Minnesota, Iowa, and
Wisconsin), and North West (Idaho). Math IEOp decreased between 1992 and 2013 in
just eight states (in descending order): New Jersey, Louisiana, Mississippi, Texas, South
Carolina, Alabama, Indiana, and Florida. Interestingly, IEOp in the U.S. has converged

11Figures A.2 and A.3 in the Appendix also show the relative measure of math and reading IEOp, re-
spectively. The within- and across-state variation in IEOp is similar for the absolute and relative measures.

12We also apply the Gini coefficient, mean log deviation (MLD), and three percentile ratios (P95/P5,
P90/P10, and P75/P25) as alternatives. Figure A.4 in the Appendix shows that all measures are highly
correlated with each other.
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between 1992 and 2013 across states: high-inequality states in 1992 either became more
equal or only slightly more unequal, whereas low-inequality states became more unequal.

The OLS and tree-based approaches yield similar results to the estimates using condi-
tional inference forests (see Figure A.5 in the Appendix). In section A.3 in the Appendix,
we also show that the out-of-sample prediction accuracies of the different approaches are
similar.

1.4.3 School Finance Reforms

Some states have implemented more than one SFR (see Table A.1 in the Appendix).
Because our empirical framework requires a single reform per state, we follow Lafortune
et al. (2018) and select the most consequential reform in each state. Specifically, for each
state s and each SFR in that state, Lafortune et al. (2018) estimate the following time
series regression:

Est = αs + 1(t > tns )λs + εst, (1.7)

where tns ∈ {1, . . . , Ns} is the n-th SFR in state s (out of Ns reforms in total), and Est is
a measure of progressivity of state aid. They choose the reform that yields the largest t
statistic for λs.

Figure 1.2 visualizes the chosen reforms and their timing.13 The states highlighted in
red are states that have implemented test-based accountability reforms. Buerger et al.
(2021) show that these reforms were particularly effective in reducing the achievement gap
between low- and high-income districts. In a robustness check, we restrict the treatments
to these accountability reforms.

13The reforms in Lafortune et al. (2018) are SFRs that are either court-ordered or implemented by
legislatures without a court order. In a robustness check, we restrict the sample to court-ordered reforms
only.
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Figure 1.1: Inequality of Educational Opportunity
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Note: The figure shows math IEOp in 1992 and 2013, where IEOp is measured using conditional inference forests. The
estimates refer to overall IEOp, given as the weighted variance of the counterfactual NAEP math test score distribution.
The included circumstance variables are gender, books at home, highest degree mother, highest degree father, ethnicity,
and limited English proficiency. Data: U.S. Department of Education, Institute of Education Sciences, National Center for
Education Statistics, National Assessment of Educational Progress (NAEP), Mathematics Assessment, Selected Years. Own
calculations.
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Figure 1.2: School Finance Reforms
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Note: The map shows the school finance reforms chosen by Lafortune et al. (2018). The color-code indicates the reform
year. States in grey are defined to have had no school finance reform between 1990 and 2015 (see Table A.1 in the Appendix
for an overview). The states highlighted in red are states that have implemented test-based accountability reforms.
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1.4.4 Analysis Sample

We remove two outliers from the sample: math IEOp for D.C. in 1996 and math IEOp for
New Jersey in 2015. We also remove Utah in 2015 and all of Alaska because of missing
values in the circumstance variables, as well as state-subject-year cells with less than 1,000
observations in NAEP. Finally, we remove Kentucky from the sample because it is always
treated (reform in 1990).

Figure 1.3 visualizes the treatment periods of the estimation sample. For each state,
the first row refers to math IEOp, and the second row refers to reading IEOp. Light-blue
(dark-blue) tiles indicate pre-reform (post-reform) periods, and white tiles indicate missing
observations, i.e. where no IEOp measure is available.14

1.5 Empirical Strategy

Following Lafortune et al. (2018) and Rothstein and Schanzenbach (2021), we leverage
variation in the timing of court-ordered and legislative SFRs in an event-study frame-
work to identify their causal effect on IEOp. Our framework assumes that states without
a reform in a particular year are valid counterfactuals for states with a reform in that
year (after accounting for fixed differences between states and for common time effects).
For this validity to hold, a key identifying assumption is that the reforms are exogenous
events and not a response to student outcomes. Lafortune et al. (2018) and Rothstein
and Schanzenbach (2021) argue that, due to the long judicial process, the exact timing
of court-ordered reforms is plausibly exogenous, and that they therefore can be seen as
natural experiments.15,16

We describe the event-study framework that makes use of this assumption in section
1.5.1. In section 1.5.2, we discuss issues threatening the validity in designs where the
treatment adoption is staggered (as in our case).

14Note that we have an unbalanced panel. On the one hand, reading IEOp is only available since 2002.
On the other hand, the treatment years, i.e. the year when the SFR was implemented, are not necessarily
overlapping with the years where we observe IEOp. This implies that not all relative time periods since
treatments are observed for all states.

15Note that this logic does not apply to legislative SFRs. We therefore exclude them in robustness checks
(finding that their exclusion barely affects the results).

16Card and Payne (2002) and Jackson et al. (2015) are other studies using court-ordered SFRs as
exogenous events.
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Figure 1.3: Treatment Status
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Note: The figure shows the treatment periods of the estimation sample. For each state, the first row refers to math IEOp,
and the second row refers to reading IEOp. Light-blue (dark-blue) tiles indicate pre-reform (post-reform) periods, and white
tiles indicate missing observations.
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1.5.1 Event-study Framework

As a baseline, we estimate the following static two-way fixed effects (TWFE) model:

θst =δs + κt + 1(t > t∗s)β
jump + 1(t > t∗s)min(8, t− t∗s)β

exposure + (t− t∗s)β
trend+ (1.8)

Xstγ + εst,

where θst denotes IEOp in state s at year t. δs and κt are state and year effects, respectively.
t∗s denotes the year when the reform was implemented in state s, Xst is a vector of time-
varying controls, γ is a vector of coefficients, and εst is an error term.

1(t > t∗s) is a dummy variable indicating the time periods after state s has implemented
its SFR. βjump then represents the jump in the outcome immediately following the imple-
mentation of a reform. 1(t > t∗s)min(8, t− t∗s) is a count variable indicating the number of
years state s is exposed to the reform (with a maximum of eight years, and equal to zero for
t ≤ t∗s). The coefficient βexposure captures the idea that the effect of a SFR on IEOp grad-
ually increases because cohorts in s right after t∗s are not treated for their full school years.
Intuitively, the longer a student attends school under a reformed school finance regime, the
larger is the impact on his or her outcomes. Capping the count variable reflects that there
is an upper bound for how long a student can be treated. Because we use NAEP test scores
at 8th grade to construct θst, a student that enters 1st grade in the year after t∗s can be
treated for eight years at maximum. Finally, (t− t∗s) is a linear trend, and βtrend captures
trend differences prior to t∗s between states with and without SFR implemented in year t.
β̂trend = 0 is typically used as an indication that the timing of the SFRs is exogenous.

Equation (1.8) assumes a linear delayed effect. We additionally estimate the following
dynamic TWFE model to also allow the delayed effect to be non-linear:

θst = δs+κt+
kmax∑

r=kmin
r ̸=0

1(t = t∗s+r)βr+1(t < t∗s+kmin)βlower+1(t > t∗s+kmax)βupper+εst. (1.9)

βr is the effect of the SFRs on IEOp r years after implementation (or prior to, for
r < 0). We exclude r = 0 such that t∗s is the reference point and all other effects are
measured relative to r = 0. kmin and kmax specify the lower and upper ends of the time
horizon under consideration, respectively. 1(t < t∗s + kmin) and 1(t > t∗s + kmax) indicate
periods before or after this time horizon, such that βlower and βupper capture the average
effects for the lower and upper endpoints, respectively.

βexposure in Equation (1.8) and βr in Equation (1.9) are our coefficients of interest. For
their consistent estimation, we require the standard parallel trends assumption, i.e. that
θst would have moved in parallel in states with and without SFRs. Similar to β̂trend = 0
in Equation (1.8), β̂r = 0 for r < 0 is typically used as a test for pre-existing trends.
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1.5.2 Staggered Adoption of School Finance Reforms

The SFRs during the adequacy era were implemented over a period of almost 20 years. A
series of recent studies has highlighted that a TWFE model with staggered adoption can
yield biased estimates because the model makes both "clean" comparisons between treated
and not (yet) treated units as well as "forbidden" comparisons between units who are both
already treated (De Chaisemartin and D’Haultfoeuille, 2021; Roth and Sant’Anna, 2021).
The βr coefficients in Equation (1.9) are then a weighted average of all these comparisons,
but when treatment effects are heterogeneous across time or units, the weights may be
negative because of the forbidden comparisons (De Chaisemartin and D’Haultfœuille, 2020;
Goodman-Bacon, 2021). In the extreme case, the TWFE coefficients may even have a
different sign than every unit’s treatment effect.

Several estimators have been proposed to account for this issue. They all have in com-
mon that they isolate the clean comparisons between treated and not treated units, and
then aggregate the unit-level treatment effects to obtain a parameter of interest. The
estimators differ in their identifying assumptions (e.g. the specific assumptions about par-
allel trends) and their applicability (e.g. the required sample structure such as a balanced
panel).

The approach by Callaway and Sant’Anna (2020) is best suited for our application,
and we thus implement their estimator. First, they allow for arbitrary heterogeneity of
treatment effects. This is important because, a priori, we would expect heterogeneity both
across time and states: across time because the effect of a SFR is likely to increase as
students are progressively exposed to the reformed school finance regime; across states
because the environments in which the reforms are implemented may be different (e.g.
the business cycles). Second, their approach only requires the parallel trends assumption
to hold conditional on covariates, which allows us to condition on observable state-level
characteristics. Third, they allow for an unbalanced panel. This is crucial because we don’t
observe the NAEP reading test scores before 2002.

Callaway and Sant’Anna (2020) is applicable for staggered adoption designs where (i)
the treatment is irreversible (i.e once a unit is treated, it stays treated), (ii) there are
no always-treated units (or if there were, they have been excluded from the sample), and
(iii) treatment anticipation is limited and known.17 Our application satisfies (i): once
implemented, SFRs were not reversed. It also satisfies (ii) by construction because we
drop always-treated units. (iii) also holds because the exact timing of the reforms cannot
be anticipated by legislatures.

The parallel trends assumption of Callaway and Sant’Anna (2020) further requires
17When covariates are included, an overlap condition additionally applies, i.e. that there is common

support in the generalized propensity scores between treated and non-treated units. This guarantees that
for each treated unit with a particular covariate value, there are at least some untreated units in the
population with the same value.
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that, conditional on covariates, the average outcomes for units that are first treated in
a particular year and for a control group would follow parallel paths in the absence of
treatment. The control group can either be the never-treated or not-yet-treated units.
We favour the never-treated units because the conditional parallel trends assumption then
does not restrict observed pre-treatment trends across groups, whereas it does when using
not-yet-treated units as control group (Marcus and Sant’Anna, 2021).

The basic building block of Callaway and Sant’Anna (2020) is the group-time average
treatment effect on group g at time t, denoted asATT (g, t).18 If the identifying assumptions
hold, and covariates play no role, ATT (g, t) is given as the difference between the expected
change in the outcome for cohort g between periods g − 1 and t and the expected change
for a control group C:

ATT (g, t) = E[Yt − Yg−1|Gg = 1]− E[Yt − Yg−1|C = 1], (1.10)

where Gg is a binary variable that is equal to one if a unit is in group g (Gi,g = 1{Gi = g}),
and C is a binary variable that is equal to one for never-treated units (Ci = 1{Gi = ∞}).

ATT (g, t) can be estimated by replacing the expactations with their sample analogs:

ÂTT (g, t) =
1

Ng

∑
i:Gi=g

[Yit − Yi,g−1]−
1

NC

∑
i:Gi=∞

[Yit − Yi,g−1], (1.11)

where Ng and NC are the numbers of units in group g and the control group, respectively.
If there is treatment anticipation, Yi,g−1 can be replaced with Yi,g−δ−1, where δ is the
anticipation period.

Callaway and Sant’Anna (2020) propose estimating a separate average treatment effect
for each group-time combination. In a next step, they aggregate the ÂTT (g, t) to a param-
eter of economic interest. For our application, we focus on the event-study representation:

ÂTT (e) =
∑
g

ŵgÂTT (g, g + e), (1.12)

where e = t − g denotes the relative time to the treatment adoption, and ŵg denotes the
(estimated) weight for group g. In the simplest case, ŵg is given as the relative group size
of g in the treated population.

18In our application, g is given by the reform year. Two states share the same g when their respective
reforms are implemented in the same year.
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1.5.3 Control Variables

We include a battery of state-level control variables to strengthen the parallel trends as-
sumption: the population shares of (i) Whites, (ii) Blacks, and (iii) Hispanics, (iv) the
share of unemployed individuals, (v) the share of individuals with at least a four-year
college degree, (vi) the poverty rate, and (vii) the mean individual income (in logarithms).

We use data from IPUMS CPS, an integrated data set based on the Current Population
Survey (CPS; Flood et al., 2020). The CPS is a monthly household survey conducted jointly
by the U.S. Census Bureau and the Bureau of Labor Statistics, and is administered to over
65,000 households. Our variables of interest are taken from the CPS’s March Annual Social
and Economic Supplement. We use the annual social and economic supplement individual
weights to aggregate the variables to the state level.19

Table 1.2 presents descriptive statistics of the control variables for states with and
without at least one school finance reform (i.e. treatment and control states) in 1990. The
values refer to the unweighted averages across all states within a group. Treatment and
control states are similar in terms of unemployment, poverty, education, and income. In
terms of ethnic composition, treatment states have higher shares of Whites and Hispanics
on average, but lower shares of Blacks.

Table 1.2: Control Variables

States with SFR States without SFR

Mean S.D. Mean S.D. ∆ Mean

White 0.89 0.07 0.81 0.19 0.09∗∗

Black 0.08 0.07 0.14 0.16 −0.07∗

Hispanic 0.07 0.10 0.03 0.03 0.04∗

Unemployed 0.04 0.01 0.04 0.01 0.00
Below poverty line 0.13 0.03 0.13 0.05 0.00
College degree 0.19 0.04 0.18 0.04 0.01
Log income 9.74 0.15 9.74 0.13 0.00
Note: The table reports unweighted means and standard deviations across states of the shares of (i) Whites, (ii) Blacks,
(iii) Hispanics, (iv) unemployed, (v) individuals below the relative poverty line, (vi) individuals with a college degree, as well
as the unweighted average of log personal incomes (all values from 1990). The last column reports the differences in means
between states with and without SFR, and the statistical significance of these differences (∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1).
Individual-level data is aggregated to the state level using annual social and economic supplement individual weights. All
variables are harmonized by IPUMS CPS. Data: IPUMS CPS (Flood et al., 2020).

19The state-level sample size of the IPUMS CPS in 1990 ranges from 1,259 (Vermont) to 14,437 (Cali-
fornia) individuals.
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1.6 Results

1.6.1 Baseline Results

Table 1.3 shows the estimates for the static TWFE model. In the first column, the model
is estimated on a pooled sample including both math and reading IEOp (including state-
subject fixed-effects). In columns two and three, the model is estimated on separate sam-
ples for math and reading IEOp, respectively (including state fixed-effects). All models
include the full set of control variables, and standard error are clustered at the state-subject
(pooled sample) or state (separate samples) level. None of the estimates reaches statistical
significance at the conventional level, suggesting that the SFRs had to effect on IEOp.

Table 1.3: Static TWFE Estimates

IEOp

Math and reading Math only Reading only

βjump 10.75 11.37 13.67
(9.39) (13.64) (12.11)

βexposure -0.39 -0.20 -1.28
(1.49) (2.32) (1.53)

βtrend -0.12 -0.44 1.15
(0.89) (1.11) (1.16)

Control variables Yes Yes Yes
Within R2 0.03 0.04 0.05
N 886 500 386

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Note: The table shows the estimates for the static TWFE model. In the first column, the model is estimated on a pooled

sample including both math and reading IEOp. In columns two and three, the model is estimated on separate samples for
math and reading IEOp, respectively. All models include the following state-level control variables: the population shares
of Whites, Blacks, and Hispanics; the share of unemployed individuals; the share of individuals with at least a four-year
college degree; the poverty rate; and the mean individual income (in logarithms). The model in the first column includes
state-subject and year fixed-effects, the models in columns two and three include state and year fixed-effects. Standard error
are clustered at the state-subject (first column) or state (second and third column) level. Regressions are unweighted.

Figure 1.4 visualizes the estimates for the dynamic TWFE model (estimated on the
pooled sample). The solid line represents the coefficients, and the dashed lines represent
the pointwise 95% confidence intervals using clustered standard errors at the state-subject
level. We set the lower and upper end of the time horizon to kmin = −8 and kmax = 8,
respectively, and the lower and upper endpoint bins to [−∞,−9] and [9,∞], respectively.
We exclude r = 0, i.e. β0 = 0 by construction. All estimates of the dynamic model thus
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indicate changes in IEOp with respect to the reform year. The result of the dynamic model
is broadly in line with the static model, but the pre-treatment coefficients reach borderline
significance in two periods. Pre-treatment coefficients aside, the dynamic TWFE model
supports the conclusion of the static model.

Figure 1.4: Dynamic TWFE Estimates
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Note: The figure shows the estimates for the dynamic TWFE model. The solid line represents the coefficients, and the dashed
lines represent the pointwise 95% confidence intervals using clustered standard errors at the state-subject level. The model is
estimated on a pooled sample including both math and reading IEOp, and includes the following state-level control variables:
the population shares of Whites, Blacks, and Hispanics; the share of unemployed individuals; the share of individuals with at
least a four-year college degree; the poverty rate; and the mean individual income (in logarithms). The model also includes
state-subject and year fixed-effects. The regression is unweighted. The figure excludes the estimates for βlower and βupper.

Figure 1.5 shows the event study plot for the estimates using the method by Callaway
and Sant’Anna (2020). We use the never-treated units as control group and assume no
anticipation (δ = 0). The group-time average treatment effects are computed using an
outcome regression, and pre-treatment ATTs are computed using varying base periods.20

To aggregate the ATTs across lengths of exposure to the treatment, we balance the sample
with respect to event time to ensure that the composition of groups remains comparable
when event time changes. Specifically, we drop groups that are not exposed to a SFR for at
least eight periods. The blue area represents the simultaneous 95% confidence bands using

20With varying base periods, pseudo-ATTs are computed for pre-treatment periods pretending that the
treatment was implemented in that period instead of when it was actually implemented.
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clustered bootstrapped standard errors at the state-subject level (which can be used to pre-
test the parallel trends assumption as well as treatment effect estimates in post-treatment
periods).21 The results are consistent with the static and dynamic TWFE models: we can
find no statistically significant effect of the SFRs on IEOp.

Figure 1.5: Group-time Average Treatment Effect Estimates
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Note: The figure shows the event study plot for the group-time average treatment effects. The solid line represents the
coefficients, and the blue area represents the simultaneous 95% confidence bands using clustered bootstrapped standard
errors at the state-subject level. The model is estimated on a pooled sample including both math and reading IEOp, and
includes the following time-invariant state-level control variables (1990 values): the population shares of Whites, Blacks,
and Hispanics; the share of unemployed individuals; the share of individuals with at least a four-year college degree; the
poverty rate; and the mean individual income (in logarithms). The never-treated units are the control group and there
is no anticipation. The group-time average treatment effects are computed using an unweighted outcome regression, and
pre-treatment ATTs are computed using varying base periods. To aggregate the ATTs across lengths of exposure to the
treatment, the sample is balanced with respect to event time.

21Because the reform years and the NAEP waves are not consistent, and because NAEP is only available
for every second year, we don’t observe all relative periods for all states. For example, if we observe
NAEP test scores in 1990 and 1992, and the SFR in a state was implemented in 1992, we don’t observe
Yg−1 = Y1991 for that state. To compute ÂTT (e) = ÂTT (−1), the algorithm by Callaway and Sant’Anna
(2020) then selects the earliest available period prior to Y1991 (i.e. Y1990 in this example).
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1.6.2 Robustness

In Figure 1.6, we reproduce Figure 1.5 but change key parameters. In panel A, we use the
not-yet-treated units instead of the never-treated units as control group. In contrast to
the latter, the conditional parallel trends assumption then restricts observed pre-treatment
trends across groups. In panel B, we assume a one-year anticipation period (δ = 1). This
effectively shifts the reform year and changes the reference period from g−1 to g−δ−1. In
panel C, we use pointwise instead of simultaneous confidence bands. This yields narrower
confidence bands, but suffers from multiple-testing problems. In panel D, we compute
pre-treatment ATTs using a fixed base period (ATT (g, g − 1) = 0 for all g). This changes
the interpretation of pre-treatment ATTs, but leaves post-treatment ATTs unchanged. In
panel E, we leave the sample unbalanced with respect to event time. This implies that
the ATTs can be affected by changes in the sample across periods. Finally, in panel F, we
use a weighted regression (weighted by the sum of NAEP student weights within a state)
and leave the sample unbalanced with respect to event time. All results are similar to the
baseline result.

In Figure 1.7 panels A and B, we estimate the model on separate samples for math
and reading IEOp. Again, the results remain largely unchanged and we find no effect of
the SFRs on IEOp. In panel C, we exclude legislative reforms, i.e. we restrict the treat-
ment events to court-ordered reforms only (see Table A.1 in the Appendix). Similarly, in
panel D, we restrict the treatment events to reforms that implemented test-based school
accountability systems. Buerger et al. (2021) show that these reforms were particularly
effective in reducing the achievement gap between low- and high-income districts, presum-
ably because they create incentives for school improvement. Yet again, we find no effect
on IEOp. We also find no effect when we use IEOp measures that are computed using
OLS or conditional inference trees instead of conditional inference forests (panels E and
F, respectively).

The results also remain unchanged when we use different IEOp measures (see Figure
A.9 in the Appendix).

1.6.3 Alternative Methods

We additionally implement the estimators by Sun and Abraham (2020) and Roth and
Sant’Anna (2021). Sun and Abraham (2020) propose as building blocks the cohort average
treatment effects on the treated, given as the cohort-specific average difference in outcomes
relative to never being treated. The approaches by Callaway and Sant’Anna (2020) and
Sun and Abraham (2020) are similar in many respects, but implementation of the latter
requires stronger assumption about treatment effect heterogeneity. Importantly, although
both approaches allow for heterogeneity across time, Sun and Abraham (2020) do not allow
for heterogeneity across groups. Because we expect treatment effect heterogeneity across
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Figure 1.6: Robustness Checks

−400

−200

0

200

400

−8 −6 −4 −2 0 2 4 6 8

A

−400

−200

0

200

400

−8 −6 −4 −2 0 2 4 6 8

B

−400

−200

0

200

400

−8 −6 −4 −2 0 2 4 6 8

C

−400

−200

0

200

400

−8 −6 −4 −2 0 2 4 6 8

D

−400

−200

0

200

400

−8 −6 −4 −2 0 2 4 6 8

E

−400

−200

0

200

400

−8 −6 −4 −2 0 2 4 6 8

F

Years since reform

C
ha

ng
e 

in
 IE

O
p

Note: The figure reproduces Figure 1.5 but with changing parameters: panel A uses the not-yet-treated units as control
group; panel B assumes a one-year anticipation period (δ = 1); panel C uses pointwise instead of simultaneous confidence
bands; panel D computes pre-treatment ATTs using a fixed base period; panel E leaves the sample unbalanced with respect
to event time; and panel F uses a weighted regression (weighted by the sum of NAEP student weights within a state) and
leaves the sample unbalanced with respect to event time.
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Figure 1.7: Robustness Checks (Continued)
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Note: The figure reproduces Figure 1.5 but with different outcome measures. Panels A and B use math and reading IEOp
only, respectively; panel C excludes legislative reforms; panel D restricts the treatment events to reforms that implemented
test-based school accountability systems; and panels E and F use IEOp measured using OLS and conditional inference trees,
respectively.
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SFRs, we prefer Callaway and Sant’Anna (2020) to Sun and Abraham (2020).

Roth and Sant’Anna (2021) propose an analogous approach as Sun and Abraham
(2020), but they make stronger treatment assignment assumptions. In particular, Roth
and Sant’Anna (2021) assume that the treatment timing is (quasi-)randomly assigned,
in the sense that any permutation of the treatment timing vector is equally likely. This
implies that their building blocks are average treatment effects (ATE) rather than aver-
age treatment effects of the treated (ATT), as in Sun and Abraham (2020). Assuming
random treatment timing allows them to use a more efficient estimator than Callaway
and Sant’Anna (2020) and Sun and Abraham (2020). However, a drawback of Roth and
Sant’Anna (2021) is that they do not allow for an unbalanced panel, which forces us to
either drop reading IEOp or to restrict the time period to 2003–2015, i.e. when both math
and reading IEOp are available. Because the latter option would mechanically introduce
additional always-treated units, we estimate the ATE with math IEOp only.22 In addition,
implementation requires at least two units per treatment group. In our application, this
means that for each state introducing a SFR in a given year, there needs to be at least one
other state that introduces a SFR in the same year. In our application, this reduces the
number of groups from 17 to just six, and the number of treated states from 24 to 13.23

The results are presented in section A.5 in the Appendix; they are similar to our baseline
results and reinforce our conclusion.

1.6.4 Discussion

Our results are consistent, irrespective of the estimation method or IEOp measure: we
find no evidence that school finance reforms affected inequality of educational opportunity.
This is in line with Lafortune et al. (2018), who similarly find no effect of the reforms
on statewide achievement gaps between high- and low-income students or between black
and white students. Although they do find negative effects on achievement gaps between
high- and low-income districts, because low-income students are not highly concentrated
in low-income districts, these students do not necessarily benefit from the reforms.

This also highlights that the choice of the dependent variable is crucial and that one
has to be careful how to interpret the results. In particular, although the SFRs during
the adequacy era have reduced the achievement gaps between high- and low-income dis-
tricts, this does not mean that the reforms were successful in leveling the playing field for
students—which was the reforms’ intended purpose. It instead appears that by targeting

22After dropping reading IEOp, there are still missing values left (see Figure 1.3). We impute them by
either assigning the value in the subsequent period (if available) or the value in the previous period (if no
value in the subsequent period is observed).

23There are 25 SFRs in total, but we exclude Kentucky in the analysis. This leaves us with 24 treated
states.
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low-income districts, the reforms failed to benefit disadvantaged students, and thus also
failed to reduce inequality of educational opportunity.

Our study is related to Biasi (forthcoming), who studies the effect of equalizing rev-
enues across school districts on intergenerational mobility. Using a simulated instruments
approach, she finds positive effects of equalization on mobility, in particular for low-income
students. Her measure of mobility is the national income rank of individuals given their
parents’ income quantile, i.e. linking outcomes measured during adulthood of two genera-
tions. This may suggest that one reason for our null finding is that the effects of the SFRs
appear only later in life. Our study is also related to Card and Payne (2002), who find
that the reforms during the equity era reduced the SAT gap between families from different
socioeconomic backgrounds. Another explanation of our null finding may thus be that the
reforms during the equity era already picked the low hanging fruits, and that there was
little room left for improvements via revenue equalization during the adequacy era.

Note that we study the effect of school finance reforms, not the effect of school finances
per se. Although our findings suggest that the SFRs during the adequacy era were un-
successful in increasing equality of educational opportunity, this does not imply that the
same is true for school finances in general. Our findings are well compatible with the view
that increasing school finances can be productive for increasing equality of opportunity
(although our study is silent about whether it is). To shed light on the effect of school fi-
nances on IEOp, it would seem natural to use the court-ordered SFRs as an instrument for
school finances. Indeed, Jackson et al. (2015) study the effect of reform–induced changes
in public school spending on long-run adult outcomes along these lines. However, we re-
strain from applying this approach because the effects are likely to be heterogeneous across
reforms—potentially even with different signs, as Hoxby (2001) points out—which would
violate the monotonicity assumption. Although Jackson et al. (2015) control for the type
of a reform (e.g. foundation plans), there might still be heterogeneity within the same
reform types.24

1.7 Conclusion

Since the 1970s, numerous states in the U.S. have implemented school finance reforms
with the intention to either equalize resource or outcomes across districts. In this study,
we investigate whether the SFRs since the late 1980s were successful in increasing equality
of educational opportunity—the explicit goal of these reforms. We construct a measure of
inequality of educational opportunity from NAEP data and exploit the exogenous timing
of court-ordered reforms in an event-study framework to identify the effect of the reforms

24Biasi (forthcoming) proposes a simulated-instruments approach that doesn’t suffer from this draw-
back, but her approach is not suitable to instrument school finances directly and she therefore focuses on
instrumenting revenue equalization instead.
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on opportunities. Although the previous literature has found effects of these reforms on
the achievement gap between low- and high-income districts (Lafortune et al., 2018) or
on educational attainment (Rothstein and Schanzenbach, 2021), we find no evidence that
the SFRs have affected IEOp. This result is robust to an array of robustness checks. Our
finding highlights that analyzing the effects of school finance reforms is not trivial, and
that the choice of the dependent variable is crucial. In particular, although the SFRs have
reduced the achievement gap across districts, there is no evidence that they reduced gaps
across groups.

Note that our finding does not imply that the SFRs had no effect on other measures of
equality of opportunity. It is well possible that the effects appear only later in students’
lives, e.g. for the acquisition of income or wealth. Our measure of inequality of educational
opportunity—constructed from achievement test scores when students are between 13 and
14 years old—may then be measured too early. Our finding does also not imply that SFRs
are inherently unable to increase equality of educational opportunity. We only provide
evidence that the court-ordered reforms since the late 1980s were unable to do so.

Our finding is important for policy-makers because it suggests that tackling inequality
of educational opportunity via courts can be unproductive for leveling the playing field.
At first glance, the reforms appear to have been successful because they were indeed able
to equalize resources across districts. However, targeting districts is no guarantee that the
policy reaches individuals. Given the economic costs of the court-ordered reforms, such as
inefficient resource allocation, better-targeted policies may be preferable.
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Appendix A

A.1 Data
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Figure A.1: Inequality of Educational Opportunity: Reading
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Note: The figure shows reading IEOp in 2003 and 2013, where IEOp is measured using conditional inference forests. The
estimates refer to overall IEOp, given as the weighted variance of the counterfactual NAEP reading test score distribution.
The included circumstance variables are gender, books at home, highest degree mother, highest degree father, ethnicity,
and limited English proficiency. Data: U.S. Department of Education, Institute of Education Sciences, National Center
for Education Statistics, National Assessment of Educational Progress (NAEP), Reading Assessment, Selected Years. Own
calculations.
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Figure A.2: Relative Inequality of Educational Opportunity: Math
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Note: The figure shows math IEOp in 1992 and 2013, where IEOp is measured using conditional inference forests. The
estimates refer to relative IEOp, given as the ratio of the weighted variance of the counterfactual and the weighted variance
of the original NAEP math test score distribution. The included circumstance variables are gender, books at home, highest
degree mother, highest degree father, ethnicity, and limited English proficiency. Data: U.S. Department of Education,
Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress
(NAEP), Mathematics Assessment, Selected Years. Own calculations.
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Figure A.3: Relative Inequality of Educational Opportunity: Reading
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Note: The figure shows reading IEOp in 1992 and 2013, where IEOp is measured using conditional inference forests.
The estimates refer to relative IEOp, given as the ratio of the weighted variance of the counterfactual and the weighted
variance of the original NAEP reading test score distribution. The included circumstance variables are gender, books at
home, highest degree mother, highest degree father, ethnicity, and limited English proficiency. Data: U.S. Department of
Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational
Progress (NAEP), Reading Assessment, Selected Years. Own calculations.
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Figure A.4: IEOp Correlation Matrix
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Note: The figure shows the correlations between math IEOp given as the variance, Gini coefficient, mean log deviation
(MLD), and three percentile ratios (P95/P5, P90/P10, and P75/P25) of the counterfactual NAEP test score distribution.
IEOp is measured using conditional inference forests. The sample excludes Alaska, Kentucky, D.C. in 1996, New Jersey in
2015, Utah in 2015, and state-subject-year cells with less than 1,000 observations. Data: U.S. Department of Education,
Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress
(NAEP), Mathematics Assessment, Selected Years. Own calculations.
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Figure A.5: Conditional Inference Forest vs. OLS
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Note: The figure plots math IEOP measured using conditional inference forests against math IEOp measured using OLS.
The black line is the 45◦ line, i.e. points below this line indicate that IEOp is lower when using a conditional inference forest
compared to OLS. Panel A shows math IEOp in levels, and Panel B shows the first differences. The sample excludes Alaska,
Kentucky, D.C. in 1996, New Jersey in 2015, Utah in 2015, and state-subject-year cells with less than 1,000 observations.
Data: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National
Assessment of Educational Progress (NAEP), Mathematics Assessment, Selected Years. Own calculations.



35

Table A.1: School Finance Reforms

State Year Event Type

Alabama 1993 Alabama Coalition for Equity (ACE) v. Hunt;
Harper v. Hunt

Alaska 1999 Kasayulie v. State of Alaska Court

Arizona 1994 Roosevelt v. Bishop Court
1997 Hull v. Albrecht Court
1998 Hull v. Albrecht Court
2007 Flores v. Arizona

Arkansas 1994 Lake View v. Arkansas Court
1995 Approved Equitable School Finance Plan (Acts

917, 916, and 1194)
Bill

2002 Lake View v. Huckabee Court
2005 Lake View v. Huckabee Court
2007 Various acts resulting from Master’s Report find-

ings
Bill

California 1998 Leroy F. Greene School Facilities Act of 1998 Bill
2004 Senate Bill 6, Senate Bill 550, Assembly Bill

1550, Assembly Bill 2727, and Assembly Bill
3001

Bill

Colorado 2000 Bill 181; Various other acts Bill

Connecticut 1995 Sheff v. O’Neill
2010 Coalition for justice in Education Funding, Inc. v.

Rell

Idaho 1993 Idaho Schools for Equal Educational Oppor-
tunity v. Evans (ISEEO)

Court

1994 Senate Bill 1560 Bill
1998 Idaho Schools for Equal Educational Opportunity

v. State (ISEEO III)
2005 Idaho Schools for Equal Educational Opportunity

v. Evans (ISEEO V)
Court

Indiana 2011 HB 1001 (Pl229) Bill
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Kansas 1992 The School District Finance and Quality Perfor-
mance Act

Bill

2005 Montoy v. State; Montoy v. State funding
increases

Both

Kentucky 1989 Rose v. Council for Better Education, Inc. Court
1990 Kentucky Education Reform Act (HB 940) Bill

Maryland 1996 Bradford v. Maryland State Board of Education Court
2002 Bridge to Excellence in Public Schools Act

(BTE) (Senate Bill 856)
Bill

2005 Bradford v. Maryland State Board of Education

Massachusetts 1993 McDuffy v. Secretary of the Executive Office of
Education; Massachusetts Education Reform Act

Both

Michigan 1997 Durant v. State of Michigan

Missouri 1993 Committee for Educational Equality v.
State of Missouri; Outstanding Schools Act
(S.B. 380)

Both

2005 Senate Bill 287 Bill

Montana 1993 House Bill 667 Bill
2005 Columbia Falls Elementary School v. State Court
2007 M.C.A. §20-9-309 Bill
2008 Montana Quality Education Coalition v. Montana

New Hampshire 1993 Claremont New Hampshire v. Gregg Court
1997 Claremont School District v. Governor Court
1998 Opinion of the Justices—School Financing (Clare-

mont III)
1999 Claremont v. Governor (Claremont III); RSA

chapter 193-E
Both

2000 Opinion of the Justices—School Financing (Clare-
mont VI)

2002 Claremont School District v. Governor Court
2006 Londonderry School District v. New Hampshire
2008 SB 539 Bill

New Jersey 1990 The Quality Education Act; Abbot v. Burke Both
1991 Abbott v. Burke
1994 Abbott v. Burke Court
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1996 Comprehensive Educational Improvement and Fi-
nancing Act of 1996

Bill

1997 Special Master’s Report; Abbott v. Burke Bill
1998 Abbott v. Burke Court
2000 Abbott v. Burke Court
2008 The School Funding Reform Act of 2008 Bill

New Mexico 1998 Zuni School District v. State
1999 Zuni School District v. State Court
2001 Deficiencies Corrections Program; Public School

Capital Outlay Act
Bill

New York 2003 Campaign for Fiscal Equity, Inc. v. State Court
2006 Campaign for Fiscal Equity, Inc. v. State Court
2007 Education Budget and Reform Act Bill

North Carolina 1997 Leandro v. State Court
2004 Hoke County Board of Education v. State Court

North Dakota 2007 SB 2200 Bill

Ohio 1997 DeRolph v. Ohio Court
2000 DeRolph v. Ohio; Increased school funding (see 93

Ohio St.3d 309)
Both

2001 DeRolph v. Ohio
2002 DeRolph v. Ohio Court

Oregon 2009 Pendleton School District 16R v. State

South Carolina 2005 Abbeville County School District v. State

Tennessee 1992 The Education Improvement Act Bill
1993 Tennessee Small School Systems v. McWherter Court
1995 Tennessee Small School Systems v.

McWherter
Court

2002 Tennessee Small School Systems v. McWherter Court

Texas 1991 Edgewood Independent School District v. Kirby Court
1992 Carrolton-Farmers Branch ISD v. Edge-

wood Independent School District
Court

1993 Senate Bill 7 Bill
2004 West Orange-Cove ISD v. Nelson
2005 West Orange-Cove Consolidated ISD v. Neeley
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Vermont 1997 Brigham v. State Court
2003 Revisions to Act 68; H.480 Bill

Washington 1991 Seattle II
2007 Federal Way School District v. State
2010 McCleary v. State Court

West Virginia 1995 Tomblin v. Gainer Court

Wyoming 1995 Campbell County School District v. State Court
1997 The Wyoming Comprehensive Assessment System;

The Education Resource Block Grant Model
Bill

2001 Campbell II; Recalibration of the MAP
model

Bill

Note: The table lists the school finance reforms in Lafortune et al. (2018). Each reform is either classified as court-ordered
("Court"), legislative ("Bill"), or both ("Both). Bold years indicate the single event per state selected by Lafortune et al.
(2018).
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A.2 Estimating Inequality of Opportunity from Regres-
sion Trees and Forests

A regression forest is based on the repeated computation of a regression tree. Intuitively,
a conditional inference tree searches all available circumstance variables and tests their
independence with the outcome variable (Hothorn et al., 2006). It then selects the variable
for which independence is rejected with the highest statistical significance and splits the
data in two parts along this variable. The algorithm then repeats this step with the two
subgroups and selects new split variables. This process is repeated until the independence
hypothesis cannot be rejected for any variable. In the end, each observation belongs to a
terminal node—a group that is homogeneous in the expression of the circumstance vari-
ables. Terminal nodes are insofar analogous to the concept of a type in the framework
Roemer (1998).

More precisely, a conditional inference tree applies the following algorithm:

1. Test the null hypothesis of independence for each input variable, and obtain a p-
value associated with each test. Adjust the p-values for multiple hypothesis testing
(Bonferroni correction).

2. Find the variable with the lowest adjusted p-value. If the adjusted p-value is larger
than a specified significance level α, exit the algorithm. If it is lower or equal than
α, continue and select this variable as the splitting variable.

3. Test the discrepancy between the subsamples for each possible binary partitioning
based on the splitting variable, and obtain a p-value associated with each test. Split
the sample by choosing the partitioning that yields the lowest p-value.

4. Repeat the algorithm for each of the resulting subsamples.

The counterfactual outcome can be obtained as the node-specific mean value of the
outcome variable:

yci = µ̂m(i) =
1

Nm

∑
j∈gm

yj, (A.1)

where
∑

j∈gm yj is the sum of the outcomes of all individuals in terminal node gm, and
individual i belongs to that terminal node.

A conditional inference forest averages across B trees. To improve out-of-sample predic-
tion performance, each tree draws a random sample of observations with the same sample
size (with replacement) as well as P randomly selected input variables. Regression trees
are sensitive to alternations in the data sample, and averaging the counterfactual outcomes
computed on random samples of observations cushions the variance of their predictions.
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Moreover, using a subset of the circumstance variables increases the likelihood that all
observed circumstances with informational content will be used as splitting variable even-
tually.

We select B, P , and α according to their out-of-bag root mean squared error. The
out-of-bag root mean squared error for α and P , RMSEOBB(α, P ), is given as:

RMSEOBB(α, P ) =

√√√√ 1

N

N∑
i

(yi − f̂OBB(Ωi;α, P ))2, (A.2)

where f̂OBB(Ωi;α, P ) is the average predicted value of observation i using each of the
prediction functions estimated in subsamples in which i does not enter.

We fix B = 400 for all specifications because larger values yield no noticeable improve-
ments in terms of reducing RMSEOBB. As an illustrative example, Figure A.6 visualizes
RMSEOBB as a function of B for math IEOp in California in 2015 (with α = 0.54 and
P = 8).

On the other hand, α and P are allowed to vary across state-subject-year cells. For
each cell, we choose that α and P pair that minimizes RMSEOBB(α, P ). Figure A.7 shows
the distributions of αopt and P opt, the optimal values that are chosen.
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Figure A.6: Optimal Forest Size
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Note: The figure shows RMSEOBB (y-axis) as a function of B (x-axis) for math NAEP test scores in California in 2015
(with α = 0.54 and P = 8). Each point represents the root mean squared error for a particular B. The blue line is the fitted
LOESS curve, and the grey area is the 95% confidence interval. Data: U.S. Department of Education, Institute of Education
Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), Mathematics
Assessment, 2015. Own calculations.
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Figure A.7: Optimal Parameters
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Note: The figure shows the distributions of αopt and P opt, the optimal conditional inference forest parameters. For each
state-subject-year cell, the optimal parameters minimize RMSEOBB(α, P ). The sample excludes Alaska, Utah in 2015,
and state-subject-year cells with less than 1,000 observations in NAEP. Data: U.S. Department of Education, Institute
of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP),
Mathematics and Reading Assessments, Selected Years. Own calculations.
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A.3 Model Performance

To assess the performance of the different approaches for computing IEOp, we compare
their out-of-sample prediction accuracies. We follow the machine learning practice and,
for each state-subject-year cell, split the data into a training and test set, with i−H ∈
{1, . . . , N−H} and iH ∈ {1, . . . , NH}, respectively. For each cell with N observations, we
randomly draw N−H = 2N/3 observations for the training set, and NH = N/3 observations
for the test set. Each model is then estimated on the training set only, and prediction errors
are calculated in the test set. Specifically, we first obtain the prediction function f̂−H by
estimating the model using the training set. Second, we calculate the root mean squared
error in the test sample for cell c and method m:

RMSEc,m =

√√√√√ 1

NH
c

NH
c∑

iHc =1

(yi − f̂−H
m (Ωi))2, (A.3)

where Ωi denotes the circumstance vector of individual i. For each cell, we calculate relative
RMSE by dividing RMSEc,m by the mean squared error of the conditional inference forests:
RMSErel

c,m = RMSEc,m/RMSEc,m=forest. Values larger than one then denote a worse out-
of-sample performance compared to forests, and vice versa.

Figure A.8 shows the distributions of RMSErel
c,m for conditional inference trees and OLS.

As expected, conditional inference forests clearly outperform trees. Yet, the performance
of OLS is generally better. This suggests that our OLS model is already doing well at
balancing the bias-variance trade-off, and that the benefit of using forest-based approaches
is limited. However, the performance differences are small. In any case, the results of our
study are virtually identical, irrespective of the approach.
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Figure A.8: Model Performance
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Note: The figure shows the distribution of relative RMSEs for conditional inference trees and OLS, respectively, relative to
conditional inference forests. Values larger than one denote a worse out-of-sample performance compared to forests, and vice
versa. The sample excludes Alaska, Utah in 2015, and state-subject-year cells with less than 1,000 observations in NAEP.
Data: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National
Assessment of Educational Progress (NAEP), Mathematics and Reading Assessments, Selected Years. Own calculations.
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A.4 Further Robustness Checks

Figure A.9: Further Robustness Checks

−0.2

−0.1

0.0

0.1

0.2

−8 −6 −4 −2 0 2 4 6 8

A

−0.02

−0.01

0.00

0.01

−8 −6 −4 −2 0 2 4 6 8

B

−0.002

−0.001

0.000

0.001

0.002

−8 −6 −4 −2 0 2 4 6 8

C

−0.1

0.0

0.1

−8 −6 −4 −2 0 2 4 6 8

D

−0.1

0.0

0.1

−8 −6 −4 −2 0 2 4 6 8

E

−0.10

−0.05

0.00

0.05

−8 −6 −4 −2 0 2 4 6 8

F

Years since reform

C
ha

ng
e 

in
 IE

O
p

Note: The figure reproduces Figure 1.5 but with different outcome measures. Panel A uses relative instead of absolute
IEOp. The remaining panels apply different inequality measures I() to the counterfactual NAEP score distribution: Gini
index (panel B), mean log deviation (panel C), P95/P5 ratio (panel D), P90/P10 ratio (panel E), and P75/P25 ratio (panel
F).
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A.5 Alternative Estimators

Figure A.10: Sun and Abraham (2020): CATT Estimates
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Note: The figure shows the event study plot for the cohort-specific average treatment effect on the treated, estimated
with the method by Sun and Abraham (2020). The solid line represents the coefficients, and the dashed line represents the
pointwise 95% confidence intervals using clustered standard errors at the state-subject level. The model is estimated on a
pooled sample including both math and reading IEOp, and includes no control variables. The never-treated units are the
control group. The lower and upper end of the time horizon are kmin = −8 and kmax = 8, respectively, and the lower and
upper endpoint bins are [−∞,−9] and [9,∞], respectively. The figure excludes the estimates for βlower and βupper.
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Figure A.11: Roth and Sant’Anna (2021): ATE Estimates
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Note: The figure shows the event study plot for the average treatment effects, estimated with the method by Roth and
Sant’Anna (2021). The solid line represents the coefficients, and the dashed line represents the pointwise 95% confidence
intervals. The model is estimated on the math IEOp sample only, and includes no control variables. Missing values are
imputed by either assigning them their value in the subsequent period (if available) or their value in the previous period (if
no value in the subsequent period is observed).
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Chapter 2

Parenting Styles and Child Skill
Formation

2.1 Introduction

A large body of research shows that parenting styles are associated with a wide range of
child outcomes, including subjective well-being, health, risky behavior, and school grades
(Chan and Koo, 2011). To the extent that parenting styles are correlated with socioeco-
nomic status, child-rearing practices insofar co-determine the strong link between parents’
and children’s outcomes. Indeed, Ermisch (2008) shows that differences in child-rearing
can explain a large part of the income gradient in children’s cognitive and non-cognitive
development at age three. These skills, in turn, are crucial for children’s success in life
(Hanushek et al., forthcoming). However, although the association between parenting and
child outcomes is well-documented, we know less about the relevance of parenting styles
for the dynamic process of skill formation.

My paper addresses this gap and investigates whether parenting styles are relevant for
the child skill formation process. I use data from the U.K. Millennium Cohort Study (MCS)
to estimate child cognitive and non-cognitive skills production functions. The exceptionally
rich data of the MCS allows me to construct measures of mothers’ demandingness and
responsiveness, the two parenting style dimensions highlighted by Baumrind (1991a) and
Maccoby and Martin (1983). Demandingness describes parents’ claims on the child in terms
of maturity requirements, supervision, and discipline. Responsiveness refers to fostering
individuality, self-regulation, and self-assertion of the child. The combination of the two
dimensions yields the four best-known parenting styles: authoritarian (demanding but not
responsive), authoritative (both demanding and responsive), indulgent (not demanding
but responsive), and neglectful (neither demanding nor responsive). Figure 2.1 visualizes
this typology.
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Figure 2.1: Parenting Styles
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Note: The figure shows the four parenting styles by Baumrind (1991a) and Maccoby and Martin (1983). Authoritarian
parents are demanding but not responsive; authoritative parents are both demanding and responsive; indulgent parents are
responsive but not demanding; neglectful parents are neither demanding nor responsive.

I use detailed information about parent-child interactions to measure demandingness
and responsiveness by means of a principal component analysis. The factor that I interpret
as demandingness largely loads on punitive parenting, i.e. the extent to which parents
punish their child for misbehavior. The factor that I interpret as responsiveness loads
on parent-child interactions that capture parental warmth and a positive mother-child
relationship. I construct these measures for mothers at child ages 3, 5, 7, 11, and 14.
Crucially, I obtain time-varying measures that allow me to estimate dynamic panel models.

The MCS assessed cognitive and non-cognitive skills at multiple stages during child-
hood. The former are measured with a battery of tests that capture different dimensions of
cognitive ability. The latter are measured with the Strengths and Difficulties Questionnaire,
a behavioral screening questionnaire designed to measure the psychological adjustment in
children.

There are three main challenges in estimating the productivity of parenting styles (Todd
and Wolpin, 2003). First, demandingness and responsiveness could be correlated with
unobserved inputs, either past or present. This would be the case, for instance, if there
were families who can rely on grandparents to raise their children (Deng and Tong, 2020).
Low parental inputs are then simply due to the supply of grandparental inputs. The MCS
contains information about inputs from various domains, including the extended family,
the schooling environment, and the neighborhood. This allows me to control for inputs
provided by grandparents, siblings, relatives, formal child care arrangements, and teachers.

To further rule out endogeneity issues due to unobserved inputs, I estimate a value-
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added model by controlling for the lagged outcome (Del Bono et al., 2016; Todd and
Wolpin, 2007). That is, I regress cognitive or non-cognitive skills at child age a on skills at
child age a−1. The lagged outcome serves as a sufficient statistic for unobserved inputs: if
there still were unobserved inputs left, the coefficient of the lagged outcome would capture
their effect on child skills.

Relatedly, unobserved innate ability may affect the learning rate of a child. The lagged
outcome captures the past effects of innate ability on the skill formation process, but
not the contemporaneous effect (Andrabi et al., 2011). I address this issue by estimating
the model in first differences, i.e. regressing within-child changes in skills on changes in
parenting styles.

The second challenge is measurement error in the skill measures. Measurement error
in the lagged outcome leads to an attenuation bias, which may affect the estimates of my
coefficients of interest (Andrabi et al., 2011). To address this issue, I use the double- or
triple-lagged outcome as an instrument for the lagged outcome (Arellano and Bond, 1991).

The third challenge is feedback effects, i.e. that parents react to their child’s observed
outcomes and adjust their parenting style accordingly. If a child were to perform poorly
in school, for instance, parents might become more involved in his or her life or become
more demanding. To assess whether feedback effects are an issue, I employ dynamic panel
estimators that use lagged inputs as instruments (Arellano and Bond, 1991; Blundell and
Bond, 1998). The instruments can address feedback effects under the assumption that
parents do not adjust their parenting style in anticipation of future child skill shocks
(although adjustments to past shocks are allowed).

I find that parental demandingness is negatively associated with child development,
both for cognitive and non-cognitive skills. Statistical significance is higher, and coefficient
sizes are larger for non-cognitive than cognitive skills. Depending on the specification and
age, a one-standard-deviation increase in the demandingness measure decreases cognitive
skills by between 4% and 5% of a standard deviation. For comparison, this effect size is
similar to increasing the class size in a school by one additional student (Fredriksson et al.,
2013). On the other hand, parental responsiveness is positively associated with cognitive
and non-cognitive skills. I also find a significant and positive interaction effect between de-
mandingness and responsiveness for some specifications. This finding is consistent with the
developmental psychology literature that highlights the benefits of authoritative parenting,
i.e. high levels of parental control and high levels of parental warmth.

Using the dynamic panel estimators by Arellano and Bond (1991) and Blundell and
Bond (1998)—difference GMM and system GMM, respectively—I find little evidence of
feedback effects. This is crucial, as it suggests that my findings are not driven by reversed
causality. My results are also robust to multiple robustness checks. In particular, they
are essentially unchanged when using alternative skill measures: for cognitive skills, I use
assessments that measure alternative skill domains (e.g. fluid ability instead of crystallized
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ability); for non-cognitive skills, I rely on teacher-assessed information instead of mother-
assessed information.

When comparing the coefficients of parenting styles across child ages, I find that the
negative association of demandingness with cognitive skills appears only during middle
childhood, whereas for non-cognitive skills, the negative association is present throughout
all developmental stages. In contrast, the positive association of responsiveness with skills
is more pronounced during early childhood.

My paper contributes to a growing literature in economics on the importance of parents
for child development (see Francesconi and Heckman, 2016, for an overview). A vast body
of research on parental inputs focuses on monetary and time investments, but evidence on
parenting styles is scarce. Del Bono et al. (2016) investigate the productivity of early and
late parental time inputs and are closest to my study from an econometric point of view,
but they treat parenting styles as a control rather than a variable of interest. Similarly,
Dooley and Stewart (2007) and Khanam and Nghiem (2016) incorporate parenting styles
in their analyses of the effect of family income on child outcomes, but rather because of a
concern about omitted variable bias. On the other hand, Cobb-Clark et al. (2019), Deng
and Tong (2020), Ermisch (2008), and Fiorini and Keane (2014) explicitly take parenting
styles as an input in the skill production function into account.

The richness of the MCS allows me to go well beyond these previous analyses. First,
neither Cobb-Clark et al. (2019), Deng and Tong (2020), nor Ermisch (2008) exploit panel
data, which prohibits them from using time-varying parenting style measures. Yet, the
panel structure is important to address unobserved innate ability and feedback effects.
Although Fiorini and Keane (2014) do exploit panel data, they use only two waves with
children between ages four and six. I instead observe both time-varying parenting style
measures and child outcomes for five waves and child ages three to fourteen. This allows me
to employ the Arellano-Bond and Blundell-Bond estimators, which require at least three
time periods (and five periods to apply tests for serial correlation). The long time horizon
also allows me to investigate whether the relevance of parenting styles varies across child
ages.

Second, the MCS conducted multiple skill assessments during the early childhood,
allowing me to take multiple ability domains into account. My cognitive skill measures
also satisfy metric invariance, a necessary condition such that regression coefficients across
waves can be meaningfully compared.

My findings have important policy implications. Because parenting matters for child
development, equality of opportunity may be negatively affected by the increasing influence
of parents on their children’s lives (Doepke and Zilibotti, 2019). Targeting parenting
practices with intervention programs may then be a suitable policy instrument to level
the playing field. For example, programs such as "1-2-3 Magic" teach parents tactics to
manage child behavior without arguing, yelling, or spanking—precisely the dimension of
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demandingness that I show to be detrimental for child development—and can be easily
incorporated in home visits.1

The remainder of this paper is structured as follows. Section 2.2 gives a brief intro-
duction to parenting styles, particularly to the typology used in developmental psychology.
Section 2.3 discusses the theoretical framework, and section 2.4 discusses the empirical
implementation. Section 2.5 describes the data, and the results are presented in section
2.6. Section 2.7 concludes.

2.2 Parenting Styles and Child Outcomes

Baumrind (1971, 1978, 1989) proposed the best known and most influential typology of
parenting styles: authoritarian, authoritative, and permissive. Authoritarian parents are
characterized by high levels of control and low levels of warmth. They demand obedience
from their child, communicate through rules and orders, and employ harsh punishments.
Authoritative parents similarly set rules and enforce boundaries, but they are also warm
and responsive. They provide their child with autonomy and encourage independence.
Permissive parents (either indulgent or neglecting) set few rules, and they are reluctant to
enforce them (if there are any rules at all).

Maccoby and Martin (1983) highlight that this typology captures parenting styles as
a function of two dimensions: demandingness and responsiveness (see also Darling and
Steinberg, 1993; Spera, 2005). Demandingness describes parents’ claims on the child in
terms of maturity requirements, supervision, discipline, and confrontation if the child dis-
obeys. Responsiveness refers to fostering individuality, self-regulation, and self-assertion of
the child by being attuned and supportive to the child’s needs and demands (Baumrind,
1991b). Baumrind’s parenting styles emerge from the combination of the two dimensions:
authoritarian parents are demanding but not responsive; authoritative parents are both
demanding and responsive; indulgent parents are undemanding but responsive; and per-
missive parents are neither demanding nor responsive.

Early research already suggested that parenting styles matter for child outcomes. Baum-
rind (1967) compared preschool children from authoritative and non-authoritative house-
holds and found that the former were more mature, independent, and prosocial. Baumrind
(1989) found similar effects for adolescents. Lamborn et al. (1991) and Steinberg et al.
(1992) found positive effects of authoritative parenting for adolescents on school achieve-
ment, mental health, self-reliance, self-esteem, and antisocial behavior. More recent work,
such as Chan and Koo (2011), also suggests that authoritative parenting is most beneficial
for child outcomes. In economics, Ermisch (2008), Fiorini and Keane (2014), and Deng

1"1-2-3 Magic" divides the parenting responsibilities into three tasks: controlling negative behavior,
encouraging good behavior, and strengthening the child-parent relationship.
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and Tong (2020) similarly document the importance of parenting.

Although there is broad consensus that authoritative parenting is associated with the
most favourable child outcomes—typically also thought to be a causal relationship, at least
in the developmental psychology literature—there is less agreement as to why. The litera-
ture in psychology suggests that the effects of parenting are mediated by skill formation and
the transmission of preferences. Durkin (1995), for example, suggests that authoritative
parents provide their children with explanations for their actions, which fosters the trans-
mission of values and goals.2 These values and goals are, in turn, relevant to performing
well in school. Moreover, the bi-directional communication typical of authoritative parents
produces skills in interpersonal relations, which again is key for success in school and during
adulthood. Steinberg (2001) similarly emphasizes skill formation. He argues that the com-
bination of parental support and structure is beneficial for developing self-regulatory skills
and that the verbal give-and-take fosters cognitive and social skills. Finally, Darling and
Steinberg (1993) distinguish between three aspects to explain how parenting affects child
outcomes: parental goals (the outcomes they want to achieve for their child), parenting
practices (their child-rearing activities, similar to what the economics literature refers to as
parental investment), and parenting style. In their framework, parenting styles can affect
the productivity of parenting practices. That is, parenting styles moderate the relationship
between parental investment and child outcomes. This conceptualization can take into ac-
count that parents with different parenting styles may not only differ in their investments,
but also in the goals and values they have. The empirical relationship between parenting
and child outcomes may thus result from particular parental goals (e.g. authoritative par-
ents want their child to be successful), because they have higher investments, or because
a particular parenting style increases the productivity of investments.

2.3 Framework

2.3.1 A Model of Child Skill Formation

I assume a model with T periods of childhood, with t ∈ {0, . . . , T}. The childhood periods
are divided into S stages of child development, with s ∈ {0, . . . , S} and S ≤ T . During the
developmental stages, cognitive (C) and non-cognitive skills (NC), θk,t, with k ∈ {C,NC},
are produced. Examples of the former are IQ or crystallised ability. Examples of the latter
are patience, self-control, temperament, or risk-aversion (Almlund et al., 2011). After
childhood, adult outcomes are produced by the final skill levels, θC,T+1 and θNC,T+1.

Each individual is born with initial condition, θk,0, that is influenced by family envi-
ronments and genetic factors. The technology of skill production of skill k in period t

2Zumbuehl et al. (2021) provide recent evidence that parental involvement fosters the transmission of
attitudes.



55

and developmental stage s depends on the stocks of skills in period t, θk,t, parental inputs
at t, Pk,t, innate ability, µ(G), shocks in period t, ηk,t, and the production function at
developmental stage s:

θk,t+1 = fk,s(θk,t, Pk,t, µ(G), ηk,t). (2.1)

That is, the stock of skills at t, the child’s innate ability, and inputs supplied by parents
at t produce skills at period t + 1. Innate ability is a function of the individual’s genetic
endowment, G. The inclusion of θk,t in Equation (2.1) yields what Cunha and Heckman
(2007) refer to as self-productivity, i.e. that skills today produce skills tomorrow—skills
beget skills.

Parental inputs consist of investments (both time and financial), PIk,t, and parenting
styles, PSk,t: Pk,t = [PIk,t, PSk,t]. The subscript k indicates that parents may specifically
target a skill of interest and tailor their inputs accordingly. Financial inputs include buying
books for the child, whereas time inputs are e.g. reading a book to the child. Parenting
styles, on the other hand, are the principles that parents follow in their child-rearing.
They govern the parent-child relationship, e.g. how affectionate the father or mother is
with his or her child. They also govern parent-child interactions: for every action of the
child, the parenting style specifies the reaction of the parent. Crucially, they determine
parental control. This includes, among others, behavioral and psychological control (Noack,
2011). Behavioral control refers to confronting a child who disobeys, monitoring him or
her, or setting limits. Psychological control refers to appealing to guilt and expressing
disappointment.3

Parental investment and parenting styles describe different concepts (Cobb-Clark et al.,
2019; Deng and Tong, 2020). The former refer to resources that parents (consciously or
not) spend on their children to increase their "quality" (or human capital). Parents may
read to the child regularly or they may buy him or her colouring books. Because this
input type is a finite resource, investments affect the parental time and financial budget.
Assuming that households are optimizing agents, the supplied level of investment is a
function of any factor that affects the budget as well (e.g. labour market participation).
Parenting styles, on the other hand, may or may not affect the budget. It is not a finite
resource, but rather how the investment is supplied.

I assume that parenting styles are time-varying but that there is a common component
(or latent factor). That is, someone is e.g. an authoritative parent but can be more or less
so as the child becomes older. Jones et al. (2018) present evidence for this assumption.

I also assume that in Equation (2.1), parenting styles directly affect skill formation, but
that they additionally interact with parental investment. In particular, following the model

3In a recent study, Doepke and Zilibotti (2017) define permissive parenting as allowing the child to
make free choices, i.e. low parental control. On the other hand, authoritative parents attempt to mold
their children’s preferences to induce choices that parents view as conducive to success in life, i.e. high
psychological control. Authoritarian parents restrict children’s choices, i.e. high behavioral control.
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of Darling and Steinberg (1993), the productivity of investments is allowed to depend on
parenting styles. The complementarity between parenting styles and investments, κIS, is
given as:

κIS =
∂2fk,s(.)

∂PIk,t∂PSk,t

. (2.2)

κIS can be positive or negative, depending on the particular parenting style and the
investment type. For instance, reading to a child could be more productive when combined
with a responsive parenting style (i.e. high parental warmth).

I further assume that different parenting style dimensions can interact with each other.
Their complementarity, κSS, is given as:

κSS =
∂2fk,s(.)

∂PSD
k,t∂PS

R
k,t

, (2.3)

where PSD
k,t and PSR

k,t denote parental demandingness and responsiveness, respectively.
κSS > 0 indicates that the combination of demandingness and responsiveness is particularly
productive.

2.4 Empirical Implementation

2.4.1 Empirical Model

The technology of skill production in Equation (2.1) can be represented by the following
regression analog (Todd and Wolpin, 2003):

θia = X iaα1 +X i,a−1α2 + · · ·+X i1αa + δaµi + via, (2.4)

where θia is a skill measure of child i at age a, X ia is a vector of all inputs at age a that
are relevant for skill formation, and α1, . . . ,αa and δa are the coefficients (dropping the k
subscript for simplicity).4

Equation (2.4) can’t be empirically implemented unless the complete history of all
relevant inputs is observed—which it never is. This is problematic because past inputs are
likely to be correlated with contemporaneous inputs due to households optimizing their
behavior. This implies that unobserved inputs (and unobserved innate ability, µi) may
introduce endogeneity. Because of this, an alternative specification is usually implemented
in practice. I opt for a value-added specification that includes the lagged outcome, θi,a−1,

4Equation (2.4) requires the assumption that fk,s(.) in Equation (2.1) is constant over s, i.e. that the
function is not age-varying.
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on the right-hand-side:
θia = X iaα1 + γθi,a−1 + ζia. (2.5)

The lagged outcome serves as a sufficient statistic for unobserved input histories and
unobserved innate ability. That is, γ captures the effect of past inputs on θia. Equation
(2.5) can be derived from Equation (2.4) by subtracting γθi,a−1 from both sides of the
latter. Rearranging the terms yields the following equation:

θia =X iaα1 + γθi,a−1 +X i,a−1(α2 − γα1) + · · ·+X i1(αa − γαa−1) (2.6)
+ (δa − γδa−1)µi + (via − γvi,a−1).

Equation (2.6) reduces to Equation (2.5) when the following requirements hold (Todd
and Wolpin, 2007):

(i) For all l, αl = γαl−1,

(ii) δa = γδa−1, and

(iii) via is serially correlated at the rate γ.

Requirement (i) implies that input coefficients decline geometrically over time and
that the rate of decline is the same for each input. Requirement (ii) further implies that
the effect of innate ability declines geometrically at the same rate as the input effects.
Requirement (iii) is necessary for (via − γvi,a−1) to be an independently and identically
distributed shock such that θi,a−1 is uncorrelated with γvi,a−1. Because it is unclear whether
these requirements hold in practice, I will explicitly control for lagged inputs and proxies
for innate ability, and instrument the lagged outcome with the double-lagged outcome
(Andrabi et al., 2011). This allows me to relax requirements (i)–(iii).

2.4.2 Cumulative Value-added Model

I implement Equation (2.5) with the following cumulative value-added model:

yia = α0 +
a−1∑
m=0

βa−mP i,a−m + λyi,a−1 + ρW ia + ϵia, (2.7)

with ϵia = µi + εia. yia is a skill measure of individual i at age a, P ia = [PI ia,PSia] is
a vector of parental inputs—parental investment, PI ia, and parenting styles, PSia—and
W ia is a vector of control variables (including inputs other than parental inputs). α0,
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βa−m, λ, and ρ are the coefficients. βa−m are the parameter vectors of interest.5

PI ia consists of measures of parental time investments such as playing with the child
or helping him or her with homework. PSia consists of measures that capture different
dimensions of parenting styles. In the benchmark specification, PSia are measures of
parental demandingness and responsiveness.6 I describe PI ia and PSia in more detail in
section 2.5.2.

To capture the intuition of Darling and Steinberg (1993) that parenting styles affect
the productivity of parental investments, I additionally include the interaction between
PI ia and PSia. If I find positive interaction terms, this will lend plausibility to the
model of Darling and Steinberg (1993). I also include the interaction between parental
demandingness and responsiveness.

λ represents the persistency of skills (or self-productivity in the language of Cunha and
Heckman, 2007). Consistent estimation of the persistency coefficient is crucial such that
Equation (2.6) reduces to Equation (2.5). Andrabi et al. (2011) point out that measurement
error in the outcome variable may attenuate λ and also bias the coefficients of the input
measures. I therefore instrument yi,a−1 with the double-lagged outcome, yi,a−2, in some
specifications (see section 2.6.3).

2.5 Data

2.5.1 Millennium Cohort Study (MCS)

The MCS is an ongoing nationally representative longitudinal study of infants born in
the U.K. between September 2000 and January 2002 (Plewis and Ketende, 2006). In
the first wave, information on 18,818 infants from 18,533 families was collected. The
sample was later augmented by 701 children born in the relevant time period who had
been previously missed. The MCS followed the cohort members through their childhood
and adolescence, collecting information from the cohort members directly, their resident
parents, their older siblings, and their class teachers. Throughout seven waves so far,
the survey involved home visits by interviewers at child ages nine months and years 3,

5Note that the subscripts a of the contemporaneous inputs and the outcome in Equation (2.7) are
concurring. This is nonetheless consistent with Equation (2.1), i.e. that inputs and skill levels in period t
produce skills in period t + 1, because contemporaneous inputs (e.g. PIia or PSia) proxy inputs over a
longer time period, whereas yia measures skills exactly at t.

6There is no clear cut between parental investment and parenting style. Indeed, some parenting practices
are characterized precisely by high investment, e.g. tiger moms or helicopter parents. In this sense,
investment is not conceptually different, but rather a mediator of parenting styles. By controlling for
investment, the coefficient estimates of the parenting style measures represents their effect on child skill
formation net of the investment channel.
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5, 7, 11, 14, and 17. Interviewers asked questions about, among others, socio-economic
circumstances, demographics, parenting, the household environment, childcare, schooling,
and child development. The interviews were conducted with the cohort members’ parents in
waves one to six and with the cohort members themselves in wave seven. Cohort members’
cognitive and non-cognitive skills were assessed at child ages 3, 5, 7, 11, 14, and 17.

I restrict the sample to households where the natural mother was the main respondent
in all waves and where she remains the resident mother throughout. This is important
because some of the information about the child is obtained from the mother, and changes
in the source of information could introduce non-random measurement error. This implies
that my sample contains no single fathers but may (and does) contain single mothers. I
further exclude twins because they might act as confounders. Parents tend to treat twins
differently from singleton siblings (Bharadwaj et al., 2018), and being a twin may affect
skill formation. I also only include children whose mothers were 18–45 years old at the
child’s birth. Again, teenage mothers or mothers significantly older than the average may
act as confounders.

For the estimation sample, I additionally impose the requirement that the mother-child
pair is observed for child ages 3, 5, 7, 11, and 14, and that there are no missing values for
any of the control variables. This prevents that compositional changes drive the results.
My final estimation sample includes 2,767 mother-child pairs.7

2.5.2 Parental Input Measures

Parenting styles I follow Baumrind (1991a) and Maccoby and Martin (1983) and con-
struct measures that refer to parental demandingness and responsiveness. The MCS col-
lects detailed information about parent-child interactions that I combine using a principal
component analysis (PCA). PCA is a popular method for dimensionality reduction where
each data point is projected onto only a few principal components.8 This allows lowering
the dimensionality while preserving as much variation as possible. For instance, the first
principal component of a set of p variables, x1, . . . ,xp, is the linear combination of the
variables z1 = ϕ11x1+ϕ21x2+ · · ·+ϕp1xp that has the largest sample variance. ϕ11, . . . , ϕp1

are the eigenvectors of the first principal component, and z1 = [z11, . . . , zn1] are the scores
for n observations.9 The principal components are typically interpreted as a representation
of an unobserved factor (parenting styles in my case). Instead of including all variables

7Estimating the model on a larger sample yields similar results.
8Cobb-Clark et al. (2019), Deng and Tong (2020), and Fiorini and Keane (2014) also use a PCA to

construct their parenting style measures.
9The eigenvectors of the first principal component, i.e. the ϕ11, . . . , ϕp1 that maximize the sample

variance, are obtained by an eigen decomposition. After the first principal component has been determined,
the second (or third, etc.) principal component is the linear combination of x1, . . . ,xp that maximizes the
sample variance out of all linear combinations that is uncorrelated with z1.
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individually in a regression, in a PCA regression, one only includes the PCA scores.

To capture demandingness, I include information about punitive behavior, rules-setting,
and, for older children, independence. To capture responsiveness, I include information
about parental warmth and a positive mother-child relationship. First, I use information
from the Straus’s Conflict Tactics Scales (CTS; Straus and Hamby, 1997). The CTS mea-
sures the tactics or behaviors used by parents when there is conflict or hostility toward a
child. There are separate scales for reasoning, non-violent discipline, psychological aggres-
sion, and physical assault. In the MCS, the mother is asked about her discipline practices,
i.e. how often she punishes her child in a particular way when he or she is naughty. Items
include, among others, reasoning with the child (representing the reasoning scale in the
CTS), ignoring the child (non-violent discipline), shouting at the child (psychological ag-
gression), and smacking the child (physical assault). The items can be answered on a
five-point Likert scale ranging from "never" to "daily". The CTS items are available for
the second, third, fourth, and fifth wave of the MCS (i.e. child ages 3, 5, 7, and 11),
although not all items are asked consistently.10 In wave six, the discipline practices are
assessed by the child directly instead of the mother. He or she is asked whether the parents
ground him or her, tell him or her off, and punish him or her in some other way.

Second, I use the Child-Parent Relationship Scale (CPRS) in wave two (child age 3).
The CPRS is a mother-assessed report of the child’s relationship with the mother. The
items include the mother’s feelings and beliefs about her relationship with the child and
the child’s behaviour toward her. The CPRS in the MCS is a 15-item self-administered
rating scale with responses on a five-point Likert scale.11 Items include whether the mother
shares an affectionate relationship with her child, whether the child seeks comfort from the
mother, and whether the child spontaneously shares information with her. For waves three
to six, there is less information available about the mother-parent relationship. The mother
is either asked whether she shares an affectionate relationship with her child or how close
they are, and whether she listens to her child. In wave six, the information is again assessed
by the child instead of the mother.

Third, where available, I use information about whether the parents set rules about
bedtime, whether the child has meals at regular times, and whether there are rules about
watching TV or playing games on the computer. The first two items are answered on a
four-point Likert scale, the questions about TV and computer are answered with yes or
no. In wave four (child age 7), I additionally include whether the child has to do household
chores, and in wave six (age 14) whether the parents are informed about the whereabouts
of their child when he or she is not at home (a proxy for the level of independence).

I conduct a PCA separately for each wave and apply an oblique rotation to the factor
loadings. Table B.2 in the Appendix shows an overview of the information I use in each

10I use a subset of all available items of the CTS. The items are chosen such that they are able to capture
the demandingness dimension.

11Similar to the CTS, I only use a subset of the 15 available items of the CPRS.
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wave. Table 2.1 shows the rotated loadings for waves two to six. To conduct the PCA, I
transform the Likert scales into numeric scales by assigning a value of 1 to the lowest and
a value of 5 (4) for the highest values of the five-point (four-point) Likert scales.

In the second wave (child age 3), the first principal component almost exclusively loads
on the items from the CTS (i.e. disciplinary practices), whereas the second principal
component almost exclusively loads on the items from the CPRS (i.e. the mother-child
relationship). I interpret the former as a measure of demandingness and the latter as a
measure of responsiveness. In the third wave (child age 5), the first principal component
similarly loads on the CTS items, and I also interpret it as a measure of demandingness.
The second principal component loads on the items about rules at home (not shown in
Table 2.1), and the third on having a warm relationship with the child, reasoning with the
child, and making sure he or she obeys. I use the third principal component as my measure
of responsiveness. I use the first (second) principal component in wave four, the first
(third) in wave five, and the third (second) in wave six as my measures for demandingness
(responsiveness). In all cases, demandingness is similarly associated with the disciplinary
practice and responsiveness with a positive relationship with the mother.

Note that wave six is an outlier to some extent. First, for consistency reasons, I do not
use the first principal component because it heavily loads on the measures of independence
(knowledge about whereabouts). Second, the information is assessed by the child, not by
the mother. Although there is a subset of items where both the child and the mother were
assessed in wave six, I only use child-assessed information for consistency. The factors
obtained from wave six are thus less comparable to the factors from waves two to five.
Child- and mother-assessed information is nonetheless correlated: the correlation between
the items measuring a positive relationship reported by the child and the mother is 0.34,
and the correlation between the items measuring knowledge about whereabouts is 0.38.12

Table 2.1: Parenting Styles Factor Loadings

Demandingness Responsiveness

Age 3
Warm relationship with child −0.00 0.49
Child seeks comfort 0.07 0.53
Child values relationship −0.01 0.61
Child beams with pride when praised −0.01 0.64
Child shares information 0.03 0.64
In tune with child −0.10 0.60
Child shares feelings −0.00 0.60
Ignores child 0.52 −0.03
Smacks child 0.54 −0.06
Shouts at child 0.71 −0.02

12In both cases, I compare the mean responses of the child with the mean responses of the mother.
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Sends child to room 0.62 0.06
Takes away treats from child 0.63 0.06
Tells child off 0.73 0.05
Bribes child 0.45 −0.04
Rules about bed times 0.03 0.20
Rules about eating −0.03 0.17

Age 5
Warm relationship with child −0.20 0.69
Ignores child 0.50 −0.14
Smacks child 0.50 −0.28
Shouts at child 0.70 −0.04
Sends child to room 0.66 −0.00
Takes away treats from child 0.64 0.08
Tells child off 0.75 0.19
Bribes child 0.42 −0.02
Reasons with child 0.51 0.46
Makes sure child obeys 0.09 0.62
Rules about bed times 0.07 0.02
Rules about eating 0.01 0.01

Age 7
How close to child −0.17 0.57
Listens to child −0.15 0.68
Warm relationship with child −0.04 0.69
Ignores child 0.50 −0.07
Smacks child 0.47 −0.15
Shouts at child 0.70 −0.07
Sends child to room 0.69 0.11
Takes away treats from child 0.68 0.15
Tells child off 0.77 0.06
Bribes child 0.42 −0.14
Reasons with child 0.58 0.16
Rules about bed times 0.01 0.28
Rules about TV times 0.11 0.39
Rules about TV hours 0.06 0.35
Child has chores 0.01 0.28

Age 11
How close to child −0.14 0.73
Talks to child 0.13 0.80
Sends child to room 0.84 −0.09
Takes away treats from child 0.86 −0.04
Reasons with child 0.78 0.11
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Rules about bed times −0.10 0.03
Rules about TV times 0.08 −0.06
Rules about TV shows 0.04 0.03

Age 14
How close to mother −0.10 0.82
How close to father −0.11 0.82
Keeps child indoor 0.81 0.02
Tells child off −0.02 −0.16
Punish child in other way 0.56 −0.14
Parents know where after 9pm 0.10 0.13
Parents know where overnight 0.21 0.17
Parents know where when out −0.10 −0.13
Parents know with whom when out −0.11 −0.17
Parents know what when out −0.09 −0.16

Note: The table shows the rotated factor loadings for waves two to six (child ages 3, 5, 7, 11, and 14, respectively). For child
ages 3, 5, 7, and 11, demandingness refers to the first principal component; for child age 14, it refers to the third principal
component. For child ages 3, 7, and 14, responsiveness refers to the second principal component; for child ages 5 and 11, it
refers to the third principal component. Data: Millennium Cohort Study. Own calculations.

Wave six aside, the factor loadings are largely stable across waves (see e.g. sending the
child to the room or shouting at him or her). This is important because it ensures that
the variation in the parenting style measures across child ages is driven by differences in
parenting behavior and not by differences in the factor loadings.

Also, note that rules-setting does not load on the demandingness factor at any child
age; it instead loads on the third principal component in most waves (not shown in Table
2.1). My measure of demandingness thus predominantly captures the punitive parenting
aspect of demandingness and not the firm-rules aspect.13

To check whether the demandingness and responsiveness factors indeed measure par-
enting styles, I compare them with self-assessed information from wave two (child age 3).
Parents were asked to choose one of the following options that best describes their own
parenting style: i.) "doing my best for the children", ii.) "firm rules and discipline", iii.)
"firm discipline plus lots of fun", iv.) "lots of fun", and v.) "have not really thought
about it". Table B.5 in the Appendix reports the child-age-specific mean values of de-
mandingness and responsiveness. "Firm rules and discipline", i.e. authoritarian parenting,
is indeed associated with the highest values of demandingness and low values of responsive-
ness. "Firm discipline plus lots of fun", presumably authoritative parenting, is associated
with above-average demandingness and high values of responsiveness. "Lots of fun", i.e.
indulgent parenting, is associated with the lowest values of demandingness. Self-assessed
parenting styles from wave two and demandingness/responsiveness in wave six are largely

13My empirical results are virtually unchanged when I include the third principal component in my
analysis (not presented).
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uncorrelated, likely because the former is assessed by the parents and the latter by the
children.

Table B.6 in the Appendix also reports correlations between parenting styles of a parent
at child age a and a − 1. I interpret this correlation as a measure of "persistency" of
demandingness and responsiveness from one child age to the next. Demandingness is
highly persistent across child ages 3 and 11, with correlation coefficients between 0.55 and
0.65. Persistency of responsiveness is lower but still sizeable, ranging from 0.17 to 0.32
across ages 3 and 11. Persistency of demandingness and responsiveness from age 11 to 14
is lower in both cases (0.21 and 0.10, respectively). Again, this is likely because parenting
styles are measured using information obtained from the child at age 14 but from the
mother at ages 3 to 11.

Parental investment I follow Del Bono et al. (2016) and construct an index of parental
time investment from self-assessed information about the type and frequency of parent-
child activities. From wave three onward, I additionally include information about parental
school involvement: whether parents are attending the parents’ evenings, whether they
arrange special meetings with the teacher, how much effort they put in getting the child
into their school of choice, and how much they participate in school activities. The exact
parent-child activities and school involvement measures vary across the waves. Table B.3
in the Appendix shows an overview of the information I use in each wave.

I again combine the parent-child activities using a PCA. The rotated factor loadings are
shown in Table B.4 in the Appendix. The first three principal components load primarily
on variables that can be interpreted as recreational time investments, educational time
investments, and parental school involvement, respectively.14 The first principal compo-
nent, which I interpret as recreational time investment, includes playing games with the
child, painting with him or her, going to the park, and singing songs together. The second
principal component, educational time investment, includes helping the child learn read-
ing, writing, and math. The third component loads on the school involvement variables.15

Note that, as is the case for the parenting style measures, wave six is an outlier because
the information is assessed by the child instead of the mother. Here it is the first principal
component that I interpret as parental school involvement and the second as educational
time investment. There is no principal component that can be interpreted as recreational
time investment in wave six.

Table 2.2 shows descriptive statistics for the parental input measures, computed on a

14The distinction between educational and recreational investments is also suggested by Del Bono et al.
(2016).

15I only use the educational time investment factor in my main regressions for consistency reasons,
because recreational time investments and school involvement are not available for all waves. Adding them
in the regressions does not change the results.
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pooled sample across all child ages 3, 5, 7, 11, and 14.16 All measures are age-standardized
to mean zero and standard deviation one on the full sample.

Table 2.2: Descriptive Statistics for Parental Input Measures

Mean S.D. Min. Max. N

Parenting Style
Demandingness 0.02 0.90 −2.17 2.29 13,835
Responsiveness 0.10 0.84 −2.97 1.58 13,835

Parental Investment
Education 0.09 0.88 −2.72 1.75 13,835
Recreation 0.08 0.87 −2.47 1.97 10,951
Involvement −0.03 0.79 −1.13 3.91 10,912

Note: The table shows descriptive statistics for the parental input measures (mean, standard deviation, minimum and
maximum values, and number of observations; all unweighted). All measures are age-standardized to mean zero and standard
deviation one (on the full sample). The values are computed on the pooled estimation sample across child ages 3, 5, 7, 11,
and 14. Recreation is not observed at child age 14, and involvement is not observed at child age 3. Data: Millennium Cohort
Study. Own calculations.

2.5.3 Skill Measures

Cognitive skills The MCS administered multiple achievement and ability assessments
throughout the cohort members’ lives. Cognitive skill assessments were part of the waves
corresponding to child ages 3, 5, 7, 11, and 14. Table 2.3 shows an overview of which tests
were administered at what wave and what cognitive concept they capture (see also Moulton
et al., 2020, for a discussion). A description of the skill assessments can be found in section
B.1.1 in the Appendix. The ability concepts in Table 2.3 are based on the Cattell-Horn-
Carroll (CHC) model of cognitive ability and refer to crystallised ability (Gc), fluid ability
(Gf), reading and writing (Grw), visual processing (Gv), and quantitative knowledge (Gq).
The two best-known concepts are crystallised and fluid ability. Crystallised ability refers
to the skill or knowledge base that an individual has acquired, e.g. the fundamental
meaning of words. Fluid intelligence is the ability to solve novel problems without relying
on previously acquired knowledge (Schneider and McGrew, 2018).

In an ideal setting, the skill measures are comparable both within and across waves.
Because there are at least three measures in each age group required to test for measure-

16Because of outliers in the parental inputs measures, I remove the respective top and bottom 1% of the
pooled distributions from the sample.
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Table 2.3: Cognitive Skill Measures

Age 3 Age 5 Age 7 Age 11 Age 14

Naming Vocabulary Gc Gc
Pattern Construction Gv Gv
Picture Similarities Gf
Word Reading Gc/Grw
Progress in Maths Gq
Verbal Similarities Gc
Vocabulary Test Gc
Note: The table shows the cognitive skill measures in the MCS and their ability concepts based on the Cattell-Horn-Carroll

model of cognitive ability: Gc (crystallised ability), Gv (visual processing), Gf (fluid ability), Grw (reading and writing), Gq
(quantitative knowledge).

ment invariance—a necessary condition for comparability across waves—and the MCS does
not satisfy this requirement, strict invariance can’t be tested, and thus can’t be assumed
(McElroy et al., 2021). This implies that mean differences between the waves of the skill
measures are not necessarily meaningful. However, for my application, metric invariance,
a weaker condition, is sufficient. If metric invariance holds, regression coefficients across
waves can be meaningfully compared. To achieve this, I choose measures in the same
domain across waves and then to do sensitivity analysis with alternative measures.

In my benchmark regressions, I combine the following measures: Naming Vocabulary
(ages 3 and 5), Word Reading (age 7), Verbal Similarities (age 11), and Vocabulary Test
(age 14). That is, I combine measures for crystallised ability. For the sensitivity analysis,
I use Picture Similarities (age 5), Pattern Construction (ages 5 and 7), and Progress in
Maths (age 7).

Non-cognitive skills I use the Strengths and Difficulties Questionnaire (SDQ) as mea-
sure of non-cognitive skills, a well-established and validated instrument in psychology. The
SDQ is a behavioral screening questionnaire designed to quantify the psychological adjust-
ment in children aged three to sixteen (Goodman, 1997) and is highly correlated with
alternative measures of non-cognitive skills. In the economics literature, the SDQ is inter-
preted as a measure of positive child development (see e.g. Attanasio et al., 2020) and has
been used in a series of recent studies (e.g. Cornelissen and Dustmann, 2019; Jensen et al.,
2017). Non-cognitive skills, as measured by the SDQ, have been found to be an important
predictor of adult life satisfaction (Layard et al., 2014) and labour market outcomes (Clark
and Lepinteur, 2019).

There are 25 SDQ items that are divided between five scales with five items each.
The five scales are i.) hyperactivity/inattention, ii.) conduct problems, iii.) emotional
symptoms, iv.) peer problems, and v.) pro-social behavior. Table B.1 in the Appendix
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presents the items of the five scales. Each of the items of each scale can be marked "not
true", "somewhat true", or "certainly true". The score for each of the scale is generated
by adding up the scores for their respective five items; each score thus ranges between zero
and ten. I reverse-code the scales such that higher scores indicate better child behavior.

The MCS administered the SDQ primarily to the cohort members’ parents, who were
asked to complete the questionnaire on behalf of their child. For my main results, I use the
sum of the hyperactivity/inattention, conduct problems, emotional symptoms, and peer
problems scales (i.e. excluding the pro-social behavior scale).17 In two waves, ages 7 and
11, the SDQ was additionally administered to the cohort members’ teacher and at age 17
to the cohort members themselves. I make use of the teacher-assessed questionnaires in
the robustness analyses.

Table 2.4 shows descriptive statistics for the skill measures. All measures are age-
standardized to mean zero and standard deviation one on the full sample (i.e. before
dropping observations with missing values). The means above zero indicate that higher-
skilled children are less likely to have missing values in the input measures or control
variables.18

2.5.4 Other Inputs in the Production Function

At child ages 3, 5, and 7, the MCS includes information about who looks after the child and
how many hours per week. I control for the time children are taken care of by grandparents,
siblings, other relatives, nurseries, and childminders.19

At child age 7, the MCS administered a teacher questionnaire to class teachers for a
subset of children that includes information about teacher quality and classroom character-
istics. With respect to the former, I include information about the class teacher’s highest
educational degree, his or her teaching experience in years, the time since he or she received
the teaching qualification, and the time he or she is already teaching at the child’s school.
These characteristics have been shown to be predictive for teacher value-added (Clotfelter
et al., 2010; Jacob et al., 2018; Papay and Kraft, 2015; Rockoff, 2004). Information about
the classroom includes class size, the share of children with special educational needs, the
share of children with English as a second language, the number of children excluded from
class, and whether the child shares his or her class with a child that disturbs the lessons.

17Excluding the pro-social behavior scale is common practice and the default in the MCS total SDQ
score.

18Age-standardizing to mean zero and standard deviation one on the estimation sample instead of the
full sample yields similar results.

19Ideally I would also be able to control for grandparents’ parenting style or the style of the child
care arrangement (e.g. whether parents hire a strict nanny or childminder). Yet, this information is not
available in the MCS. Inputs in the form of parenting styles are captured insofar as they are correlated
with included time inputs.
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Table 2.4: Descriptive Statistics for Skill Measures

Mean S.D. Min. Max. N

Cognitive Skills
Age 3 0.27 0.84 −3.51 3.77 2,767
Age 5 0.33 0.83 −3.60 3.91 2,767
Age 7 0.23 0.90 −3.12 3.74 2,767
Age 11 0.19 0.84 −5.94 3.41 2,767
Age 14 0.16 0.99 −2.69 4.55 2,767

Non-cognitive Skills
Age 3 0.23 0.84 −3.08 1.81 2,767
Age 5 0.25 0.81 −4.10 1.47 2,767
Age 7 0.24 0.82 −5.02 1.37 2,767
Age 11 0.20 0.84 −4.79 1.31 2,767
Age 14 0.23 0.85 −3.97 1.37 2,767

Note: The table shows descriptive statistics for the skill measures (mean, standard deviation, minimum and maximum
values, and number of observations; all unweighted). All measures are age-standardized to mean zero and standard deviation
one (on the full sample). The values are computed on the estimation sample. Cognitive skills are measured by the following
assessments: Naming Vocabulary (ages 3 and 5), Word Reading (age 7), Verbal Similarities (age 11), and Vocabulary Test
(age 14). Non-cognitive skills are measured by the SDQ at all child ages. Data: Millennium Cohort Study. Own calculations.

Finally, I control for the Index of Multiple Deprivation (IMD), a measure of relative
levels of deprivation at the Lower Super Output Area level. The consistent sub-scales
across the U.K. are income, employment, health, and education. The IMD ranks every
area from most to least deprived in the respective country for every sub-scale. At child
ages 3, 5, and 7, the MCS contains the deciles in the country-specific IMD distribution of
the area a respondent lived in at the time of the interview.

Table B.9 in the Appendix presents descriptive statistics for the input variables (see
section B.1 in the Appendix for a detailed description of how the variables are coded). For
the time-varying variables—household and neighborhood inputs—the values are computed
on a pooled sample across child ages 3, 5, and 7.

2.5.5 Further Control Variables

As child-level controls, I include the child’s age at the time of the assessment (in months),
gender, ethnicity, birth order, number of siblings, and birth weight. I also include a dummy
variable for whether the child was born preterm. As mother-level controls, I include the
mother’s age at the birth of the child (in years), her age when she left full-time education
(in years), household income, employment status, marital status, cognitive skills (Word
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Activity assessment), mental health (Kessler scale), and personality traits (extroversion
and neuroticism). I additionally include dummy variables for whether the natural or a
non-natural father is present in the household, and I control for the government region
where the child lived in at the time of the interview. A further description of the control
variables can be found in section B.1 in the Appendix. Table 2.5 shows descriptive statistics
for the control variables.

Table B.10 in the Appendix shows associations between a subset of control variables
and parenting styles. Responsiveness is positively correlated with the mother’s educational
attainment and parental income; it is also positively correlated with parental investment.
On the other hand, demandingness is negatively correlated with the mother’s age at birth
and the child’s birth rank.

2.6 Results

2.6.1 Benchmark Estimates

Table 2.6 reports the main results for the cognitive and non-cognitive production function,
respectively. Columns (1) and (2) are the benchmark estimates; columns (3) and (4) are
extensions and are discussed in the subsequent sections 2.6.2 and 2.6.3. In each column,
I pool child ages 7, 11, and 14, and regress the cognitive/non-cognitive skill measure
ya on parental demandingness PSD

a , responsiveness PSR
a , their interaction PSD

a × PSR
a ,

and the one-period lagged cognitive/non-cognitive skill measure ya−1.20,21 I also include
parental time investment (educational activities, see section 2.5.2) and its interactions with
demandingness and responsiveness, respectively.22 For demandingness, responsiveness, and
parental investment, I further include their first and second lag.

In all columns, I control for the age of the child at the time of the assessment (in
months) and the number of siblings, and I include the following time-varying mother-level
controls: equivalized household income, whether the mother is employed, dummy variables
for whether the natural or a non-natural father is present in the household, a dummy
variable for whether the mother is married with the father figure in the household (if
present), and mother’s mental health. In columns (1), (2), and (4), I also control for the
following time-invariant child-level controls: gender, ethnicity, birth order, birth weight,
and a dummy variable for whether the child was born preterm. Likewise, I control for the
following time-invariant mother-level controls: age at the birth of the child, her age when

20For child age 7, the one-period lagged skill measure refers to age 5; for age 11, the one-period lagged
skill measure refers to age 7; for age 14, the one-period lagged skill measure refers to age 11.

21Table B.11 in the Appendix shows more detailed regression results. Tables B.12 and B.13 in the
Appendix also show the results for each child age separately.

22I exclude recreational activities and school involvement because they are not observed at all child ages.
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Table 2.5: Descriptive Statistics for Control Variables

Mean S.D. Min. Max. N

Time-invariant Controls

Child Controls
Female 0.52 0.50 0.00 1.00 2,767
Ethnicity (% of sample)

White 0.94 0.24 0.00 1.00 2,767
Black 0.01 0.11 0.00 1.00 2,767
Indian, Pakistani, Bangladeshi 0.02 0.14 0.00 1.00 2,767
Other 0.03 0.17 0.00 1.00 2,767

Birth rank 1.83 0.91 1.00 7.00 2,767
Birth weight (pounds) 3.42 0.57 0.74 5.87 2,767
Preterm birth 0.06 0.24 0.00 1.00 2,767

Mother Controls
Age at birth (years) 29.97 5.25 18.00 45.00 2,767
Age left full-time education (years) 18.51 2.57 14.00 25.00 2,767
Cognitive skills 0.23 0.87 −2.34 1.96 2,767
Extroversion −0.07 0.94 −3.35 2.23 2,767
Neuroticism −0.18 0.98 −2.65 3.71 2,767

Time-varying Controls

Child Controls
Age at assessment (months) 96.70 46.79 34.00 180.00 13,835
Number of siblings 1.38 0.98 0.00 8.00 13,835

Mother Controls
Two-parent household (nat. parents) 0.80 0.40 0.00 1.00 13,835
Two-parent household (nat. mother) 0.05 0.22 0.00 1.00 13,835
Married 0.68 0.47 0.00 1.00 13,835
Equivalized weekly household income 391.72 181.96 17.04 1298.52 13,835
Employed 0.76 0.43 0.00 1.00 13,835
Mental health −0.14 0.86 −1.02 5.93 13,835

Note: The table shows descriptive statistics for the control variables (mean, standard deviation, minimum and maximum
values, and number of observations; all unweighted). The values for the time-varying controls are computed on the pooled
estimation sample across child ages 3, 5, 7, 11, and 14. The measures for cognitive skills, extroversion, neuroticism, and
mental health are standardized to mean zero and standard deviation one (on the full sample prior to removing observations
with missing values). A further description of the control variables can be found in section B.1 in the Appendix. Data:
Millennium Cohort Study. Own calculations.
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Table 2.6: Main Results

OLS IV

(1) (2) (3) (4)

Cognitive Skills

PSD
a −0.04∗∗∗ −0.04∗∗ −0.03∗ −0.03∗∗

(0.01) (0.02) (0.01) (0.02)
PSR

a 0.02∗∗ 0.05∗∗∗ 0.01 0.03∗

(0.01) (0.02) (0.01) (0.01)
PSD

a × PSR
a 0.00 −0.01 −0.01 0.01

(0.01) (0.02) (0.01) (0.01)
ya−1 0.19∗∗∗ 0.19∗∗∗ 0.01 0.97∗∗∗

(0.01) (0.02) (0.02) (0.07)

First stage −0.68∗∗∗ 0.22∗∗∗

F-statistic 222.16 10.67
Adj. R2 0.17 0.19
Num. obs. 8,301 4,005 8,301 8,301

Non-cognitive Skills

PSD
a −0.10∗∗∗ −0.11∗∗∗ −0.09∗∗∗ −0.09∗∗∗

(0.01) (0.01) (0.01) (0.01)
PSR

a 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.04∗∗∗

(0.01) (0.01) (0.01) (0.01)
PSD

a × PSR
a 0.02∗∗ 0.02 0.02∗∗ 0.01

(0.01) (0.01) (0.01) (0.01)
ya−1 0.56∗∗∗ 0.53∗∗∗ 0.20∗∗∗ 0.81∗∗∗

(0.01) (0.02) (0.03) (0.02)

First stage −0.36∗∗∗ 0.49∗∗∗

F-statistic 114.09 40.15
Adj. R2 0.17 0.19
Num. obs. 8,301 4,005 8,301 8,301
Time-var. controls x x x x
Time-invar. controls x x x
School inputs x
Note: The table shows the estimates for the cognitive (upper panel) and non-cognitive (lower panel) production function

(robust standard errors in parentheses). PSD
a and PSR

a denote contemporaneous parental demandingness and responsiveness,
respectively. Columns (1), (2), and (4) include all child and mother controls; column (3) includes time-varying controls only.
Column (2) additionally controls for school inputs. Column (3) presents the estimates for the model in first difference, and
where ∆ya−1 is instrumented with ya−2. The first stage coefficient and F-statistic refer to the regression of ∆ya−1 on
ya−2. In column (4), the lagged outcome is instrumented with the double-lagged outcome, and the first stage coefficient and
F-statistic refer to the regressions of ya−1 on ya−2. The models are estimated on a pooled sample across child ages 7, 11,
and 14, and include year fixed-effects. Data: Millennium Cohort Study. Own calculations.
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she left full-time education, and measures for the mother’s cognitive skills and personality
traits.23 Columns (1), (2), and (4) further control for household and neighborhood inputs.24

In all columns, I include controls for the government region where the child lived in at the
time of the interview as well as time fixed-effects.

Column (1) in the upper panel of Table 2.6 reports the estimates of the value-added
specification. I find that parental demandingness is negatively associated with cognitive
skills: a one-standard-deviation increase in the demandingness measure reduces child skills
by 4% of a standard deviation. On the other hand, parental responsiveness is positively
associated: a one-standard-deviation increase in the responsiveness measure increases skills
by 2% of a standard deviation. The interaction term doesn’t reach statistical significance
at the conventional levels. The coefficients of the lagged outcome indicates that 19% of
child skills persist from one period to the other.

In column (2), I additionally control for school inputs. Because school inputs are
available only for a subset of children, the sample size is more than halved.25 The results
remain largely unchanged.

The lower panel of Table 2.6 reports the benchmark estimates for the non-cognitive
production function. Columns (1) and (2) are in line with the results for cognitive skills:
parental demandingness is negatively associated with non-cognitive skills, whereas respon-
siveness is positively associated. Yet, there are several key differences compared to the
results for cognitive skills. First, the coefficients are more than twice as large. Second, the
outcome persistence is two to three times larger. Third, the interaction between demand-
ingness and responsiveness reaches statistical significance in column (1). This suggests
that responsiveness is particularly productive for the formation of non-cognitive skills when
combined with demandingness—that is, authoritative parenting.

I find no evidence that the productivity of parental time investments depends on a
particular parenting style in columns (1) and (2). The interactions between parenting
styles and investment are insignificant for both the cognitive and non-cognitive production
function (not shown in Table 2.6). That is, I find no empirical evidence for the framework
of Darling and Steinberg (1993), who suggest that parenting affects the productivity of
investments. Moreover, excluding the educational activities measure leaves the coefficients
of demandingness and responsiveness virtually unchanged (not shown). This suggests that
parenting styles operate above and beyond their influence on investments.

23The mother’s cognitive skills are measured in wave six (child age 14), and the personality traits in
wave four (child age 7). This implies that the timing when the outcome variable and the mother’s skills
and personality traits are measured does not always coincide.

24Household and neighborhood inputs are measured at child ages 3, 5, and 7. This implies that for
regressions where the outcome refers to child ages above 7, the contemporaneous inputs are not included
but only their lags.

25School inputs are only measured at child age 7. For child ages 11 and 14, they enter the regression
only as lagged variables (first and second lag, respectively).
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In sum, columns (1) and (2) suggest that parental demandingness is detrimental for
skill development, whereas responsiveness is beneficial. Considering that my measure of
demandingness mostly reflects punitive parenting and my measure of responsiveness re-
flects parental warmth, my results are in line with the previous literature: authoritarian
parenting, i.e. punitive and low in warmth, is typically found to hem child development
(e.g. Cuartas, 2022). Authoritative parenting, which in contrast to authoritarian parenting
is also high in warmth, is highlighted as the most beneficial parenting style in most studies
(e.g. Rothenberg et al., 2021).26

The effect sizes are economically significant. To put the estimates into perspective,
Fredriksson et al. (2013), exploiting variation in the class size created by a maximum class
size rule, find that increasing the class size by one student reduces cognitive skills at age 13
by between 3.2% and 6.3% of a standard deviation.27 This is strikingly similar to the 4% of
a standard deviation reduction I find for demandingness in column (1) of Table 2.6. With
respect to my own estimates, the coefficient of demandingness of the cognitive production
function is more than twice as large as the (positive) effect of postponing the mother’s age
when she left full-time education by one year.

To give an intuition what a one-standard-deviation increase in demandingness or re-
sponsiveness entails, I regress the frequency of how often the mother tells her child off
(how often she expresses affection) on demandingness (responsiveness). The results are
presented in Table B.8 in the Appendix. Increasing demandingness (responsiveness) by
one standard deviation is associated with 1.16 (1.48) additional days per week where the
mother tells her child off (expresses her affection).

2.6.2 Unobserved Ability

Unobserved innate ability of a child is included in the error term in Equation (2.7). Al-
though the past effects of innate ability on the skill formation process are captured by
the lagged outcome, the contemporaneous effect is not. This is problematic if parents ad-
just their inputs according to their child’s ability. It is also problematic if high-ability
children have higher skill growth, e.g. because they learn faster. This implies that
Cov(yi,a−1, ϵia) > 0, and λ will be biased upwards because ϵia = µi + εia (Andrabi et
al., 2011).

To account for this possibility, I estimate the model in Equation (2.7) by first-differencing

26Fiorini and Keane (2014) find that both parental discipline and warmth are beneficial for child devel-
opment. Yet, their measure of parental discipline is not directly comparable with my measure of demand-
ingness. Their measure largely captures effective, not punitive, discipline, i.e. how successful parents can
impose disciplinary measures. In fact, their factor loads negatively on punishing the child. In this sense,
their positive and my negative coefficients are not at odds.

27See Table III in Fredriksson et al. (2013).
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such that time-invariant variables—including innate ability—drop out of the equation:

yia − yi,a−1 =
a−2∑
m=0

βa−m(P i,a−m − P i,a−m−1) + λ(yi,a−1 − yi,a−2) (2.8)

+ ρ(W ia −W i,a−1) + (εia − εi,a−1).

First-differencing accounts for the issue of unobserved ability under the assumption
that the effect of innate ability on skill formation is constant across child ages. Note that
(yi,a−1 − yi,a−2) will be correlated with the error term by construction because the latter
includes εi,a−1. I therefore follow Arellano and Bond (1991) and instrument (yi,a−1−yi,a−2)
with yi,a−2. The double-lagged outcome is uncorrelated with (εia − εi,a−1) but correlated
with (yi,a−1−yi,a−2) under the assumption that parents do not adjust their inputs according
to the child’s expected future skill shocks.

Column (3) of Table 2.6 reports the estimates for the model in first differences. The
results largely support the benchmark results, although the estimates for the cognitive
production function lose statistical significance. This may be due to the lagged cognitive
skill measure being an ill-suited instrument—which the insignificant coefficient of the lagged
outcome suggests (a coefficient of zero would imply that there is no skill persistency, which
is implausible).28

2.6.3 Measurement Error

Andrabi et al. (2011) and Del Bono et al. (2016) show that the persistence parameter λ
in Equation 2.7 can be attenuated by measurement error in the outcome variable. This
matters for my application because the bias in the persistence parameter can lead to a bias
in the input coefficients that can go in either direction. To check whether this is an issue,
I use the double-lagged outcome to instrument the lagged outcome (as proposed by e.g.
Del Bono et al., 2016).

Column (4) of Table 2.6 reports the instrumental variable estimates for the cognitive
and non-cognitive production function. Two points are worth highlighting: first, the persis-
tence parameter increases considerably when the lagged outcome is instrumented, both for
the cognitive and non-cognitive production functions. This is consistent with the intuition
that instrumenting the lagged outcome corrects for measurement error, thus reducing the
downward bias. Second, although the IV estimates are less statistically significant com-
pared to the OLS estimates, the results are stable and the coefficients change only little. I
conclude from this exercise that, although measurement error might be present, it doesn’t
alter my findings and conclusion.

28Note that the first stage coefficient is negative because there is a mechanical negative association
between ya−2 and ∆ya−1 = (ya−1 − ya−2).
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2.6.4 Feedback Effects

One explanation of the results is that parents react to child outcomes and adjust their
parenting style accordingly. The negative (positive) coefficient of demandingness (respon-
siveness) may then occur because negative skill shocks induce parents to become more
(less) demanding (responsive), and not because parenting styles have a causal impact on
skill formation. To address such feedback effects, I employ dynamic panel estimators that
use lagged inputs as instruments (Arellano and Bond, 1991; Blundell and Bond, 1998).
These estimators make the assumption that inputs are predetermined but not strictly ex-
ogenous. An input is predetermined if it is uncorrelated with contemporaneous and future
error terms, but is potentially correlated with past error terms. This implies that parents
are allowed to adjust their parenting styles in reaction to past child skill shocks (but not
to contemporaneous or future skill shocks).

First, the Arellano-Bond estimator takes the model in first differences—see Equation
(2.8)—and uses lagged inputs and outcomes to instrument the first-differences. Specifically,
∆yi,a−1 is instrumented with yi,a−2, and ∆P i,a with P i,a−1. Identification of λ and βa is
achieved by imposing moment conditions derived from the assumption that inputs are
predetermined (Arellano and Bond, 1991). The Arellano-Bond estimator is also known as
"difference GMM".

Second, the Blundell-Bond estimator extends the Arellano-Bond estimator and esti-
mates a system of equations, one for Equation (2.7), and another for Equation (2.8). In
addition to Arellano and Bond (1991), Blundell and Bond (1998) additionally instrument
the inputs and lagged outcome in levels with the inputs and lagged outcome in first differ-
ences: yi,a−1 with ∆yi,a−1, and P i,a with ∆P i,a. This is valid because additional moment
conditions can be derived under the assumption that there is a constant correlation between
the time-varying inputs and innate ability, and that time-invariant inputs and controls are
uncorrelated with innate ability.

The Blundell-Bond estimator, also known as "system GMM", is more efficient than
difference GMM because of these additional moment conditions. However, the constant-
correlation assumption is rather strong. In addition, as Andrabi et al. (2011) points out,
the Blundell-Bond estimator requires that innate ability does not influence skill growth,
which arises for instance when imperfect persistence cancels the benefit of faster learning.
In light of these issues, I prefer difference GMM to system GMM, but nonetheless show
estimates for the latter because it is less susceptible to weak instruments.

Table 2.7 reports the estimates using the Arellano-Bond and Blundell-Bond estimators,
both for the cognitive (top panel) and non-cognitive (bottom panel) production function.
In column (1), I reproduce the results from column (3) of Table 2.6 as a reference (with
the exception that I do not control for the interactions of the parental inputs because
they complicate instrumentation in the remaining columns; I also initially exclude lagged
first-differenced inputs, but include them in later specifications). Column (2) shows the
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Arellano-Bond benchmark estimates, where I instrument ∆yi,a−1 with yi,a−2 and ∆P i,a with
P i,a−1. Under the assumption that parents react to past positive skill shocks by decreasing
(increasing) their demandingness (responsiveness), feedback effects bias the estimate of λ
upwards and the estimated coefficients of parental inputs towards zero. Correcting for
feedback effects would thus lead to a reduction in the estimate of λ, and a more negative
(more positive) estimated coefficient of demandingness (responsiveness). Comparing col-
umn (1) with (2) shows little indication of feedback effects: although the estimates for the
cognitive production function lose significance, the stable coefficients for the non-cognitive
production function are reassuring.

In column (3), I instrument ∆yi,a−1 with yi,a−3 instead of yi,a−2 to account for measure-
ment error.29 If true skill y∗ia is measured with error uia such that yia = y∗ia+uia, Equation
(2.8) becomes ∆yia =

∑a−2
m=0 βa−m∆P i,a−m+λ∆yi,a−1+ρ∆W ia+[∆εia+∆uia−λ∆ui,a−1]

(Andrabi et al., 2011). yi,a−2 will then be correlated with ∆ui,a−1 = (ui,a−1 − ui,a−2) by
construction and downward-bias the estimate of λ. Comparing column (2) with (3), the
persistency parameter indeed increases considerably for the cognitive production, yet not
for the non-cognitive production function (in contrast, λ is lower when the instrument is
yi,a−3 instead of yi,a−2). In any case, the coefficients of demandingness and responsiveness
change little.

In column (4), I additionally include ∆P i,a−1 in the difference equation. In this spec-
ification, I use P i,a−2 and P i,a−3 as instruments instead of P i,a−1. This is because when
inputs are assumed to be predetermined (and not exogenous), P i,a−1 is an invalid in-
strument for ∆P i,a−1. The estimates in column (4) are considerably different than the
estimates in columns (1) to (3). For the cognitive production function, the coefficient of
responsiveness is significantly larger. For the non-cognitive production function, the coef-
ficients of both demandingness and responsiveness are insignificant. This may be because
the instruments are weak in this specification.

For columns (2) to (4), I present p-values for the m2 test, a test for second-order serial
correlation in the idiosyncratic error term εia in Equation (2.7). Serial correlation would
invalidate the instruments because P i,a−1 and P i,a−2 are potentially correlated with past
and contemporaneous error terms, and may then also be correlate with future error terms.
Reassuringly, in column (4) of the upper panel and in columns (2) to (4) of the bottom
panel, I fail to reject the null hypothesis of no serial correlation.

I also present p-values for the Sargan test of the overidentifying restrictions. In all but
one GMM specification, I reject the null hypothesis that the overidentifying restrictions
are valid. This may be problematic, yet, as Andrabi et al. (2011, p. 47) point out, it is not
entirely unexpected because different instruments identify different local average treatment
effects.

29To keep the number of observations constant, I nonetheless instrument ∆yi,a−1 with yi,a−2 in the
earliest time period.
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Table 2.7: GMM Estimates

IV Difference GMM System GMM

(1) (2) (3) (4) (5) (6) (7)

Cognitive Skills

PSD
a −0.03∗ 0.01 0.01 −0.06 −0.00 0.01 0.04

(0.02) (0.02) (0.02) (0.11) (0.02) (0.02) (0.05)
PSR

a 0.02∗ 0.00 0.00 0.34∗∗∗ −0.01 −0.01 0.31∗∗∗

(0.01) (0.02) (0.02) (0.13) (0.01) (0.01) (0.08)
ya−1 0.01 0.01 0.23∗∗∗ 0.08∗∗ 0.04∗∗ 0.05∗∗∗ 0.10∗∗∗

(0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02)

Num. obs. 8,301 8,301 8,301 8,301 8,301 8,301 8,301
m2 (p-value) 0.00 0.00 0.75 0.00 0.00 0.00
Sargan (p-value) 0.00 0.00 0.00 0.51 0.00 0.00 0.00

Non-cognitive Skills

PSD
a −0.10∗∗∗ −0.11∗∗∗ −0.10∗∗∗ −0.08 −0.15∗∗∗ −0.14∗∗∗ 0.01

(0.01) (0.02) (0.02) (0.05) (0.01) (0.01) (0.04)
PSR

a 0.04∗∗∗ 0.03∗∗ 0.03∗∗ −0.08 0.04∗∗∗ 0.04∗∗∗ −0.02
(0.01) (0.01) (0.01) (0.06) (0.01) (0.01) (0.06)

ya−1 0.19∗∗∗ 0.18∗∗∗ 0.13∗∗∗ 0.18∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.37∗∗∗

(0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02)

Num. obs. 8,301 8,301 8,301 8,301 8,301 8,301 8,301
m2 (p-value) 0.66 0.80 0.19 0.03 0.04 0.00
Sargan (p-value) 0.16 0.00 0.00 0.00 0.00 0.00 0.00
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table shows the estimates for the cognitive and non-cognitive production function (robust standard errors in
parentheses). PSD

a and PSR
a denote parental demandingness and responsiveness, respectively. Each column includes the

full set of time-varying child and mother controls. Each model is estimated in first-differences. In column (1), ∆yi,a−1

is instrumented with yi,a−2. Columns (2)–(4) are estimated with the Arellano-Bond estimator, and columns (5)–(7) with
the Blundell-Bond estimator. In columns (2) and (5), ∆yi,a−1 is instrumented with yi,a−2, and ∆P i,a with P i,a−1. In
columns (3) and (6), ∆yi,a−1 is instrumented with yi,a−3, and ∆P i,a with P i,a−1. Columns (4) and (7) additionally include
∆P i,a−1, and ∆P i,a and ∆P i,a−1 are instrumented with P i,a−2 and P i,a−3. The Blundell-Bond estimator additionally
estimates a levels equation in columns (5)–(7). In column (5), yi,a−1 is instrumented with ∆yi,a−1 and P i,a with ∆P i,a. In
column (6), yi,a−1 is instrumented with ∆yi,a−2 and P i,a with ∆P i,a. In column (7), yi,a−1 is instrumented with ∆yi,a−1

and P i,a and P i,a−1 with ∆P i,a−2 and ∆P i,a−3. Data: Millennium Cohort Study. Own calculations.
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Columns (5) to (7) show the results for the Blundell-Bond estimator. Column (5)
corresponds to column (2) with the addition that I instrument yi,a−1 with ∆yi,a−1 and P i,a

with ∆P i,a in a levels equation. Similarly, column (6) corresponds to column (3), but
I instrument yi,a−1 with ∆yi,a−2 in the levels equation. Finally, column (7) corresponds
to column (4), but is estimated with the Blundell-Bond instead of the Arellano-Bond
estimator. In all specifications, the persistency parameter increases considerably, likely
because the increased efficiency is better able to account for the attenuation bias. For the
non-cognitive production function, the coefficient of demandingness becomes slightly more
negative. However, note that the m2 test rejects the null hypothesis of no serial correlation
in all specifications at least at the 5%-level.

In sum, Table 2.7 provides little evidence of feedback effects. A few caveats apply, how-
ever. First, the dynamic panel estimators only allow for parents adjusting their parenting
style in reaction to past child skill shocks. Yet, it is possible that parents also anticipate
future shocks, which would invalidate the instruments. More problematic, parents are also
not allowed to react to contemporaneous shocks. Still, my results indicate that parents
do not react to past shocks, which supports the assumption that parents also do not re-
spond to contemporaneous shocks. Second, the Sargan test rejects the null hypothesis that
the overidentifying restrictions are valid in most cases. This may be problematic, but as
mentioned, not unexpected in my application.

2.6.5 Effects across Child Ages

To see whether the effect of parenting styles on skills is heterogeneous across child ages,
I estimate the model separately for each child age. Compared to the baseline model in
Table 2.6, I make the following adjustments: first, I additionally estimate the model with
cognitive and non-cognitive skills at child ages 3 and 5 on the left-hand-side, respectively.30

Second, I exclude child age 14. The coefficients for child age 14 are less comparable
because the parenting style measures are based on child-assessed instead of mother-assessed
information. Third, I construct a demandingness measure that is more comparable across
child ages. When I employ a PCA on the punitive parenting information only, I find that
the first three principal components can be interpreted as non-restrictive control (loading
on e.g. ignoring or bribing the child), restrictive control (loading on e.g. sending the child
to the room or taking away treats), and corporal punishment (loading on e.g. smacking
the child).31 Crucially, not all of these factors are observed in all waves, which implies
that the benchmark demandingness measure has a different interpretation across waves. I
choose restrictive control as my measure of demandingness.32

30For the regression with skills at child age 3, I don’t control for the lagged outcome or inputs because
I don’t observe either of them prior to age 3. At child age 5, I include the lagged outcome and the first
lag of the input variables.

31The factor loadings are shown in Table B.7 in the Appendix.
32The results are similar for nonrestrictive control and corporal punishment.
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Figure 2.2 shows the point estimates and the 95% confidence intervals for the cognitive
and non-cognitive production functions, respectively. For cognitive skills, the negative as-
sociation with demandingness appears only during middle childhood, but for non-cognitive
skills, the negative association is present throughout all developmental stages. For parental
responsiveness, the opposite is the case: the positive association of responsiveness with
skills is more pronounced during early childhood (for cognitive skills, the coefficient of
responsiveness is statistically significant only at child age 3).33 Figure 2.2 suggests not
only that parenting styles are relevant for all ages, but also that the relative importance
of demandingness and responsiveness changes across child ages.

2.6.6 Robustness Analyses

The MCS administered multiple cognitive skill measures at child ages 3, 5, and 7 (see
Table 2.3). To test whether the results are sensitive to the choice of my baseline measures,
I estimate the production functions using alternative measures. The top panel of Table
2.8 reports the estimates where I substitute the right-hand-side lagged outcome with an
alternative outcome. Columns (1) and (4) are the benchmark results, corresponding to
column (5) in Table 2.6, but with a smaller sample size. In column (2), I use as lagged
outcome the Picture Similarities (age 7), the Pattern Construction (age 11), and the Verbal
Similarities (age 14). In column (3), I use as lagged outcome the Pattern Construction
(age 7), the Progress in Maths (age 11), and the Verbal Similarities (age 14). In column
(5), I use the Strengths and Difficulties Questionnaire that was administered to the cohort
member’s school teacher. Column (5) is estimated on a pooled sample with child ages 11
and 14 only because the teacher-administered SDQ is only available at child ages 7 and
11. I find that the benchmark results are robust to the choice of cognitive skill measure on
the right-hand-side.

The bottom panel of Table 2.8 reports the estimates where I substitute the left-hand-
side outcome with an alternative outcome. Columns (1) and (4) again correspond to
column (5) in Table 2.6. In column (2), I use the Pattern Construction, and in column (3)
I use the Progress in Maths. Columns (1) to (3) are estimated on child age 7 outcomes
only because there are no alternative skill measures available for later waves. In column
(5), I use the teacher-administered SDQ. Column (5) is estimated on a pooled sample with
child ages 7 and 11. The results are again similar to the benchmark estimates, although
less statistically significant.

33The coefficient at child age 3 is significantly different from the coefficients at child age 5, 7, and 11
(both for the cognitive and non-cognitive production function).
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Figure 2.2: Heterogeneity in Productivity across Child Ages
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Note: The table shows the point estimates and 95% confidence intervals for the cognitive (top) and non-cognitive (bottom)
production function. Demandingness refers to restrictive control for all child ages. All regressions control for the full set of
child and mother controls. Child ages 7 and 11 additionally control for the first and second lagged parenting styles, and age 5
controls for the first lagged parenting style. Ages 5, 7, and 11 additionally control for the lagged outcome. Data: Millennium
Cohort Study. Own calculations.
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Table 2.8: Robustness Analysis

Cognitive Skills Non-cognitive Skills

(1) (2) (3) (4) (5)

Right-hand Side

PSD
a −0.04∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.08∗∗∗ −0.09∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
PSR

a 0.02∗∗ 0.03∗∗ 0.03∗∗ 0.05∗∗∗ 0.07∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
PSD

a × PSR
a 0.00 −0.00 −0.00 0.02∗ 0.04∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
ya−1 0.19∗∗∗ 0.55∗∗∗

(0.01) (0.02)
y

′
a−1 0.16∗∗∗ 0.25∗∗∗

(0.01) (0.02)
y

′′
a−1 0.20∗∗∗

(0.01)

Adj. R2 0.17 0.16 0.18 0.49 0.34
Num. obs. 8,263 8,263 8,263 3,808 3,808

Left-hand Side

PSD
a −0.05∗∗ −0.02 −0.03 −0.19∗∗∗ −0.12∗∗∗

(0.03) (0.03) (0.03) (0.02) (0.02)
PSR

a 0.01 0.02 −0.03∗ 0.03∗∗∗ 0.01
(0.02) (0.02) (0.02) (0.01) (0.02)

PSD
a × PSR

a −0.01 0.02 0.00 0.03∗∗ 0.01
(0.02) (0.02) (0.02) (0.01) (0.02)

ya−1 0.22∗∗∗ 0.16∗∗∗ 0.29∗∗∗ 0.54∗∗∗ 0.20∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)

Adj. R2 0.24 0.10 0.16 0.51 0.17
Num. obs. 2,755 2,755 2,755 3,808 3,808
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table shows the estimates for the cognitive and non-cognitive production function (robust standard errors
in parentheses). PSD

a and PSR
a denote contemporaneous parental demandingness and responsiveness, respectively. Each

column includes the full set of child and mother controls, including household and neighborhood inputs as well as lagged
inputs. Columns (1) and (4) refer to the benchmark estimates. Upper panel: In column (2), the lagged outcome is the Picture
Similarities at age 7, the Pattern Construction at age 11, and the Verbal Similarities at age 14; in column (3), the lagged
outcome is the Pattern Construction at age 7, the Progress in Maths at age 11, and the Verbal Similarities at age 14; and
in column (5), the lagged outcome is the teacher-administered SDQ. Columns (1) to (3) are estimated on a pooled sample
across child ages 7, 11, and 14, and include year fixed-effects; columns (4) and (5) are estimated on a pooled sample across
child ages 11 and 14, and include year fixed-effects. Lower panel: In column (2), the outcome is the Pattern Construction; in
column (3), the outcome is the Progress in Maths; and in column (5), the outcome is the teacher-administered SDQ. Columns
(1) to (3) are estimated on child age 7 outcomes only; columns (4) and (5) are estimated on a pooled sample across child
ages 7 and 11, and include year fixed-effects. Data: Millennium Cohort Study. Own calculations.
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2.7 Conclusion

In this paper, I investigate the relevance of parenting styles for the formation of cogni-
tive and non-cognitive skills. I use two measures of parenting styles that are common
in developmental psychology: parental demandingness and responsiveness. I obtain these
measures from the U.K. Millennium Cohort Study based on detailed information about
parent-child interactions. Crucially, I propose time-varying measures that allow me to es-
timate dynamic panel models and to address the major sources of endogeneity: unobserved
inputs, heterogeneity in innate ability, measurement error, and feedback effects.

I find that both demandingness and responsiveness are relevant for child development.
The former is negatively associated with child skills, whereas the latter is positively asso-
ciated. I also find a positive interaction between demandingness and responsiveness. This
confirms the finding of psychologists that authoritative parenting—high demandingness
and high responsiveness—is associated with the best child outcomes. Finally, my results
suggest that parenting styles are more important for non-cognitive skills than cognitive
skills.

A few caveats apply. First, I obtain my parenting style measures based on parent-child
interactions assessed by the mother. However, child-assessed information or information
assessed by a trained observer may be more reliable. Using the waves where I can addi-
tionally observe child-assessed information, I reassuringly nonetheless find that child- and
parent-assessed information is correlated. Second, I investigate only the productivity of
the mother’s parenting style, not the father’s. This is because the information I use to
construct my measures of demandingness and responsiveness is assessed by the main in-
terview respondent only, which is always the natural mother by construction in this study.
In any case, in households with two parents, mothers and fathers typically have similar
parenting styles, such that the former acts as a proxy for the latter (Steinberg, 2001).
Third, my measure of demandingness largely captures punitive parenting. Although this
is an important component of being a demanding parent, it by no means captures the full
spectrum of it. My results thus have to be seen in this light: the negative association
between demandingness and child skills means that punitive parenting is detrimental, but
not necessarily other components of being demanding. Finally, my results may be affected
by feedback effects (parents adjusting their parenting style according to child outcomes).
Yet, using lagged inputs as instruments, I cannot find evidence for feedback effects.

My results help understanding how parents affect the lives of their children. I show that
it is not only the resources that parents invest that matter, e.g. the time they spend with
their child, but also how they spend these resources. In light of the changes in parenting
styles over the last decades, my findings are important for policy-makers and researchers
concerned with intergenerational mobility and equality of opportunity. Parenting styles
may be an important intervention target for leveling the playing field for children.



Appendix B

B.1 Data Appendix

B.1.1 Skill Measures

The paragraphs below describes the cognitive and non-cognitive skill measures in the Mil-
lennium Cohort Study. I age-standardize each measure to mean zero and standard devia-
tion one (separately for each wave).

Naming Vocabulary (waves two and three) The Naming Vocabulary assesses the
spoken vocabulary of young children. The child is shown coloured pictures of objects and
asked to name them. The assessment measures expressive language ability and requires
the child to recall words from long-term memory.

Pattern Construction (waves three and four) The Pattern Construction measures
spatial awareness, dexterity, coordination, and traits like perseverance and determination.
The child is asked to construct a design by putting together flat squares or solid cubes
with black and yellow patterns on each side. The score is based on accuracy and speed.

Picture Similarities (wave three) The Picture Similarities measures problem solving
abilities. The child is shown a row of four pictures on a page and asked to place a card
with a fifth picture under the picture most similar to it.

Word Reading (wave four) The Word Reading assesses English reading ability. The
child is asked to read aloud a series of words presented on a card to the interviewer. The
words are organised into 9 blocks of 10 words in ascending order of difficulty.
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Progress in Maths (wave four) The Progress in Maths assesses mathematical skills
and knowledge. The child is asked questions covering topics such as numbers, shapes,
measurement and data handling. The test is read aloud to the child and they are asked to
complete a series of calculations in a paper-and-pencil exercise.

Verbal Similarities (wave five) The Verbal Similarities assesses verbal reasoning and
verbal knowledge. The child is asked to say how three words that the interviewer reads
out are similar or go together. The assessment duration depends on the performance of
the child.

Vocabulary Test (wave six) The Vocabulary Test measures the understanding of the
meaning of words. The child is presented with a list of target words, each with five other
words next to them. From the five other words, the child has to select the one with the
same meaning as the target word.

Strengths and Difficulties Questionnaire In each wave, cohort members’ parents
were asked to complete the Strengths and Difficulties Questionnaire on behalf of their child.
In waves four and five, the SDQ was additionally administered to the cohort members’
teacher. There are 25 SDQ items that are divided between five scales with five items each.
The five scales are i.) hyperactivity/inattention, ii.) conduct problems, iii.) emotional
symptoms, iv.) peer problems, and v.) pro-social behavior. Table B.1 shows the items of
the five scales. Each of the five items of each scale can me marked "not true", "somewhat
true", or "certainly true". The score for each of the scales is computed by adding up
the scores for their respective five items. Each score thus ranges between zero and ten.
The scales are reverse-coded such that higher scores indicate better child behavior. The
finale measure is the sum of the hyperactivity/inattention, conduct problems, emotional
symptoms, and peer problems scales (i.e. excluding the pro-social behavior scale).
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Table B.1: Strengths and Difficulties Questionnaire

Hyperactivity/Inattention
• Restless, overactive, cannot stay still for long
• Constantly fidgeting or squirming
• Easily distracted, concentration wanders
• Thinks things out before acting
• Sees tasks through to the end, good attention span

Conduct Problems
• Often has temper tantrums or hot tempers
• Generally obedient, usually does what adults request
• Often fights with other children or bullies them
• Often lies or cheats
• Steals from home, school or elsewhere

Emotional Symptoms
• Often complains of headaches, stomach-ache or sickness
• Many worries, often seems worried
• Often unhappy, down-hearted or tearful
• Nervous or clingy in new situations, easily loses confidence
• Many fears, easily scared

Peer Problems
• Rather solitary, tends to play alone
• Has at least one good friend
• Generally liked by other children
• Picked on or bullied by other children
• Gets on better with adults than with other children

Pro-social Behavior
• Considerate of other people’s feelings
• Shares readily with other children (treats, toys, pencils, etc.)
• Helpful if someone is hurt, upset or feeling ill
• Kind to younger children
• Often volunteers to help others (parents, teachers, other children)

Note: The table shows the items of the five sub-scales of the Strengths and Difficulties Questionnaire.
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B.1.2 Parental Inputs

Table B.2: Parenting Style Items

Lowest Value Highest Value

Age 3
I share an affectionate, warm relationship with Jack Def. not (1) Definitely (5)
Jack will seek comfort from me Def. not (1) Definitely (5)
Jack values his/her relationship with me Def. not (1) Definitely (5)
Jack spontaneously shares information about him/herself Def. not (1) Definitely (5)
It is easy to be in tune with what Jack is feeling Def. not (1) Definitely (5)
Jack openly shares his/her feelings/experiences with me Def. not (1) Definitely (5)
When I praise Jack, he/she beams with pride Def. not (1) Definitely (5)
How often do you do the following when Jack is naughty:

Ignore him/her Never (1) Daily (5)
Shout at him/her Never (1) Daily (5)
Take away treats Never (1) Daily (5)
Tell him/her off Never (1) Daily (5)
Bribe him/her (e.g. with sweets or a treat) Never (1) Daily (5)
Smack him/her Never (1) Daily (5)
Send to his/her bedroom/naughty chair, etc. Never (1) Daily (5)

Does Jack go to bed at regular times? Never (1) Always (4)
Does Jack have meals at regular times? Never (1) Always (4)

Age 5
Overall, how close would you say you are to Jack? Not close (1) Extr. close (4)
How often do you do the following when Jack is naughty:

Ignore him/her Never (1) Daily (5)
Try to reason with him/her Never (1) Daily (5)
Shout at him/her Never (1) Daily (5)
Take away treats Never (1) Daily (5)
Tell him/her off Never (1) Daily (5)
Bribe him/her (e.g. with sweets or a treat) Never (1) Daily (5)
Smack him/her Never (1) Daily (5)
Send to his/her bedroom/naughty chair, etc. Never (1) Daily (5)

How often do you make sure that Jack does a request? Never (1) All the time (5)
Does Jack go to bed at a regular time (weekdays)? Never (1) Always (4)
Does Jack have meals at regular times? Never (1) Always (4)

Age 7
Overall, how close would you say you are to Jack? Not close (1) Extr. close (4)
How often do you:

Enjoy listening to/doing things with Jack? Never (1) Always (5)
Express affection by hugging/kissing/holding Jack? Never (1) Always (5)

How often do you do the following when Jack is naughty:



87

Ignore him/her Never (1) Daily (5)
Try to reason with him/her Never (1) Daily (5)
Shout at him/her Never (1) Daily (5)
Send to his/her bedroom/naughty chair, etc. Never (1) Daily (5)
Take away treats Never (1) Daily (5)
Tell him/her off Never (1) Daily (5)
Bribe him/her (e.g. with sweets or a treat) Never (1) Daily (5)
Smack him/her Never (1) Daily (5)

Does Jack go to bed at a regular time (weekdays)? Never (1) Always (4)
Do you have rules about:

How early or late Jack may watch TV? No (0) Yes (1)
How many hours Jack may watch TV? No (0) Yes (1)

How often is Jack involved in household activities/chores? Not at all (1) Every day (6)

Age 11
Overall, how close would you say you are to Jack? Not close (1) Extr. close (4)
How often do you do the following when Jack misbehaves:

Send to his/her bedroom/ground him/her, etc. Never (1) Daily (5)
Take away treats/remove privileges Never (1) Daily (5)
Try to reason with him/her Never (1) Daily (5)

Does Jack go to bed at a regular time (weekdays)? Never (1) Always (4)
Do you have rules about

How early or late Jack may watch TV etc.? No (0) Yes (1)
What kind of TV Jack may watch etc.? No (0) Yes (1)

How often is Jack involved in household activities/chores? Not at all (1) Every day (6)

Age 14
Overall, how close would you say you are:

To your mother? Not close (1) Extr. close (4)
To your father? Not close (1) Extr. close (4)

If you do something that you shouldn’t, do your parents:
Ground you/stop you from seeing friends? No (0) Yes (1)
Tell you off or shout at you? No (0) Yes (1)
Punish you in some other way? No (0) Yes (1)

Without your parents knowing where you were, did you:
Stay out after 9 pm at night in the past month? Never (1) 10 times (4)
Stay away over night in the past year? Never (1) Yes (3)

When you go out, how often do your parents know:
Where you are going? Never (1) Always (4)
Who you are going out with? Never (1) Always (4)
What you are doing? Never (1) Always (4)

Note: The table shows the variables that enter the principal component analysis to construct the parenting style measures.
The second and third column present the lowest and highest value of the variable, respectively (numerical value in parenthesis).
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Table B.3: Parental Investment Items

Lowest Value Highest Value

Age 3
How often:

Does anyone else at home read to Jack? Not at all (1) Every day (6)
Do you read to Jack? Not at all (1) Every day (6)
Does someone at home take Jack to the library? Never (0) 1x/week (4)
Does Jack paint or draw at home? Never (0) 7x/week (7)

How often does someone at home:
Help Jack to learn the ABC or the alphabet? Never (0) 7x/week (7)
Try to teach Jack numbers or counting? Never (0) 7x/week (7)
Try to teach Jack any songs/poems/nursery rhymes? Never (0) 7x/week (7)

Has Jack eaten with a family member in the past week? No (0) Yes (1)
Does anyone help Jack learn a sport/dance/activity? No (0) Yes (1)

Age 5
How often do you:

Read to Jack? Not at all (1) Every day (6)
Tell stories to Jack not from a book? Not at all (1) Every day (6)
Make music/dance with Jack? Not at all (1) Every day (6)
Draw, paint or make things with Jack? Not at all (1) Every day (6)
Play sports/outdoors games/indoors games with Jack? Not at all (1) Every day (6)
Play with toys/games indoors with Jack? Not at all (1) Every day (6)
Take Jack to the park or to an outdoor playground? Not at all (1) Every day (6)

How often does someone at home:
Help Jack with reading? Never (0) Every day (6)
Help Jack with writing? Never (0) Every day (6)
Help Jack with numbers, counting and adding up? Never (0) Every day (6)

How often:
Has Jack been to a library (past year)? Never (1) Every day (7)
Do you take part in physical activities with Jack? Never (1) Every day (7)
Does your family do things together for an evening? Never (1) Every day (7)

Age 7
How often do you:

Read with or to Jack? Not at all (1) Every day (6)
Tell stories to Jack not from a book? Not at all (1) Every day (6)
Play music/nursery rhymes/dance etc. with Jack? Not at all (1) Every day (6)
Draw, paint or make things with Jack? Not at all (1) Every day (6)
Play sports or physically active games with Jack? Not at all (1) Every day (6)
Take part in physical activities with Jack? Not at all (1) Every day (6)
Play with toys or games indoors with Jack? Not at all (1) Every day (6)
Take Jack to the park or to an outdoor playground? Not at all (1) Every day (6)

How often does someone at home:
Help Jack with reading? Never (0) Every day (6)
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Help Jack with writing and spelling? Never (0) Every day (6)
Help Jack with maths? Never (0) Every day (6)

Age 11
How often does anyone at home:

Help Jack with his/her homework? Never (1) Always (4)
Make sure Jack has finished homework? Never (1) Always (4)

How often do you:
Play sports or physically active games with Jack? Not at all (1) Every day (6)
Play indoor games with Jack? Not at all (1) Every day (6)

Age 14
How often:

Does anyone make sure you do your homework? Never (1) Always (4)
Do you talk to Jack about important things to him/her? Not at all (1) Every day (6)

Note: The table shows the variables that enter the principal component analysis to construct the parental investment
measures. The second and third column present the lowest and highest value of the variable, respectively (numerical value
in parenthesis).
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Table B.4: Parental Investment Factor Loadings

Education Recreation Involvement

Age 3
Reading to the child 0.68 0.13
Anyone else reading to the child 0.68 0.06
Visiting the library with the child 0.67 −0.14
Teaching the child sports 0.20 0.21
Teaching the child learn the alphabet −0.09 0.70
Teaching the child counting −0.05 0.81
Teaching the child songs/poems/rhymes 0.13 0.68
Painting with the child −0.02 0.53
Eating with the child as a family 0.21 −0.02

Age 5
Reading to the child 0.36 0.36 0.00
Telling stories to the child 0.09 0.50 −0.01
Doing musical activities with the child 0.00 0.56 −0.01
Painting with the child 0.06 0.64 −0.03
Playing physically active games with the child −0.11 0.73 0.03
Playing indoor games with the child 0.03 0.68 0.03
Taking the child to park or playground −0.12 0.55 0.01
Helping the child reading 0.77 −0.04 −0.05
Helping the child writing 0.74 0.07 −0.08
Helping the child with maths 0.71 0.07 −0.04
Visiting the library with the child 0.13 0.20 0.04
Family playing physically active games −0.07 0.53 0.01
Family playing indoor games with the child 0.05 0.33 −0.03
Attending parent evenings 0.19 −0.03 0.05
Parent-initiated meeting with teacher 0.03 0.02 0.77
Teacher-initiated meeting with teacher −0.04 0.01 0.76

Age 7
Reading to the child 0.12 0.47 0.09
Telling stories to the child 0.10 0.50 −0.07
Doing musical activities with the child −0.00 0.54 −0.04
Painting with the child 0.08 0.66 −0.11
Playing physically active games with the child −0.06 0.72 0.00
Playing indoor games with the child −0.00 0.72 −0.06
Taking the child to park or playground 0.00 0.47 0.02
Helping the child reading 0.80 0.04 0.07
Helping the child writing 0.86 0.02 0.03
Helping the child with maths 0.81 0.04 −0.00
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Family playing physically active games −0.06 0.57 0.07
Attending parent evenings −0.00 0.08 0.25
Steps taken to get child into school −0.01 −0.01 0.27
Participation in school activities −0.11 0.28 0.25
Parent-initiated meeting with teacher 0.08 −0.06 0.75
Teacher-initiated meeting with teacher 0.06 −0.13 0.69

Age 11
Helping the child with homework 0.81 −0.05 0.01
Ensuring that the homework is complete 0.79 0.03 −0.01
Playing physically active games with the child −0.04 0.86 0.01
Playing indoor games with the child 0.01 0.85 −0.01
Steps taken to get child into school −0.10 −0.13 0.91
Attending parent evenings 0.07 0.10 0.45

Age 14
Ensuring that the homework is complete 0.67 −0.14
Talking about important things with the child 0.67 0.05
Attending parent evenings 0.50 0.06
Parent-initiated meeting with teacher 0.08 0.80
Teacher-initiated meeting with teacher −0.08 0.80

Note: The table shows the rotated factor loadings for waves two to six (child ages 3, 5, 7, 11, and 14, respectively). For
child ages 3, 5, 7, 11, and 14, education refers to the second principal component. For child ages 3, 5, 7, and 11, recreation
refers to the first principal component. For child ages 5, 7, and 11, involvement refers to the third principal component; for
child age 14, it refers to the first principal component. Data: Millennium Cohort Study. Own calculations.
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B.1.3 Other Inputs

Household inputs At waves two, three, and four, the MCS includes information about
who looks after the child and for how many hours per week. For each wave, I compute
three variables by aggregating the hours of the following items: childcare services (child-
minder, workplace / college nursery / creche, private / independent day nursery / creche,
local authority nursery, nursery school, nursery or reception class in a primary or infants
school, special day school or nursery or unit for children with SEN, playgroup, combined
centre / family centre); grandparents (grandparent at home, care in grandparent’s home);
others (other relative including non-resident parent at home, care in other relative’s home
including non-resident parent, non-relative including nannies and au pairs at home non-
relative elsewhere). For each variable, I winsorize the top 1% of the respective age-specific
distribution.

Neighborhood inputs At waves two, three, and four, the MCS includes the deciles
in the country-specific Index of Multiple Deprivation (IMD) distribution of the area a
respondent lived in at the time of the interview. The IMD is a measure of relative levels
of deprivation at the Lower Super Output Area level. I use the sub-scales for income,
employment, health, and education. For each sub-scale, the IMD ranks every area from
most to least deprived in the respective country (England, Wales, Scotland, and Northern
Ireland).

School inputs At wave four, the MCS administered a teacher questionnaire to class
teachers that includes information about teacher quality and classroom characteristics.
With respect to the former, I include information about the class teacher’s highest educa-
tional degree (Bachelor degree, diploma, or Master degree), his or her teaching experience
in years, the time since he or she received the teaching qualification (computed as the the
survey year minus the year when he or she received the qualification), and the time he
or she is already teaching at the child’s school. Information about the classroom includes
class size, the share of children with special educational needs, the share of children with
English as a second language, the number of children excluded from class, and whether the
child shares his or her class with a child that disturbs the lessons (yes or no).
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B.1.4 Control Variables

Child controls I obtain information about the child’s gender, birth weight, gestation
period, birth rank, and ethnicity from wave one. A birth is considered preterm if the
gestation period is below 37 weeks. I group the child’s ethnicity as follows: White; Black
(Black Caribbean, Black African, other Black); Indian, Pakistani, Bangladeshi; other Asian
(Chinese, other Asian); other (mixed, other ethnic group). I obtain information about the
child’s age at the skill assessments and the number of siblings from waves two to six. The
child’s ages are transformed to months.

Parental controls I obtain information about the mother’s age at the child’s birth from
wave one. I impute missing values by using information about the mother’s age at the
interviews. If there are discrepancies across waves for the imputed values for a particular
mother, I use the mode value. Information about mother’s age when she left full-time
education comes from waves one, two, three, and six. I assign the largest value across
these waves, and winsorize values below 12 and above 25 years.

Information about the number of parent figures in the household, marital status, em-
ployment status, household income, mental health, and the government region comes from
waves two to six. I assign a household to be either a two-parent household with two natural
parents, a two-parent household with the natural mother and a partner, or a single-mother
household. I assign a mother to be either employed or not at the time when the respective
interview was conducted. Weekly household incomes are equivalized using the modified
OECD scales and adjusted for inflation using the consumer price index published by the
Office for National Statistics. The mother’s mental health was assessed using the Kessler
scales, a measure of psychological distress (Kessler et al., 2003). In the MCS, the mother
was asked six questions about depressive and anxiety symptoms that she has experienced
in the last 30 days: about how often did she (i) feel so depressed that nothing could cheer
her up, (ii) feel hopeless, (iii) feel restless or fidgety, (iv) feel that everything was an effort,
(v) feel worthless, and (vi) feel nervous. The government regions where the child lived
in at the time of the interview are North East, North West, Yorkshire and Humberside,
East Midlands, West Midlands, East of London, London, South East, South West, Wales,
Scotland, and Northern Ireland.

I obtain information about the mother’s personality traits from wave four. Respon-
dents were asked 15 questions that were used to construct a measure of extroversion and
neuroticism, respectively, two of the Big Five personality traits (see Almlund et al., 2011,
for a discussion of the Big Five personality traits).

Wave six includes a Word Activity assessment that was administered to the cohort
member’s resident parents. Respondents were presented with a list of target words, each
with five other words next to them, and asked which of those words meant the same as the
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target word. I use the Word Activity assessment as a proxy for cognitive skills measuring
knowledge of vocabulary.
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B.2 Descriptive Statistics

B.2.1 Parenting Styles
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Table B.5: Self-assessed Parenting Styles

Demandingness Responsiveness

Age 3
Doing my best for the children −0.04 0.05
Firm discipline plus lots of fun 0.05 0.18
Firm rules and discipline 0.22 −0.02
Have not really thought about it 0.07 −0.22
Lots of fun −0.20 0.09

Age 5
Doing my best for the children 0.01 −0.02
Firm discipline plus lots of fun 0.05 0.13
Firm rules and discipline 0.04 −0.24
Have not really thought about it 0.11 −0.20
Lots of fun −0.21 0.06

Age 7
Doing my best for the children −0.01 −0.02
Firm discipline plus lots of fun 0.03 0.15
Firm rules and discipline 0.09 −0.12
Have not really thought about it 0.12 −0.31
Lots of fun −0.16 0.05

Age 11
Doing my best for the children −0.04 0.04
Firm discipline plus lots of fun 0.01 0.08
Firm rules and discipline 0.13 −0.06
Have not really thought about it 0.06 −0.08
Lots of fun −0.11 0.10

Age 14
Doing my best for the children −0.06 −0.04
Firm discipline plus lots of fun −0.03 −0.06
Firm rules and discipline −0.00 −0.06
Have not really thought about it 0.02 −0.14
Lots of fun −0.15 −0.07

Note: The table shows the mean values of mothers’ demandingness and responsiveness by self-assessed parenting style.
Self-assessed parenting styles are obtained in wave two (child age 3). Demandingness and responsiveness are standardized
(mean zero and standard deviation one). Data: Millennium Cohort Study. Own calculations.
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Table B.6: Persistency of Parenting Styles

Child age (a) cor(PSD
a , PS

D
a−1) cor(PSR

a , PS
R
a−1)

Age 3 - -
Age 5 0.56 0.17
Age 7 0.65 0.32
Age 11 0.55 0.32
Age 14 0.21 0.10
Note: The table shows the correlations between parental demandingness (PSD

a ) and responsiveness (PSR
a ), respectively,

of a parent at child age a and age a− 1. a− 1 refers to the child age of the MCS wave prior to child age a. The values are
computed on the full sample. Data: Millennium Cohort Study. Own calculations.
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Table B.7: Punitive Parenting Factor Loadings

Nonrestrictive Restrictive Corporal

Age 3
Ignores child 0.61 0.25 −0.04
Smacks child −0.14 −0.05 0.85
Shouts at child 0.14 0.02 0.77
Sends child to room −0.07 0.84 0.04
Takes away treats from child 0.04 0.80 0.01
Tells child off 0.18 0.27 0.53
Bribes child 0.88 −0.18 0.06

Age 5
Ignores child 0.34 0.26 0.08
Smacks child −0.14 0.00 0.91
Shouts at child 0.31 0.11 0.61
Sends child to room −0.09 0.84 0.09
Takes away treats from child 0.03 0.82 −0.05
Tells child off 0.42 0.36 0.28
Bribes child 0.76 −0.24 0.14
Reasons with child 0.75 0.17 −0.21

Age 7
Ignores child 0.39 0.20 0.11
Smacks child −0.13 −0.04 0.93
Shouts at child 0.27 0.14 0.61
Sends child to room −0.07 0.84 0.08
Takes away treats from child 0.02 0.85 −0.04
Tells child off 0.35 0.41 0.28
Bribes child 0.83 −0.25 0.06
Reasons with child 0.68 0.23 −0.15

Age 11
Sends child to room −0.03 0.93
Takes away treats from child 0.04 0.89
Reasons with child 1.00 0.00

Note: The table shows the rotated factor loadings for waves two to five (child ages 3, 5, 7, and 11, respectively). For child
age 3, nonrestrictive refers to the third principal component; for child age 5, it refers to the first principal component; and
for child ages 7 and 11, it refers to the second principal component. For child ages 3 and 5, restrictive refers to the second
principal component; for child ages 7 and 11, it refers to the first principal component. For child age 3, corporal refers to
the first principal component; for child ages 5 and 7, it refers to the third principal component. Data: Millennium Cohort
Study. Own calculations.
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Table B.8: Parenting Styles and Parental Behavior

Telling child off Expressing affection

PSD
a 1.16∗∗∗

(0.01)
PSR

a 1.48∗∗∗

(0.02)

Adj. R2 0.40 0.43
Num. obs. 12,407 12,407
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table show the estimates from a regression of the number of days per week the mother tells her child off
(first column) and expresses her affection (second column) on parental demandingness and responsiveness, respectively. The
categorical values are transformed to numerical values as follows: "never" = 0, "rarely" = 0.25, "sometimes (about once a
month)" = 0.5, "often (about once a week or more)" = 2, "daily" = 7. The model is estimated on a sample from wave four
only (child age 7). Data: Millennium Cohort Study. Own calculations.
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B.2.2 Inputs and Control Variables

Table B.9: Descriptive Statistics for Other Input Measures

Mean S.D. Min. Max. N

Time-varying Inputs

Household Inputs
Childcare services 1.78 5.67 0.00 45.00 8,301
Grandparents 2.34 5.23 0.00 35.00 8,301
Others 1.61 6.02 0.00 48.00 8,301

Neighborhood Inputs
Overall 5.93 2.83 1.00 10.00 8,301
Income 5.88 2.84 1.00 10.00 8,301
Employment 5.94 2.78 1.00 10.00 8,301
Health 5.95 2.79 1.00 10.00 8,301
Education 5.72 2.91 1.00 10.00 8,301

Time-invariant Inputs

School Inputs: Teacher Characteristics
Years since teacher qualification 15.61 11.58 0.00 44.00 1,335
Teaching experience (years) 13.92 9.88 1.00 40.00 1,335
Tenure at school (years) 8.80 7.47 1.00 36.00 1,335
Highest Degree

Bachelor 0.48 0.50 0.00 1.00 1,335
Diploma 0.13 0.34 0.00 1.00 1,335
Master 0.38 0.49 0.00 1.00 1,335

School Inputs: Class Characteristics
Class size 25.74 4.98 1.00 37.00 1,335
# Students w/ SEN statement 1.53 2.41 0.00 17.00 1,335
# Students excluded from school 0.06 0.44 0.00 12.00 1,335
# Students w/ English as second language 1.69 3.73 0.00 30.00 1,335
Student preventing others from learning (y/n) 0.31 0.46 0.00 1.00 1,335
Regular support (number of supporters) 1.77 0.95 0.00 6.00 1,335

Note: The table shows descriptive statistics for the input measures (mean, standard deviation, minimum and maximum
values, and number of observations; all unweighted). The values for the time-varying variables are computed on the pooled
estimation sample across child ages 3, 5, and 7. The time-invariant variables are measured at child age 7. The household
input measures are winsorized at the top 1% of the respective age-specific distribution. Data: Millennium Cohort Study.
Own calculations.
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Table B.10: Parenting Styles by Observables

Demandingness Responsiveness N

Age left Full-time Education
Before 16 −0.03 −0.07 2,921
Between 16 and 20 −0.02 0.02 36,188
After 20 0.02 0.12 10,174

Parental Income
First decile −0.03 −0.10 9,857
Second decile −0.01 −0.04 9,857
Third decile 0.02 0.05 9,857
Fourth decile −0.03 0.11 9,856
Fifth decile −0.01 0.17 9,856

Age at Birth
18–21 years 0.12 −0.10 5,745
22–27 years 0.07 0.01 12,591
28–33 years −0.02 0.07 19,904
34–39 years −0.15 0.07 9,923
40+ years −0.32 0.06 1,120

Birth Rank
First born 0.07 0.06 20,392
Second born −0.01 0.05 18,023
Third+ born −0.17 −0.02 10,868

Parental Investment
First decile −0.01 −0.16 9,857
Second decile 0.02 −0.05 9,857
Third decile −0.01 0.07 9,857
Fourth decile −0.00 0.12 9,856
Fifth decile −0.05 0.21 9,856

Note: The table shows mean values for parental demandingness and responsiveness, respectively, by a selection of observ-
ables. The values are computed on the pooled sample across child ages 3, 5, 7, 11, and 14. Data: Millennium Cohort Study.
Own calculations.
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B.3 Results

B.3.1 Results



103

Table B.11: Benchmark Estimates

(1) (2) (3) (4) (5) (6)

Cognitive Skills

PSD
a −0.05∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
PSR

a 0.03∗∗∗ 0.03∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
PSD

a × PSR
a 0.00 0.00 0.00 0.00 0.00 −0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
ya−1 0.21∗∗∗ 0.21∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.19∗∗∗ 0.19∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Adj. R2 0.16 0.16 0.16 0.16 0.17 0.19
Num. obs. 8,301 8,301 8,301 8,301 8,301 4,005

Non-cognitive Skills

PSD
a −0.11∗∗∗ −0.11∗∗∗ −0.10∗∗∗ −0.10∗∗∗ −0.10∗∗∗ −0.11∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
PSR

a 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
PSD

a × PSR
a 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
ya−1 0.58∗∗∗ 0.58∗∗∗ 0.57∗∗∗ 0.57∗∗∗ 0.56∗∗∗ 0.53∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

PSa−1 x x x x x
PSa−2 x x x x
Househ. inputs x x x
Neighb. inputs x x
School inputs x
Adj. R2 0.50 0.50 0.50 0.50 0.50 0.50
Num. obs. 8,301 8,301 8,301 8,301 8,301 4,005

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table shows the estimates for the cognitive (upper panel) and non-cognitive (lower panel) production function
(robust standard errors in parentheses). PSD

a and PSR
a denote contemporaneous parental demandingness and responsiveness,

respectively. Each column includes the full set of child and mother controls. Column (2) additionally controls for the lagged
inputs, and columns (3) to (6) control for the double-lagged inputs. Columns (4), (5), and (6) also control for household
inputs, neighborhood inputs, and school inputs, respectively. The models are estimated on a pooled sample across child ages
7, 11, and 14, and include year fixed-effects. Data: Millennium Cohort Study. Own calculations.
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Table B.12: Benchmark Estimates: Cognitive Skills

(1) (2) (3) (4) (5) (6)
Age 3 Outcome: Naming Vocabulary

PSD
a 0.02 0.02 0.02

(0.02) (0.02) (0.02)
PSR

a 0.12∗∗∗ 0.12∗∗∗ 0.12∗∗∗

(0.03) (0.03) (0.03)
PSD

a × PSR
a −0.01 −0.00 −0.00

(0.03) (0.03) (0.03)
ya−1

Adj. R2 0.16 0.16 0.17
Num. obs. 2,767 2,767 2,767

Age 5 Outcome: Naming Vocabulary

PSD
a −0.02 −0.01 −0.01 −0.00

(0.02) (0.02) (0.02) (0.02)
PSR

a 0.00 0.00 0.00 0.01
(0.02) (0.02) (0.02) (0.02)

PSD
a × PSR

a −0.01 −0.01 −0.01 −0.00
(0.02) (0.02) (0.02) (0.02)

ya−1 0.35∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.34∗∗∗

(0.02) (0.02) (0.02) (0.02)

Adj. R2 0.27 0.28 0.28 0.28
Num. obs. 2,767 2,767 2,767 2,767

Age 7 Outcome: Word Reading

PSD
a −0.06∗∗∗ −0.04∗ −0.05∗ −0.05∗ −0.05∗∗ −0.06∗

(0.02) (0.02) (0.02) (0.02) (0.03) (0.04)
PSR

a 0.03 0.02 0.01 0.01 0.01 0.03
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

PSD
a × PSR

a −0.01 −0.01 −0.01 −0.01 −0.01 −0.00
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

ya−1 0.23∗∗∗ 0.23∗∗∗ 0.22∗∗∗ 0.23∗∗∗ 0.22∗∗∗ 0.25∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Adj. R2 0.23 0.23 0.23 0.23 0.24 0.26
Num. obs. 2,767 2,767 2,767 2,767 2,767 1,335
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Age 11 Outcome: Verbal Similarities

PSD
a −0.04∗∗ −0.04 −0.03 −0.03 −0.04 −0.03

(0.02) (0.02) (0.02) (0.02) (0.02) (0.04)
PSR

a 0.05∗∗∗ 0.04∗∗ 0.03∗ 0.03∗ 0.03∗ 0.08∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)
PSD

a × PSR
a −0.00 −0.00 −0.00 −0.00 0.00 0.00

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)
ya−1 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.18∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Adj. R2 0.15 0.15 0.15 0.16 0.16 0.18
Num. obs. 2,767 2,767 2,767 2,767 2,767 1,335

Age 14 Outcome: Vocabulary Test

PSD
a −0.04∗∗ −0.03∗ −0.04∗ −0.04∗ −0.04∗∗ −0.04

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)
PSR

a 0.03 0.02 0.02 0.02 0.02 0.05
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

PSD
a × PSR

a 0.00 0.00 0.00 0.00 0.00 −0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

ya−1 0.29∗∗∗ 0.28∗∗∗ 0.27∗∗∗ 0.27∗∗∗ 0.27∗∗∗ 0.28∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.04)

PSa−1 x x x x x
PSa−2 x x x x
Househ. inp. x x x
Neighb. inp. x x
School inp. x
Adj. R2 0.18 0.19 0.19 0.19 0.20 0.22
Num. obs. 2,767 2,767 2,767 2,767 2,767 1,335
Note: The table shows the estimates for the cognitive production functions (robust standard errors in parentheses). PSD

a
and PSR

a denote contemporaneous parental demandingness and responsiveness, respectively. Each column includes the full
set of child and mother controls. Column (2) additionally controls for the lagged inputs, and columns (3) to (6) control
for the double-lagged inputs. Columns (4), (5), and (6) also control for household inputs, neighborhood inputs, and school
inputs, respectively. Data: Millennium Cohort Study. Own calculations.
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Table B.13: Benchmark Estimates: Non-cognitive Skills

(1) (2) (3) (4) (5) (6)
Age 3 Outcome: Strengths and Difficulties Questionnaire

PSD
a −0.26∗∗∗ −0.26∗∗∗ −0.27∗∗∗

(0.02) (0.02) (0.02)
PSR

a 0.26∗∗∗ 0.26∗∗∗ 0.25∗∗∗

(0.02) (0.02) (0.02)
PSD

a × PSR
a 0.01 0.01 0.01

(0.03) (0.03) (0.03)
ya−1

Adj. R2 0.30 0.30 0.31
Num. obs. 2,767 2,767 2,767

Age 5 Outcome: Strengths and Difficulties Questionnaire

PSD
a −0.19∗∗∗ −0.22∗∗∗ −0.22∗∗∗ −0.22∗∗∗

(0.02) (0.02) (0.02) (0.02)
PSR

a 0.05∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.04∗∗

(0.02) (0.02) (0.02) (0.02)
PSD

a × PSR
a 0.02 0.01 0.02 0.01

(0.02) (0.02) (0.02) (0.02)
ya−1 0.40∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.40∗∗∗

(0.02) (0.02) (0.02) (0.02)

Adj. R2 0.42 0.43 0.43 0.43
Num. obs. 2,767 2,767 2,767 2,767

Age 7 Outcome: Strengths and Difficulties Questionnaire

PSD
a −0.14∗∗∗ −0.19∗∗∗ −0.20∗∗∗ −0.20∗∗∗ −0.21∗∗∗ −0.19∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.03)
PSR

a 0.05∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
PSD

a × PSR
a 0.02 0.02 0.02 0.02 0.02 0.02

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
ya−1 0.54∗∗∗ 0.56∗∗∗ 0.56∗∗∗ 0.56∗∗∗ 0.55∗∗∗ 0.53∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Adj. R2 0.52 0.53 0.53 0.53 0.53 0.52
Num. obs. 2,767 2,767 2,767 2,767 2,767 1,335
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Age 11 Outcome: Strengths and Difficulties Questionnaire

PSD
a −0.18∗∗∗ −0.19∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.17∗∗∗ −0.21∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
PSR

a 0.03∗∗ 0.03∗∗ 0.03∗∗ 0.03∗∗ 0.03∗ 0.03
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

PSD
a × PSR

a 0.03∗ 0.03 0.03∗ 0.03∗ 0.04∗∗ 0.06∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
ya−1 0.55∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.55∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Adj. R2 0.51 0.51 0.51 0.51 0.51 0.52
Num. obs. 2,767 2,767 2,767 2,767 2,767 1,335

Age 14 Outcome: Strengths and Difficulties Questionnaire

PSD
a −0.03∗∗ −0.02∗ −0.02∗ −0.02∗ −0.02∗ −0.03∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
PSR

a 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.07∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
PSD

a × PSR
a 0.02 0.02 0.02 0.02 0.01 −0.00

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
ya−1 0.63∗∗∗ 0.60∗∗∗ 0.60∗∗∗ 0.60∗∗∗ 0.60∗∗∗ 0.60∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

PSa−1 x x x x x
PSa−2 x x x x
Househ. inp. x x x
Neighb. inp. x x
School inp. x
Adj. R2 0.51 0.51 0.51 0.51 0.51 0.50
Num. obs. 2,767 2,767 2,767 2,767 2,767 1,335
Note: The table shows the estimates for the non-cognitive production functions (robust standard errors in parentheses).
PSD

a and PSR
a denote contemporaneous parental demandingness and responsiveness, respectively. Each column includes the

full set of child and mother controls. Column (2) additionally controls for the lagged inputs, and columns (3) to (6) control
for the double-lagged inputs. Columns (4), (5), and (6) also control for household inputs, neighborhood inputs, and school
inputs, respectively. Data: Millennium Cohort Study. Own calculations.
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Chapter 3

Genetic Endowments, Educational
Outcomes, and the Mediating Influence
of School Investments∗

3.1 Introduction

Education is a core determinant of life outcomes, both for individuals and societies at
large (Acemoglu and Autor, 2011; Hanushek and Woessmann, 2008; Krueger and Lindahl,
2001). Hence, improving equity and efficiency in education systems is a central policy
goal in modern societies. To achieve such improvements, it is important to understand
the role of genetic endowments for educational attainment: on the one hand, genetic
endowments are strong predictors of education; in heritability studies they account for
40% of the variation in years of education (Branigan et al., 2013; Lee et al., 2018). On
the other hand, the importance of genetic endowments varies with social environments
like families, neighborhoods, and schools (Cesarini and Visscher, 2017; Koellinger and
Harden, 2018). Therefore, the link between genetic endowments and life outcomes may be
modified by policy interventions. This observation raises important questions: can school
reforms moderate the link between genetic endowments and educational outcomes? If yes,
which domains of school environments are particularly effective in doing so? Answers to
these questions are of utmost importance to address equity and efficiency concerns in the
production of educational attainment. Despite this importance, current evidence is scant.

In this paper, we study the interaction of genetic endowments and school environments
in the production of educational attainment. We focus on two dimensions of school en-
vironments that have been studied extensively in the literature on education economics:

∗This chapter is based on joint work with Benjamin Arold and Paul Hufe.



110

teacher quality and class size (Angrist and Lavy, 1999; Angrist et al., 2019; Chetty et al.,
2014a,b; Fredriksson et al., 2013; Jackson, 2019; Leuven and Løkken, 2020; Rivkin et al.,
2005; Rockoff, 2004). Furthermore, these dimensions can be directly influenced by pol-
icymakers, but their reform applies to all children and does not presuppose any form of
genetic screening—a practice many of us would be uncomfortable with (Martschenko et al.,
2018).

We use data from the National Longitudinal Study of Adolescent to Adult Health
(Add Health) to study the interaction of genetic endowments and school environments in
a between-family design. Add Health is a 5-wave panel study that follows a representative
sample of U.S. high school students from 1994/95 until the present day. To the best of
our knowledge, Add Health is the only (publicly available) data set that offers detailed
information on schooling environments from both survey and administrative sources for a
genotyped sample of reasonable size.

To measure genetic endowments, we leverage recent advances in molecular biology and
use a polygenic score for educational attainment (PGSEA , Dudbridge, 2013; Lee et al.,
2018). PGSEA is an individual measure for the genetic propensity to attain education.1
The score is fixed at conception and cannot be modified by environmental interventions
thereafter. Therefore, PGSEA confers important advantages over traditional proxies for
"innate ability", such as student test scores and IQ tests (Brinch and Galloway, 2012;
Hanushek and Woessmann, 2008, 2012; Heckman et al., 2010). To measure the quality of
school environments, we use information from headmaster surveys and administrative data
sources such as the Common Core of Data, and conduct a principal component analysis
on the following school-level characteristics: teacher experience, teacher turnover, teacher
education, teacher diversity as well as class sizes and student-teacher ratios. From this
analysis, we extract two factors that are indicative for the quality of teachers (IQual) and
the quantity of teachers relative to the number of students (IQuant), respectively.

Clean causal identification of gene-environment interactions is challenging. In this
study, we rely on a between-family comparison in which we control for an extensive set
of pre-determined family background characteristics. We discuss the associated identifi-
cation assumptions in detail and provide tests for their satisfaction. First, while genetic
endowments are fixed at conception, they are correlated with other family characteristics
that co-determine educational attainment. Therefore, our parameters of interest may be
confounded by genetic nurture effects. In response, we show that the relevant point es-
timates from the between-family design replicate in a smaller sibling sample that allows
us to control for genetic nurture by including family fixed effects. Second, school charac-
teristics may be correlated with other family characteristics that co-determine educational

1In addition, PGSEA has been shown to be highly predictive for a number of life outcomes that are
closely related to educational attainment. These outcomes include earnings, wealth, and (non-)cognitive
skills (Barth et al., 2020; Buser et al., 2021a; Demange et al., 2021; Houmark et al., 2020; Lee et al., 2018;
Muslimova et al., 2020; Papageorge and Thom, 2020).
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attainment. Therefore, our parameters of interest may be confounded by selection effects.
In response, we show that our main findings are robust to bounding exercises à la Cinelli
and Hazlett (2020) and Oster (2019). Lastly, gene-environment interactions can only be
identified if genetic endowments and the environmental variable of interest are distributed
independently of each other. In response, we show that we cannot reject the equality of
PGSEA distributions in various school environments. In summary, although the between-
family design does not allow to cleanly identify causal effects, all our empirical tests point
towards the satisfaction of the relevant identification requirements. In addition, our results
withstand a series of empirical tests for competing mechanisms that we discuss in detail
below.

Our results can be summarized as follows. First, genetic endowments and teacher
quality are highly predictive for years of education: a one-standard-deviation increase in
PGSEA (teacher quality) increases educational attainment by ≈ 0.37 (0.22) years. These
increases can be compared to a sample average of 14.81 years and correspond to 16.44%
(9.8%) of a standard deviation. Second, genetic endowments and teacher quality act as sub-
stitutes in the production of educational attainment: a one-standard-deviation increase in
teacher quality reduces the positive association of educational attainment with PGSEA by
≈ 19%. This result implies that improvements in the quality of teachers may reduce the
genetic gradient in educational attainment. Furthermore, it suggests that teacher quality
may countervail the effects of family socio-economic status—an environmental characteris-
tic that tends to magnify the genetic gradient in educational attainment (Papageorge and
Thom, 2020; Ronda et al., forthcoming).2 Third, in contrast to teacher quality, teacher
quantity is not associated with educational attainment—a null result that does not vary
across the PGSEA distribution.

We perform a series of robustness checks to evaluate whether our results are conflated
by competing mechanisms. We begin by showing that our measures for teacher quality
and quantity do not pick up the effects of other school characteristics that may correlate
with student outcomes. These characteristics comprise school peer characteristics, school-
level policies such as sanctions for academic misconduct, and overall school value-added.
Next, we demonstrate that our results are not driven by gene-environment interactions
that reflect family instead of school environments. To that end, we run a fully interacted
model controlling for all possible interactions between PGSEA , IQual , IQuant , and a broad
set of parental background characteristics (Keller, 2014). In addition, we show that there
is no differential association between PGSEA and parental time investments depending on
school quality.

We also analyze the mechanisms that underpin the substitutability of genetic endow-
ments and teacher quality. Educational attainment summarizes information from various
educational stages, where each stage requires a different mix of skills (Cunha et al., 2006,
2010). Therefore, we repeat our analysis by replacing total educational attainment with

2See also our replication of their findings in section 3.5.
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binary variables for whether or not respondents achieved a given educational degree. We
find that the substitutability of genetic endowments and teacher quality is largest at the
stage of college education. In contrast, we find little substitutability for the probability
of graduating from high school, and none for the probability of obtaining post-graduate
degrees. These results provide a notable contrast to Papageorge and Thom (2020), who
find a growing complementarity of parental background characteristics and genetic endow-
ments as individuals progress through the educational system. To uncover which type of
skills drives our results, we analyze the associations of PGSEA and teacher quality with
a set of intermediate outcomes including subjective and objective health, cognitive skills,
economic preferences, and personality measures. We find that substitutabilities of genetic
endowments and teacher quality with respect to subjective health, verbal intelligence, risk-
aversion, and patience underpin our main result.

Our study contributes to three strands of literature. First, we contribute to the lit-
erature on gene-environment interactions. Existing evidence shows that the association
between socio-economic outcomes and genetic endowments varies with the socio-economic
status of parents (Houmark et al., 2020; Papageorge and Thom, 2020; Ronda et al., forth-
coming). Evidence on gene-environment interactions regarding school environments is
more scant. Barcellos et al. (2021) use a compulsory schooling reform to show that returns
to schooling are lower for genetically advantaged students. However, they focus on the
length of education and not the quality of school environments. Trejo et al. (2018) show a
stronger genetic gradient in schools with better educated parents. However, the composi-
tion of schools is difficult to control in the presence of endogenous sorting. Therefore, we
focus on margins that can be directly targeted by policymakers: the quality and quantity
of teachers.

Second, we contribute to the literature on teacher quality. The positive effects of teacher
quality on short- and long-term outcomes of students are well-documented (Chetty et al.,
2014a,b; Jackson, 2019; Rivkin et al., 2005; Rockoff, 2004). However, the literature is far
less conclusive about the equalizing effect of teacher quality across student subgroups. For
example, Aaronson et al. (2007) find that low-achieving students benefit more from high-
quality teachers. In contrast, Chetty et al. (2014b) show that students from minority and
low-income backgrounds benefit less. While existing studies have evaluated heterogeneities
along dimensions that conflate genetic and social factors, we are able to measure the genetic
predisposition for educational success as fixed at conception. We show that investments in
the quality of teachers cushion the genetic gradient in educational attainment.

Third, we contribute to the literature on class size. Here, the average effects on stu-
dents outcomes are subject to academic debate. On the one hand, experimental studies
on class size reductions tend to find positive effects on student achievement (Chetty et al.,
2011; Krueger, 1999). On the other hand, quasi-experimental analyses exploiting maxi-
mum class-size rules tend to find mixed results even if they analyse similar settings (Angrist
and Lavy, 1999; Angrist et al., 2019; Fredriksson et al., 2013; Leuven and Løkken, 2020).
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Similarly, the equalizing effects of class size reductions are contested. For example, Krueger
(1999) shows that class size reductions are more beneficial to students from minority and
low-income background. In contrast, Fredriksson et al. (2013) document that wage in-
creases following class size reductions are more pronounced for students from high income
backgrounds. Our study is the first to evaluate heterogeneities along the genetic dimen-
sion. We show that teacher quantity is not associated with gains in educational attainment,
irrespective of genetic endowment.

Our results are policy relevant. First, we show that higher-quality teachers are con-
ducive to educational attainment in the lower tail of the PGSEA distribution but do not
compromise achievement in the upper tail. This finding suggests that policymakers do
not face an equity-efficiency trade-off when investing into the quality of teachers. Second,
in contrast to teacher quality, we find no effect of teacher quantity on the educational
outcomes of students, irrespective of their genetic endowments. This finding suggests that
policymakers who are willing to address the equity and efficiency concerns related to genetic
endowments do not face a trade-off between investments into teacher quality and teacher
quantity. This last finding is economically relevant, as salaries and employee benefits of
teachers are by far the largest cost factor in the U.S. school system, accounting for about
half of the expenditures in US public primary and secondary schools (Figure C.1).

The remainder of this paper is structured as follows. In section 3.2, we provide a
primer on the measurement of genetic endowments. In section 3.3, we detail our empirical
strategy. After introducing our data sources in section 3.4, we present results in section
3.5. Section 3.6 concludes the paper.

3.2 Measuring Genetic Endowment

The "First Law of Behavior Genetics" states that all human behavioral traits are herita-
ble (Turkheimer, 2000). That is, genetic endowments explain the expression of any trait
at least to some extent. The empirical challenge is to identify the specific sequences in
the genome that are related to the traits of interest.3 Recent advances in molecular ge-
netics have enabled a novel method of genetic discovery: genome-wide association studies
(GWAS). GWAS exploit the most common type of genetic variation between humans, so-
called single-nucleotide polymorphisms (SNP). SNPs occur when a single nucleotide—the
basic building block of DNA molecules—differs at a specific position in the genome. Hu-
mans have between four and five million SNPs. GWAS estimate separate linear regressions

3Human genetic information is stored in 23 chromosome pairs that consist of deoxyribonucleic acid
(DNA) molecules. These chromosomes, in turn, contain 20,000 to 25,000 genes—specific DNA sequences
that provide instructions for building particular proteins. About 99% of the sequences are identical across
humans.
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that relate a SNP of individual i at genome location j to an outcome of interest y:

yi = ψy
jSNPij + δCi + εi. (3.1)

SNPij ∈ {0, 1, 2} is a count variable and indicates the number of minor allele that indi-
vidual i possesses at location j. Minor alleles are the less frequent genetic variation within
a population. As humans inherit one of each chromosome from each parent, they possess
either zero, one, or two minor alleles at each location j. Ci is a vector of control vari-
ables to filter out spurious correlations due to non-biological differences across population
groups. A particular SNP coefficient ψy

j is referred to as genome-wide significant if the null
hypothesis of non-association is rejected at a level of p < 5× 10−8 (Chanock et al., 2007).
The p-value is deliberately low to adjust for multiple hypothesis testing.

The association of any single SNP with y is minuscule, but jointly they can explain
a substantial share of the observed outcome differences between individuals (Lee et al.,
2018). In particular, the estimated SNP coefficients can be used to construct polygenic
scores (PGS). A PGS is a single quantitative measure of an individual’s genetic propensity
toward an outcome relative to the population. Formally, individual i’s PGS for outcome
y, PGSy

i , is constructed by linearly aggregating all SNPij using ψy
j as weighting factors:

PGSy
i =

∑
j

ψ̂y
jSNPij, (3.2)

where ψ̂y
j is the estimated SNP coefficient from Equation (3.1). To avoid overfitting,

Equation (3.1) is estimated in a discovery sample, whereas the PGS is constructed in a
hold-out sample (Wray et al., 2014).

The predictive power of a PGS is broadly determined by two factors: the heritability
of the outcome, which serves as an upper bound of the variance the PGS can explain; and
the size of the discovery sample (Dudbridge, 2013). All else equal, the more heritable the
outcome, or the larger the discovery sample to estimate the aggregation weights ψ̂y

j , the
higher the predictive accuracy of the PGS. For example, the heritability of educational
attainment is around 40% (Branigan et al., 2013). The PGS for educational attainment
constructed by Lee et al. (2018) is based on information from 1.1 million individuals and
explains 12.7% of the variance in educational attainment.

The interpretation of PGS is non-trivial. First, PGS are not purely measures of biolog-
ical influence. In particular, GWAS coefficients may capture environmental factors such
as population stratification across geographic regions (Abdellaoui et al., 2019). To address
this concern, we follow standard practice and always control for the first 20 principal com-
ponents of the genetic data in our empirical analysis.4 Second, the explanatory power of

4The first principal components of the full matrix of genetic data capture most of the geographical
variation in allele frequencies (see Mills et al., 2020, chapter 9.4, for a discussion). Therefore, they control
for the geographic correlation between allele frequencies and socio-economic status.
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PGS is contingent on the context of its application. If a PGS is applied in one context,
whereas the underlying GWAS was estimated in a very different context, the predictive
power of the PGS will be attenuated. In our context, this concern is limited: we apply
PGS to a sample from the United States, whereas the underlying GWAS predominantly
draws on samples from other industrialized countries with comparable education systems.
Third, PGS are noisy measures of genetic endowments. Due to current GWAS sample
sizes, they do not capture all genetic variation relevant for the outcome of interest. As
a direct consequence, alternative PGS are still predictive for educational attainment over
and above PGSEA. However, in Appendix Table C.4, we show that PGSEA is significantly
more predictive than any plausible alternative PGS. Therefore, it is the best among other
noisy measures for genetic endowments.

PGS are now available for a wide variety of outcomes. These include, for example,
body mass index and height (Yengo et al., 2018), attention deficit hyperactivity disorder
(Demontis et al., 2019), major depressive disorder (Howard et al., 2019), intelligence (Sav-
age et al., 2018), smoking (Liu et al., 2019), and sleep duration (Jansen et al., 2019). For
our analysis, we rely on the PGS for educational attainment by Lee et al. (2018).

3.3 Empirical Strategy

3.3.1 Empirical Model

Consider a model in which skills θ of child i at age a are determined by prior skill levels
θia−1, parental investments IPia, school investments ISia, and genetic endowments Gi.5 There
are three phases of skill accumulation:

θia =


fa(Gi) , for child age a = 0,

fa(θia−1, I
P
ia, Gi) , for child age a = 1, ..., 5,

fa(θia−1, I
P
ia, I

S
ia, Gi) , for child age a = 6, ..., A.

(3.3)

That is, skills at conception are determined by genetic endowments only. For child ages
a = 1, ..., 5, i.e. prior to attending school, parents are the only source of investments into
skills in this model. Parental investments include monetary investments, such as buying
toys or books, but also time investments, such as playing with or talking to the child.
For a = 6, ..., A, schools are an additional source of investments into skills. School-based
investments include instruction by teachers or interactions with peers.

5For the sake of simplicity, we abstract from other actors in the child development process.
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Furthermore, assume completed education Y to be a function of individual skills accu-
mulated by the end of childhood at age a = A:

Yi = g(θiA). (3.4)

Recursively substituting Equations (3.3) and (3.4) across child ages a = 1, ..., A, we ob-
tain a model in which educational attainment is determined by initial genetic endowments,
the history of family inputs, and the history of schooling inputs:

Yi = h(IPiA, ..., I
P
i1, I

S
iA, ..., I

S
i6, Gi). (3.5)

We are interested in the complementarity of schooling inputs and genetic endowments
at a particular child age a:

κ =
∂2h(IPia, I

P
ia−1, ..., I

P
i1, I

S
ia, I

S
ia−1, ..., I

S
i6, Gi)

∂ISia∂Gi

. (3.6)

If κ < 0, genetic endowments and school investments at age a are substitutes in the
production of educational attainment. School investments are then less productive for
individuals with high genetic endowments. Reversely, if κ > 0, genetic endowments and
school investments at age a are complements in the production of educational attainment.
School investments are then more productive for individuals with high genetic endowments.

In this study, we focus on school investments during high school (14 ≤ a ≤ 18).
We estimate the complementarity parameter κ from a linear regression model with an
interaction term:

Yi = αGi + βISia + κ(Gi × ISia) +Xi(a)γ + ϵi, (3.7)

where Xi(a) denotes a vector of control variables to condition on the history of family and
schooling inputs until age a = 14.

3.3.2 Identification

Unbiased estimation of κ is based on the following set of requirements: (i) the effect of Gi is
identified, (ii) the effect of ISia is identified, and (iii) Gi and ISia are assigned independently
from each other (Almond and Mazumder, 2013; Johnson and Jackson, 2019; Nicoletti and
Rabe, 2014). In the following, we will discuss each of these requirements, potential threats
to their satisfaction, and how we address them in the context of this paper.
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(i) Absence of genetic nurture effects. Genetic endowments are fixed at concep-
tion, yet they are not exogenous to family characteristics that co-determine educational
attainment. During meiosis, genetic endowments of children are randomly drawn from the
genetic pool of their biological parents.6 As a consequence, Gi is a function of maternal
and paternal genetic endowments. These parental endowments, however, may also corre-
late with parental investments IPi1, ..., IPia. Hence, in estimating Equation (3.7), α and κ
may be confounded by genetic nurture effects (Kong et al., 2018). Genetic nurture can
be controlled either by estimating a sibling fixed effects model that relies on within-family
variation in Gi only (Houmark et al., 2020; Kweon et al., 2020; Selzam et al., 2019); in a
non-transmitted genes design, where one includes both maternal and paternal genetic en-
dowments in control vector Xi(a); or in an adoption design, where offspring are biologically
unrelated to their parents (see Demange et al., 2020, for a detailed comparison of all three
approaches). All approaches, however, are very data demanding. For example, the sibling
design requires the availability of both a large set of siblings and individual measurements
of Gi. Therefore, it can only be applied in a very limited set of existing data sets.

In this study, we estimate a between-family model in which we use an extensive set
of pre-determined family background characteristics to control for genetic nurture effects.
This approach is standard in the literature and intends to approximate requirement (i)
while maximizing statistical power to detect the sought-after gene-environment interaction
(Domingue et al., 2020). Reassuringly, controlling for Xi(a) in our between-family model,
we obtain a point estimate of α that replicates the corresponding estimate from a sibling
fixed effects model on a subsample of our data (N = 525).

(ii) Absence of selection effects. Parents choose schools based on school characteris-
tics. Therefore, the latter may not be exogenous to family characteristics that co-determine
educational attainment (Altonji et al., 2005; Beuermann et al., 2018). As a consequence,
ISia is a function of observed and unobserved family and child characteristics that may cor-
relate with parental investments IPi1, ..., IPia. Hence, in estimating Equation (3.7), β and κ
may be confounded by selection effects (Altonji et al., 2005; Altonji and Mansfield, 2018;
Biasi, forthcoming). Selection into schools can be controlled in (quasi-)experimental set-
tings, e.g. using variation based on admission lotteries (Angrist et al., 2016; Cullen et al.,
2006), or the geographic design of catchment areas (Laliberté, 2021). Existing data sets
that avail such variation, however, do not contain sequenced DNA data that are required
to measure Gi at the individual level.

In this study, we use an extensive set of pre-determined family background characteris-
tics to control for selection into schools based on observables. To assess potential confound-
ing through selection based on unobservables, we calculate bias-adjusted treatment effects

6In this process, chromosomes of fathers and mothers are re-combined to produce genetically distinct
offspring. Therefore, singleton children of the same parents are never genetically identical to their siblings.
Furthermore, conditional on the parents’ genome, the offspring’s set of genes is randomly distributed.
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along the lines of Cinelli and Hazlett (2020) and Oster (2019). Both procedures assume
that changes in the coefficients of interest due to the introduction of observables are infor-
mative for the extent of confounding due to unobservables. Reassuringly, applying these
correction methods, our results for β and κ remain qualitatively unaltered in comparison
to our benchmark estimates.

(iii) Independent assignment of genetic endowments and school environments.
Requirements (i) and (ii) must be combined such that Gi and ISia are distributed indepen-
dently of each other. Strong correlation between Gi and ISia implies little overlap in the
distributions of Gi at different levels of ISia, and vice versa. As a consequence, two em-
pirical challenges arise. First, there may not be sufficient variation to identify α, β, and κ
separately from each other. Second, κ would be identified from the tails in the respec-
tive distributions. One then would always compare individuals with similar Gi that score
unusually high or low in their school-quality specific distribution of genetic endowments,
and vice versa. Among others, these concerns would be addressed in a setting that avails
(quasi-)experimental variation in ISia at the level of siblings from the same biological par-
ents. However, as highlighted in our previous discussion, such a setting is unlikely to be
found in existing data sources.

To verify the satisfaction of requirement (iii), we present empirical evidence that Gi

and ISia are indeed distributed independently of each other. This conclusion holds both
unconditionally and controlling for Xi(a).

In summary: in an ideal setting, one would estimate the complementarity parameter
κ by combining a sibling fixed effects model with experimental variation in school charac-
teristics among children of the same biological parents. To date, there is no single data
set that simultaneously avails genetic data at the individual level, a large set of siblings,
and quasi-experimental variation in school assignment. Therefore, we approximate the
conditions of such an ideal setting with the best data available to us. Our estimates of
α, β, and κ do not have a strict causal interpretation. However, we demonstrate their ro-
bustness to a large battery of potential confounders including school peer effects, school
sanction policies, parental time investments, and potential non-linearities of genetic effects
by other individual characteristics. Furthermore, we show that our baseline estimates of
genetic effects are consistent with the estimates from a sibling fixed effects model. Erring
on the side of caution, we nevertheless speak of associations instead causal effects in the
remainder of the paper.
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3.4 Data

We use data from the National Longitudinal Study of Adolescent to Adult Health (Add
Health), a 5-wave panel study that focuses on the determinants of health-related behaviors
and health outcomes. Add Health is a nationally representative sample of adolescents
enrolled in grades 7–12 in 1994/95. Initial information (wave 1, N = 20, 745) was collected
from a stratified sample of 80 high schools across the U.S. as well as their associated
feeder schools. In addition to in-depth interviews with adolescents, questionnaires were
administered to school representatives, parents, and roughly 90,000 students of the sampled
schools. Follow-up in-home questionnaires were collected in 1996 (wave 2, N = 14, 738),
2001/02 (wave 3, N = 15, 179), and 2008/09 (wave 4, N = 15, 701). In the most recent
wave (wave 5, 2016/18, N = 12, 300), Add Health respondents are between 33 and 43 years
old.

In the following, we describe our main variables of interest. Detailed descriptions of all
variables used in our analysis are disclosed in Appendix section C.3.

Outcomes. We measure educational attainment Yi by total years of education. In each
wave, respondents were asked about their highest level of education at the time of the
interview. For each individual, we use the most recent information and transform education
levels into years of education following the mapping suggested by Domingue et al. (2015).7

To analyze the mechanisms behind our headline results, we additionally use a series of
measures for academic degrees, health, and (non-)cognitive skills. First, academic degrees
allow us to investigate at which educational stage our results emerge. We focus on whether
respondents finished high school, obtained a college degree, or obtained a post-graduate
degree. Second, measures for health and (non-)cognitive skills serve as proxy variables for
θiA and allow us to analyze the dimensions of skill development that drive the main findings
on educational attainment. We proxy health by quality-adjusted life years (QALY) that
we derive from self-assessed health measures as well as a summary index of diagnosed
health conditions. We proxy cognitive skills by the Picture Vocabulary Test (PVT), a
test for receptive hearing vocabulary that is a widely-used proxy for verbal ability and
scholastic aptitude. We proxy non-cognitive skills by self-reported measures of general risk
aversion and patience (Falk et al., 2018) as well as self-reported information on the Big
Five personality traits (Almlund et al., 2011).

7Numeric values in parentheses: eighth grade or less (8), some high school (10), high school graduate
(12), GED (12), some vocational/technical training (13), some community college (14), some college (14),
completed vocational/technical training (14), associate or junior college degree (14), completed college
(16), some graduate school (17), completed a master’s degree (18), some post-baccalaureate professional
education (18), some graduate training beyond a master’s degree (19), completed post-baccalaureate pro-
fessional education (19), completed a doctoral degree (20).
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Genetic endowments. Add Health obtained saliva samples from consenting partici-
pants in wave 4. After quality control procedures, genotyped data is available for 9,974
individuals and 609,130 SNPs. Add Health uses this data to calculate different PGS us-
ing summary statistics from existing GWAS. We use a PGS for educational attainment,
denoted by PGSEA, that is based on the GWAS of Lee et al. (2018).8

Lee et al. (2018) perform a meta-analysis of 71 quality-controlled cohort-level GWAS.
Their meta-analysis produced association statistics for around 10 million SNPs, of which
1,271 reached genome-wide significance. Genes near these genome-wide significant SNPs
are relevant for the central nervous system, and many of them encode proteins that carry
out neurophysiological functions such as neurotransmitter secretion or synaptic plasticity.
They are relevant for brain-development processes prior to and after birth.

PGSEA is highly predictive for educational attainment and has been widely used in
existing studies. Lee et al. (2018) suggest that PGSEA is a better predictor for years of
education than household income. Including the score in a regression of years of education
on a set of controls yields an incremental R2 of 0.127 in the Add Health sample. Among
others, PGSEA has been used to study the formation of early childhood skills (Belsky et
al., 2016), educational attainment (Domingue et al., 2015; Houmark et al., 2020), earn-
ings (Papageorge and Thom, 2020), wealth accumulation (Barth et al., 2020), and social
mobility (Belsky et al., 2018).

We standardize PGSEA on our analysis sample to have a mean of zero (µ = 0) and a
standard deviation of one (σ = 1).

School investments. In wave 1 and 2, Add Health administered detailed questionnaires
to headmasters of Add Health schools. The schools are also linked to administrative data
from the Common Core of Data (CCD) and the Private School Survey (PSS). We use these
sources to construct indicators for ISia using a principal component analysis that includes
the following school-level information: (i) average class size, (ii) average student-teacher
ratio, (iii) share of teachers with a master degree, (iv) share of new teachers in the current
school year, (v) share of teachers with school-specific tenure of more than five years, and
Herfindahl indices measuring teacher diversity with respect to (vi) race and (vii) Hispanic
background.

Many of these characteristics have been shown to predict teacher value-added. For
example, Hanushek et al. (2016) and Ronfeldt et al. (2013) show that a high teacher
turnover, which we proxy by the share of new teachers, harms the quality of instruction
and student achievement. Papay and Kraft (2015) and Rockoff (2004) show that teaching

8Lee et al. (2018) construct PGSEA for two prediction cohorts, Add Health and the Health and Retire-
ment Study (HRS). PGSEA is based on results from the meta-analysis that excluded these two cohorts
from the discovery sample. PGSEA was generated from HapMap3 SNPs using the software LDpred—a
Bayesian method that weights each SNP by the posterior mean of its conditional effect given other SNPs.



121

experience, which we proxy by the share of teachers with more than five years of tenure,
correlates with teacher performance.9 Finally, Clotfelter et al. (2010) and Jacob et al.
(2018) show that academic credentials, which we proxy by the share of teachers with a
master degree, are positively associated with teacher effectiveness.

Figure 3.1 shows the rotated loadings on the first two principal components. The
first component loads almost exclusively on average class size and average student-teacher
ratio. Hence, we interpret this component as an indicator for the "quantity" of teachers,
denoted by IQuant . The second component loads positively on the percentage of teachers
with a master degree and the share of teachers with a tenure of more than five years; it
loads negatively on the share of new teachers in the current school year. We interpret this
component as an indicator for the "quality" of teachers, denoted by IQual . Both factors
are coded such that higher values indicate higher school investments, i.e. higher teacher
"quantity" investments (smaller classes) and higher teacher "quality" investments (better
teachers), respectively. The calculated factors are orthogonal to each other by construction
and standardized to µ = 0 and σ = 1.10

Control variables. Add Health provides extensive information about the environments
that respondents were exposed to during childhood. We approximate the identification pre-
requisites discussed in section 3.3 by choosing a vector of pre-determined variables Xi(a)
to control for genetic nurture effects and selection into schools. Specifically, we control for
family background characteristics by including maternal and paternal education (in years),
the family’s religious affiliation (Christian/Non-Christian), and maternal age at birth (in
years). Furthermore, we include the mean and standard deviation of potential wages for
both mother and father across child ages 0–14.11 At the level of children, we control for age
in months, sex as well as their interaction. We follow standard practice in the literature
and account for population stratification in genetic endowments by including the first 20
principal components of the full matrix of genetic data. Lastly, all estimations include a
vector of state fixed effects.

9These teachers have taught for at least five years in their life and hence do not suffer from a lack of basic
teaching experience. Since we measure tenure at the current school, the measure combines information
about teaching experience with information about teacher turnover.

10Intuitively, one may expect a negative correlation between teacher quality and quantity: conditional
on a given budget, a school administrator may prefer to invest in teacher quality at the expense of average
class sizes or vice versa. However, this is not what we observe in the data. If quality and quantity were
substitutes, we would expect loadings on the two principal components to pull into diametrically opposed
directions. To the contrary, we find that the variables capturing the quality and quantity dimensions are
orthogonal to each other and almost exclusively load on one principal component only.

11Note that Add Health contains information on actual income. However, actual income may be a bad
control as it reflects parental responses to both Gi and ISia. Therefore, we follow the procedure of Shenhav
(2021) and combine the 1970 Census and the March Current Population Survey (1975–2000) to construct
potential wages for gender/education/census region/race/ethnicity cells and match these potential wages
to parents at each child age a = 1, ..., 14.
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Figure 3.1: Rotated Loadings on Factors for School Characteristics
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows the rotated factor loadings on IQual and IQuant . The principal component
analysis is conducted using the following school-level information: (i) average class size, (ii) average student-teacher ratio,
(iii) share of teachers with a Master degree, (iv) share of new teachers in the current school year, (v) share of teachers with
school-specific tenure of more than five years, and Herfindahl indices to measure teacher diversity with respect to (vi) race
and (vii) Hispanic background.

Note that we focus on pre-determined variables—variables that are fixed prior to the
period of observation—to avoid smearing through "bad controls" (Angrist and Pischke,
2009). However, in robustness analyses, we expand the vector of controls by potentially
endogenous parental time investments and family income. Our results remain unaffected.

Analysis sample. We apply the following sample selection criteria. First, we restrict
our sample to genotyped respondents of European descent.12 This is common practice in
the literature because GWAS are predominantly conducted on this ancestry group. As
a consequence, there is a lack of statistical power to account for population stratification
between ancestry groups and estimates of genetic influence would be biased without this
restriction (Martin et al., 2017; Ware et al., 2017).

Second, we retain the subsample of individuals who (i) visited an Add Health high
school or an associated feeder school in wave 1, and (ii) for whom the high school exit
record indicates that they had graduated from the same school. These sample selection
criteria strike a balance between sample size and the matching accuracy of individuals

12Ancestry groups in Add Health are identified by principal component analysis on all unrelated members
of the full Add Health genotyped sample.
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with our measures for schooling environments. For example, imposing criterion (i), we
assume that individuals indeed transition from feeder schools to designated Add Health
schools. Thereby, we increase our sample but may erroneously assign information on ISia
to individuals transitioning to high schools out of the Add Health universe. Reversely,
imposing criterion (ii), we exclude individuals that may have moved to other high schools
throughout grades 9–12. Thereby, we reduce our sample size but minimize the risk of
erroneously assigning information on ISia to movers. We note that neither strengthening (i)
by excluding individuals from feeder schools, nor relaxing (ii) by assuming that individuals
remain at the same school across grades 9–12 overturns our main conclusions (Appendix
Table C.5).

Third, we drop all observations with missing information in Yi, Gi, ISia, and Xi(a)
through list-wise deletion.

Applying these restrictions, we obtain a sample of 3, 081 individuals from 77 high schools
across the U.S. for which we provide summary statistics in Table 3.1. 55% are female,
and the average age measured at wave 1 equals ≈ 16 years (194 months). The average
educational attainment in our sample is 14.8 years, which exceeds the average educational
attainment in the parental generation by ≈ 1.1 years. Almost all individuals graduate from
high school, which is not surprising given our sample restriction to individuals of European
descent who stayed at the same high school in grades 9–12. The college completion rate
equals ≈ 50%.

To assess the sample representativity, we compare our analysis sample to the 1974–1983
birth cohorts of Non-Hispanic Whites in the American Community Survey (ACS) and the
Current Population Survey (CPS) (Appendix Table C.1). This comparison shows a slight
over-representation of females and children from young mothers in our sample. Otherwise,
our sample is by-and-large comparable to the corresponding groups in ACS and CPS. In
robustness analyses, we re-weight our analysis sample to match ACS and CPS with respect
to gender composition, educational attainment of parents, and the age of mothers at birth.
Our results remain unaffected (Appendix Table C.5).
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Table 3.1: Summary Statistics

N=3, 081; Siblings=525; High Schools=77

Mean SD Min Max

Educational Attainment
Years Education 14.81 2.25 8.00 20.00
High School Degree 0.97 0.18 0.00 1.00
2-year College Degree 0.53 0.50 0.00 1.00
4-year College Degree 0.42 0.49 0.00 1.00
Post-Graduate Degree 0.15 0.36 0.00 1.00

Variables of Interest
PGSEA 0.00 1.00 -4.18 3.35
IQual 0.00 1.00 -3.41 1.91
IQuant 0.00 1.00 -3.25 3.21

Child Background Characteristics
Female 0.55 0.50 0.00 1.00
Age in Months (Wave 1) 193.64 19.76 144.00 256.00
Maternal Age at Birth 25.49 4.83 16.00 44.33
Christian 0.82 0.38 0.00 1.00
Education Mother (in Years) 13.63 2.50 8.00 19.00
Education Father (in Years) 13.67 2.68 8.00 19.00
Potential Wage/Hour Mother 12.61 1.38 9.45 14.27
Potential Wage/Hour Father 15.48 1.31 11.14 17.11

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for the core analysis sample. The sample is restricted to
genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an associated feeder school
in wave 1, and (iii) who graduated from the same school. Observations with missing information in any of the displayed
variables are dropped by list-wise deletion.

3.5 Results

We present our results in four steps. In section 3.5.1, we discuss the association of educa-
tional attainment, genetic endowments, and school investments in light of the identification
requirements discussed in section 3.3. In section 3.5.2, we present our estimates for the
complementarity parameter κ. After a robustness analysis in section 3.5.3, we conclude
with an analysis of mechanisms in section 3.5.4.
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3.5.1 The Association of Educational Attainment with Genetic
Endowments and School Investments

Figure 3.2 visualizes the association of educational attainment with our measures for ge-
netic endowments Gi and school investments ISia. In the left column, we show raw corre-
lations that do not account for the control variables Xi(a). In the right column, we show
associations conditional on Xi(a).

First, PGSEA is highly predictive of educational attainment. Without controls, a one-
standard-deviation (1 SD) increase in PGSEA is associated with an increase in educational
attainment of 0.608 years. This association does not have a causal interpretation as it may
be confounded by genetic nurture effects. When we control for pre-determined child and
family characteristics, a 1 SD increase in PGSEA is associated with an increase in educa-
tional attainment of 0.380 years. Sibling studies show that genetic nurture effects usually
account for 40–50% of the raw association between PGSEA and educational attainment
(Kweon et al., 2020; Muslimova et al., 2020; Ronda et al., forthcoming; Selzam et al.,
2019). In our case, the association decreases by 38% when we control for child and family
background characteristics. This result suggests that Xi(a) is indeed able to account for
genetic nurture effects as confounding factors. This conclusion is further bolstered by a
comparison of our between-family model with a sibling fixed effects model that we estimate
on a subsample of our data (N = 525). In the within-family comparison, which allows us
to perfectly control for genetic nurture effects, we obtain a point estimate of 0.458 that is
significant at the 1%-level (Appendix Table C.2). This point estimate is very close to the
result of the between-family comparison controlling for Xi(a), and lends further credence
to our research design.

Second, IQual is highly predictive of educational attainment. Without controls, a 1 SD
increase in IQual is associated with an increase in educational attainment of 0.541 years.
This association does not have a causal interpretation as it may be confounded by selection
effects. When we control for pre-determined child and family characteristics, a 1 SD in-
crease in IQual is associated with an increase in educational attainment of 0.256 years. This
53% decrease reflects positive selection into schools based on "teacher quality"—a pattern
that has been thoroughly documented in existing literature for the U.S. (Biasi, forthcom-
ing). Nevertheless, even when accounting for selection, the association of IQual and educa-
tional attainment remains strong and positive. This result confirms prior literature, which
has repeatedly demonstrated positive effects of teacher quality on students’ educational
success (Chetty et al., 2014a; Hanushek and Rivkin, 2010).

Third, IQuant is not significantly associated with educational attainment. The weakly
positive correlation is imprecisely estimated and does not attain statistical significance
at conventional levels. Furthermore, this result does not change when accounting for
selection effects through the introduction of control vector Xi(a). This finding is in line
with prior literature, which has not been able to establish consistent effects of teacher
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Figure 3.2: Association of Educational Attainment with PGSEA, IQual, and IQuant
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure visualizes the correlation of completed years of education with PGSEA , IQual ,
and IQuant , respectively. We bin scatterplots using 20 quantiles of the variable of interest. Gray bars indicate density
distributions of the (residualized) variable of interest. Black lines are fitted from linear regressions of educational attainment
on the variable of interest. In the left-column, we control for state fixed effects only. In the right column, we introduce
the full set of control variables. Child Controls: Gender times birth cohort dummies, 20 principal components of the full
matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average
potential wages of both mother and father, the standard deviation of potential wages of both mother and father, a dummy
for Christian religion, state fixed effects. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are
clustered at the school level.
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quantity on students’ educational success (Angrist et al., 2019; Fredriksson et al., 2013;
Leuven and Løkken, 2020). However, this average association may mask heterogeneity
across students with different genetic endowments—a hypothesis that we will test in the
following subsection.

Next to genetic nurture effects and selection effects, a high correlation between Gi

and ISia would pose another threat to identification of the gene-environment interaction.
Figure 3.3 suggests that this threat is not operational in our setting. In this figure, we plot
the unconditional PGSEA distribution by tercile of IQual and IQuant , respectively. Visual
inspection suggests that PGSEA distributions are almost congruent to each other within
each tercile of the two indicators. In Appendix Table C.3, we present formal statistical tests
for this observation. In particular, we residualize PGSEA , IQual , and IQuant using control
vector Xi(a). We then perform two-sample Kolmogorov-Smirnov tests for the equality of
PGSEA distributions within the terciles of IQual and IQuant, respectively. We do not reject
the null hypothesis of equal distributions for any of the comparisons at conventional levels
of statistical significance. Hence, we conclude that PGSEA , IQual , and IQuant are indeed
assigned independently of each other.

Figure 3.3: PGSEA Distribution by IQual and IQuant
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows unconditional PGSEA distributions by terciles of both IQual and IQuant .
The central point indicates the median, the bar indicates the interquartile range. The density represents the estimated
Epanechnikov kernel density.
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3.5.2 The Interplay of Genetic Endowments and School Invest-
ments in the Production of Educational Attainment

Table 3.2 shows our baseline estimates for the interaction of genetic endowments and school
investments. In all regressions, we include the vector Xi(a) to control for genetic nurture
and selection into schools.

Table 3.2: Association of PGSEA and School Environments with Years of Education

Baseline Oster (2019)

Outcome:
Years of Education (1) (2) (3) (4)

PGSEA 0.374∗∗∗
(0.033)

0.376∗∗∗
(0.037)

0.371∗∗∗
(0.033)

0.202∗∗∗
(0.044)

IQual
0.227∗∗∗
(0.081) – 0.222∗∗∗

(0.083)
0.047
(0.078)

PGSEA × IQual
-0.073∗∗
(0.033) – -0.072∗∗

(0.033)
-0.082∗∗
(0.035)

IQuant – 0.064
(0.068)

0.062
(0.058)

-0.012
(0.066)

PGSEA × IQuant – 0.036
(0.035)

0.026
(0.031)

-0.031
(0.040)

Child Controls ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓

N 3, 081 3, 081 3, 081 3, 081

R2 0.335 0.332 0.335 –

R2
max – – – 0.436

Outcome Mean 14.810 14.810 14.810 14.810

Outcome SD 2.250 2.250 2.250 2.250

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA , IQual , and IQuant with completed years of
education. The first panel establishes our baseline estimates. The second panel displays bias-adjusted treatment effects
following the procedure of Oster (2019). We impose R2

max by multiplying R2 from column (3) with 1.3. Child Controls:
Gender times birth cohort dummies, 20 principal components of the full matrix of genetic data. Family Controls: Age of
mother at birth, years of education of both mother and father, average potential wages of both mother and father, the
standard deviation of potential wages of both mother and father, a dummy for Christian religion, state fixed effects. All
non-binary variables are standardized on the estimation sample to have µ = 0, σ = 1. Significance levels: * p < 0.10, **
p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered at the school level. Standard errors of bias adjusted
treatment effects are bootstrapped based on 200 draws.
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In column (1), we focus on the teacher quality indicator, IQual . The point estimates
for PGSEA and IQual replicate the findings from Figure 3.2 and indicate a strong and
positive association of PGSEA and IQual with educational attainment.13 A 1 SD increase in
PGSEA (IQual) increases educational attainment by ≈ 0.37 (≈ 0.23) years.

PGSEA × IQual is our estimate for the complementarity parameter κ. The negative
coefficient of the interaction term indicates that genetic endowments and teacher quality
act as substitutes in the production of educational attainment. A 1 SD increase in teacher
quality reduces the positive association of educational attainment with PGSEA by ≈ 19% (=
0.07/0.37). This result provides a notable contrast to existing literature investigating the
gene-environment interaction between PGSEA and parental socio-economic status, which
tend to act as complements in the production of educational attainment (Papageorge and
Thom, 2020; Ronda et al., forthcoming).

In column (2), we focus on IQuant . The point estimate for IQuant is again statistically
indistinguishable from zero. The estimate for PGSEA × IQuant indicates that this null
result is not driven by heterogeneity along the PGSEA distribution. Our estimate for the
complementarity parameter κ is small and not statistically different from zero.

In column (3), we estimate both complementarity parameters in the same model and
show that our results remain virtually unchanged. This stability is expected since IQual and
IQuant are distributed independently of each other by construction.

In column (4), we assess the potential for confounding due to unobserved differences
across individuals. In spite of the rich control set Xi(a), our results may still reflect
genetic nurture effects and selection effects due to unobservables. We follow Oster (2019)
and calculate bias-adjusted treatment effects to account for this issue. The procedure
assumes that changes in the coefficients of interest due to the introduction of Xi(a) are
informative for the extent of confounding due to unobservables. The estimator requires two
key inputs. The first input is R2

max—the R2 from a hypothetical regression of educational
attainment on our variables of interest as well as observed and unobserved controls. The
second input is δ—a measure for the relative degree of confounding through observed and
unobserved controls. We follow the suggestion of Oster (2019) and specify R2

max as 1.3
times the empirical R2 from column (3), and δ = 1. Intuitively, δ = 1 assumes that
observed and unobserved confounders are equally related to the treatment.14 The results
remain qualitatively unaltered in comparison to column (3), yet the point estimates of

13In comparison to Figure 3.2, there are minor changes in coefficients due to the correlation of PGSEA and
IQual. This correlation, however, is small and does not threaten the identification of the gene-environment
interaction—see our discussion in section 3.5.1.

14Cinelli and Hazlett (2020) question this interpretation of δ as it is a function of (i) the association of
the treatment variable with observed and unobserved confounders and (ii) the association of the outcome
variable with observed and unobserved confounders. Therefore, Cinelli and Hazlett (2020) propose a
bounding procedure based on parameter kD that varies with (i) but not with (ii). Implementing their
alternative procedure, our main conclusions remain unaffected—see our discussion in the following.
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PGSEA and IQual drop significantly. For example, under the maintained assumptions of
R2

max and δ = 1, the point estimate of PGSEA drops by almost half in comparison to our
baseline estimate. However, note that it is also ≈ 50% lower than in a sibling fixed effect
estimation (Appendix Table C.2). The latter controls perfectly for genetic nurture effects.
Hence, in view of our rich controls for family socio-economic background, the assumption
of δ = 1 is likely too conservative.15

In Appendix Figure C.2, we provide further sensitivity analyses with respect to the in-
fluence of unobserved confounding variables. Following the procedure of Cinelli and Hazlett
(2020), we show that our results for PGSEA and its interaction with IQual remain statisti-
cally significant at the 5%-level even if the set of unobserved confounding variables were
more than ten times as strong as paternal education. Similarly, our results for IQual would
remain statistically significant at the 5%-level if the set of unobserved confounding variables
were more than five times as strong as paternal education. In view of the strong correlation
of parental education with genetic endowments, its decisive role for school choices, and its
strong predictive power for educational outcomes of children, these results bestow further
confidence into the fact that our results are not just a reflection of genetic nurture effects
and selection into schools by family background.

In principle, the negative gene-environment interaction between PGSEA and IQual could
be driven by low PGSEA students gaining from higher-quality teachers, or high PGSEA stu-
dents losing from higher-quality teachers. In Figure 3.4, we provide evidence for the former,
but not the latter. In this figure, we show years of education as predicted from the es-
timates in column (3) of Table 3.2. Moving horizontally from left to right at a given
PGSEA level, we see that predicted education increases strongly in the lower parts of the
PGSEA distribution. To the contrary, in the upper parts of the PGSEA distribution, pre-
dicted education remains virtually unchanged, regardless of the quality of teachers at a
given school. This pattern is encouraging as it suggests that investments into teacher
quality mitigate inequity in educational outcomes without compromising the attainment
of genetically advantaged students.

15Another popular way of reporting the results from sensitivity analyses à la Oster (2019) is to calculate
the level of δ required to make coefficients equal to zero. We report these levels and associated bootstrapped
standard errors for PGSEA, IQual, and their interaction in the following: PGSEA (1.989 [0.358]), IQual (1.263
[0.503]), PGSEA × IQual (-7.731 [-37.409]). Note that PGSEA × IQual is very insensitive to the inclusion
of controls. Therefore, standard errors are large and the corresponding point estimate for δ cannot be
reliably calculated.
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Figure 3.4: Association of PGSEA with Years of Education by IQual
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows a prediction of completed years of education by PGSEA and IQual cell.
Predictions are calculated from the model estimated in column (3) of Table 3.2.

3.5.3 Robustness Analysis

We probe the robustness of our results in two steps. First, we investigate whether IQual and
IQuant pick up the effect of other school characteristics that may correlate with student
outcomes. Second, we test whether our estimates of the complementarity parameter κ are
confounded by interactions between genetic endowments and family environments.

Other school characteristics. First, in Figure 3.2 we document positive sorting into
schools based on IQual . As a consequence, students in schools with high-quality teachers
may additionally be exposed to a more favorable composition of their peer group. A broad
literature has documented that skill formation is influenced by school peers (Bietenbeck,
2019; Isphording and Zölitz, 2020; Sacerdote, 2014).16 Hence, our results for IQual may
reflect both the quality of teachers and peer group composition. To test this hypothesis,
we make use of Add Health’s in-school questionnaire that elicits background information
from a total of 90,000 students in the sampled schools. Based on this questionnaire,
we calculate proxy indicators for the quality of the student’s peers. In particular, we
calculate (i) average years of paternal education, (ii) the share of single parent families, and
(iii) student’s average self-assessment with respect to the likelihood of attaining a college

16Sotoudeh et al. (2019) show genetic endowments of peers are also associated with individual outcomes.
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degree.17 Then, we include these indicators as well as their interaction with PGSEA into
our estimation model.

Table 3.3 displays the results. Column (1) replicates our baseline estimates. In columns
(2)–(4), we sequentially introduce the peer quality indicators as well as their interaction
with PGSEA. Each proxy for the quality of peers is highly predictive of educational attain-
ment. For example, a 1 SD increase in average paternal education of peers is associated
with a 0.26 increase in years of education. Importantly, however, for all considered peer
quality indicators, our conclusions with respect to IQual, IQuant, and their interaction with
genetic endowments remain unaffected.

Second, IQual and IQuant may be correlated with school rules and sanction policies.
Existing literature suggests that school rules may promote educational attainment (Bacher-
Hicks et al., 2019). For example, the success of charter schools has been attributed to strict
"no excuses" policies (Angrist et al., 2013). Hence, our results for IQual may reflect both
the quality of teachers and the effect of school rules. To test this hypothesis, we exploit
information from headmaster questionnaires and conduct a principal component analysis
on various school policies.18 We extract three components that reflect the school’s strictness
regarding (i) drug use, (ii) social misconduct, and (iii) academic misconduct.

In columns (5)–(7) of Table 3.3, we sequentially introduce the strictness indicators as
well as their interaction with PGSEA. Neither of the indicators is predictive of educational
attainment, nor is there an interaction with genetic endowments. Our conclusions with
respect to IQual, IQuant, and their interaction with genetic endowments remain unaffected.

Third, there may be unobservable school characteristics that drive the relationship
between IQual , IQuant , and educational attainment. To address this concern, we use tran-
script records across grades 9–12 of roughly 12,000 Add Health respondents to calculate
cohort-specific measures of school value-added in GPAs for Science, Math, and English.
In the extant literature, value-added measures are mostly calculated with respect to test
scores that are unaffected by evaluation biases of teachers. To the contrary, GPAs capture
student progress in cognitive and behavioral outcomes as well as teacher perceptions (Jack-
son, 2019). In spite of these intricacies, GPAs are highly predictive of long-term student
outcomes (Borghans et al., 2016; Kirkebøen, 2021). Therefore, GPA-based value-added
measures provide a good way to capture the quality of schooling environments beyond
the measures reported headmaster surveys and administrative data. Specifically, we fol-

17To avoid mechanical relationships between individual characteristics and peer group composition, we
calculate leave-one-out (jackknife) indicators. A detailed description of these variables is disclosed in
Appendix section C.3.

18In wave 1, headmasters were asked about the school’s policy in the following domains of behavior:
cheating, fighting with or injuring another student, alcohol or drug possession, drinking alcohol or using
illegal drugs, smoking, verbally or physically abusing a teacher, and stealing school property. Possible
policies are (i) no policy, (ii) verbal warning, (iii) minor action, (iv) in-school suspension, (v) out-of-school
suspension, and (vi) expulsion. A detailed description of these variables is disclosed in Appendix section
C.3.
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Table 3.3: Robustness to Additional School Characteristics

Baseline + School Peer
Characteristics

+ School Sanction
Policies

+ School
VA

Outcome:
Years of Edu. (1)

Edu.
Father

(2)

Single
Parents

(3)

College
Aspir.

(4)

Drugs

(5)

Social

(6)

Acad.

(7) (8)

PGSEA 0.371∗∗∗
(0.033)

0.361∗∗∗
(0.035)

0.370∗∗∗
(0.035)

0.360∗∗∗
(0.034)

0.370∗∗∗
(0.035)

0.368∗∗∗
(0.035)

0.368∗∗∗
(0.035)

0.367∗∗∗
(0.035)

IQual
0.222∗∗∗
(0.083)

0.150∗∗
(0.072)

0.221∗∗∗
(0.082)

0.211∗∗∗
(0.073)

0.209∗∗
(0.091)

0.195∗∗
(0.088)

0.231∗∗
(0.093)

0.171∗∗
(0.085)

PGSEA ×
IQual

-0.072∗∗
(0.033)

-0.077∗∗
(0.036)

-0.073∗∗
(0.033)

-0.076∗∗
(0.034)

-0.072∗∗
(0.035)

-0.073∗∗
(0.035)

-0.069∗∗
(0.035)

-0.071∗∗
(0.035)

IQuant
0.062
(0.058)

-0.033
(0.059)

-0.011
(0.056)

-0.017
(0.056)

0.055
(0.063)

0.038
(0.057)

0.030
(0.061)

0.014
(0.068)

PGSEA ×
IQuant

0.026
(0.031)

0.017
(0.028)

0.030
(0.032)

0.024
(0.030)

0.027
(0.032)

0.026
(0.032)

0.022
(0.032)

0.030
(0.034)

School Char. – 0.261∗∗∗
(0.055)

-0.201∗∗∗
(0.049)

0.212∗∗∗
(0.045)

0.003
(0.052)

-0.108
(0.076)

0.071
(0.072)

0.109∗
(0.062)

PGSEA ×
School Char.

– -0.044
(0.042)

0.031
(0.039)

-0.046
(0.035)

0.002
(0.041)

0.024
(0.030)

0.029
(0.039)

-0.016
(0.031)

Child Contr. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Family Contr. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N 3, 081 2, 965 2, 965 2, 965 2, 999 2, 999 2, 999 2, 773

R2 0.335 0.344 0.343 0.343 0.338 0.339 0.338 0.315

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA , IQual , and IQuant with completed years
of education. We control for additional school characteristics and their interaction with PGSEA . The relevant school
characteristics are indicated in the column header. Child Controls: Gender times birth cohort dummies, 20 principal
components of the full matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother
and father, average potential wages of both mother and father, the standard deviation of potential wages of both mother
and father, a dummy for Christian religion, state fixed effects. All non-binary variables are standardized on the estimation
sample to have µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are
clustered at the school level.

low the indirect calculation procedures suggested in Chetty et al. (2014a) and Jackson
et al. (2020): we residualize subject-specific GPAs from lagged GPAs in English, Math,
and Science, lagged and contemporaneous measures of tracks in these subjects as well as
a rich set of individual background characteristics. In turn, we sum residuals to calculate
school-times-cohort fixed effects. To avoid mechanical relationships between individual
outcomes and cohort-specific school effects, we calculate leave-cohort-out predictions while
giving greater weight to neighboring cohorts. We calculate these measures separately for



134

each subject but summarize the school-specific information by extracting the first principal
component from the three value-added measures (see Appendix section C.3 for details).

In column (8) of Table 3.3, we introduce school value-added as well as its interaction
with PGSEA as additional controls. While school value-added is indeed predictive of edu-
cational attainment, there is no effect heterogeneity across the PGSEA distribution. Fur-
thermore, the associations of IQual, IQuant, and PGSEA with educational attainment remain
unaffected. Hence, we find no evidence that our relationships of interest are confounded
by unobservable school characteristics.

Family environments. In our baseline analysis, we control for a rich set of parental
background characteristics to control for genetic nurture effects and selection into schools.
However, even if we were able to perfectly control for these confounding factors, the com-
plementarity parameter for genetic endowments and school investments may still be con-
founded by interactions between genetic endowments and family socio-economic status
(Domingue et al., 2020; Keller, 2014). To test this hypothesis, we enrich our estimation
model by interacting genetic endowments and school environments with the entire control
vector Xi(a). Therefore, we allow for the possibility that family socio-economic status
interacts with both genetic endowments and school investments.

Table 3.4 displays the results. Column (1) replicates our baseline estimates. Column
(2) displays the enriched estimation model. In spite of a slight decrease in precision,
our conclusions with respect to IQual , IQuant , and their interaction with PGSEA remain
unaffected.

In addition, we assess whether IQual, IQuant, and their interaction with genetic endow-
ments predict parental investments.19 A positive association of PGSEA and IQual with
parental investments may suggest that Xi(a) does not fully account for genetic nurture
effects and selection into schools. Therefore, we collect information on a series of activities
that the child has conducted with her mother or father in the last four weeks.20 Following
Anderson (2008) and Kling et al. (2007), we standardize each response dimension to µ = 0
and σ = 1 and sum them linearly by parent to obtain aggregate indexes of time investment.
We then use the resulting indexes for parental time investment as the outcome of interest,
respectively.

The results are shown in columns (3)–(4) of Table 3.4. PGSEA and parental invest-
ments are indeed positively associated. However, this association does not necessarily

19Note that parental investments may reflect responses to PGSEA , IQual , and IQuant . Therefore, we
analyze them as separate outcomes instead of including them in Xi(a).

20These activities include shopping, playing sports, church attendance, talking about dates, going to
movies and similar events, talking about personal problems, having an argument, talking about school
work, working together on school work, and talking about other things at school. See Appendix section
C.3 for details.
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Table 3.4: Robustness to Family Environments

Outcome:
Years of Education

Outcome:
Parental Investment

Outcome:
Years of Education

Baseline

(1)

Full
Interaction

(2)

Mother

(3)

Father

(4)

Endogenous
Controls

(5)

PGSEA 0.371∗∗∗
(0.033)

0.414∗∗∗
(0.086)

0.044∗∗
(0.017)

0.058∗∗∗
(0.017)

0.339∗∗∗
(0.099)

IQual
0.222∗∗∗
(0.083)

0.198∗
(0.116)

0.004
(0.043)

0.034
(0.042)

0.219∗
(0.126)

PGSEA × IQual
-0.072∗∗
(0.033)

-0.092∗∗∗
(0.035)

-0.013
(0.014)

-0.009
(0.016)

-0.098∗∗
(0.040)

IQuant
0.062
(0.058)

0.064
(0.093)

0.015
(0.040)

-0.013
(0.036)

0.061
(0.112)

PGSEA × IQuant
0.026
(0.031)

0.008
(0.032)

-0.019
(0.018)

-0.031∗
(0.016)

0.014
(0.037)

Child Controls ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓

Full Interaction × ✓ × × ✓

Endogenous Controls × × × × ✓

N 3, 081 3, 081 3, 081 2, 541 2, 125

R2 0.335 0.354 0.101 0.078 0.379

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. The first panel of this table shows the joint association of PGSEA, IQual and IQuant with completed
years of education. In column (2) we control for all possible interactions between PGSEA, IQual and IQuant and the control
variables. The second panel of this table shows the joint association of PGSEA, IQual and IQuant with an index of parental
time investments. The third panel of this table shows the joint association of PGSEA , IQual and IQuant with completed
years of education while accounting for endogenous control variables. Endogenous control variables include the index for
maternal time investments, the index for paternal time investments, and log family income. Child Controls: Gender times
birth cohort dummies, 20 principal components of the full matrix of genetic data. Family Controls: Age of mother at birth,
years of education of both mother and father, average potential wages of both mother and father, the standard deviation
of potential wages of both mother and father, a dummy for Christian religion, state fixed effects. All non-binary variables
are standardized on the estimation sample to have µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.
Standard errors (in parentheses) are clustered at the school level.

imply the existence of genetic nurture effects. Instead they could also reflect evocative
gene-environment correlations, i.e. that children select into environments depending on
their genetic endowments Gi (Smith-Woolley et al., 2018). If we were to follow this in-
terpretation, the observed association is not indicative for a third factor confounding the
relationship of interest, but rather speaks to a particular mechanism of how genetic endow-
ments influence child outcomes. Importantly, there is no differential association between
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PGSEA and parental time investments depending on school quality.

Lastly, in column (5) of Table 3.4, we again estimate a fully interacted model, but also
incorporate controls for family environments that are potentially endogenous to PGSEA and
schooling environments. In particular, we include the indexes for maternal and paternal
time investments as well as the log of annual family income. Despite a decrease in sample
size and the associated loss in precision, our results remain unaffected.

Overall, these results bolster confidence that our estimates for the complementarity
parameter κ are not confounded by interactions between genetic endowments and family
environments.

3.5.4 Mechanisms

In this section, we analyze mechanisms that underpin the substitutability of genetic endow-
ments and teacher quality. We abstract from IQuant in view of its robust non-association
with educational outcomes (see sections 3.5.1–3.5.3).

Educational degrees. Total years of education summarizes information from various
educational stages, where each stage requires a different mix of skills θi (Cunha et al.,
2006, 2010). Therefore, we repeat our analysis by replacing total years of education with
binary variables for whether respondents achieved (i) at least a high school degree or
GED, (ii) completed a 2-year college degree, (iii) completed a 4-year college degree, and
(iv) completed a post-graduate degree.

In Figure 3.5, we display the resulting point estimates for the complementarity param-
eter κ and the associated 95% confidence bands. The series in circles indicates that the
compensating effect of teacher quality has a U-shaped pattern throughout the educational
life-cycle. There is a small reduction of the probability to drop out of high school, followed
by larger substitutability with respect to 2-year and 4-year college degrees. The substi-
tutability of high-quality teachers and genetic endowments levels off at the post-graduate
level. This pattern is consistent with the following interpretation. High school graduation
is a relatively "inclusive" educational outcome that is accessible for most, including low
PGSEA students in low-quality schooling environments. Evidence to this effect is provided
by a high school graduation rate of 97% in our sample (Table 3.1). To the contrary, post-
graduate education is a relatively "exclusive" educational outcome that is more accessible
for students with a advantageous genetic endowments and who experienced conducive
environments. In both cases, there is limited scope for high-quality teachers to make a
difference for low PGSEA students. College education, however, takes a middle ground
between these two polar outcomes and therefore offers scope for disadvantageous genetic
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endowments to be offset by conducive school environments, and vice versa.21

The series in triangles indicates analogous complementarity parameters for genetic en-
dowments and a summary index of family socio-economic status (SES).22 Consistent with
Buser et al. (2021a) and Papageorge and Thom (2020), the complementarity between ge-
netic endowments and family SES increases across the educational life-cycle of individuals.
The differential complementarity patterns of school investment and family SES point to the
complexity of the skill production function, where endowments and different investments
interact in distinct and time-variant ways across the life-cycle of individuals.

Skill formation. In section 3.3, we formulated educational attainment Yi as a function
of child skills θi at the end of childhood. Skills that influence educational attainment
are multidimensional and comprise a broad set of health indicators and (non-)cognitive
skills (Almlund et al., 2011; Heckman and Mosso, 2014). Furthermore, an emerging litera-
ture provides evidence for each of these skill dimensions being partially shaped by genetic
influence (Buser et al., 2021a; Demange et al., 2020, 2021).

We evaluate these potential channels by analyzing the associations of PGSEA and
IQual with a set of intermediate outcomes. In terms of health outcomes, we focus on sub-
jective health as measured by quality-adjusted life years (QALY) and objective health as
measured by an index that comprises information about whether the respondent is obese,
afflicted by stage one hypertension, or has high cholesterol. In terms of cognitive skills,
we use the Picture Vocabulary Test (PVT) as a measure for verbal intelligence. Lastly,
we focus on personality and preferences as two distinct conceptualizations of non-cognitive
skills (Becker et al., 2012; Humphries and Kosse, 2017). In particular, we focus on risk
aversion, patience, and the Big Five personality traits. All measures are collected in waves
3 and 4 of Add Health, and hence after respondents have left high school but potentially
before they have concluded their highest level of education (see Appendix section C.3 for
details).

Health, cognitive skills, risk aversion, and patience have been shown to be strong predic-
tors of educational attainment (Burks et al., 2015; Castillo et al., 2018a,b; Jackson, 2009).
Furthermore, openness and emotional stability—the inverse of neuroticism—are positively
associated with educational attainment (Becker et al., 2012; Buser et al., 2021b). Based
on this evidence, we expect positive associations of both PGSEA and IQual with each of
these intermediate outcomes. The sign of the gene-environment interaction is a priori un-

21Gene-environment interactions on binary outcomes may be misinterpreted when estimated in a linear
probability model. As a remedy, Domingue et al. (2020) recommend to present results for the underlying
continuous variable, i.e. years of education in the case of this paper. Reassuringly, our results for years of
education are in line with our results for educational degrees.

22In particular, we use the "social origins score" from Belsky et al. (2018), measured at wave 1. Results
for alternative measures of family SES, such as family income or potential wages of either parent, are
similar.
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Figure 3.5: Association of PGSEA and School/Family Environments with Degree
Attainment
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows point estimates and 95% confidence bands of interaction associations between
PGSEA and school/family environments during childhood with completed education degrees. Estimates follow the
specification of Equation (3.7). Child Controls: Gender times birth cohort dummies, 20 principal components of the full
matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average
potential wages of both mother and father, the standard deviation of potential wages of both mother and father, a dummy
for Christian religion, state fixed effects. Standard errors are clustered at the school level.

clear. However, in view of the substitutability of PGSEA and IQual in the production of
educational attainment, we expect similar substitutability patterns for a subset of these
intermediate outcomes as well.

Table 3.5 summarizes the results. In column (1)–(2) of Panel (a), we focus on health
outcomes. In line with expectations, our results show a positive association of PGSEA with
both subjective and objective health. A 1 SD increase in PGSEA increases subjective
(objective) health by 0.069 SD (0.043 SD). Furthermore, the negative coefficient on the
interaction of PGSEA and IQual suggests that this increase is particularly pronounced for
low-PGSEA students: a 1 SD increase in teacher quality reduces the positive association of
subjective health with the PGSEA by ≈ 41% (= 0.028/0.069).

In column (3) of Panel (a), we focus on the PVT as a measure of cognitive skills. In
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Table 3.5: Association of PGSEA and School Environments with Skill Measures

Health Cognitive Preferences

Panel (a) Subjective
(1)

Objective
(2)

PVT
(3)

Risk
(4)

Patience
(5)

PGSEA 0.069∗∗∗
(0.017)

0.043∗∗
(0.018)

0.181∗∗∗
(0.017)

0.038∗∗
(0.015)

0.074∗∗∗
(0.017)

IQual
0.021
(0.042)

0.032
(0.036)

0.102∗∗∗
(0.039)

0.047
(0.030)

0.045
(0.038)

PGSEA × IQual
-0.028∗∗
(0.014)

-0.000
(0.020)

-0.034∗
(0.018)

-0.046∗∗∗
(0.015)

-0.044∗∗∗
(0.013)

Child Controls ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓

N 3, 081 3, 081 3, 001 3, 077 3, 077

R2 0.078 0.054 0.207 0.112 0.096

Personality

Panel (b) Open-
ness
(1)

Conscient-
iousness

(2)

Extra-
version

(3)

Agree-
ableness

(4)

Neuro-
ticism

(5)

PGSEA 0.073∗∗∗
(0.017)

-0.017
(0.017)

-0.006
(0.019)

0.038∗
(0.020)

-0.084∗∗∗
(0.019)

IQual
0.038
(0.033)

-0.031
(0.036)

-0.043
(0.030)

0.057
(0.037)

-0.018
(0.033)

PGSEA × IQual
0.012
(0.013)

-0.007
(0.015)

-0.001
(0.023)

-0.007
(0.019)

0.023
(0.019)

Child Controls ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓

N 3, 059 3, 079 3, 075 3, 077 3, 077

R2 0.084 0.041 0.031 0.133 0.092

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA , IQual , and IQuant with health, cognitive skills,
preferences, and personality. Child Controls: Gender times birth cohort dummies, 20 principal components of the full
matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average
potential wages of both mother and father, the standard deviation of potential wages of both mother and father, a dummy
for Christian religion, state fixed effects. All non-binary variables are standardized on the estimation sample to have µ = 0,
σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered at the school
level.
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line with expectations, our results show positive associations of both PGSEA and IQual with
the PVT. A 1 SD increase in PGSEA (IQual ) is associated with a 0.181 SD (0.102 SD)
increase in the PVT. Furthermore, both factors are substitutes for each other. A 1 SD
increase in teacher quality reduces the positive association of PVT and PGSEA by ≈ 19% (=
0.034/0.181).

In columns (4)–(5) of Panel (a), we focus on economic preferences. In line with expec-
tation, we find strong positive associations of PGSEA with both risk aversion and patience.
A 1 SD increase in PGSEA is associated with a 0.038 SD (0.074 SD) increase in risk aversion
(patience). Furthermore, PGSEA and IQual are substitutes for each other. A 1 SD increase
in IQual reduces the positive associations of risk aversion and patience with the PGSEA by
≈ 124% (= 0.046/0.037) and ≈ 59% (= 0.044/0.074), respectively.

In Panel (b), we focus on personality traits. In line with expectation, we find a positive
association of PGSEA with openness and a negative association of PGSEA with neuroticism.
However, IQual is not predictive of any of the Big Five dimensions. Furthermore, we do
not find evidence for complementarity of PGSEA and IQual in the production of personality
traits.

To summarize: we find negative gene-environment interactions of genetic endowments
and teacher quality in the production of subjective health, cognitive skills, risk aversion,
and patience. Given their predictive power for educational attainment, these intermediate
outcomes are plausible channels to explain the substitutability of genetic endowments and
teacher quality in the production of educational attainment.

3.6 Conclusion

The question of how natural endowments and environmental factors determine life out-
comes has a long history of inquiry in philosophy and science (Darwin, 1859; Descartes,
1641; Lamarck, 1838; Locke, 1690). The assumption that life outcomes are the result of
genetic and environmental factors initially led to the so-called "nature versus nurture"
debate. However, current research has moved beyond this simplistic dichotomy and recog-
nizes that individual life outcomes are the result of a complex interplay between nature and
nurture. Importantly, this insight illustrates that the importance of genetic endowments
for life outcomes is not immutable. Instead, it opens an avenue for policy interventions
that shape the relevant environment.

In this paper, we contribute to this research agenda by studying the interplay of ge-
netic endowments and schooling environments in the production of educational outcomes.
Making use of recent advances in molecular genetics, we link an individual-level index of
genetic predispositions for educational success with measures of our environmental factors
of interest, namely teacher "quality" and "quantity" during high school. In turn, we can
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investigate directly whether the importance of genetic endowments varies with the quality
of their high school environments.

Our findings suggest that school investments have the potential to cushion the genetic
gradient in educational attainment. However, this conclusion depends on the particular
type of investment. On the one hand, increases in "teacher quality" offset genetic disad-
vantages. On the other hand, we do not find any substitutability with respect to "teacher
quantity." Our findings furthermore suggest that increased gains in educational attain-
ment for students of low genetic endowments are mediated by gains in subjective health,
cognitive skills and risk aversion, and patience.

Genes are important co-determinants of many life outcomes. However, although they
are fixed at conception, their importance can be mediated by suitable policy intervention.
In the case of education, increasing the quality of teachers in high schools may provide an
important step to level the playing field for all students, regardless of their draw in the
genetic lottery.
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C.1 Supplementary Tables
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Table C.1: Sample Representativeness

Population (Cohorts 1974-1983) Analysis Sample

All Non-Hispanic White Unweighted Re-Weighted

Gender
Male 0.498 0.503 0.453 0.503
Female 0.502 0.497 0.547 0.497

Education Mother
≤ High School 0.536 0.489 0.494 0.489
> High School; < College 0.281 0.302 0.217 0.301
≥ College 0.183 0.209 0.289 0.210

Education Father
≤ High School 0.472 0.425 0.491 0.425
> High School; < College 0.255 0.271 0.196 0.271
≥ College 0.273 0.304 0.312 0.303

Age Mother at Birth
< 25 Years 0.353 0.330 0.485 0.330
≥ 25 Years 0.647 0.670 0.515 0.670

Parental Income
< $50,000 0.557 0.491 0.531 0.516
≥ $50,000; < $100,000 0.352 0.403 0.390 0.401
≥ $100,000 0.091 0.106 0.079 0.083

Education Respondent
≤ High School 0.301 0.225 0.181 0.173
> High School; < College 0.327 0.344 0.399 0.402
≥ College 0.372 0.431 0.419 0.425

Data: National Longitudinal Study of Adolescent to Adult Health, American Community Survey (ACS), Current
Population Survey (CPS).
Note: Own calculations. This table shows summary statistics of the core analysis sample in comparison to other population
samples. It shows respondents’ characteristics for the following samples: (i) the U.S. population from birth cohorts
1974–1983, (ii) the Non-Hispanic White U.S. population from birth cohorts 1974–1983, (iii) the core estimation sample, and
(iv) the core estimation sample re-weighted to match (ii) with respect to Gender, Education Mother, Education Father, and
Age Mother at Birth. Population data on Gender and Education Respondent from IPUMS ACS 2019 (Ruggles et al., 2020).
Population data on Education Mother, Education Father, Age Mother at Birth, and Parental Income from IPUMS CPS
1994 (Flood et al., 2020).
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Table C.2: Association of PGSEA and Years of Education: Comparing Between-Family
and Within-Family Models

Between-Family Within-Family

Outcome:
Years of Education (1) (2)

PGSEA 0.374∗∗∗
(0.037)

0.458∗∗∗
(0.160)

IQual
0.226∗∗∗
(0.083) –

IQuant
0.063
(0.057) –

Child Controls ✓ ✓

Family Controls ✓ ✓

Sibling Fixed Effect × ✓

N 3, 081 525

R2 0.334 0.785

Outcome Mean 14.810 14.928

Outcome SD 2.250 2.262

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA , IQual , and IQuant with completed years of
education. The first panel establishes our baseline estimates based on a between-family model. The second panel displays
results from a family fixed effect model using within-family variation only. Child Controls: Gender times birth cohort
dummies, 20 principal components of the full matrix of genetic data. Family Controls: Age of mother at birth, years
of education of both mother and father, average potential wages of both mother and father, the standard deviation of
potential wages of both mother and father, a dummy for Christian religion, state fixed effects. All non-binary variables are
standardized on the estimation sample to have µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.
Standard errors (in parentheses) are clustered at the school level.
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Table C.3: Tests for Equality of PGSEA Distributions

Terciles of IQual / IQuant

1 2 3

Panel (a): IQual

1 – – –
2 0.66 – –
3 0.25 0.77 –

Panel (b): IQuant

1 – – –
2 0.77 – –
3 1.00 0.70 –

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the results of pairwise Kolmogorov-Smirnov tests for the PGSEA distributions
within different terciles of IQual and IQuant, respectively. Results are summarized by the p-value for the null hypothesis that
the two PGSEA distributions are equal within the corresponding terciles of IQual and IQuant.
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Table C.4: Alternative Polygenic Scores

Baseline + Controls for
Other Polygenic Scores

Outcome:
Years of Education (1)

Body Mass
Index
(2)

ADHD

(3)

Depressive
Symptoms

(4)

Intelli-
gence
(5)

Ever
Smoker

(6)

Sleep
Duration

(7)

PGSEA 0.371∗∗∗
(0.033)

0.357∗∗∗
(0.035)

0.346∗∗∗
(0.032)

0.372∗∗∗
(0.034)

0.358∗∗∗
(0.039)

0.347∗∗∗
(0.038)

0.374∗∗∗
(0.033)

IQual
0.222∗∗∗
(0.083)

0.227∗∗∗
(0.082)

0.223∗∗∗
(0.081)

0.226∗∗∗
(0.081)

0.228∗∗∗
(0.081)

0.225∗∗∗
(0.080)

0.227∗∗∗
(0.081)

PGSEA × IQual
-0.072∗∗
(0.033)

-0.084∗∗
(0.036)

-0.074∗∗
(0.033)

-0.073∗∗
(0.034)

-0.079∗∗
(0.037)

-0.080∗∗
(0.037)

-0.073∗∗
(0.033)

Other PGS – -0.070∗∗
(0.032)

-0.130∗∗∗
(0.034)

-0.024
(0.032)

0.029
(0.040)

-0.128∗∗∗
(0.041)

-0.004
(0.032)

Other PGS × IQual – -0.037
(0.037)

0.019
(0.031)

0.007
(0.030)

0.011
(0.040)

-0.019
(0.039)

0.003
(0.034)

Child Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓

N 3, 081 3, 081 3, 081 3, 081 3, 081 3, 081 3, 081

R2 0.335 0.336 0.338 0.335 0.335 0.338 0.335

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA , IQual , and IQuant with completed years of
education. We control for other PGS and their interaction with IQual and IQuant . The relevant PGS are indicated in the
column header. Child Controls: Gender times birth cohort dummies, 20 principal components of the full matrix of genetic
data. Family Controls: Age of mother at birth, years of education of both mother and father, average potential wages
of both mother and father, the standard deviation of potential wages of both mother and father, a dummy for Christian
religion, state fixed effects. All non-binary variables are standardized on the estimation sample to have µ = 0, σ = 1.
Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered at the school level.



149

Table C.5: Robustness to Sample Composition

Baseline Alternative Sample Composition

Outcome:
Years of Education (1)

Re-
Weighted

(2)

Excl. all
(Potential) Movers

(3)

Inc. all
(Potential) Movers

(4)

PGSEA 0.371∗∗∗
(0.033)

0.359∗∗∗
(0.035)

0.360∗∗∗
(0.040)

0.381∗∗∗
(0.028)

IQual
0.222∗∗∗
(0.083)

0.198∗∗
(0.084)

0.154
(0.099)

0.217∗∗∗
(0.078)

PGSEA × IQual
-0.072∗∗
(0.033)

-0.073∗∗
(0.034)

-0.068∗
(0.039)

-0.050∗
(0.029)

IQuant
0.062
(0.058)

0.049
(0.062)

0.067
(0.069)

0.050
(0.075)

PGSEA × IQuant
0.026
(0.031)

0.037
(0.034)

0.013
(0.035)

0.037
(0.023)

Child Controls ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓

N 3, 081 3, 027 2, 526 4, 185

R2 0.335 0.315 0.328 0.319

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA , IQual , and IQuant with completed years of
education. In column (2), we re-weight our analysis sample to match ACS and CPS with respect to gender composition,
educational attainment of parents, and the age of mothers at birth—see also Appendix Table C.1. In column (3), we exclude
respondents that visit feeder schools in wave 1 and for whom we do not have information on subsequent high schools. In
column (4), we include respondents that are in Add Health high schools in wave 1 and for whom we do not have information
on subsequent high schools. Child Controls: Gender times birth cohort dummies, 20 principal components of the full
matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average
potential wages of both mother and father, the standard deviation of potential wages of both mother and father, a dummy
for Christian religion, state fixed effects. All non-binary variables are standardized on the estimation sample to have µ = 0,
σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered at the school
level.
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C.2 Supplementary Figures

Figure C.1: Top 3 School Expenditure Categories (in % of Total)

Teacher Instructional Expenditures

Capital Outlay

Operation and Maintenance.1

.2

.3

.4

.5

2001/02 2005/06 2010/11 2015/16

Data: Common Core of Data (CCD), National Public Education Financial Survey.
Note: Own calculations. This figure shows per-pupil expenditures shares in public elementary and secondary schools in
the U.S. Teacher Instructional Expenditures includes teachers’ salaries and employee benefits. Capital Outlay includes
expenditures for property and for buildings and alterations completed by school district staff or contractors. Operation and
Maintenance includes expenditures for the supervision of operations and maintenance, the operation of buildings, the care
and upkeep of grounds and equipment, vehicle operations (other than student transportation) and maintenance, and security.
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Figure C.2: Sensitivity To Unobserved Confounders
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows the sensitivity of the point estimates for PGSEA , IQual , and their interaction
to unobserved confounding variables. Following the procedure of Cinelli and Hazlett (2020), we calculate the bias-adjusted
treatment effect of PGSEAand IQual, and their interaction under different assumptions about the partial R2 of confounding
variables with the variables of interest and the partial R2 of confounding variables with years of education. Each contour
line shows point estimates (left-hand panel) and t-statistics (right-hand panel) for different combinations of the two partial
R2. Each circle shows resulting values for different multiples of confounders as strong as parental education. Diamonds
show baseline estimates from Table 3.2. Standard errors are clustered at the school level.
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C.3 Data Appendix

C.3.1 Outcome Variables

Educational Attainment. We measure educational attainment by total years of edu-
cation. In each wave, respondents were asked about their highest level of education at
the time of the interview. For each respondent, we use the most recent information and
transform education levels into years of education following the mapping suggested by
Domingue et al. (2015). Numeric values in parentheses: eighth grade or less (8), some high
school (10), high school graduate (12), GED (12), some vocational/technical training (13),
some community college (14), some college (14), completed vocational/technical training
(14), associate or junior college degree (14), completed college (16), some graduate school
(17), completed a master’s degree (18), some postbaccalaureate professional education
(18), some graduate training beyond a master’s degree (19), completed post-baccalaureate
professional education (19), completed a doctoral degree (20).

We use the most recent available information to construct the following measures for
educational degrees: High School (including GED), 2-year College, 4-year College, and
Post-Graduate. Two-year college degrees include associate and junior college degrees as
well as vocational and technical training after high school. Four-year college degrees include
bachelor’s degrees. Post-graduate degrees include master’s degrees, doctoral degrees, and
post-baccalaureate professional degrees. If available, information is taken from wave 5;
otherwise we take it from waves 4 or 3, respectively. We only include respondents for
which we observe educational degrees when they are at least 27 years old at the time of
observation. We assume an ordinal ranking of degrees (high school < 2-year college <
4-year college < post-graduate) and assign the possession of a lower-ranked degree if a
respondent obtained a higher-ranked degree. For example, we assume that a respondent
has finished high school if he or she has obtained a college degree, even if we don’t have
explicit information about high school graduation status.

Health. We proxy subjective health by quality-adjusted life years (QALY) that we derive
from self-assessed health (SAH) measures. We use information from waves 3 and 4, where
participants were asked "in general, how is your health?". We convert their (categorical)
responses into a continuous measure using a mapping proposed by Van Doorslaer and Jones
(2003). Using information about objective health—the Health Utility Index Mark III—Van
Doorslaer and Jones (2003) scale the intervals of the SAH categories. This approach yields
"quality weights" for health between 0 and 1. The value for each health status category
is as follows (quality weights in parentheses): "excellent" (0.9833), "very good" (0.9311),
"good" (0.841), "fair" (0.707), and "poor" (0.401).1 We average resulting QALY measures
across waves 3 and 4.

1See Table 4 in Van Doorslaer and Jones (2003).
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We construct an index of objective health based on information from wave 4. Specifically,
we sum the standardized values about whether a respondent (i) is obese, (ii) has stage one
hypertension, and (iii) has high cholesterol (as indicated by the respondent). Each item
was answered with either "yes" (= 1) or "no" (= 0). We reverse-code our measure of
objective health such that higher values indicate better health.

Cognitive Skills. The Picture Vocabulary Test (PVT) is a test for receptive hearing
vocabulary and is a widely-used proxy for verbal ability and scholastic aptitude. To ad-
minister the PVT, an examiner presents a series of pictures to the respondent. There are
four pictures per page, and the examiner speaks a word describing one of the pictures. The
respondent then has to indicate the picture that the word describes. In our analysis, we
use age-adjusted PVT percentile ranks from wave 3 (Harris, 2020).

Preferences. We construct two measures of preferences: risk aversion and patience. In
waves 3 and 4, participants were asked (i) whether they like to take risks, and (ii) whether
they live their life without much thought for the future. Questions were answered on a five-
point Likert scale ranging from "strongly agree" to "strongly disagree." We reverse-code
both measures and use averages from waves 3 and 4 in our analysis.

Personality. The Big Five personality traits are openness to experience, conscientious-
ness, extraversion, agreeableness, and neuroticism (Almlund et al., 2011). We use infor-
mation from wave 4 to construct personality measures. Participants were asked a set of
questions that each relate to one of the five personality traits. Questions were answered
on a five-point Likert scale ranging from "strongly agree" to "strongly disagree." We use
averages of the following questions in our analysis. Openness : (i) "I have a vivid imag-
ination," (ii) "I have difficulty understanding abstract ideas" (reverse-coded), (iii) "I am
not interested in abstract ideas" (reverse-coded), (iv) "I do not have a good imagination"
(reverse-coded). Conscientiousness : (i) "I get chores done right away," (ii) "I like order,"
(iii) "I often forget to put things back in their proper place" (reverse-coded), (iv) "I make
a mess of things" (reverse-coded). Extraversion: (i) "I am the life of the party," (ii) "I talk
to a lot of different people at parties," (iii) "I don’t talk a lot" (reverse-coded), (iv) "I keep
in the background" (reverse-coded). Agreeableness: (i) "I sympathize with others’ feel-
ings," (ii) "I feel others’ emotions," (iii) "I am not interested in other people’s problems"
(reverse-coded), (iv) "I am not really interested in others" (reverse-coded). Neuroticism:
(i) "I have frequent mood swings," (ii) "I get upset easily," (iii) "I am relaxed most of the
time" (reverse-coded), (iv) "I seldom feel blue" (reverse-coded).

Parental Investment. To measure parental time investments, we use information on
a series of activities that children have done with their mother or father in the last four
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weeks. Specifically, the child is asked whether he or she has (i) gone shopping, (ii) played a
sport, (iii) gone to a religious service or church-related event, (iv) talked about someone he
or she is dating, or a party he or she went to, (v) gone to a movie, play, museum, concert,
or sports event, (vi) had a talk about a personal problem he or she was having, (vii) had a
serious argument about him or her behavior, (viii) talked about his or her school work or
grades, (ix) worked on a project for school, (x) talked about other things he or she is doing
in school. Questions were answered with "yes" (= 1) or "no" (= 0). We standardize each
response to have mean zero and standard deviation one and then sum by parent (Anderson,
2008; Kling et al., 2007).

C.3.2 Variables of Interest

Polygenic Scores. Add Health obtained saliva samples from consenting participants in
wave 4. After quality control procedures, genotyped data is available for 9,974 individu-
als and 609,130 SNPs. Add Health uses this data and calculates a set of different PGS
using summary statistics from existing GWAS. Our baseline measure PGSEA is based on
statistics from Lee et al. (2018). In our analysis, we also use the PGS for body mass index
(BMI ) (Yengo et al., 2018), attention deficit hyperactivity disorder (ADHD) (Demontis
et al., 2019), depressive symptoms (Howard et al., 2019), intelligence (Savage et al., 2018),
smoking (Liu et al., 2019), and sleep duration (Jansen et al., 2019). All polygenic scores are
standardized to µ = 0 and σ = 1 on the full sample of genotyped Add Health respondents.

School Characteristics. In wave 1 and 2, Add Health administered questionnaires to
headmasters of Add Health schools. We use this information to construct indicators for
high school investments using a principal components analysis that includes the following
school-level information: (i) average class size, (ii) share of teachers with a master degree,
(iii) share of new teachers in the current school year, (iv) share of teachers with school-
specific tenure of more than five years, and Herfindahl indices to measure teacher diversity
with respect to (v) race and (vi) Hispanic background.2 We also include school-level
information about the average student-teacher ratio (number of full-time students per full-
time equivalent teachers) in 1995/96, taken from the Common Core of Data (CCD) and
the Private School Survey (PSS). We apply a factor rotation for interpretability reasons
(oblique oblimin rotation of the Kaiser normalized matrix with γ = 0; see Gorsuch, 1983).
The first component loads almost exclusively on average class size and average student-

2Herfindahl indices are calculated by first squaring the share of each component and then summing
up resulting values (i.e. H =

∑N
i=1 a

2
i , where ai is the share of component i, and N is the total number

of components). For the Herfindahl index for race, we include the schools’ share of full-time classroom
teachers that are (i) White, (ii) Black or African American, (iii) American Indian or Native American, (iv)
and Asian or Pacific Islander. For the Herfindahl index for Hispanic background, we include the schools’
share of full-time classroom teachers that are (i) Hispanic or of Spanish origin, and (ii) neither Hispanic
nor of Spanish origin.
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Table C.6: Summary Statistics (Outcomes)

Obs. Mean SD Min Max

Educational Attainment
Years Education 3,081 14.81 2.25 8.00 20.00
High School Degree 3,081 0.97 0.18 0.00 1.00
2-year College Degree 3,081 0.53 0.50 0.00 1.00
4-year College Degree 3,081 0.42 0.49 0.00 1.00
Post-Graduate Degree 3,081 0.15 0.36 0.00 1.00

Health
Subjective 3,081 0.91 0.07 0.40 0.98
Objective 3,081 0.03 1.94 -6.46 1.62

Cognitive Skills
Picture Vocabulary Test 3,001 59.94 25.94 0.00 100.00

Preferences
Risk Aversion 3,077 2.83 0.86 1.00 5.00
Patience 3,077 3.93 0.72 1.00 5.00

Personality
Openness 3,059 3.63 0.63 1.00 5.00
Conscientousness 3,079 3.65 0.70 1.25 5.00
Extraversion 3,075 3.33 0.77 1.00 5.00
Agreeableness 3,077 3.87 0.58 1.00 5.00
Neuroticism 3,077 2.56 0.70 1.00 5.00

Parental Time Investments
Mother 3,081 0.53 4.34 -8.51 14.89
Father 2,541 0.32 4.28 -6.47 16.74

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for outcome variables in our core analysis sample. The
sample is restricted to genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an
associated feeder school in wave 1, and (iii) who graduated from the same school. Observations with missing information in
any of the displayed variables are dropped by list-wise deletion.

teacher ratio. Hence, we interpret this component, IQuant, as an indicator for the "quantity"
of teachers. The second component primarily loads positively on the percentage of teachers
with a master degree and the share of teachers with a tenure of more than five years; it
loads negatively on the share of new teachers in the current school year. We interpret this
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component, IQual , as an indicator for the "quality" of teachers. Both factors are coded
such that higher values indicate higher school investments, i.e. higher teacher "quantity"
investments (smaller classes) and higher teacher "quality" investments (better teachers),
respectively. The calculated factors are orthogonal to each other by construction. They
are standardized to µ = 0 and σ = 1 on the full sample of Add Health high schools.3

Family Socio-Economic Status. We use the social origins factor score constructed by
Belsky et al. (2018). Their measure uses information about parental education, parental
occupation, household income, and household receipt of public assistance in wave 1. The
score is standardized to µ = 0 and σ = 1 on the full sample of Add Health respondents in
wave 1.

Table C.7: Summary Statistics (Variables of Interest)

Obs. Mean SD Min Max

Polygenic Scores
PGSEA 3,081 0.05 1.00 -4.13 3.39
BMI 3,081 -0.02 1.01 -3.42 3.56
ADHD 3,081 -0.05 1.00 -3.82 3.48
Depressive Symptoms 3,081 -0.02 1.01 -3.79 3.55
Intelligence 3,081 0.02 0.99 -3.30 4.06
Ever Smoker 3,081 -0.04 1.00 -4.25 4.25
Sleep Duration 3,081 0.02 0.99 -3.74 2.99

School Characteristics
IQual 3,081 0.07 1.17 -3.90 2.30
IQuant 3,081 -0.03 1.02 -3.34 3.25

Family SES
Social Origins Factor Score 3,024 0.37 1.12 -4.40 3.51

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for variables of interest in our core analysis sample. The
sample is restricted to genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an
associated feeder school in wave 1, and (iii) who graduated from the same school. Observations with missing information in
any of the displayed variables are dropped by list-wise deletion.

3Note that in an oblique rotation, factors may be slightly correlated.
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C.3.3 Control Variables

Child Characteristics. The child’s gender (female or male, as indicated by the inter-
viewer) is taken from the in-home questionnaire in wave 1.

We calculate the child’s age (in months) at each wave by subtracting the child’s birth
date from the date of interview. Because birth dates have minor inconsistencies across
waves, we take averages across waves 1 to 4.

We use the first 20 principal components of full matrix of the genetic data. The com-
ponents are obtained from a principal components analysis on the matrix of SNPs in Add
Health (see Braudt and Harris, 2020, for a discussion). The principal components are
standardized to µ = 0 and σ = 1 on the full sample of genotyped Add Health respondents.

Family Socio-Economic Status. We use information from wave 1 to construct mea-
sures of parents’ education. We transform parents’ highest degree into years of education
following the mapping suggested by Domingue et al. (2015). Numeric values in parenthe-
ses: never went to school (0), eighth grade or less (8), some high school (10), completed
vocational/technical training instead of high school (10), went to school but level unknown
(12), respondent doesn’t know (12), high school graduate (12), GED (12), completed voca-
tional/technical training after high school (14), some college (14), completed college (16),
professional training beyond a master’s degree (19). Where available, mothers’ and fa-
thers’ education refers to the resident parent. If this information is not available, we use
the biological parents’ education instead.

Information about mother’s age at birth (in years) is obtained from wave 1 if available,
and wave 2 otherwise. To calculate age at birth, we take information about mother’s age
(as indicated by the child) and subtract the age of the child at the respective wave.

Information about religion (Christian or not) is obtained from wave 1 (as indicated by
the child).

We calculate potential wages for population group g in time period t according to the
following formula (Shenhav, 2021):

ŵgt =
∑
j

Ejg,1970

Eg,1970
×
∑
o

Eojg,1970

Ejg,1970
(πojt,−r)× wojt,−r,

where Ejg,1970

Eg,1970
describes the group-specific employment share of industry j in 1970, Eojg,1970

Ejg,1970

describes the group- and industry-specific employment share of occupation o in 1970, πojt,−r

describes the leave-region-out industry-specific employment growth in occupation o for year
t relative to 1970 (scaled by the overall employment growth in occupation o for year t rela-
tive to 1970), and wojt,−s describes the leave-region-out average hourly wage paid in year t
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for each occupation/industry/region cell. We define groups g by individuals that are homo-
geneous in gender (male, female), educational attainment (< High School, High School, >
High School), and ethnicity (Non-Hispanic White, Hispanic, Non-Hispanic Black). We de-
fine regions r by census regions (North-East, Midwest, South, West). Employment shares
in 1970 are taken from the 1970 decennial census. Employment shares and wages in periods
t are taken from the March Supplements of the Current Population Survey (CPS) over the
time period 1975-2000. We match time series of ŵgt to the parents of respondents in Add
Health based on information about g. Then we calculate (i) mean potential wages across
respondent ages 0–14, and (ii) the standard deviation in potential wages across respondent
ages 0–14.

School Characteristics. We use information about school peer characteristics from the
in-school questionnaire in wave 1. Specifically, for each school, we calculate average years
of education of students’ fathers, the share of single parents, and the average subjective
likelihood of students to attend college. We transform the father’s highest degree into
years of education following the mapping suggested by Domingue et al. (2015). Numeric
values in parentheses: never went to school (0), eighth grade or less (8), some high school
(10), went to school but level unknown (12), respondent doesn’t know (12), high school
graduate (12), GED (12), completed vocational/technical training after high school (14),
some college (14), completed college (16), professional training beyond a four-year college
(19). For college aspiration, students indicate how likely it is that they will graduate from
college. Responses range from "no chance" (= 0) to "it will happen" (= 8). We define a
student to have college aspiration if his or her response is above "about 50-50" (= 4), and
to have no college aspiration otherwise. To prevent mechanical correlation between school
peer characteristics and respondent characteristics, we calculate averages and shares while
excluding individual respondents (leave-one-out).

We use information from the school administrator questionnaire in wave 1 to construct
measures of sanction policies by means of a principal components analysis. School admin-
istrators were asked what happens to a student who is caught in their school (i) cheating,
(ii) fighting with another student, (iii) injuring another student, (iv) possessing alcohol,
(v) possessing an illegal drug, (vi) possessing a weapon, (vii) drinking alcohol at school,
(viii) using an illegal drug at school, (ix) smoking at school, (x) verbally abusing a teacher,
(xi) physically injuring a teacher, and (xii) stealing school property. Responses are "minor
action", "in-school suspension", "out-of-school suspension", and "expulsion." Administra-
tors were asked about sanctions in response to both first and second occurrences. We
apply a factor rotation for interpretability reasons (oblique oblimin rotation of the Kaiser
normalized matrix with γ = 0; see Gorsuch, 1983). The first three components load on
variables reflecting the school’s strictness regarding (i) drug use, (ii) social misconduct,
and (iii) academic misconduct. The calculated factors are orthogonal to each other by
construction. They are standardized to µ = 0 and σ = 1 on the full sample of Add Health
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high schools.4

We calculate value-added measures with respect to GPAs in subject s for cohort c
visiting high school j following a two-step procedure (Chetty et al., 2014a):

GPAs
igjc = βsZigjc + VAs

jc + ϵsigjc,

V̂A
s

jc =
1

N

N∑
i∈jc

(VAs
jc + ϵ̂sigjc).

Zigjc contains grade fixed effects δg, lagged GPAs from grade levels g − 1 for English,
Math and Science as well as current and lagged grade- and subject-specific indicators for
academic tracks in English, Math and Science (3 levels per grade times subject cell). To
avoid mechanical relationships, we predict ṼA

s

jc excluding data from cohort c and choosing
a weighting vector ϕs = [ϕs

c−5, ..., ϕ
s
c+5] that minimizes the out-of-sample mean-squared

error. Hence, ṼA
s

jc is our best prediction based on other cohorts of how much school j
will increase GPAs in subject s in one year of high school relative to the improvements
of similar students at other schools. We calculate ṼA

s

jc for English, Math and Science.
In turn, we run a principal component analysis and use the first principal component as
the aggregate measure of school value-added. The principal component is standardized to
µ = 0 and σ = 1 on the full sample of high schools with available transcript data on Add
Health respondents.

Table C.8: Summary Statistics (Controls)

Obs. Mean SD Min Max

Child Characteristics
Female 3,081 0.55 0.50 0.00 1.00
Age in Months (Wave 1) 3,081 193.64 19.76 144.00 256.00
Principal Component 1 3,081 0.00 0.01 -0.14 0.10
Principal Component 2 3,081 -0.00 0.01 -0.37 0.07
Principal Component 3 3,081 0.00 0.01 -0.10 0.02
Principal Component 4 3,081 0.00 0.01 -0.09 0.65
Principal Component 5 3,081 -0.00 0.01 -0.07 0.18
Principal Component 6 3,081 -0.00 0.01 -0.14 0.19
Principal Component 7 3,081 -0.00 0.01 -0.13 0.33
Principal Component 8 3,081 -0.00 0.01 -0.37 0.08
Principal Component 9 3,081 0.00 0.01 -0.06 0.07
Principal Component 10 3,081 -0.00 0.01 -0.58 0.26
Principal Component 11 3,081 0.00 0.01 -0.25 0.37
Principal Component 12 3,081 0.00 0.01 -0.39 0.18

4Note that in an oblique rotation, factors may be slightly correlated.
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Principal Component 13 3,081 -0.00 0.01 -0.35 0.18
Principal Component 14 3,081 -0.00 0.01 -0.12 0.23
Principal Component 15 3,081 0.00 0.01 -0.28 0.23
Principal Component 16 3,081 0.00 0.02 -0.15 0.66
Principal Component 17 3,081 -0.00 0.01 -0.50 0.24
Principal Component 18 3,081 -0.00 0.01 -0.29 0.20
Principal Component 19 3,081 0.00 0.01 -0.26 0.46
Principal Component 20 3,081 -0.00 0.01 -0.18 0.27

Family SES
Education Mother (in Years) 3,081 13.63 2.50 8.00 19.00
Education Father (in Years) 3,081 13.67 2.68 8.00 19.00
Maternal Age at Birth 3,081 25.49 4.83 16.00 44.33
Christian 3,081 0.82 0.38 0.00 1.00
Potential Wage/Hour Mother (Mean) 3,081 12.61 1.38 9.45 14.27
Potential Wage/Hour Father (Mean) 3,081 15.48 1.31 11.14 17.11
Potential Wage/Hour Mother (SD) 3,081 0.36 0.11 0.12 0.51
Potential Wage/Hour Father (SD) 3,081 0.40 0.08 0.20 0.65

School Characteristics
Peer Characteristics (Educ. Father) 2,965 13.57 1.05 10.90 17.84
Peer Characteristics (Single Parents) 2,965 0.24 0.08 0.00 0.60
Peer Characteristics (College Aspir.) 2,965 0.76 0.08 0.44 1.00
Sanction Policies (Drugs) 2,999 0.15 1.87 -5.71 9.06
Sanction Policies (Social) 2,999 0.25 1.61 -6.30 5.00
Sanction Policies (Acad.) 2,999 0.04 1.22 -3.41 2.38
Value-Added (GPA) 2,773 0.21 1.55 -4.18 4.41

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for control variables in our core analysis sample. The sample

is restricted to genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an associated
feeder school in wave 1, and (iii) who graduated from the same school. Observations with missing information in any of the
displayed variables are dropped by list-wise deletion.
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