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Abstract

Inference in ERGMs and Ising Models.

Yuanzhe Xu

Discrete exponential families have drawn a lot of attention in probability, statistics, and

machine learning, both classically and in the recent literature. This thesis studies in depth two

discrete exponential families of concrete interest, (i) Exponential Random Graph Models

(ERGMs) and (ii) Ising Models. In the ERGM setting, this thesis consider a “degree corrected”

version of standard ERGMs, and in the Ising model setting, this thesis focus on Ising models on

dense regular graphs, both from the point of view of statistical inference.

The first part of the thesis studies the problem of testing for sparse signals present on the

vertices of ERGMs. It proposes computably efficient tests for a wide class of ERGMs. Focusing

on the two star ERGM, it shows that the tests studied are “asymptotically efficient” in all

parameter regimes except one, which is referred to as “critical point”. In the critical regime, it is

shown that improved detection is possible. This shows that compared to the standard belief, in

this setting dependence is actually beneficial to the inference problem. The main proof idea for

analyzing the two star ERGM is a correlations estimate between degrees under local alternatives,

which is possibly of independent interest.

In the second part of the thesis, we derive the limit of experiments for a class of one

parameter Ising models on dense regular graphs. In particular, we show that the limiting

experiment is Gaussian in the “low temperature” regime, non Gaussian in the “critical” regime,

and an infinite collection of Gaussians in the “high temperature” regime. We also derive the

limiting distributions of commonlt studied estimators, and study limiting power for tests of

hypothesis against contiguous alternatives (whose scaling changes across the regimes). To the



best of our knowledge, this is the first attempt at establishing the classical limits of experiments

for Ising models (and more generally, Markov random fields).
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Chapter 1: Introduction

Exponential families of probability measures have a long history in Statistics and Machine

Learning, and have also been the focus of attention in several other disciplines, including Social

Science, Biology, Neuroscience, and Mathematical Physics, to name a few. In this thesis, we focus

on two well-known classes of exponential families, which are described below:

1. Exponential Random Graph Models

Network models have received significant attention in Statistics and Machine Learning, mo-

tivated by problems arising in several disciplines. Possibly the most simple (but also the

most well studied) network model is the Erdős–Rényi model (see [24]), where the number

of edges is the sufficient statistic. For this model, the edges of the graph are IID Bernoulli

random variables. Another commonly studied model of network analysis is the stochastic

block model (SBM, see [29]), in which the edge probabilities depend on the community

structure. A major drawback of these models is the assumption of independence between

the edges, which may be not realistic.

Exponential Random Graph Models (ERGMs in short) alleviate this, by assuming a de-

pendence structure between the edges of the graph. ERGMs originated in the Social Sci-

ence Literature, and have since then received a lot of attention in Probability and Statistics.

Essentially, the joint distribution of the random network is specified as a finite parameter

exponential family, over the space of simple labeled graphs. Typical choices of sufficient

statistics for ERGMs are subgraph counts. Possibly the most simple ERGM (outside of the

Erdős-Rényi model) is the two-star model, first studied in [43]. This model has two suffi-

cient statistics, the number of edges, and the number of two stars. A two-star structure means

a path of length 2, which consist of 3 vertices and 2 edges. Below we define the two-star
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model formally, by introducing some notation that we will carry throughout the rest of the

thesis:

For a simple labeled graph 𝐺 with vertex set [𝑛] := {1, 2, ..., 𝑛}, by a slight (but standard)

abuse of notation, let 𝐺 also denote the adjacency matrix (𝐺𝑖 𝑗 )𝑛𝑖, 𝑗=1, defined by

𝐺𝑖 𝑗 =


1 If an edge is present between vertices 𝑖 and 𝑗 in the graph 𝐺,

0 If no edge is present between vertices 𝑖 and 𝑗 in the graph 𝐺.

Given parameters 𝜔1 > 0 and 𝜔2 ∈ R, the two-star model has the following p.m.f.:

P𝑛 (𝐺) =
1

𝑍𝑛 (𝜔1, 𝜔2)
exp

(
(𝜔2 +

𝜔1
𝑛 − 1

)𝐸 (𝐺) + 𝜔1
𝑛 − 1

𝑇 (𝐺)
)

(1.1)

where

𝐸 (𝐺) =
∑︁
𝑖< 𝑗

𝐺𝑖 𝑗 , 𝑇 (𝐺) =
𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑘

𝐺𝑖 𝑗𝐺𝑖𝑘 .

Going beyond the two-star model, one can substitute 𝑇 (𝐺) by more general sub-graph

counts, such as cycles, triangles or cliques. In Chapter 2, we will study a class of ERGMs

which generalize (1.1) by allowing for general sub-graph counts, but also allowing for degree

heterogeneity, something which is not present in (1.1).

The reader may have noticed that classically in a graphical model, the nodes of the graph are

random, whereas the edges of the graph are random in a network model. When referring to

two-star ERGM, this difference is only superficial, and one can express a two-star model as

a graphical model on the line graph of the complete graph (see [41, Section 1.2]).

2. Ising Models.

Ising Models originated in statistical physics for studying Ferro-magnetism and has since

then found its way across several disciplines, including Statistics and Machine Learning. In
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Network Model

Figure 1.1: In a network model, the edges be-
tween vertices are binary random variables, whereas
the vertices are fixed.

Graphical Model

Figure 1.2: In a graphical model, vertices are bi-
nary random variables, whereas the edges denote
conditional dependence.

an Ising model, the dependence mechanism is controlled by a graph/matrix. To describe the

model, suppose that 𝑄𝑛 = (𝑄𝑖 𝑗 )𝑛𝑖, 𝑗=1 is a symmetric 𝑛 × 𝑛 matrix with 0 on the diagonal, and

let ` = (`1, `2, ..., `𝑛)𝑇 be a vector of real parameters, commonly referred as ’external mag-

netic field’ in Statistical Physics. Finally, let \ be a real valued scalar parameter, commonly

referred to as “inverse temperature” (and hence assumed to be non-negative). Armed with

these definitions, we introduce the Ising model as the following p.m.f. on {−1, 1}𝑛:

P\,`,𝑄𝑛 (𝑋) =
1

𝑍 (\, `, 𝑄𝑛)
exp ( \

2
X𝑇𝑄𝑛X + `𝑇X). (1.2)

The quantity 𝑍𝑛 (\, `, 𝑄𝑛) is the normalizing constant, which makes P\,`,𝑄𝑛 into a probability

distribution. Very often the matrix 𝑄𝑛 is assumed to be a (scaled) adjacency matrix of an

undirected graph. We refer to Chapter 3 for more on this connection.

The question of statistical inference for both the models described above is of interest and is

the main focus of this thesis. It is also a topic that is of recent interest. In particular, [15] developed

a large deviation theory to study a wide class of ERGMs. Focusing on the two-star model, [41]

investigates the limiting distributions for the number of edges, across the different phases of pa-

rameter configurations. Focusing on Ising Models, [7, 14] study consistency of maximum pseudo-

3



likelihood estimators.In another line of work, [18] and [40] investigate the effect of dependence in

signal detection for external magnetic field ` under Ising Models in a minimax framework. Under

the same framework, [39] study sharp threshold in testing sparse signals under 𝛽−model.

However, several interesting questions remain unresolved. One natural question is the signal

detection problem in general ERGMs. This is the focus of chapter 2, where we introduce a class

of general degree corrected Exponential Random Graphical Models, and set up a similar minimax

framework for the hypothesis testing problem as in [39, 40]. We adopt centered versions of two

classic test statistics for testing and demonstrate their optimality. To match the sharp testing thresh-

old, we include the lower bounds under degree corrected two-star ERGMs for the entire parameter

space.

Another topic of interest is inference on “inverse temperature” \ in Ising Models on a dense

regular graphs. Addressing this, we show that the Ising Models converges in the sense of limits of

experiment, (c.f. [48, Chapter 9] for discussion and more examples):

Given a parameter space Θ, a family of distribution P\ (·) is called to be the limits of experi-

ments of P𝑛,\ (·) if: ( 𝑑P𝑛,\
𝑑P𝑛,\0

(X)
)
\∈𝐼

𝑑,P𝑛,\0−→
( 𝑑P\
𝑑P\0

(𝑌 )
)
\∈𝐼
,

for every finite subset 𝐼 ⊂ Θ. As a consequence, we derive the best possible power function for tests

involving \. We study three natural tests and investigate whether they reach the optimal threshold,

in each of the parameter domains (high temperature, criticality, low temperature). We show that

the optimality of tests depends crucially on the parameter domain and the graph spectrum. All of

this is the content of chapter 3. Our focus is restricted to a certain subclass of Ising Models, which

we will refer to as dense Regular Ising Models.

Chapter 2 and Chapter 3 compose the main body of this thesis. As indicated above, chapter

2 covers signal detection in degree corrected ERGMs, and chapter 3 is dedicated to inference in

dense Regular Ising Models. Some of the technical lemmas may be of independent interest, and

suggest a scope for more theoretical studies in this field.
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Chapter 2: Signal Detection in Degree Corrected ERGMs

2.1 Introduction and Problem Setup

Studying network models has a long and rich history in Statistics, with applications across

various disciplines such as Social Science, Biology, Neuroscience, Climatology, and Ecology, to

name a few. One of the most well known network models is the Exponential Random Graph

Model (often abbreviated as ERGM). ERGMs originated in the Social Science Literature (c.f. [1,

25, 30, 45, 49, 50] and the references there-in), and have since then received considerable attention

in Statistics and Probability (c.f. [15, 16, 27, 39, 40, 46, 47] and references there-in). ERGMs

represent exponential families of distributions the space of simple labeled graphs with a finite

dimensional sufficient statistics, which are usually taken to be subgraph counts. The simplest class

of examples under this framework consists of the one parameter ERGMs, which admits a one

dimensional sufficient statistic. Below we start by introducing such a one parameter ERGM:

Letting G𝑛 denote the set of all simple labeled graphs 𝐺 with vertex set [𝑛] := {1, 2, ..., 𝑛}, we

consider the following probability mass function on G𝑛:

P𝑛,\ (𝐺) :=
1

𝑍𝑛 (\, 𝐻)
exp

{
\
𝑁 (𝐻,𝐺)
𝑛Z−2

}
. (2.1)

Here

(i) 𝐻 is a graph of fixed size (such as an edge, triangle, cycle, star, etc.),

(ii) 𝑁 (𝐻,𝐺) is the number of copies of the graph 𝐻 in the graph 𝐺,

(iii) Z is the number of vertices in the graph 𝐻,

(iv) \ is a real valued parameter,
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(v) 𝑍𝑛 (\, 𝐻) is the normalizing constant.

In particular if the graph 𝐻 is an edge, the model in (2.1) is an Erdős-Rényi model, where the edges

of the graph 𝐺 are i.i.d from suitable a Bernoulli distribution. For any other choice of 𝐻, the model

in (2.1) is not an Erdős-Rényi model since one allows nontrivial dependence between the edges.

An ERGM can thus be thought of as a natural generalization of the Erdős-Rényi model, which

allows for growing degrees of dependence between edges by through the indexing subraph 𝐻. It is

natural to allow for this dependence while modeling networks, to incorporate features like “friends

of friends are more likely to be friends”. However, one drawback of ERGMs (or at least the model

introduced in (2.1)) is that the edges of the random graph are still jointly exchangeable, in the sense

that permuting the vertices of 𝐺 does not change the distribution of the graph 𝐺. Consequently

the degree sequence (𝑑1(𝐺), . . . , 𝑑𝑛 (𝐺)) 1 marginally have the same distribution for each 𝑖 ∈ [𝑛].

This may not be desirable for modeling networks where there are a few vertices of very high degree

(see [6]), compared to the remaining vertices. Such a feature is often present in social networks,

where the vertex corresponding to a popular/famous person has a very high degree compared to

the remaining vertices.

One model which captures degree homogeneity is the 𝛽-model of social networks (c.f. [8, 13,

16, 39, 44] and references there-in). The 𝛽-model is defined by the following p.m.f. on G𝑛:

P𝑛,β (𝐺) :=
1

𝑍𝑛 (β)
exp

{ 𝑛∑︁
𝑖=1

𝛽𝑖𝑑𝑖 (𝐺)
}
. (2.2)

Here

(i) (𝑑1(𝐺), . . . , 𝑑𝑛 (𝐺)) is the degree sequence of the graph 𝐺.

(ii) β = (𝛽1, . . . , 𝛽𝑛)𝑇 ∈ R𝑛 is a vector valued parameter,

(iii) 𝑍𝑛 (β) is the normalizing constant.

In this model, for each vertex 𝑖 ∈ [𝑛] there is a real valued parameter 𝛽𝑖 which controls the

1𝑑𝑖 (𝐺) =
∑
𝑗 𝐺𝑖 𝑗 with {𝐺𝑖 𝑗 }𝑖, 𝑗∈[𝑛] being the adjacency matrix of 𝐺.
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effect of the 𝑖𝑡ℎ vertex, and consequently the typical size of the degree 𝑑𝑖 (𝐺). This allows for

heterogeneity among the degrees. A large value of 𝛽𝑖 results in a large value of the degree of the

𝑖𝑡ℎ vertex, and vice versa. One drawback of the 𝛽-model (2.2) is that the edges of the graph 𝐺 are

no longer dependent. This is not immediate from (2.2), but is not hard to check (see for e.g. [16]).

Thus although the 𝛽-model allows for degree heterogeneity, it does not involve dependence be-

tween the edges.

A natural way to retain both the dependence between edges and the heterogeneity of the degrees

is to consider an exponential family which has both the terms \𝑁 (𝐻,𝐺) and
∑𝑛
𝑖=1 𝛽𝑖𝑑𝑖 (𝐺) in the

exponent. Indeed, dependence between edges is present because of the term \𝑁 (𝐻,𝐺), and degree

heterogeneity is present because of the term
∑𝑛
𝑖=1 𝛽𝑖𝑑𝑖 (𝐺). Such a model, which we introduce

formally below, can be thought of as a degree corrected ERGM.

2.1.1 Degree Corrected ERGM

As before, let G𝑛 denote the set of all simple labelled graphs𝐺 with vertex set [𝑛] := {1, 2, ..., 𝑛},

Given a graph 𝐺 ∈ G𝑛, by slight abuse of notation we use 𝐺 to also denote the adjacency matrix

of 𝐺, defined as follows:

𝐺𝑖 𝑗 =


1 If an edge is present between vertices 𝑖 and 𝑗 in 𝐺,

0 If no edge is present between vertices 𝑖 and 𝑗 in 𝐺.
(2.3)

Thus, we encode presence or absence of edges by {0, 1}. By convention, set 𝐺𝑖𝑖 := 0, and note

that 𝐺 is a symmetric 𝑛 × 𝑛 matrix with 0 on the diagonal, and {0, 1} entries on the off-diagonals.

Let (𝑑1, 𝑑2, · · · , 𝑑𝑛) denote the labeled degree sequence of the graph 𝐺, defined by

𝑑𝑖 :=
𝑛∑︁
𝑗=1
𝐺𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑛.

Let 𝐻 be a fixed connected subgraph with Z := |𝑉 (𝐻) | ≥ 2 (i.e. 𝐻 is not an isolated vertex).

Assume that the vertices of 𝐻 are labeled as [Z] = {1, 2, . . . , Z }. Let I𝑛 denote the the set of all

7



1-1 maps from [𝑛] to [Z]. For any 𝐺 ∈ G𝑛, let 𝑁 (𝐻,𝐺) denote the number of copies of 𝐻 in 𝐺𝑛,

defined by

𝑁 (𝐻,𝐺) =
∑︁
]∈I𝑛

∏
(𝑖, 𝑗)∈𝐸 (𝐻)

𝐺 ](𝑖),]( 𝑗) ,

where 𝐸 (𝐻) := {(𝑎, 𝑏) ∈ 𝑉 (𝐻) : (𝑎, 𝑏) is an edge in 𝐻} is the edge set of 𝐻. As for illustration,

the expression of 𝑁 (𝐻,𝐺𝑛) when 𝐻 is an edge, triangle, and two star (to be denoted by 𝐾2, 𝐾3, 𝐾1,2

respectively) are respectively given by:

𝑁 (𝐾2, 𝐺) =
∑︁
𝑖≠ 𝑗

𝐺𝑖 𝑗 = 2
∑︁
𝑖< 𝑗

𝐺𝑖 𝑗 =

𝑛∑︁
𝑖=1

𝑑𝑖,

𝑁 (𝐾3, 𝐺) =
∑︁
𝑖≠ 𝑗≠𝑘

𝐺𝑖 𝑗𝐺 𝑗 𝑘𝐺𝑘𝑖 = 6
∑︁
𝑖< 𝑗<𝑘

𝐺𝑖 𝑗𝐺 𝑗 𝑘𝐺𝑘𝑖,

𝑁 (𝐾1,2, 𝐺) =
∑︁
𝑖≠ 𝑗≠𝑘

𝐺𝑖 𝑗𝐺𝑖𝑘 = 2
𝑛∑︁
𝑖=1

∑︁
𝑗<𝑘

𝐺𝑖 𝑗𝐺𝑖𝑘 = 2
𝑛∑︁
𝑖=1

(
𝑑𝑖

2

)
.

Given a parameter \ > 0 and vector β = (𝛽1, 𝛽2, ..., 𝛽𝑛) ∈ R𝑛, we subsequently define a probability

mass function on G𝑛 by setting

P𝑛,\,β (𝐺) :=
1

𝑍𝑛 (β, \, 𝐻)
exp

{ \

𝑛Z−2𝑁 (𝐻,𝐺) +
𝑛∑︁
𝑖=1

𝛽𝑖𝑑𝑖

}
. (2.4)

where as usual 𝑍𝑛 (β, \, 𝐻) is the normalizing constant. The scaling 𝑛Z−2 ensures that the resulting

model is non-trivial as 𝑛 → ∞ (c.f. [15]). If 𝛽𝑖 = 𝛽0 for some 𝛽0 ∈ R free of 𝑖, then the model

in (2.4) is an Exponential Random Graph Model with two sufficient statistics 𝑁 (𝐻,𝐺) and 𝐸 (𝐺),

where 𝐸 (𝐺) = 1
2𝑁 (𝐾2, 𝐺) is the number of edges in the graph 𝐺. In this case the random graph

𝐺 represents a bivariate exchangeable array. More precisely, for any permutation 𝜋 ∈ 𝑆𝑛 the graph

𝐺𝜋 defined by 𝐺𝜋 (𝑖, 𝑗) := 𝐺𝜋(𝑖),𝜋( 𝑗) has the same distribution as 𝐺, i.e. 𝐺𝜋
𝐷
= 𝐺. The vector of

parameters β, therefore, measures the individual effects of each vertex, and for a general vector β

a random graph 𝐺 from the model (2.4) is no longer exchangeable. For \ > 0, the term 𝑁 (𝐻,𝐺)

ensures that there is positive dependence among the edges in 𝐺, in the sense that conditional on

presence of an edge, any other edge is more likely to be present. If \ = 0, the model (2.4) reduces
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to the 𝛽-model as in (2.2), in which all edges 𝐺𝑖 𝑗 are independent, with

P𝑛,0,β (𝐺𝑖 𝑗 = 1) = 𝑒𝛽𝑖+𝛽 𝑗

1 + 𝑒𝛽𝑖+𝛽 𝑗
.

Thus the model in (2.4) combines the features of the 𝛽-model and traditional ERGMs. We will use

the term degree corrected ERGM to refer to the model (2.4).

2.1.2 Hypothesis Testing Problem for β

Given the model (2.4), a natural question is to carry out inference regarding the vector β. In

the setting where \ = 0, the problem of estimation of β using the MLE β̂𝑀𝐿 was studied in [16],

where the authors gave bounds on | |β̂𝑀𝐿 − β | |∞. The question of testing of the grand null hypoth-

esis β = 0 versus non negative sparse alternatives was studied in [39], where the authors show that

the optimal test depends on the sparsity level and strength of the signal. Since both these papers

assumed \ = 0, the edges of the graph 𝐺 were independent, which was used significantly in the

proofs of the results. A natural question is whether one can extend these results in the presence

of dependence between edges, i.e. when \ > 0. In this chapter, we study the question of testing

the grand null hypothesis β = 𝛽01 against sparse one sided alternatives. Essentially we want to

test the null hypothesis that all nodes in the network are equally popular (have the same 𝛽𝑖), versus

the alternative hypothesis that there is a small hub of nodes which are more popular (have a higher

value of 𝛽𝑖) compared to the baseline popularity 𝛽0 of the remaining nodes. Here 𝛽0 ∈ R is a real

valued parameter which is assumed to be known. In section 2.2.3 we briefly discuss what can go

wrong if the parameter 𝛽0 is not assumed to be known. Below we formally introduce the testing

problem discussed above.

Let 𝛽0 ∈ R be known. Let 𝐺 be a graph drawn from the probability distribution (2.4), and for
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a known \ > 0 and given 𝛽0 ∈ R we consider the following hypothesis testing problem:

H0 : β = 𝛽01 vs H1 : β ∈ Ξ(𝑠, 𝐴). (2.5)

Here under the null hypothesis we have 𝛽𝑖 = 𝛽0 for all 𝑖 ∈ [𝑛] and we denote this null probability

measure as P𝑛,\,𝛽0 . The set of vectors Ξ(𝑠, 𝐴) in the alternative hypothesis 𝐻1 is defined as

Ξ(𝑠, 𝐴) :=
{
β = 𝛽01 + µ : |suppµ| ≥ 𝑠, and min

𝑖∈suppµ
`𝑖 ≥ 𝐴

}
. (2.6)

In words, under the alternative hypothesis there is a sparse set 𝑆 of size 𝑠, such that 𝛽𝑖 ≥ 𝛽0 + 𝐴

if 𝑖 ∈ 𝑆, and 𝛽𝑖 = 𝛽0 if 𝑖 ∉ 𝑆. Our main goal of this chapter is to study the effect of the nuisance

parameter \ on the hypothesis testing problem (2.5). For studying the proposed hypothesis testing

problem, here we adopt an asymptotic minimax framework similar to [39, 40], which is introduced

below (see also [11, 31, 32, 33]).

Given a non randomized test function 𝑇𝑛 : G𝑛 ↦→ {0, 1}, define the risk of test 𝑇𝑛 (𝐺) as the

sum of type I and type II errors, as follows:

𝑅(𝑇𝑛,Ξ(𝑠, 𝐴),β) := P𝑛,\,𝛽0 (𝑇𝑛 (𝐺) = 1) + sup
β∈Ξ(𝑠,𝐴)

P𝑛,\,β (𝑇𝑛 (𝐺) = 0). (2.7)

Given a sequence of test functions {𝑇𝑛}𝑛≥1 for the testing problem (2.5), we call {𝑇𝑛}𝑛≥1 as

(i) Asymptotically Powerful, if

lim
𝑛→∞

𝑅(𝑇𝑛,Ξ(𝑠, 𝐴),β) = 0; (2.8)

(ii) Asymptotically not Powerful, if

lim inf
𝑛→∞

𝑅(𝑇𝑛,Ξ(𝑠, 𝐴),β) > 0; (2.9)
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(iii) Asymptotically Powerless, if

lim
𝑛→∞

𝑅(𝑇𝑛,Ξ(𝑠, 𝐴),β) = 1. (2.10)

By definition, both type I and type II errors converge to 0 for asymptotically powerful tests. Also,

if a sequence of tests is asymptotically powerless, then it is also asymptotically not powerful, and

so (iii) is a stronger notion than (ii).

2.2 Main Results

In this section we present and discuss our main results. To that end, we first consider general

degree corrected ERGMs and analyze the performance of two natural tests. We then focus on a

particular degree corrected ERGM, where the graph 𝐻 is a two star. In this setting we show that the

general tests studied above attains the “optimal detection boundary” for all configurations (\, 𝛽0)

barring a specific point, which we refer to as the critical point/configuration. At this point, using

a slightly different test from the ones studied under the general ERGM framework, we are able to

detect much lower signals, compared to the independent case (\ = 0).

2.2.1 General Degree Corrected ERGMs

In this section, we discuss the hypothesis testing problem (2.5) in the setting of general degree

corrected ERGMs as in (2.4). Specifically, we will show how signal density and strength (𝑠, 𝐴) co-

ordinate to determine the threshold for testing efficiency. Two natural test statistics for this problem

are the sum of degrees
∑𝑛
𝑖=1 𝑑𝑖 (𝐺), and the maximum degree max𝑖∈[𝑛] 𝑑𝑖 (𝐺). However, because of

the presence of dependence, it is very difficult to calibrate the cut-off for these statistics, as they

depend on the parameter \ in a non-trivial way. To counter this, we use conditionally centered

versions of the sum of degrees, and the maximum degree, similar to what was done in [40].

Our first theorem studies the performance of a test based on the conditionally centered sum of
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degrees. For stating the result we require a few notations.

Definition 2.2.1. Let E := {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} be the set of all edges in the complete graph

𝐾𝑛. For any 𝑒 = (𝑖, 𝑗) ∈ E, let 𝑁𝑒 (𝐻,𝐺) denote the number of copies of 𝐻 in the graph 𝐺 which

contains the edge 𝑒, and let 𝑁𝑒, 𝑓 (𝐻,𝐺) denote the number of copies of 𝐻 in the graph 𝐺 which

contains both the edges 𝑒, 𝑓 .

Setting 𝜓(𝑥) := 𝑒𝑥

1+𝑒𝑥 for 𝑥 ∈ R, for any 𝑒 = (𝑖, 𝑗) ∈ E we have

E𝑛,\,β

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
)
= 𝜓(\𝑡𝑒 (𝐻,𝐺) + 𝛽𝑖 + 𝛽 𝑗 ), (2.11)

where 𝑡𝑒 (𝐻,𝐺) := 𝑁𝑒 (𝐻,𝐺)
𝑛Z−2 .

Since our results are asymptotic in nature, below we introduce some standard notations, to be

used in the remainder of the chapter.

Definition 2.2.2. Given two sequence of real numbers {𝑎𝑛}𝑛≥1 and {𝑏𝑛}𝑛≥1, we use the notation

𝑎𝑛 = 𝑂 (𝑏𝑛) or 𝑎𝑛 ≲ 𝑏𝑛 to imply the existence of a positive finite constant 𝑐 free of 𝑛, such that

𝑎𝑛 ≤ 𝑐𝑏𝑛. We use the notation 𝑎𝑛 ≫ 𝑏𝑛 (𝑎𝑛 ≪ 𝑏𝑛) to imply lim𝑛→∞
𝑎𝑛
𝑏𝑛

= ∞ (lim𝑛→∞
𝑎𝑛
𝑏𝑛

= 0

respectively).

Theorem 2.2.1. With 𝐺 from the model (2.4), consider the hypothesis testing problem described

in (2.5). If 𝑠𝐴→ ∞, then for any sequence 𝐿𝑛 such that 𝑛 ≪ 𝐿𝑛 ≪ 𝑛𝑠𝐴 the conditionally centered

sum of degrees test 𝑇𝑛 (𝐺) given by

𝑇𝑛 (𝐺) =1 if
∑︁
𝑒∈E

[
𝐺𝑒 − E𝑛,\,β0

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ]
> 𝐿𝑛,

=0 otherwise

is asymptotically powerful.

In settings where the signal size 𝑠 is small, a test based on the conditionally centered maximum

of degrees can sometimes detect lower signals. The performance of this test is studied in our
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second result.

Theorem 2.2.2. With 𝐺 from the model (2.4), consider the hypothesis testing problem described

in (2.5). Then there exists constants ^, 𝐶 such that if 𝐴 ≥ ^

√︃
log 𝑛
𝑛

and 𝐿𝑛 = 𝐶
√︁
𝑛 log 𝑛, then the

conditionally centered maximum degree test defined by

𝑇𝑛 (𝐺) =


1 If max

𝑖∈[𝑛]

∑
𝑒∋𝑖

[
𝐺𝑒 − E𝑛,\,β0

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ]
> 𝐿𝑛

0 Otherwise
(2.12)

is asymptotically powerful.

Comparing Theorem 2.2.1 and 2.2.2 yields that the conditionally centered maximum degree

test is better (has a lower detection boundary) for sparser alternative (𝑠 ≪
√︃

𝑛
log 𝑛 ), and the condi-

tionally centered sum of degrees test is better for denser alternatives (𝑠 ≫
√︃

𝑛
log 𝑛 ). This is similar

to the findings of [39], where it was shown that optimal rate detection is obtained by the sum of

degrees if 𝑠 = 𝑛𝑏 with 𝑏 > 1/2 (see [39, Theorem 3.1]), and by the maximum degree test if 𝑏 < 1/2

(see [39, Theorem 3.3]).

2.2.2 Degree Corrected Two-star ERGM

In Theorems 2.2.1 and 2.2.2, there is no effect of the nuisance parameter \ on the detection rate

of the tests. To demonstrate that the best possible detection rate can change depending on the value

of \, we study in detail the degree corrected two star ERGM, The two star is the graph 𝐾1,2, which

is a path of length 3. For notational and computational convenience, for the Degree Corrected

Two-star ERGM our edge variables take values in {−1, 1} instead of {0, 1}. More precisely, given

a graph 𝐺 ∈ G𝑛, our adjacency matrix 𝑌 is now defined as follows:

𝑌𝑖 𝑗 = + 1 if (𝑖, 𝑗) is an edge in 𝐺,

= − 1 if (𝑖, 𝑗) is not an edge in 𝐺.
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As before, we set 𝑌𝑖𝑖 = 0 by convention. Thus 𝑌 is a symmetric matrix with {−1, 1} entries, and 0

on the diagonal. Let (𝑘1, 𝑘2, · · · , 𝑘𝑛) denote the labeled “degree sequence” of the graph 𝑌 , i,e,

𝑘𝑖 :=
𝑛∑︁
𝑗=1
𝑌𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑛.

The following display introduces the degree corrected two star ERGM as a p.m.f. on {−1, 1}(𝑛2) :

P𝑛,\,β (𝑌 ) =
1

𝑍𝑛 (β, \)
exp

{
\

𝑛 − 1
𝑁 (𝐾1,2, 𝐺𝑛) +

1
2

𝑛∑︁
𝑖=1

𝛽𝑖𝑘𝑖

}
, (2.13)

where

𝑁 (𝐾1,2, 𝐺𝑛) :=
𝑛∑︁
𝑖=1

∑︁
𝑗<𝑘

𝑌𝑖 𝑗𝑌𝑖𝑘 =
1
2

𝑛∑︁
𝑖=1

𝑘2
𝑖 −

𝑛(𝑛 − 1)
2

.

Having observed 𝑌 , consider the same hypothesis testing problem (2.5) as above. For the sake

of clarity of presentation, in this section we parametrize the signal size 𝑠 and signal strength 𝐴

by 𝑛𝑏 and 𝑛𝑡 respectively, where 𝑏 ∈ (0, 1) and 𝑡 < 0. The detection boundary for this problem

shows a phase transition depending on the nuisance parameter \. Stating this requires the following

partitioning of the parameter space for (\, 𝛽0):

Definition 2.2.3. • Let Θ1 = Θ11 ∪ Θ12, where Θ11 := (0, 1/2) × {0}, and Θ12 = {(\, 𝛽0) :

\ > 0, 𝛽0 ≠ 0}.

• Let Θ2 := (1/2,∞) × {0}.

• Let Θ3 := (1/2, 0), usually referred as critical point. Note that Θ1 ∪ Θ2 ∪ Θ3 = (0,∞) × R.

Our first result describes the detection boundary for the degree corrected two star ERGM if

(\, 𝛽0) ∈ Θ1.

Theorem 2.2.3. Let 𝑌 be an observation from from (2.13), and assume (\, 𝛽0) ∈ Θ1. Consider the

hypothesis testing problem described in (2.5) with 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 for 𝑏 ∈ (0, 1) and 𝑡 < 0.

(a) If 𝑏 ≥ 1
2 and 𝑏 + 𝑡 < 0, all tests are asymptotically powerless.
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(b) If 𝑏 ≥ 1
2 and 𝑏 + 𝑡 > 0, then the conditionally centered sum test of Theorem 2.2.1 is asymp-

totically powerful.

(c) If 𝑏 < 1
2 and 𝑡 + 1

2 ≤ 0 then all tests are asymptotically powerless.

(d) If 𝑏 < 1
2 and 𝑡 + 1

2 > 0 then the conditionally centered max test of Theorem 2.2.2 is asymp-

totically powerful.

Our second result describes the detection boundary for the degree corrected two star ERGM if

(\, 𝛽0) ∈ Θ2.

Theorem 2.2.4. Let 𝑌 be an observation from from (2.13), and assume (\, 𝛽0) ∈ Θ2. Consider the

hypothesis testing problem described in (2.5) with 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 for 𝑏 ∈ (0, 1) and 𝑡 < 0.

(a) If 𝑏 ≥ 1
2 and 𝑏 + 𝑡 < 0, all tests are asymptotically not powerful.

(b) If 𝑏 ≥ 1
2 and 𝑏 + 𝑡 > 0, then the conditionally centered sum test of Theorem 2.2.1 is asymp-

totically powerful.

(c) If 𝑏 < 1
2 and 𝑡 + 1

2 ≤ 0 then all tests are asymptotically not powerful.

(d) If 𝑏 < 1
2 and 𝑡 + 1

2 > 0 then the conditionally centered max test of Theorem 2.2.2 is asymp-

totically powerful.

Note that at a qualitative level, the detection boundary in the regimes Θ1 and Θ2 are the same.

The only difference is that below the detection boundary, in domain Θ1 Theorem 2.2.3 shows that

all tests are powerless, and in domain Θ2 Theorem 2.2.4 shows that all tests are asymptotically not

powerful. On the other hand, something fundamentally different happens in the critical domain

Θ3, which corresponds to the choice (\, 𝛽0) = (1/2, 0). In this case the optimal testing threshold

is significantly lower than the other regimes, and does not depend on whether 𝑏 < 1/2 or 𝑏 > 1/2.

Moreover, this improved performance does not follow from either Theorem 2.2.1 or 2.2.2. In this

case a test based on the unconditional sum of degrees attains the optimal detection boundary, for

all values of (𝑠, 𝐴). This is explained in our final result below.
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Theorem 2.2.5. Let 𝑌 be an observation from from (2.13), and assume (\, 𝛽0) = ( 1
2 , 0). Consider

the hypothesis testing problem described in (2.5), with 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 for some 𝑏 ∈ (0, 1) and

𝑡 < 0.

(a) If 𝑏 + 𝑡 + 1
2 < 0, then all tests are asymptotically not powerful.

(b) If 𝑏 + 𝑡 + 1
2 > 0, then the total degree test 𝑇𝑛 (.) defined by

𝑇𝑛 (𝐺) =1 if
𝑛∑︁
𝑖=1

𝑘𝑖 > 𝐿𝑛,

=0 otherwise

is asymptotically powerful for some sequence 𝐿𝑛 satisfying 𝐿𝑛 ≫ 𝑛3/2.

This demonstrates that the much weaker criterion 𝑏 + 𝑡 + 1
2 > 0 is enough for detection at

criticality, whereas away from criticality we need stronger conditions on 𝑏, 𝑡. Similar phenomenon

of improved detection at criticality have been observed for Ising models [18, 39, 40]. Given that

the two star ERGM can be viewed as an Ising model, it is thus not surprising that this continues to

hold here. A summary of the detection boundary for the degree corrected two star ERGM is given

in figure 2.1 below.

2.2.3 Main Contributions and Future Scope

In this chapter we introduce the degree corrected ERGM, which combines traditional ERGMs

with the β-model and thereby allowing for not degree heterogeneity but also dependence between

the edges. In this setting, we study the performance of two tests, based on conditionally centered

sum of degrees, and conditionally centered maximum degree. The detection rate of these two tests

match the performance of the corresponding tests based on the unconditionally centered sum of

degree and unconditional maximum degree, respectively, in the independent case (\ = 0). To

explore the sharpness of these general tests, we subsequently study the degree corrected two star

ERGM in detail. Here we show that in all parameter configurations other than (\, 𝛽0) = (1/2, 0),
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Figure 2.1: In this figure, we plot (𝑏, 𝑡) along 𝑋 and 𝑌 axis respectively, where 𝑠 = 𝑛𝑏 is the size of the signal set,
and 𝐴 = 𝑛𝑡 is the magnitude of the signal. The range of 𝑏 is (0, 1), and the range of 𝑡 is (−∞, 0). The deep blue portion
of the plot represents the pairs (𝑏, 𝑡) where detection is possible in all regimes Θ1 ∪Θ2 ∪Θ3. The light blue portion of
the plot represents the pairs (𝑏, 𝑡) where detection is possible Θ3, but not for Θ1 ∪ Θ2. Finally, the grey portion of the
plot represents the pairs (𝑏, 𝑡) where detection is impossible in all regimes Θ1 ∪ Θ2 ∪ Θ3. Also note that in Θ1 ∪ Θ2
the optimal test depends on whether 𝑏 < 1/2 or 𝑏 > 1/2, whereas in Θ3 the optimal test does not depend on 𝑏.

the optimal detection boundary is attained by one of the conditionally centered tests. At the critical

configuration (\, 𝛽0) = (1/2, 0), we show that the optimal detection rate is significantly improved,

and this optimal rate is attained by a test based on the unconditionally centered sum of degrees.

Throughout this chapter we assume that the parameters (\, 𝛽0) are known. If (\, 𝛽0) is un-

known, it may be possible to estimate (\, 𝛽0) if the signal (𝑠, 𝐴) is small, by ignoring the signals

altogether and estimating the parameters via the null model MLE/pseudo-likelihood. However

such a strategy is hopeless for all values of (𝑠, 𝐴), without the knowledge of (\, 𝛽0). Indeed, con-

sider the following extreme configuration when 𝑠 = 𝑛, 𝐴 = ∞, in which case the graph 𝐺 equals

𝐾𝑛 with probability 1 for any value of 𝛽0. On the other hand, if 𝑠 = 𝐴 = 0, but \ = ∞, the observed

graph is again 𝐾𝑛 with probability 1 for any value of 𝛽0. Thus having observed 𝐺, it is impossible

to decide whether signal is present or absent, if we are not told the value of \. It remains to be seen

to what extent a partial knowledge of (\, 𝛽0) can help in our testing problem.
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The analysis of the conditionally centered sum and maximum of degrees for general (degree

corrected) ERGMs is achieved using concentration results based on the method of exchangeable

pairs ([12]). Focusing on the degree corrected two star ERGM, to verify the improved detection

rate at criticality, we introduce a continuous auxiliary variable 𝜙 ∈ R𝑛 (similar to [40]), and show

that a suitable function of 𝜙 is stochastically much larger under the alternative than under the null

hypothesis. Using this, we show that the unconditional sum of degrees is stochastically much larger

under the alternative, which gives the improved detection at criticality. The lower bound argument

uses the second moment method, which reduces to bounding the correlation between the degrees

under the alternative. In the regimes Θ1 and Θ3, using GHS inequality ([37]) we can bound the

correlations between the edges under the alternative by the correlation under the null, for which

bounds are available from [41], using exchangeability of the null model. In the regime Θ2 we need

to do a conditional second moment argument restricted to the set where the degrees are large. In

the absence of a conditional GHS inequality, we have to directly bound the conditional correlations

between the edges under the alternative. To do this, we make crucial use of the auxiliary variable

𝜙 and set up a recursive equation involving the correlations between degrees of the graph. This

recursion leads to a uniform bound on the correlations which is also a tight upper bound (in terms of

rate), and suffices for the second moment argument. It is of interest to see if one can set up similar

recursive equations to bound correlation between edges in general (degree corrected) ERGMs, in

presence/absence of auxiliary variables.

In this chapter we focus on the optimal detection rates while studying the detection boundary.

A natural follow up question is to study existence of sharp constants (depending on \, 𝛽0) which

controls the detection boundary for the degree corrected two star ERGMs. Similar to [39], we

expect a sharp phase transition (i.e. existence of a constant which determines the optimal detection

boundary) in the regime 𝑏 < 1/2, when (\, 𝛽0) ≠ (1/2, 0). We believe that to attain optimal

detection constants, one needs to study a conditionally centered version of the Higher Criticism

Test in the regime 1/4 < 𝑏 < 1/2, wheres the maximum test should suffice in the regime 𝑏 < 1/2.

Going beyond the two star case, it is of interest to find optimal detection rates, both away from, and
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at, “criticality”, for general degree corrected ERGMs. A major challenge in carrying out the lower

bound argument beyond the two star case is the absence of tight correlation bounds for general

ERGMs, both under the null and alternative hypotheses.

2.2.4 Outline

The outline of this Chapter is as follows. In section 2.3 we verify results Theorems 2.2.1 and

2.2.2. In section 2.3.5 we verify Theorems 2.2.3 and 2.2.4. The proofs of the results of section

2.3.5 uses some supporting lemmas, the proofs of which is deferred to section 3.7.

2.3 Proofs of Main Theorems

We will need the following concentration bound for conditionally centered linear statistics for

proving the results of this section. The proof of this lemma is similar to [19, Lemma 2.1] and [40,

Lemma 1].

Lemma 2.3.1. Let 𝐺 be a random graph from the model (2.4). Then for any arbitrary collection

of positive numbers {𝑐𝑒}𝑒∈E and any 𝑥 > 0 we have

P𝑛,\,β

(���∑︁
𝑒∈E

𝑐𝑒

(
𝐺𝑒 − E𝑛,\,β

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) )��� > 𝑥) ≤ 2 exp

{
− 𝑥2

_
∑
𝑒∈E 𝑐

2
𝑒

}
(2.14)

where _ = _(\, 𝐻) is a constant depending only on \ > 0 and the subgraph 𝐻.

Proof. Produce an exchangeable pair (𝐺,𝐺′) in the following way:

Pick a random vertex pair 𝐼 of the uniformly from the set E with cardinality 𝑁 =
(𝑛
2
)
. If 𝐼 = 𝑒,

replace the random variable 𝐺𝑒 by 𝐺′
𝑒 a pick from the conditional distribution given {𝐺 𝑓 , 𝑓 ≠ 𝑒}.

Let this new graph be denoted by 𝐺′. It is easy to verify that (𝐺,𝐺′) is indeed an exchangeable
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pair. Setting 𝐽 (𝐺) :=
∑
𝑒∈E 𝑐𝑒𝐺𝑒, note that

ℎ(𝐺) := E𝑛,\,β
(
𝐽 (𝐺) − 𝐽 (𝐺′)

��𝐺)
=

1
𝑁

∑︁
𝑒∈E

𝑐𝑒
(
𝐺𝑒 − E𝑛,\,β

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) )

=
1
𝑁
𝐽 (𝐺) − 1

𝑁

∑︁
𝑒∈E

𝑐𝑒

exp
{

\

𝑛Z−2𝑁𝑒 (𝐻,𝐺) + 𝛽𝑒}

1 + exp
{

\

𝑛Z−2𝑁𝑒 (𝐻,𝐺) + 𝛽𝑒
} ,

where 𝑁𝑒 (𝐻,𝐺) is the number of copies of 𝐻 in the graph 𝐺, which contains the edge 𝑒. Using

the fact that the derivative of the function 𝜓(𝑥) = 𝑒𝑥

1+𝑒𝑥 is bounded by 1
4 , this gives

|ℎ(𝐺) − ℎ(𝐺′) | ≤ |𝑐𝐼 |
𝑁

+ |\ |
4𝑁𝑛Z−2

∑︁
𝑒∈E

|𝑐𝑒 | |𝑁𝑒 (𝐻,𝐺) − 𝑁𝑒 (𝐻,𝐺′) |

≤ |𝑐𝐼 |
𝑁

+ |\ |
4𝑁𝑛Z−2

∑︁
𝑒∈E

|𝑐𝑒 |𝑁𝑒,𝐼 (𝐻, 𝐾𝑛),

where 𝑁𝑒, 𝑓 (𝐻, 𝐾𝑛) is the number of copies of 𝐻 in the complete graph 𝐾𝑛 passing through both

the edges 𝑒 and 𝑓 . Consequently, we have���E𝑛,\,β (
(ℎ(𝐺) − ℎ(𝐺′)) (𝐽 (𝐺) − 𝐽 (𝐺′))

���𝐺)���
≤ 1
𝑁

∑︁
𝑓 ∈E

|𝑐 𝑓 |
[
|𝑐 𝑓 |
𝑁

+ |\ |
4𝑁𝑛Z−2

∑︁
𝑒∈E

|𝑐𝑒 |𝑁𝑒, 𝑓 (𝐻, 𝐾𝑛)
]

=
1
𝑁2

∑︁
𝑓 ∈E

𝑐2
𝑓 +

|\ |
4𝑁2𝑛Z−2

∑︁
𝑒, 𝑓 ∈E

𝑁𝑒, 𝑓 (𝐻, 𝐾𝑛) |𝑐𝑒 | |𝑐 𝑓 |

=
1
𝑁2

∑︁
𝑒, 𝑓 ∈E

𝐵𝑁 (𝑒, 𝑓 ) |𝑐𝑒 | |𝑐 𝑓 |,

where 𝐵𝑁 is a 𝑁 × 𝑁 symmetric matrix defined by:

𝐵𝑁 (𝑒, 𝑓 ) :=


1 if 𝑒 = 𝑓

|\ |
4𝑛Z−2𝑁𝑒, 𝑓 (𝐻, 𝐾𝑛) if 𝑒 ≠ 𝑓 .
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Now for any 𝑒 ≠ 𝑓 we have

𝑁𝑒, 𝑓 (𝐻, 𝐾𝑛) ≲𝑛Z−4 if 𝑒 and 𝑓 have no vertex in common,

≲𝑛Z−3 if 𝑒 and 𝑓 have one vertex in common.

This gives

max
𝑒∈E

∑︁
𝑓 ∈E

𝐵𝑁 (𝑒, 𝑓 ) ≲ 1 + 𝑛2 1
𝑛Z−2𝑛

Z−4 + 𝑛 1
𝑛Z−2𝑛

Z−3 ≲ 1,

which in turn implies that the operator norm of the matrix 𝐵𝑁 is 𝑂 (1), and consequently,

���E𝑛,\,β (
(ℎ(𝐺) − ℎ(𝐺′)) (𝐽 (𝐺) − 𝐽 (𝐺′))

���𝐺)��� ≲ 1
𝑁2

∑︁
𝑒∈E

𝑐2
𝑒 ≲

1
𝑛4

∑︁
𝑒∈E

𝑐2
𝑒 .

Then by Stein’s Method for concentration inequalities as in [12, Theorem 1.5], the conclusion of

the lemma follows.

□

2.3.1 Proof of Theorem 2.2.1

To begin, using Lemma 2.3.1 with 𝑐𝑒 = 1 for all 𝑒 ∈ E gives the existence of a constant _

(depending only on \, 𝐻) such that

PH0

(���∑︁
𝑒∈E

(
𝐺𝑒 − E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ) ��� > 𝐿𝑛) ≤ 2 exp

{
−
𝐿2
𝑛

_
(𝑛
2
) } −→ 0, (2.15)

where the last limit uses 𝐿𝑛 ≫ 𝑛. This shows that type I error converges to 0.

It thus remains to show that type II error converges to 0. To this effect, note that 𝑡𝑒 (𝐻,𝐺) ≤

𝑡𝑒 (𝐻, 𝐾𝑛) which is bounded, and so therefore there exist a constant 𝛿 > 0 such that

E𝑛,\,β
(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
)
− E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
)
=𝜓(\𝑡𝑒 (𝐻,𝐺) + 𝛽𝑖 + 𝛽 𝑗 ) − 𝜓(\𝑡𝑒 (𝐻,𝐺) + 2𝛽0)

≥𝛿min{𝛽𝑖 + 𝛽 𝑗 − 2𝛽0, 1}. (2.16)
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Adding this gives

∑︁
𝑒∈E

(
E𝑛,\,β

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
)
− E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) )

≥ 𝛿𝑛𝑠𝐴.

Since 𝐿𝑛 ≪ 𝑛𝑠𝐴, for all 𝑛 large we have

P𝑛,\,β

(∑︁
𝑒∈E

(
𝐺𝑒 − E𝑛,β0,\ (𝐺𝑒 |𝐺 𝑓 : 𝑓 ≠ 𝑒)

)
≤ 𝐿𝑛

)
≤P𝑛,\,β

(���∑︁
𝑒∈E

(
𝐺𝑒 − E𝑛,\,β (𝐺𝑒 |𝐺 𝑓 : 𝑓 ≠ 𝑒)

) ��� ≥ 𝐿𝑛

)
≤ 2 exp

{
−
𝐿2
𝑛

_𝑛2

}
.

where we again invoke Lemma 2.3.1 in the last line above. This gives

sup
𝛽∈Ξ(𝑠,𝐴)

P𝑛,𝛽,\

(���∑︁
𝑒∈E

(
𝐺𝑒 − E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ) ��� ≤ 𝐿𝑛

)
≤ 2 exp

{
−
𝐿2
𝑛

_
(𝑛
2
) } ,

which converges to 0 as 𝐿𝑛 ≫ 𝑛. This completes the proof of the theorem.

2.3.2 Proof of Theorem 2.2.2

As in the previous theorem, it suffices to show that both type I and type II errors converge to 0.

For estimating the type I error, using a union bound gives

PH0

(
max
1≤𝑖≤𝑛

���∑︁
𝑒∋𝑖

(𝐺𝑒 − E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ��� > 𝐶√︁

𝑛 log 𝑛
)

≤
𝑛∑︁
𝑖=1
PH0

(���∑︁
𝑒∋𝑖

(𝐺𝑒 − E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ��� > 𝐶√︁

𝑛 log 𝑛
)
≤ 𝑛 exp

{
−𝐶

2𝑛 log 𝑛
_(𝑛 − 1)

}
,

(2.17)

where the last inequality uses Lemma 2.3.1 with 𝑐𝑒 = 1 if 𝑒 ∋ 𝑖, and 0 otherwise. For the choice

𝐶 >
√
_ the RHS above converges to 0, and so Type I error converges to 0.
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For estimating the Type II error, fix vertex 𝑖 such that 𝛽𝑖 ≥ 𝐴. Then using (2.16) gives

∑︁
𝑒∋𝑖

(
E𝑛,\,β

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
)
− E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) )

≥ 𝛿𝑛min{𝐴, 1}.

Since 𝐴 ≥ ^

√︃
log 𝑛
𝑛

, for all 𝑛 large we have

𝛿𝑛min{𝐴, 1} ≥ 𝛿^
√︁
𝑛 log 𝑛 ≥ 2𝐶

√︁
log 𝑛

for the choice ^ = 2𝐶
𝛿

. This gives

P𝑛,\,β

(∑︁
𝑒∋𝑖

(𝐺𝑒 − E𝑛,\,𝛽01
(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
)
≤ 𝐶

√︁
𝑛 log 𝑛

)
≤P𝑛,\,β

(���∑︁
𝑒∋𝑖

(𝐺𝑒 − E𝑛,\,β
(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ��� ≥ 𝐶√︁

𝑛 log 𝑛
)
≤ 2 exp

{
−𝐶

2𝑛 log 𝑛
_(𝑛 − 1)

}
,

where the last inequality again uses Lemma 2.3.1. Thus we have shown

sup
𝛽∈Ξ(𝑠,𝐴)

P𝑛,𝛽,\

(���∑︁
𝑒∋𝑖

(
𝐺𝑒 − E𝑛,β0,\

(
𝐺𝑒

��𝐺 𝑓 : 𝑓 ≠ 𝑒
) ) ��� ≤ 𝐶√︁

𝑛 log 𝑛
)
≤ 2 exp

{
−𝐶

2𝑛 log 𝑛
_(𝑛 − 1)

}
,

which converges to 0 as before for the choice 𝐶 >
√
_.

2.3.3 Proof of part (b) and (d) of Theorem 2.2.3 and Theorem 2.2.4

Part (b) follows by a direct application of Theorem 2.2.1, on noting that 𝑠𝐴 = 𝑛𝑏+𝑡 → ∞ if

𝑏 + 𝑡 > 0. Similarly, part (d) follows by a direct application of Theorem 2.2.2, on noting that

𝐴 = 𝑛𝑡 ≫
√︃

log 𝑛
𝑛

if 𝑡 > −1
2 . Both Theorem 2.2.1 and Theorem 2.2.2 were proved for {0, 1} valued

random variables, but essentially the same proof goes through for {−1, 1} valued random variables.

2.3.4 Proof of Theorem 2.2.5 part (b)

To prove Theorem 2.2.5 part (b) (as well as parts (a) and (c) of Theorem 2.2.4 later), we express

the two star model as a mixture of 𝛽 models by introducing auxiliary variables, as done in [41, 43].
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Suppose 𝑌 be a random graph from degree corrected two-star model (2.13). Conditional on 𝑌 ,

let(𝜙1, · · · , 𝜙𝑛) be mutually independent components, with

𝜙𝑖 ∼ 𝑁
( 𝑘𝑖

𝑛 − 1
,

1
\ (𝑛 − 1)

)
. (2.18)

The joint distribution of (𝜙,𝑌 ) is computed in the following Proposition. The proof of this is

deferred to the appendix (section 3.7).

Proposition 2.3.1. (a) Given 𝜙, the random variables (𝑌 )1≤𝑖< 𝑗≤𝑛 are mutually independent,

with

P𝑛,\,β (𝑌𝑖 𝑗 = 1|𝜙) = 𝑒\ (𝜙𝑖+𝜙 𝑗 )+
1
2 (𝛽𝑖+𝛽 𝑗 )

𝑒\ (𝜙𝑖+𝜙 𝑗 )+
1
2 (𝛽𝑖+𝛽 𝑗 ) + 𝑒−\ (𝜙𝑖+𝜙 𝑗 )− 1

2 (𝛽𝑖+𝛽 𝑗 )
.

(b) The marginal density of 𝜙 (w.r.t. Lebesgue measure) is proportional to

𝑓𝑛,\,β (𝜙) := exp

{
−

∑︁
𝑖< 𝑗

𝑝𝑖 𝑗 (𝜙𝑖, 𝜙 𝑗 )
}
, (2.19)

where 𝑝𝑖 𝑗 (𝑥, 𝑦) equals

\

2
(𝑥2 + 𝑦2) − log cosh [\ (𝑥 + 𝑦) + 1

2
(𝛽𝑖 + 𝛽 𝑗 )]

=
\

4
(𝑥 − 𝑦)2 + 𝑞

(𝑥 + 𝑦
2

)
+ log cosh

(
\ (𝑥 + 𝑦)

)
− log cosh

(
\ (𝑥 + 𝑦) + 1

2
(𝛽𝑖 + 𝛽 𝑗 )

)
,

(2.20)

with

𝑞(𝑥) := \𝑥2 − log cosh(2\𝑥). (2.21)

We now state the following lemma, which is the analogue of [41, Lemma 4.1]. The proof of

these lemmas are deferred to the appendix (3.7).

Lemma 2.3.2. Suppose \ = 1/2, and β ∈ [0, 𝑛−1/2]𝑛. Then for any positive integer ℓ ∈ N, there
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exist a constant 𝐶 depending only on ℓ, \ such that

max
1≤𝑖≤𝑛

E𝑛,\,β |𝜙𝑖 − 𝜙 |𝑙 ≤ 𝐶𝑛−𝑙/2.

Proof of Theorem 2.2.5 part (b). We begin by claiming the existence of a sequence of positive

reals 𝐾𝑛 → ∞ such that

lim
𝑛→∞

sup
β∈Ξ(𝑠,𝐴)

P𝑛,\,β (tanh(𝜙) ≤ 𝑛−1/4𝐾𝑛) = 0. (2.22)

Given (2.22), we first finish the proof of the theorem. Note that

∑︁
𝑖< 𝑗

[
𝑌𝑖 𝑗 − tanh(𝜙)

]
=
∑︁
𝑖< 𝑗

[
tanh

(𝜙𝑖 + 𝜙 𝑗
2

+
𝛽𝑖 + 𝛽 𝑗

2

)
− tanh(𝜙)

]
≥

∑︁
𝑖< 𝑗

[
tanh

(𝜙𝑖 + 𝜙 𝑗
2

)
− tanh(𝜙)

]
≳ −

∑︁
𝑖< 𝑗

(𝜙𝑖 + 𝜙 𝑗
2

− 𝜙
)2
≳ −𝑛

𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2.

(2.23)

Using (2.22) and Lemma 2.3.2 along with the above display we have

lim
𝑛→∞

sup
β∈Ξ(𝑠,𝐴)

P𝑛,\,β

(∑︁
𝑖< 𝑗

𝑌𝑖 𝑗 ≤ 𝑛3/2𝐾𝑛) = 0.

and so Type II error converges to 0. Since

PH0

(∑︁
𝑖< 𝑗

𝑌𝑖 𝑗 > 𝑛
3
2𝐾

1
2
𝑛

)
→ 0.

using [41, Theorem 1.1], Type I error converges to 0 as well. This shows that the test which rejects

for large values of
∑
𝑖< 𝑗 𝑌𝑖 𝑗 is asymptotically powerful.
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It thus remains to verify (2.22). To this end, assume without loss of generality that

𝛽𝑖 =𝐴 if 1 ≤ 𝑖 ≤ 𝑠

=0 if 𝑠 + 1 ≤ 𝑖 ≤ 𝑛,

where 𝐴 = 𝑛𝑡 . Also if 𝑏 + 𝑡 + 1/2 > 0, replacing 𝑡 by 𝑡′ := min(𝑡,−1/2) we have

𝑏 + 𝑡′ + 1/2 = min
(
𝑏 + 𝑡 + 1/2, 𝑏 − 1

2
+ 1

2

)
= min(𝑏 + 𝑡 + 1/2, 𝑏) > 0.

Since the distribution of 𝜙 is stochastically increasing in 𝐴, without loss of generality by replacing

𝑡 by 𝑡′ if necessary we can assume 𝑡 ≤ −1
2 , which gives 𝐴 ≤ 𝑛−1/2. Using Taylor’s series expansion

twice, we have

log cosh
(𝜙𝑖 + 𝜙 𝑗

2
+
𝛽𝑖 + 𝛽 𝑗

2

)
− log cosh

(𝜙𝑖 + 𝜙 𝑗
2

)
=
𝛽𝑖 + 𝛽 𝑗

2
tanh

(𝜙𝑖 + 𝜙 𝑗
2

)
+𝑂 (𝛽𝑖 + 𝛽 𝑗 )2

=
𝛽𝑖 + 𝛽 𝑗

2
tanh(𝜙) +𝑂

(
(𝛽𝑖 + 𝛽 𝑗 ) |𝜙𝑖 + 𝜙 𝑗 − 2𝜙 |

)
+𝑂 (𝛽𝑖 + 𝛽 𝑗 )2.

Summing over 𝑖 < 𝑗 and using (2.19) and (2.20) we get

− log 𝑓𝑛,\,β (𝜙) = − log 𝑓𝑛,\,0(𝜙) −
(𝑛 − 1)𝑠𝐴

2
tanh(𝜙)

+𝑂
(
𝑛𝐴

𝑠∑︁
𝑖=1

|𝜙𝑖 − 𝜙| + 𝑠𝐴
𝑛∑︁
𝑖=1

|𝜙𝑖 − 𝜙| + 𝑛𝑠𝐴2

)
,

(2.24)

where

− log 𝑓𝑛,\,0(𝜙) :=
∑︁
𝑖< 𝑗

[1
8
(𝜙𝑖 − 𝜙 𝑗 )2 + 𝑞

(𝜙𝑖 + 𝜙 𝑗
2

)]
=
𝑛

8

𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2 +
∑︁
𝑖< 𝑗

𝑞

(𝜙𝑖 + 𝜙 𝑗
2

)
, (2.25)
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with 𝑞(.) as in (2.21). As the notation above suggests, 𝑓𝑛,\,0 defined above is the (unnormalized)

density of 𝜙 under H0. Using (2.24), along with Lemma 2.3.2 we have

− log 𝑓𝑛,\,β (𝜙) = − log 𝑓𝑛,\,0(𝜙) −
𝑛𝑠𝐴

2
tanh(𝜙) − 𝑅𝑛,

where

E𝑛,\,β |𝑅𝑛 | ≲
√
𝑛𝑠𝐴 + 𝑛𝑠𝐴2 ≲

√
𝑛𝑠𝐴

using 𝐴 ≤ 𝑛−1/2. Thus, for any 𝐾 fixed and 𝐾′
𝑛 := 𝑛3/4𝑠𝐴 we have

P𝑛,\,β (tanh(𝜙) < 𝐾𝑛−1/4)

≤P𝑛,\,β ( |𝑅𝑛 | > 𝐾′
𝑛) + P𝑛,\,β (tanh(𝜙) < 𝐾𝑛−1/4, |𝑅𝑛 | ≤ 𝐾′

𝑛)

≤P𝑛,\,β ( |𝑅𝑛 | > 𝐾′
𝑛) + 𝑒𝐾

′
𝑛

EH0 exp
[
𝑛𝑠𝐴

2 tanh(𝜙)
]
1
{

tanh(𝜙) < 𝐾𝑛−1/4
}

EH0 exp
[
𝑛𝑠𝐴

2 tanh(𝜙)
]
1
{
|𝑅𝑛 | ≤ 𝐾′

𝑛

}
≤P𝑛,\,β ( |𝑅𝑛 | > 𝐾′

𝑛) +
𝑒𝐾

′
𝑛+𝐾𝑛

3/4𝑠𝐴
2 − 𝑛𝑠𝐴 tanh(2𝐾𝑛−1/4)

2

PH0

(
𝜙 > 2𝐾𝑛−1/4, |𝑅𝑛 | ≤ 𝐾′

𝑛

)
On letting 𝑛→ ∞ and noting that 𝐾′

𝑛 = 𝑛
3/4𝑠𝐴 ≫

√
𝑛𝑠𝐴2 we have

lim
𝑛→∞

sup
β∈Ξ(𝑠,𝐴)

P𝑛,\,β ( |𝑅𝑛 | ≤ 𝐾′
𝑛) = 0, and lim

𝑛→∞
PH0

(
𝜙 > 2𝐾𝑛−1/4, |𝑅𝑛 | ≤ 𝐾′

𝑛

)
= P(Z > 2𝐾) > 0,

where Z has density proportional to 𝑒−Z
4/12−Z2/24 (c.f. [41, Lemma 4.2]). Combining the last two

displays we have

lim
𝑛→∞

sup
β∈Ξ(𝑠,𝐴)

P𝑛,\,β (tanh(𝜙) < 𝐾𝑛−1/4) = 0.

Since this holds for every fixed 𝐾 , there exists 𝐾𝑛 → ∞ such that

lim sup
𝑛→∞

sup
β∈Ξ(𝑠,𝐴)

P𝑛,\,β (tanh(𝜙) < 𝐾𝑛𝑛−1/4) = 0.
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This verifies (2.22), and hence completes the proof of the theorem.

□

2.3.5 Proof of part (a) and (c) of Theorems 2.2.3

With Ξ(𝑠, 𝐴) as defined in (2.6), consider the following subset of Ξ(𝑠, 𝐴).

Ξ̃(𝑠, 𝐴) :=
{
β = 𝛽01 + µ : |supp(µ) | = 𝑠, 𝑎𝑛𝑑 `𝑖 = 𝐴, 𝑖 ∈ supp(µ)

}
. (2.26)

Let 𝜋(𝑑β) be a prior on Ξ(𝑠, 𝐴), which put probability mass 1/
(𝑛
𝑠

)
on each of configurations in

Ξ̃(𝑠, 𝐴). And let Q𝜋 (.) :=
∫
P𝑛,\,β (.)𝜋(𝑑β) denote the marginal distribution of 𝑌 under this prior.

To show that all tests for the problem (2.5) are asymptotically powerless, using the second moment

method it suffices to show that

lim
𝑛→∞
EH0𝐿𝜋 (𝑌 )2 = 1, where 𝐿𝜋 (𝑌 ) :=

Q𝜋 (𝑌 )
PH0 (𝑌 )

(2.27)

is the likelihood ratio. The following lemma gives an upper bound to the second moment of 𝐿𝜋 (.).

Lemma 2.3.3. For any (\, 𝛽0), with 𝐿𝜋 (.) as defined in (2.27) we have

EH0𝐿
2
𝜋 (𝑌 ) ≤ exp

{
𝐴2𝑠2𝐶𝑜𝑣β=(𝛽0/2)1(𝑘1, 𝑘2) +

2𝑠2

𝑛
(𝑒𝐴

2𝑉𝑎𝑟β=(𝛽0/2)1 (𝑘1) − 1)
}
, (2.28)

whenever 𝑛 > 2𝑠.

Proof. Define Λ𝑠 := {𝑆
��𝑆 ⊂ {1, 2, ..., 𝑛}, |𝑆 | = 𝑠}. For any 𝑆 ∈ Λ𝑠, define a vector β𝑆 by setting

𝛽𝑆,𝑖 =𝛽0 + 𝐴 if 𝑖 ∈ 𝑆,

=𝛽0 if 𝑖 ∉ 𝑆.

By symmetry, the normalizing constant 𝑍𝑛 (β𝑆, \) is the same for all 𝑆 ∈ Λ𝑠, which we denote by
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𝑍𝑛 (β[𝑠] , \) for the rest of this proof. Then, a direct calculation gives

EH0𝐿
2
𝜋 (𝑌 ) =

𝑍2
𝑛 (𝛽0, \)

𝑍2
𝑛 (β[𝑠] , \)

1(𝑛
𝑠

)2EH0

∑︁
𝑆1,𝑆2∈Λ𝑠

𝑒

∑
𝑗∈𝑆1

𝐴
2 𝑘 𝑗+

∑
𝑗∈𝑆2

𝐴
2 𝑘 𝑗

=
𝑍𝑛 (𝛽0, \)
𝑍2
𝑛 (β[𝑠] , \)

1(𝑛
𝑠

)2

∑︁
𝑆1,𝑆2∈Λ

𝑍𝑛 (β𝑆1 + β𝑆2 , \)
𝑍𝑛 (β𝑆1 + β𝑆2 , \)

∑︁
𝑌

𝑒

\
2𝑛

𝑛∑
𝑖=1
𝑘2
𝑖
+
𝑛∑
𝑗=1

𝛽𝑆1 , 𝑗+𝛽𝑆2 , 𝑗
2 𝑘 𝑗

=
1(𝑛
𝑠

)2

∑︁
𝑆1,𝑆2∈Λ

𝑍𝑛 (𝛽0, \)𝑍𝑛 (β𝑆1 + β𝑆2 , \)
𝑍𝑛 (β𝑆1 , \)𝑍𝑛 (β𝑆2 , \)

=
1(𝑛
𝑠

)2

∑︁
𝑆1,𝑆2∈Λ

𝑅𝑆1,𝑆2 , (2.29)

where

𝑅𝑆1,𝑆2 := log
(
𝑍𝑛 (𝛽0, \)𝑍𝑛 (β𝑆1 + β𝑆2 , \)
𝑍𝑛 (β𝑆1 , \)𝑍𝑛 (β𝑆2 , \)

)
= log 𝑍𝑛 (β𝑆1 + β𝑆2 , \) − log 𝑍𝑛 (β𝑆2 , \) − log 𝑍𝑛 (β𝑆1 , \) + log 𝑍𝑛 (𝛽0, \).

Setting 𝑊 = 𝑆1
⋂
𝑆2, note that 𝑅𝑆1,𝑆2 only depends on |𝑊 | by symmetry. Thus, without loss

of generality we assume that 𝑆1 = {1, 2, 3, ..., 𝑠} and 𝑆2 = {1, 2, ..., 𝑤, 𝑠 + 1, 𝑠 + 2, ..., 2𝑠 − 𝑤}.

Consequently we have

𝑅𝑆1,𝑆2 =
∑︁
𝑗∈𝑆1

[
log 𝑍𝑛 (β[ 𝑗] + β𝑆2 , \) − log 𝑍𝑛 (β[ 𝑗−1] + β𝑆2 , \) − log 𝑍𝑛 (β[ 𝑗] , \) + log 𝑍𝑛 (β[ 𝑗−1] , \)

]
,

where β[ 𝑗] denotes the vector β which equals 𝐴 on first 𝑗 entries, and 𝛽0 for rest of its entries, The

summand in the RHS above equals

log 𝑍𝑛 (β[ 𝑗] + β𝑆2 , \) − log 𝑍𝑛 (β[ 𝑗−1] + β𝑆2 , \) − log 𝑍𝑛 (β[ 𝑗] , \) + log 𝑍𝑛 (β[ 𝑗−1] , \)

=

∫ 𝐴

0

𝜕 log 𝑍𝑛 (β[ 𝑗−1] + β𝑆2 + 𝛾ej, \)
𝜕𝛽 𝑗

𝑑𝛾 −
∫ 𝐴

0

𝜕 log 𝑍𝑛 (β[ 𝑗−1] + 𝛾ej, \)
𝜕𝛽 𝑗

𝑑𝛾

=

∫ 𝐴

0
𝐴

∑︁
𝑟∈𝑆2

𝜕 log 𝑍𝑛 (β[ 𝑗−1] + ξ + 𝛾ej)
𝜕𝛽 𝑗𝜕𝛽𝑟

|ξ⪯β𝑆2
𝑑𝛾

=

∫ 𝐴

0
𝐴

∑︁
𝑟∈𝑆2

𝐶𝑜𝑣β=β[ 𝑗−1]+ξ+𝛾ej (𝑘 𝑗 , 𝑘𝑟)𝑑𝛾
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If 𝐴 → 0, then β ≥ 0 if 𝛽0 ≥ 0, and β ≤ 0 for all 𝑛 large if 𝛽0 < 0. Note that the GHS

inequality [37] holds if either β ≥ 0 or β ≤ 0 (the second conclusion follows on noting that

𝐶𝑜𝑣β (𝑘𝑟 , 𝑘𝑠) = 𝐶𝑜𝑣β (−𝑘𝑟 ,−𝑘𝑠), thereby giving

𝐶𝑜𝑣β=β[ 𝑗−1]+ξ+𝛾ej (𝑘 𝑗 , 𝑘𝑟) ≤ 𝐶𝑜𝑣β=(𝛽0/2)1(𝑘 𝑗 , 𝑘𝑟).

Combining the above two displays, this gives

𝑅𝑆1,𝑆2 ≤
∑︁
𝑗∈𝑆1

∫ 𝐴

0
𝐴

∑︁
𝑟∈𝑆2

𝐶𝑜𝑣β=(𝛽0/2)1(𝑘 𝑗 , 𝑘𝑟)𝑑𝛾

= 𝐴2𝑤𝑉𝑎𝑟β=(𝛽0/2)1(𝑘1) + 𝐴2(𝑠2 − 𝑤)𝐶𝑜𝑣β=(𝛽0/2)1(𝑘1, 𝑘2).

Along with (2.29), this further gives

EH0𝐿
2
𝜋 (𝑌 ) ≤ exp {𝐴2𝑠2𝐶𝑜𝑣β=(𝛽0/2)1(𝑘1, 𝑘2)}E𝑊 exp{𝐴2𝑉𝑎𝑟β=(𝛽0/2)1(𝑘1)𝑊}

where 𝑊 follows Hypergeometric distribution with parameters (𝑛, 𝑠, 𝑠). Since 2𝑠 < 𝑛, 𝑊 is

stochastically dominated by a binomial distribution with parameters
(
𝑠, 𝑠
𝑛−𝑠

)
([39, Lemma 6.1]),

which gives

E𝑊 exp{𝐴2𝑉𝑎𝑟β=(𝛽0/2)1(𝑘1)𝑊} ≤ exp
{

2𝑠2

𝑛
(𝑒𝐴

2𝑉𝑎𝑟β=(𝛽0/2)1 (𝑘1) − 1)
}
.

Combining the last two displays, we have verified (2.28). □

With 𝐿𝜋 as in defined in (2.27), it suffices to show that

lim
𝑛→∞
EH0𝐿

2
𝜋 (𝑌 ) = 1.
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By [41, Lemma 4.4] we have

𝑉𝑎𝑟β=(𝛽0/2)1(
∑︁
𝑒∈E

𝑌𝑒) ≲ 𝑛2, (2.30)

which gives the existence of a constant 𝑐 depending on \ such that

𝑉𝑎𝑟β=(𝛽0/2)1(𝑘1) ≤ 𝑐𝑛, 𝐶𝑜𝑣β=(𝛽0/2)1(𝑘1, 𝑘2) ≤ 𝑐 (2.31)

Using this along with Lemma 2.3.3 gives

EH0𝐿
2
𝜋 (𝑌 ) ≤ exp

{
𝑐𝐴2𝑠2 + 2𝑠2

𝑛
(𝑒𝑐𝐴2𝑛 − 1)

}
. (2.32)

For part (a), in this regime we have 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 with 𝑏 ≥ 1
2 and 𝑏 + 𝑡 < 0. This gives

max(𝐴2𝑛, 𝐴2𝑠2) = max(𝑛2𝑡+1, 𝑛2𝑡+2𝑏) = 𝑛2𝑡+2𝑏 → 0,

using which the exponent in the RHS of (2.32) converges to 0. This completes the proof of part

(a).

For part (c), in this regime we have 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 with 𝑏 < 1
2 and 𝑡 ≤ −1

2 . This gives

𝐴2𝑠2 = 𝑛2𝑏+2𝑡 → 0. Also

𝑠2

𝑛
𝑒𝑐𝐴

2𝑛−1 ≤ 𝑒𝑐−1 𝑠
2

𝑛
= 𝑒𝑐−1𝑛2𝑏−1 → 0.

Consequently, the RHS of (2.32) again converges to 0. This completes the proof of part (c).

2.3.6 Proof of Theorem 2.2.5 Part (a)

As before, with 𝐿𝜋 defined in (2.27), it is sufficient to show that

lim
𝑛→∞
EH0𝐿

2
𝜋 (𝑌 ) = 1.
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To this effect, using Theorem 2.4 & Lemma 4.8 in [41] we get

𝑉𝑎𝑟H0 (
∑︁
𝑒∈E

𝑌𝑒) ≲ 𝑛3.

Along with the non-negativity of covariance, this gives

𝐶𝑜𝑣H0 (𝑘1, 𝑘2) = 𝑂 (𝑛).

For getting the optimal bound on 𝑉𝑎𝑟H0 (𝑘1), use (2.18) to get

𝑉𝑎𝑟H0 (𝑘1) ≲ 𝑛2𝑉𝑎𝑟H0 (𝜙1) + 𝑛 ≲𝑛2
[
𝑉𝑎𝑟H0 (𝜙) +𝑉𝑎𝑟H0 (𝜙1 − 𝜙)

]
+ 𝑛 ≲ 𝑛,

where the last inequality uses [41, Lemma 4.1]. Combing the above two displays along with

Lemma 2.3.3 gives the existence of a constant 𝑐 free of 𝑛, such that

EH0𝐿
2
𝜋 (𝑌 ) ≤ exp

{
𝑐𝐴2𝑠2𝑛 + 2𝑠2

𝑛
(𝑒𝑐𝐴2𝑛 − 1)

}
. (2.33)

Now, recall that in this regime we have 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 with 𝑏 + 𝑡 + 1
2 < 0. This gives

𝐴2𝑠2𝑛 = 𝑛2𝑏+2𝑡+1 → 0. Also, noting that 2𝑡 + 1 < 0 we have

𝑠2

𝑛
(𝑒𝑐𝐴2𝑛 − 1) ≤ 𝑛2𝑏−1(𝑒𝑐𝑛2𝑡+1 − 1) ≲ 𝑛2𝑏+2𝑡+1 → 0.

Along with (2.33), this gives lim𝑛→∞ EH0𝐿
2
𝜋 (𝑌 ) = 1. This completes the proof of part (b).

2.3.7 Proof of part (a) and (c) of Theorem 2.2.4

We first state the following lemma about the function 𝑞(.) introduced in (2.21), the proof of

which follows from straightforward calculus (see for e.g. [21]).

Lemma 2.3.4. If \ > 1/2, the equation 𝑞′(𝑥) = 2\ [𝑥 − \ tanh(2\𝑥)] has a unique positive root 𝑡,

say, on (0,∞). Further, 𝑡 is the unique global minimizer of 𝑞(.) on [0,∞).
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We will use the notation 𝑡 introduced in the above lemma throughout the rest of the chapter.

Set

𝑈 := ∩𝑛𝑖=1𝑉𝑖, 𝑉𝑖 := {𝑌 : 𝑘𝑖 ≥ (𝑛 − 1)𝑡/2}. (2.34)

Restricting the probability measure (2.13) to the set𝑈, define the probability measure P𝑛,β,𝑈 (·) by

setting

P𝑛,β,𝑈 (𝑌 ) =
1

𝑍+
𝑛 (β, \)

exp

{
\

2𝑛

𝑛∑︁
𝑖=1

𝑘2
𝑖 +

1
2

𝑛∑︁
𝑖=1

𝛽𝑖𝑘𝑖

}
1{𝑌 ∈ 𝑈}. (2.35)

where

𝑍+
𝑛 (β, \) =

∑︁
𝑌∈𝑈

exp

{
\

2𝑛

𝑛∑︁
𝑖=1

𝑘2
𝑖 +

1
2

𝑛∑︁
𝑖=1

𝛽𝑖𝑘𝑖

}
is the restricted normalizing constant. As before, consider the sub parameter space Ξ̃(𝑠, 𝐴) defined

in (2.26), let 𝜋(𝑑β) be a prior on Ξ̃(𝑠, 𝐴), which put probability mass 1/
(𝑛
𝑠

)
on each of configu-

rations in Ξ̃(𝑠, 𝐴). And let Q𝜋,𝑈 (.) :=
∫
P𝑛,β,𝑈 (.)𝜋(𝑑β) denote the mixed alternative distribution

of 𝑌 . Since [41, Lem 4.3] gives PH0 (𝑈) → 1/2, to verify the absence of asymptotically powerful

tests setting

𝐿𝜋,𝑈 (𝑌 ) :=
Q𝜋,𝑈 (𝑌 )
PH0,𝑈 (𝑌 )

, (2.36)

it suffices to show:

EH0,𝑈𝐿
2
𝜋,𝑈 (𝑌 ) → 1. (2.37)

Proceeding similar to Lemma 2.3.3, we get

EH0,𝑈𝐿
2
𝜋,𝑈 (𝑌 ) =

1(𝑛
𝑠

)2

∑︁
𝑆1,𝑆2∈Λ

𝑍+
𝑛 (0, \)𝑍+

𝑛 (β𝑆1 + β𝑆2 , \)
𝑍+
𝑛 (β𝑆1 , \)𝑍+

𝑛 (β𝑆2 , \)
. (2.38)
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Setting 𝑅+
𝑆1,𝑆2

as

𝑅+
𝑆1,𝑆2

:=
(
log 𝑍+

𝑛 (β𝑆1 + β𝑆2 , \ log 𝑍+
𝑛 (β𝑆2 , \)) − (log 𝑍+

𝑛 (β𝑆1 , \) − log 𝑍+
𝑛 (0, \)

)
.

A Taylor’s series expansion gives

𝑅𝑆1,𝑆2 = 𝐴
2
∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝐶𝑜𝑣δ=𝛼1𝑆1+𝛾1𝑆2
(𝑘𝑖, 𝑘 𝑗 |𝑈) (2.39)

where 𝛼, 𝛾 ∈ (0, 𝐴) and 1𝑆 denote vector having unit signals at 𝑆, and δ := 𝛼1𝑆1 + 𝛾1𝑆2 ∈

[0, 2𝑛−1/2]𝑛. We now claim that

Lemma 2.3.5.

max
1≤𝑖< 𝑗≤𝑛

sup
β∈[0,2𝑛−1/2]𝑛

𝐶𝑜𝑣β (𝑘𝑖, 𝑘 𝑗 |𝑈) ≲ 1.

We defer the proof of Lemma 2.3.5 to the end of the section. Finally, use Lemma 2.3.6 to

conclude that

max
1≤𝑖≤𝑛

𝑉𝑎𝑟δ (𝑘𝑖 |𝑈) ≲ 𝑛. (2.40)

Given Lemma 2.3.5 along with (2.40) and (2.39), we have the existence of a constant 𝐶 free of 𝑛

such that

𝑅𝑆1,𝑆2 ≤ 𝐶𝑊𝐴2𝑛 + 𝐶𝑠2𝐴2,

which along with (2.38) gives

EH0,𝑈𝐿
2
𝜋,𝑈 (𝑌 ) ≤ exp{𝐶𝐴2𝑠2}E𝑊 exp {𝐶𝐴2𝑛𝑊} (2.41)

where 𝑊 follows Hypergeometric distribution with parameters (𝑛, 𝑠, 𝑠). As before, using the fact

that 𝑛 > 2𝑠, 𝑊 is stochastically dominated by a binomial distribution with parameters (𝑠, 𝑠
𝑛−𝑠 ).
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This gives

EH0,𝑈𝐿
2
𝜋,𝑈 (𝑌 ) ≤ exp {𝐶𝐴2𝑠2 + 2𝑠2

𝑛
(𝑒𝐶𝐴2𝑛 − 1)}. (2.42)

For part (a), in this regime we have 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 with 𝑏 ≥ 1
2 and 𝑏 + 𝑡 < 0. This gives

𝐴2𝑠2 = 𝑛2𝑡+2𝑏 → 0. Also we have 𝐴2𝑛 = 𝑛2𝑡+1 → 0, and so

𝑠2

𝑛
(𝑒𝐶𝐴2𝑛 − 1) ≲ 𝑠2𝐴2 = 𝑛2𝑏+2𝑡 → 0.

Combining the above two displays with (2.42), we have EH0,𝑈𝐿
2
𝜋,𝑈

(𝑌 ) → 1, as desired. This

completes the proof of part (a).

For part (c), in this regime we have 𝑠 = 𝑛𝑏 and 𝐴 = 𝑛𝑡 with 𝑏 < 1
2 and 𝑡 + 1

2 < 0. This gives

𝐴2𝑠2 = 𝑛2𝑡+2𝑏 ≤ 𝑛2𝑡+1 → 0.

Also we have 𝐴2𝑛 = 𝑛2𝑡+1 → 0, and so

𝑠2

𝑛
(𝑒𝐶𝐴2𝑛 − 1) ≲ 𝑠2𝐴2 = 𝑛2𝑏+2𝑡 → 0.

Combining the above two displays with (2.42), we have EH0,𝑈𝐿
2
𝜋,𝑈

(𝑌 ) → 1, as desired. This

completes the proof of part (c).

2.3.8 Proof of Lemma 2.3.5

We first state two lemmas, which will be used in the proof of Lemma 2.3.5. The first lemma is

the analogue of Lemma 2.3.2 for \ > 1/2.

Lemma 2.3.6. Suppose \ > 1/2, and β ∈ [0, 2𝑛−1/2]. Then for every positive positive integer ℓ
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we have

E𝑛,\,β

(
|𝜙𝑖 − 𝑡 |ℓ

���𝑈)
≤ 𝐶𝑛−ℓ/2, (2.43)

where𝑈 is as defined in (2.34), and 𝐶 is a positive constant depending only on ℓ and \.

For stating the second lemma, we require the following definition. Analogous to (2.34), define

𝑈 := ∩𝑛𝑖=1𝑉𝑖 𝑉𝑖 :=
{
𝜙𝑖 ∈

[
0, 2

]}
. (2.44)

The next lemma shows that the sets 𝑈 and 𝑈 occur simultaneously with high probability, and so

expectations involving 𝑈 can be transferred to expectations involving 𝑈 at a very low cost. This

lemma will be used frequently in the rest of this section, sometimes without an explicit mention.

Lemma 2.3.7. Suppose \ > 1/2, and β ∈ [0, 2𝑛−1/2]. Then we have the following conclusions:

(a) logP𝑛,\,β (𝑈Δ𝑈) ≲ −𝑛.

(b) For any random variable𝑊 such that E𝑊2 ≤ 1, we have

���E𝑊1{𝑈} − E𝑊1{𝑈}
��� ≤ √︃

P𝑛,\,β (𝑈Δ𝑈).

The proofs of Lemmas 2.3.6 and 2.3.7 are deferred to section 3.7. We now prove a correlation

bound for higher order terms, which will be used for proved Lemma 2.3.5.

Lemma 2.3.8. Suppose \ > 1/2, and β ∈ [0, 2𝑛−1/2]. Then for any pair of indices {𝑖1, 𝑖2, 𝑖3} (not

necessarily distinct), we have

𝐶𝑜𝑣𝑛,\,β

(
(𝜙𝑖1 − 𝑡) (𝜙𝑖2 − 𝑡), 𝜙𝑖3 − 𝑡 |𝑈

)
≲ 𝑛−2.
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Proof. Setting 𝑀 (𝑖1, 𝑖2, 𝑖3) := 𝐶𝑜𝑣𝑛,\,β
(
(𝜙𝑖1 − 𝑡) (𝜙𝑖2 − 𝑡), 𝜙𝑖3 − 𝑡 |𝑈

)
, we claim that

max
1≤𝑖1,𝑖2≤𝑛

���𝑀 (𝑖1, 𝑖2, 𝑖3) −
\3sech6(2\𝑡)

(𝑛 − 1)3

∑︁
𝑗1≠𝑖1, 𝑗2≠𝑖2, 𝑗3≠𝑖3

∑︁
𝑢∈(𝑖1, 𝑗1),𝑣∈(𝑖2, 𝑗2),𝑤∈(𝑖3, 𝑗3)

𝑀 (𝑢, 𝑣, 𝑤)
��� = 𝑂 (𝑛−2).

(2.45)

We first complete the proof of the lemma, deferring the proof of (2.45). The above display implies

the existence of a constant 𝐶 free of 𝑛, such that

max
1≤𝑖1,𝑖2,𝑖3≤𝑛

���𝑀 (𝑖1, 𝑖2, 𝑖3) −
∑︁

1≤ 𝑗1, 𝑗2, 𝑗3≤𝑛
𝐵𝑛

(
(𝑖1, 𝑖2, 𝑖3), ( 𝑗1, 𝑗2, 𝑗3)

)��� ≤ 𝐶

𝑛2 , (2.46)

where 𝐵𝑛 is a symmetric 𝑛3 × 𝑛3 matrix with non-negative entries, satisfying

∑︁
1≤ 𝑗1, 𝑗2, 𝑗3≤𝑛

𝐵𝑛

(
(𝑖1, 𝑖2, 𝑖3), ( 𝑗1, 𝑗2, 𝑗3)

)
= 8\3sech6(2\𝑡) < 1.

Thus the matrix (I − 𝐵𝑛)−1 has ℓ∞ operator norm equal to (1 − 8\3sech6(2\𝑡))−1 < ∞, and so

(2.46) gives

max
1≤𝑖1,𝑖2,𝑖3≤𝑛

|𝑀 (𝑖1, 𝑖2, 𝑖3) | ≤ 𝐶 (1 − 8\3sech6(2\𝑡))−1𝑛−2,

from which the desired conclusion follows.

It thus remains to verify (2.45). There are various possibilities depending on which of the

indices {𝑖, 𝑗 , ℓ} are distinct. Below we argue the case 𝑖1 = 𝑖2 = 𝑖 and 𝑖3 = 𝑗 , with {𝑖, 𝑗} distinct,

noting that the bound follows by similar calculations for other choices. To this end, setting 𝑘𝑖,𝑡 :=
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𝑘𝑖 − (𝑛 − 1)𝑡 note that (𝜙𝑖 − 𝑡 |𝑌 ) ∼ 𝑁
(
𝑘𝑖,𝑡
𝑛−1 ,

1
(𝑛−1)\

)
. Consequently, we have

P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β
(
(𝜙𝑖 − 𝑡)2, 𝜙 𝑗 − 𝑡 |𝑈

)
=E𝑛,\,β

[
(𝜙𝑖 − 𝑡)2(𝜙 𝑗 − 𝑡)1{𝑈}

]
− E𝑛,\,β

[
(𝜙𝑖 − 𝑡)21{𝑈}

]
E𝑛,\,β

[
(𝜙 𝑗 − 𝑡)1{𝑈}

]
=E𝑛,\,β

[
(𝜙𝑖 − 𝑡)2(𝜙 𝑗 − 𝑡)1{𝑈}

]
− E𝑛,\,β

[
(𝜙𝑖 − 𝑡)21{𝑈}

]
E𝑛,\,β

[
(𝜙 𝑗 − 𝑡)1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=E𝑛,\,β

[( 𝑘2
𝑖,𝑡

(𝑛 − 1)2 + 1
(𝑛 − 1)\

) 𝑘𝑖,𝑡

𝑛 − 1
1{𝑈}

]
−E𝑛,\,β

[( 𝑘2
𝑖,𝑡

(𝑛 − 1)2 + 1
(𝑛 − 1)\

)
1{𝑈}

]
E𝑛,\,β

[
𝑘𝑖,𝑡

𝑛 − 1
1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β
( 𝑘2

𝑖,𝑡

(𝑛 − 1)2 + 1
(𝑛 − 1)\ ,

𝑘 𝑗 ,𝑡

𝑛 − 1
|𝑈

)
+𝑂 (𝑒−𝑐𝑛)

=
1

(𝑛 − 1)3P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β
(
𝑘2
𝑖,𝑡 , 𝑘 𝑗 ,𝑡 |𝑈

)
+𝑂 (𝑒−𝑐𝑛)

=
1

(𝑛 − 1)3P𝑛,\,β (𝑈)
∑︁

𝑎1,𝑎2≠𝑖,𝑏≠ 𝑗

𝐶𝑜𝑣

(
𝑌𝑖𝑎1,𝑡𝑌𝑖𝑎2,𝑡 , 𝑌 𝑗 𝑏,𝑡 |𝑈

)
+𝑂 (𝑒−𝑐𝑛), (2.47)

where 𝑌𝑖 𝑗 ,𝑡 := 𝑌𝑖 𝑗 − 𝑡, and the change from 𝑈 to 𝑈 uses Lemma 2.3.7 and incurs the cost 𝑂 (𝑒−𝑐𝑛).

Proceeding to estimate the RHS of (2.47), set 𝑟𝑖 𝑗 ,𝑡 := E(𝑌𝑖 𝑗 |𝜙), and for 𝑎1 ≠ 𝑎2 note that

P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β
(
𝑌𝑖𝑎1,𝑡𝑌𝑖𝑎2,𝑡 , 𝑌 𝑗 𝑏,𝑡 |𝑈

)
=E𝑛,\,β (𝑌𝑖𝑎1,𝑡𝑌𝑖𝑎2,𝑡𝑌 𝑗 𝑏,𝑡1{𝑈}) − E𝑛,\,β (𝑌𝑖𝑎1,𝑡𝑌𝑖𝑎2,𝑡1{𝑈})E𝑛,\,β (𝑌 𝑗 𝑏1{𝑈})

=E𝑛,\,β

[
𝑌𝑖𝑎1,𝑡𝑌𝑖𝑎2,𝑡𝑌 𝑗 𝑏,𝑡1{𝑈}

]
− E𝑛,\,β

[
𝑌𝑖𝑎1,𝑡𝑌𝑖𝑎2,𝑡1{𝑈}

]
E𝑛,\,β

[
𝑌 𝑗 𝑏,𝑡1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=E𝑛,\,β

[
𝑟𝑖𝑎1,𝑡𝑟𝑖𝑎2,𝑡𝑟 𝑗 𝑏,𝑡1{𝑈}

]
− E𝑛,\,β

[
𝑟𝑖𝑎1,𝑡𝑟𝑖𝑎2,𝑡1{𝑈}

]
E𝑛,\,β

[
𝑟 𝑗 𝑏1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β (𝑟𝑖𝑎1,𝑡𝑟𝑖𝑎2,𝑡 , 𝑟 𝑗 𝑏,𝑡 |𝑈) +𝑂 (𝑒−𝑐𝑛). (2.48)

In the above display, we have again moved from 𝑈 to 𝑈 at a cost 𝑂 (𝑒−𝑐𝑛), using Lemma 2.3.7. A
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one term Taylor’s series expansion gives

𝑟𝑖 𝑗 ,𝑡 = tanh
[
\ (𝜙𝑖 + 𝜙𝑖) + (𝛽𝑖 + 𝛽 𝑗 )

]
− tanh(2\𝑡)

=

[
\ (𝜙𝑖 − 𝑡 + 𝜙 𝑗 − 𝑡) +

1
2
(𝛽𝑖 + 𝛽 𝑗 )

]
sech2(2\𝑡) + b𝑖 𝑗 , (2.49)

where

|b𝑖 𝑗 | ≲ (𝜙𝑖 − 𝑡)2 + (𝜙 𝑗 − 𝑡)2 + 𝛽2
𝑖 + 𝛽2

𝑗 ≲ (𝜙𝑖 − 𝑡)2 + (𝜙 𝑗 − 𝑡)2 + 𝑛−1.

On taking expectations, 𝐶𝑜𝑣𝑛,\,β
(
𝑟𝑖𝑎1,𝑡𝑟𝑖𝑎2,𝑡 , 𝑟 𝑗 𝑏,𝑡 |𝑈

)
equals

\3sech6(2\𝑡)
∑︁

𝑢∈{𝑖,𝑎1},𝑣∈{𝑖,𝑎2},𝑤∈{ 𝑗 ,𝑏}
𝐶𝑜𝑣𝑛,\,β

(
(𝜙𝑢 − 𝑡) (𝜙𝑣 − 𝑡), (𝜙𝑤 − 𝑡) |𝑈

)
+𝑂 (𝑛−2), (2.50)

where we have used Lemma 2.3.6. On the other hand, if 𝑎1 = 𝑎2 = 𝑎, then using the fact that

𝑌2
𝑖𝑎,𝑡

= 1 + 𝑡2 − 2𝑡𝑌𝑖𝑎 = 1 − 𝑡2 − 2𝑡𝑌𝑖𝑎,𝑡 we have

− 1
2𝑡
P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β

(
𝑌2
𝑖𝑎,𝑡 , 𝑌 𝑗 𝑏,𝑡 |𝑈

)
=P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β

(
𝑌𝑖𝑎,𝑡 , 𝑌 𝑗 𝑏,𝑡 |𝑈

)
=E𝑛,\,β (𝑌𝑖𝑎,𝑡𝑌 𝑗 𝑏,𝑡1{𝑈}) − E𝑛,\,β (𝑌𝑖𝑎,𝑡1{𝑈})E𝑛,\,β (𝑌 𝑗 𝑏1{𝑈})

=E𝑛,\,β

[
𝑌𝑖𝑎,𝑡𝑌 𝑗 𝑏,𝑡1{𝑈}

]
− E𝑛,\,β

[
𝑌𝑖𝑎,𝑡1{𝑈}

]
E𝑛,\,β

[
𝑌 𝑗 𝑏,𝑡1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=E𝑛,\,β

[
𝑟𝑖𝑎𝑟 𝑗 𝑏1{𝑈}

]
− E𝑛,\,β

[
𝑟𝑖𝑎1{𝑈}

]
E𝑛,\,β

[
𝑟 𝑗 𝑏1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β (𝑟𝑖𝑎, 𝑟 𝑗 𝑏 |𝑈) +𝑂 (𝑒−𝑐𝑛) = 𝑂 (𝑛−1), (2.51)

where the last equality again uses Lemma 2.3.6, along with (2.49). Combining (2.47), (2.48),

(2.50) and (2.51) we have

𝐶𝑜𝑣𝑛,\,β

(
(𝜙𝑖 − 𝑡)2, 𝜙 𝑗 − 𝑡 |𝑈

)
=
\3sech6(2\𝑡)

(𝑛 − 1)3

∑︁
𝑎1,𝑎2≠𝑖,𝑏≠ 𝑗

∑︁
𝑢∈{𝑖,𝑎1},𝑣∈{𝑖,𝑎2},𝑤∈{ 𝑗 ,𝑏}

𝐶𝑜𝑣𝑛,\,β

(
(𝜙𝑢 − 𝑡) (𝜙𝑣 − 𝑡), (𝜙𝑤 − 𝑡) |𝑈

)
+𝑂 (𝑛−2),
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which verifies (2.45) for the choice {𝑖1 = 𝑖2 = 𝑖, 𝑖3 = 𝑗}. This completes the proof of the claim. □

Proof of Lemma 2.3.5. We proceed via a similar argument as in the proof of Lemma 2.3.8. Setting

𝑀 (𝑖1, 𝑖2) := 𝐶𝑜𝑣𝑛,\,β (𝑘𝑖1 , 𝑘𝑖2 |𝑈) for 1 ≤ 𝑖1, 𝑖2 ≤ 𝑛, we begin by claiming

max
1≤𝑖1,𝑖2≤𝑛

���𝑀 (𝑖1, 𝑖2) −
1

(𝑛 − 1)2

∑︁
𝑗1≠𝑖1, 𝑗2≠𝑖2

∑︁
𝑢∈{𝑖1, 𝑗1},𝑣∈{𝑖2, 𝑗2}

[𝐶0 + 𝐶1(𝛽𝑢 + 𝛽𝑣)
]
𝑀 (𝑢, 𝑣)

��� = 𝑂 (1),

(2.52)

where

𝐶0 := \2sech4(2\𝑡), 𝐶1 :=
\2

2
sech2(2\𝑡). (2.53)

Given (2.52), and noting that 𝑉𝑎𝑟𝑛,\,β (𝑘𝑖 |𝑈) = 𝑂 (𝑛) by Lemma 2.3.6, we conclude

max
𝑖1≠𝑖2

���𝑀 (𝑖1, 𝑖2) −
∑︁
𝑗1≠ 𝑗2

𝐵𝑛

(
(𝑖1, 𝑖2), ( 𝑗1, 𝑗2)

)
𝑀 ( 𝑗1, 𝑗2)

��� = 𝑂 (1), (2.54)

where 𝐵𝑛 is a symmetric 𝑛(𝑛 − 1) matrix with non-negative entries, satisfying

∑︁
𝑗1≠ 𝑗2

𝐵𝑛

(
(𝑖1, 𝑖2), ( 𝑗1, 𝑗2)

)
≤ 8(𝐶0 + 2𝐴) 𝐴→0→ 8𝐶0 = 8\3sech6(2\𝑡) < 1.

Thus the ℓ∞ operator norm of (I − 𝐵𝑛)−1 converges to (1 − 8\3sech6(2\𝑡))−1 < ∞, which along

with (2.54) gives

max
𝑖1≠𝑖2

𝑀 (𝑖1, 𝑖2) = 𝑂 (1),

as desired.
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It thus remains to verify (2.52). To this end, for any 𝑖 ≠ 𝑗 , we have

P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β (𝑘𝑖, 𝑘 𝑗 |𝑈)

=P𝑛,\,β (𝑈)
∑︁

𝑎≠𝑖,𝑏≠ 𝑗

𝐶𝑜𝑣𝑛,\,β (𝑌𝑖𝑎, 𝑌 𝑗 𝑏 |𝑈)

=
∑︁

𝑎≠𝑖,𝑏≠ 𝑗

{
E𝛽

[
𝑌𝑖𝑎𝑌 𝑗 𝑏1{𝑈}

]
− E𝛽

[
𝑌𝑖𝑎1{𝑈}

]
E𝑛,\,β

[
𝑌 𝑗 𝑏1{𝑈}

]}
=

∑︁
𝑎≠𝑖,𝑏≠ 𝑗

{
E𝛽

[
𝑌𝑖𝑎𝑌 𝑗 𝑏1{𝑈}

]
− E𝛽

[
𝑌𝑖𝑎1{𝑈}

]
E𝑛,\,β

[
𝑌 𝑗 𝑏1{𝑈}

]}
+𝑂 (𝑒−𝑐𝑛)

=
∑︁

𝑎≠𝑖,𝑏≠ 𝑗

{
E𝛽

[
𝑟𝑖𝑎𝑟 𝑗 𝑏1{𝑈}

]
− E𝛽

[
𝑟𝑖𝑎1{𝑈}

]
− E𝛽

[
𝑟 𝑗 𝑏1{𝑈}

]}
+𝑂 (𝑒−𝑐𝑛)

=P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β (𝑟𝑖𝑎, 𝑟 𝑗 𝑏 |𝑈) +𝑂 (𝑒−𝑐𝑛). (2.55)

In the above display, 𝑟𝑖 𝑗 := tanh
[
\ (𝜙𝑖 + 𝜙𝑎) + 1

2 (𝛽𝑖 + 𝛽𝑎)
]
. A Taylor’s series expansion gives

𝑟𝑖 𝑗 = tanh
[
\ (𝜙𝑖 + 𝜙 𝑗 ) +

1
2
(𝛽𝑖 + 𝛽 𝑗 )

]
= tanh(2\𝑡) +

[
\ (𝜙𝑖 − 𝑡 + 𝜙 𝑗 − 𝑡) +

1
2
(𝛽𝑖 + 𝛽 𝑗 )

]
sech2(2\𝑡)

+1
2

[
\ (𝜙𝑖 − 𝑡 + 𝜙 𝑗 − 𝑡) +

1
2
(𝛽𝑖 + 𝛽 𝑗 )

]2
tanh

′′ (2\𝑡) + b𝑖 𝑗 ,

where

|b𝑖 𝑗 | ≲ |𝜙𝑖 − 𝑡 |3 + |𝜙 𝑗 − 𝑡 |3 + |𝛽𝑖 |3 + |𝛽 𝑗 |3 ≲ |𝜙𝑖 − 𝑡 |3 + |𝜙 𝑗 − 𝑡 |3 + 𝑛−3/2.

Using the above display we have

𝐶𝑜𝑣𝑛,\,β (𝑟𝑖𝑎, 𝑟 𝑗 𝑏 |𝑈) =
∑︁

𝑢∈{𝑖,𝑎},𝑣∈{ 𝑗 ,𝑏}

[
𝐶0 + 𝐶1(𝛽𝑢 + 𝛽𝑣)

]
𝐶𝑜𝑣𝑛,\,β (𝜙𝑢, 𝜙𝑣 |𝑈) +𝑂 (𝑛−2), (2.56)

where the bound on the error term uses Lemma 2.3.6 and Lemma 2.3.8. In the above display, the

constants 𝐶0, 𝐶1 are as in (2.53).
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Finally, we have

P𝑛,\,β (𝑈)𝐶𝑜𝑣𝑛,\,β (𝜙𝑢, 𝜙𝑣 |𝑈)

=E𝑛,\,β

[
𝜙𝑢𝜙𝑣1{𝑈}

]
− E𝑛,\,β

[
𝜙𝑢1{𝑈}

]
E𝑛,\,β

[
𝜙𝑣1{𝑈}

]
=E𝑛,\,β

[
𝜙𝑢𝜙𝑣1{𝑈}

]
− E𝑛,\,β

[
𝜙𝑢1{𝑈}

]
E𝑛,\,β

[
𝜙𝑣1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=
1

(𝑛 − 1)2E𝑛,\,β

[
𝑘𝑢𝑘𝑣1{𝑈}

]
− 1

(𝑛 − 1)2E𝑛,\,β

[
𝑘𝑢1{𝑈}

]
E𝑛,\,β

[
𝑘𝑣1{𝑈}

]
+𝑂 (𝑒−𝑐𝑛)

=
P𝑛,\,β (𝑈)
(𝑛 − 1)2 𝐶𝑜𝑣𝑛,\,β (𝑘𝑢, 𝑘𝑣 |𝑈) +𝑂 (𝑒−𝑐𝑛). (2.57)

Combining (2.55), (2.56) and (2.57) we have

𝐶𝑜𝑣𝑛,\,β (𝑘𝑖, 𝑘 𝑗 ) =
1

(𝑛 − 1)2

∑︁
𝑎≠𝑖,𝑏≠ 𝑗

∑︁
𝑢∈{𝑖,𝑎},𝑣∈{ 𝑗 ,𝑏}

[𝐶0 + 𝐶1(𝛽𝑢 + 𝛽𝑣)]𝐶𝑜𝑣𝑛,\,β (𝑘𝑢, 𝑘𝑣 |𝑈) +𝑂 (1),

from which (2.52) follows. This completes the proof of the lemma.

□

2.4 Proofs of Auxiliary Variable Lemmas

2.4.1 Proof of Proposition 2.3.1

The conditional distribution (𝜙 |𝑌 ) has a density on R𝑛 proportional to

exp
[
− (𝑛 − 1)\

2

𝑛∑︁
𝑖=1

(
𝜙𝑖 −

𝑘𝑖

𝑛 − 1

)2]
= exp

[
− (𝑛 − 1)\

2

𝑛∑︁
𝑖=1

𝜙2
𝑖 + \

𝑛∑︁
𝑖=1

𝜙𝑖𝑘𝑖 −
\

2(𝑛 − 1)

𝑛∑︁
𝑖=1

𝑘2
𝑖

]
= exp

[
− (𝑛 − 1)\

2

𝑛∑︁
𝑖=1

𝜙2
𝑖 −

\

2(𝑛 − 1)

𝑛∑︁
𝑖=1

𝑘2
𝑖 + \

∑︁
𝑖< 𝑗

𝑌𝑖 𝑗 (𝜙𝑖 + 𝜙 𝑗 )
]
.
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Since 𝑌 has a p.m.f. proportional to exp
(
\
2
∑𝑛
𝑖=1 𝑘

2
𝑖

)
, the joint distribution of (𝑌, 𝜙) has a density

on {−1, 1}(𝑛2) × R𝑛 proportional to

exp
[
− (𝑛 − 1)\

2

𝑛∑︁
𝑖=1

𝜙2
𝑖 + \

∑︁
𝑖< 𝑗

𝑌𝑖 𝑗 (𝜙𝑖 + 𝜙 𝑗 )
]
. (2.58)

(a) From (2.58), it follows that conditional on 𝜙 the random variables {𝑌𝑖 𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} are

mutually independent, with 𝑌𝑖 𝑗 having the distribution as in part (a).

(b) Summing over the expression in (2.58), the marginal density of 𝜙 is proportional to

∑︁
𝑌∈{−1,1}(

𝑛
2)

exp
[
− (𝑛 − 1)\

2

𝑛∑︁
𝑖=1

𝜙2
𝑖 + \

∑︁
𝑖< 𝑗

𝑌𝑖 𝑗 (𝜙𝑖 + 𝜙 𝑗 )
]

=2(
𝑛
2) exp

[
− (𝑛 − 1)\

2

𝑛∑︁
𝑖=1

𝜙2
𝑖 + log cosh(\ (𝜙𝑖 + 𝜙 𝑗 ))

]
.

Since the RHS above is proportional to 𝑓𝑛,\,β (𝜙), the conclusion of part (b) follows.

2.4.2 Proof of Lemma 2.3.2

For proving Lemma 2.3.2, we need the following two lemmas.

Lemma 2.4.1. Suppose \ = 1/2, and β ∈ [0, 𝑛−1/2]. Then there exists a positive constant 𝑀 free

of 𝑛, such that

logP𝑛,\,β (
𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2 > 𝑀) ≲ −𝑛. (2.59)

Lemma 2.4.2. Suppose \ = 1/2, and β ∈ [0, 𝑛−1/2]. Then there exists a positive constant 𝑀 free

of 𝑛, such that

logP𝑛,\,β ( |𝜙| ≥ 𝑀𝑛−1/4) ≲ −𝑛. (2.60)
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Proof of Lemma 2.4.1

To begin, use (2.24) we get the existence of a finite positive constant 𝐶 free of 𝑛 such that����log 𝑓𝑛,\,β − log 𝑓𝑛,\,0(𝜙) −
(𝑛 − 1)𝑠𝐴

2
tanh(𝜙)

����
≤2𝐶𝑛𝐴

𝑠∑︁
𝑖=1

|𝜙𝑖 − 𝜙 | + 2𝐶𝑠𝐴
𝑛∑︁
𝑖=1

|𝜙𝑖 − 𝜙| + 𝐶𝑛𝑠𝐴2

≤𝐶𝑛
[
𝛿2

𝑠∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2 + 𝑠𝐴
2

𝛿2

]
+ 𝐶𝑠

[
𝛿2

𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2 + 𝑛𝐴
2

𝛿2

]
+ 𝐶𝑛𝑠𝐴2

≤𝐶𝑛𝛿2
𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2 + 3𝐶𝑛𝑠𝐴2

𝛿2 . (2.61)

for any 𝛿 ∈ (0, 1), where we use the bound 2𝑎𝑏 ≤ 𝑎2 + 𝑏2 in the third inequality. Also, with

𝑞(𝑥) = 𝑥2

2 − log cosh(𝑥) as in (2.21), we have 𝑞′′(𝑥) = 1− sech2(𝑥) ∈ [0, 1], where we use the fact

that \ = 1
2 . A Taylor’s series expansion then gives

(𝜙𝑖 + 𝜙 𝑗
2

− 𝜙
)
𝑞′(𝜙) ≤ 𝑞

(𝜙𝑖 + 𝜙 𝑗
2

)
− 𝑞(𝜙) ≤

(𝜙𝑖 + 𝜙 𝑗
2

− 𝜙
)
𝑞′(𝜙) + 1

2

(𝜙𝑖 + 𝜙 𝑗
2

− 𝜙
)2
, (2.62)

which on summing over 𝑖 < 𝑗 and invoking with (2.25)

𝑛(𝑛 − 1)
2

𝑞(𝜙) + 𝑛
8

𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2 ≤ − log 𝑓𝑛,\,0(𝜙) ≤
𝑛(𝑛 − 1)

2
𝑞(𝜙) + 𝑛

4

𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2. (2.63)

This gives

P𝑛,\,β (
𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝜙)2 > 𝑀)

=

∫
R𝑛
𝑒− 𝑓𝑛,\,β (𝜙)1{∑𝑛

𝑖=1(𝜙𝑖 − 𝜙)2 > 𝑀}𝑑𝜙∫
R𝑛
𝑒− 𝑓𝑛,\,β (𝜙)𝑑𝜙

≤𝑒
3𝐶𝑛𝑠𝐴2
𝛿2

∫
R𝑛

exp
(
− 𝑛(𝑛−1)

2 𝑞(𝜙) − _1
2

∑𝑛
𝑖=1(𝜙𝑖 − 𝜙)2

)
1{∑𝑛

𝑖=1(𝜙𝑖 − 𝜙)2 > 𝑀}𝑑𝜙∫
R𝑛

exp
(
− 𝑛(𝑛−1)

2 𝑞(𝜙) − _2
2

∑𝑛
𝑖=1(𝜙𝑖 − 𝜙)2

)
𝑑𝜙

, (2.64)
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where _1 := \
2 − 2𝐶𝛿2 and _2 := \ + 2𝐶𝛿2 are positive reals, for the choice 𝛿2 := \

8𝐶 . Let 𝑂𝑛 be

an orthogonal matrix with first row equal to 𝑛−1/21. Then, setting 𝜓 = 𝑂𝑛𝜙 we have 𝜓1 =
√
𝑛𝜙,

and
∑𝑛
𝑖=2 𝜓

2
𝑖
=

∑𝑛
𝑖=1(𝜙𝑖 − 𝜙)2. Using this transformation, the ratio of integrals in the RHS of (2.64)

equals

∫
R𝑛

exp
(
− 𝑛(𝑛−1)

2 𝑞(𝑛−1/2𝜓1) − _1
2

∑𝑛
𝑖=2 𝜓

2
𝑖

)
1{∑𝑛

𝑖=2 𝜓
2
𝑖
> 𝑀}𝑑𝜓∫

R𝑛
exp

(
− 𝑛(𝑛−1)

2 𝑞(𝑛−1/2𝜓1) − _2
2

∑𝑛
𝑖=2 𝜓

2
𝑖

)
𝑑𝜓

=

(_2
_1

) 𝑛−1
2
P(𝜒2

𝑛−1 > 𝑀_1).

The desired conclusion is immediate from standard tail bounds of the 𝜒2
𝑛−1 distribution.

Proof of Lemma 2.4.2

To begin, note that

P𝑛,\,β ( |𝜙 | ≥ 𝑀𝑛−1/4) =P𝑛,\,β ( |𝜙 | ≥ 2) + P𝑛,\,β (𝑀𝑛−1/4 ≤ |𝜙| ≤ 2),

where logP𝑛,\,β ( |𝜙 | ≥ 2) ≲ −𝑛 using (2.18). Proceeding to bound the first term in the RHS of the

above display, using an argument similar to the derivation of (2.64) we get

P𝑛,\,β (𝑀𝑛−1/4 ≤ |𝜙| ≤ 2)

≤𝑒
3𝐶𝑛𝑠𝐴2
𝛿2

∫
R𝑛

exp
(
− 𝑛(𝑛−1)

2 𝑞(𝜙) − _1
2

∑𝑛
𝑖=1(𝜙𝑖 − 𝜙)2

)
1{𝑀𝑛−1/4 ≤ |𝜙| ≤ 2}𝑑𝜙∫

R𝑛
exp

(
− 𝑛(𝑛−1)

2 𝑞(𝜙) − _2
2

∑𝑛
𝑖=1(𝜙𝑖 − 𝜙)2

)
𝑑𝜙

=𝑒
3𝐶𝑛𝑠𝐴2
𝛿2

∫
R𝑛

exp
(
− 𝑛(𝑛−1)

2 𝑞(𝑛−1/2𝜓1) − _1
2

∑𝑛
𝑖=2 𝜓

2
𝑖

)
1{𝑀𝑛−1/4 ≤ |𝑛−1/2𝜓1 | ≤ 2}𝑑𝜓∫

R𝑛
exp

(
− 𝑛(𝑛−1)

2 𝑞(𝑛−1/2𝜓1) − _2
2

∑𝑛
𝑖=2 𝜓

2
𝑖

)
𝑑𝜓

=𝑒
3𝐶𝑛𝑠𝐴2
𝛿2

(_2
_1

) 𝑛−1
2

∫
R

exp
(
− 𝑛(𝑛−1)

2 𝑞(𝑛−1/2𝜓1)
)
1{𝑀𝑛−1/4 ≤ |𝑛−1/2𝜓1 | ≤ 2}𝑑𝜓1∫

R
exp

(
− 𝑛(𝑛−1)

2 𝑞(𝑛−1/2𝜓1)
)
𝑑𝜓1
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where we use the orthogonal transformation 𝜙 ↦→ 𝜓 introduced in Lemma 2.4.1 in the last step.

Now the function 𝑞(.) satisfies 𝑞′(0) = 𝑞′′(0) = 𝑞′′′(0) = 0, and 𝑞′′′′(0) > 0. Since 𝑞(.) is

continuous and does not vanish anywhere else on R, there exists finite positive constants 𝑐1, 𝑐2

such that 𝑐1𝑥
4 ≤ 𝑞(𝑥) ≤ 𝑐2𝑥

4 for all 𝑥 ∈ [−2, 2]. Using this, the ratio of integrals in the above

display can be bounded by

∫
R

exp
(
− 𝑐′1𝜓

4
1

)
1{|𝜓1 | ≥ 𝑀𝑛1/4}𝑑𝜓1∫

R
exp

(
− 𝑐′2𝜓

4
1

)
𝑑𝜓1

.

The desired conclusion follows from the above display using Laplace method for a suitable choice

of 𝑀 .

Proof of Lemma 2.3.2

Without loss of generality, it suffices to work with 𝜙1. For 2 ≤ 𝑖 ≤ 𝑛, using (2.20) we have

𝑝1𝑖 (𝜙1, 𝜙𝑖) =
1
8
(𝜙1 − 𝜙𝑖)2 + 𝑞

(𝜙1 + 𝜙𝑖
2

)
− log cosh

(𝜙1 + 𝜙𝑖
2

+ 𝛽1 + 𝛽𝑖
2

)
+ log cosh

(𝜙1 + 𝜙 𝑗
2

)
=

1
8
(𝜙1 − 𝜙𝑖)2 + 𝑞

(𝜙1 + 𝜙𝑖
2

)
− 𝛽1 + 𝛽𝑖

2
tanh(\ (𝜙1 + 𝜙𝑖)) +𝑂 (𝛽1 + 𝛽𝑖)2. (2.65)

Note that 𝑞′′(𝑥) ∈ [0, 1], which along with a Taylor’s series expansion around 𝜙1 :=
∑𝑛
𝑗=2 𝜙 𝑗

𝑛−1 gives

0 ≤ 𝑞

(𝜙1 + 𝜙𝑖
2

)
− 𝑞(𝜙1) −

(𝜙1 + 𝜙𝑖
2

− 𝜙1

)
𝑞′(𝜙1) ≤

1
2

(𝜙1 + 𝜙𝑖
2

− 𝜙1

)2
.

On adding over 𝑖 ∈ [2, 𝑛] and using the previous display, this gives

𝑛 − 1
8

(𝜙1 − 𝜙1)2 + 1
8

𝑛∑︁
𝑖=2

(𝜙𝑖 − 𝜙1)2

≤ \
4

𝑛∑︁
𝑖=2

(𝜙1 − 𝜙𝑖)2 +
𝑛∑︁
𝑖=2

𝑞

(𝜙1 + 𝜙𝑖
2

)
− (𝑛 − 1)

[
𝑞(𝜙1) +

1
2
𝑞′(𝜙1) (𝜙1 − 𝜙1)

]
≤𝑛 − 1

4
(𝜙1 − 𝜙1)2 + 1

4

𝑛∑︁
𝑖=2

(𝜙𝑖 − 𝜙1)2. (2.66)
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Another Taylor’s series approximation gives

tanh
(𝜙1 + 𝜙𝑖

2

)
= tanh(𝜙1) +

(𝜙1 + 𝜙𝑖
2

− 𝜙1

)
sech2(𝜙1) +𝑂 (𝜙1 + 𝜙𝑖 − 2𝜙1)2,

which on summing over 𝑖 ∈ [2, 𝑛] gives

𝑛∑︁
𝑖=2

𝛽1 + 𝛽𝑖
2

tanh(\ (𝜙1 + 𝜙𝑖))

= tanh(𝜙1)
𝑛∑︁
𝑖=2

𝛽1 + 𝛽𝑖
2

+ 1
4

𝑛∑︁
𝑖=2

𝛽𝑖 (𝜙𝑖 − 𝜙1)sech2(𝜙1)

+𝑂
(
(𝑛 − 1)𝐴|𝜙1 − 𝜙1 | + (𝑛 − 1)𝐴(𝜙1 − 𝜙1)2 + 𝐴

𝑛∑︁
𝑖=2

(𝜙𝑖 − ¯𝜙1)2

)
. (2.67)

Combining (2.66) and (2.67) along with (2.65) we get the existence of a positive constant 𝐶 free

of 𝑛, such that

1
9

[
(𝑛 − 1) (𝜙1 − 𝜙1)2 +

𝑛∑︁
𝑖=2

(𝜙𝑖 − 𝜙1)2
]
− 𝐶 (𝑛 − 1)𝐴|𝜙1 − 𝜙1 | − 𝐶𝑛𝐴2

≤
𝑛∑︁
𝑖=2

𝑝1𝑖 (𝜙1, 𝜙𝑖) − 𝜑(𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛) − 𝑛 − 1
2

𝑞′(𝜙1) (𝜙1 − 𝜙1)

≤1
3

[
(𝑛 − 1) (𝜙1 − 𝜙1)2 +

𝑛∑︁
𝑖=2

(𝜙𝑖 − 𝜙1)2
]
+ 𝐶 (𝑛 − 1)𝐴|𝜙1 − 𝜙1 | + 𝐶𝑛𝐴2. (2.68)

In (2.68), we have set

𝜑(𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛) := (𝑛 − 1)𝑞(𝜙1) − tanh(𝜙1)
𝑛∑︁
𝑖=2

𝛽1 + 𝛽𝑖
2

− 1
4

𝑛∑︁
𝑖=2

𝛽𝑖 (𝜙𝑖 − 𝜙1)sech2(𝜙1),

which is a function which does not depend on 𝜙1. Set

𝐷 :=

{
𝑛∑︁
𝑖=2

(𝜙𝑖 − 𝜙1)2 ≤ 𝑀, |𝜙1 | ≤ 𝑀𝑛−1/4

}
,
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where 𝑀 is a constant free of 𝑛 such that logP𝑛,\,β (𝑈𝑐) ≲ −𝑛. The existence of such a constant

follows from Lemmas 2.4.1 and 2.4.2. Then we have

E𝑛,\,β |𝜙1 − 𝜙1 |𝑙 = E𝑛,\,β |𝜙1 − 𝜙1 |𝑙1𝐷 + E𝑛,\,β |𝜙1 − 𝜙1 |𝑙1𝐷𝑐

≤E𝑛,\,β
(
E𝑛,\,β

(
|𝜙1 − 𝜙1

𝑙 |𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛
)
1𝐷

)
+

√︃
E𝑛,\,β |𝜙1 − 𝜙1 |2𝑙

√︃
P𝑛,\,β (𝐷𝑐).

Since P𝑛,\,β (𝐷𝑐) decays exponentially, to complete the argument it suffices to show that

sup
(𝜙2,...,𝜙𝑛)∈𝐷

E𝑛,\,β

(
|𝜙1 − 𝜙1 |𝑙 |𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛

)
≲ 𝑛−ℓ/2. (2.69)

Proceeding to show (2.69), using (2.68) we have

E𝑛,\,β

(
|𝜙1 − 𝜙1 |𝑙 |𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛

)
=

∫
R
|𝜙1 − 𝜙1 |𝑙 exp

(
− ∑𝑛

𝑖=2 𝑝1𝑖 (𝜙1, 𝜙𝑖)
)
𝑑𝜙1∫

R
exp

(
− ∑𝑛

𝑖=2 𝑝1𝑖 (𝜙1, 𝜙𝑖)
)
𝑑𝜙1

≤ exp

((1
3
− 1

9

) 𝑛∑︁
𝑖=2

(𝜙𝑖 − 𝜙1)2 + 2𝐶𝑛𝐴2

)

×

∫
R
|𝜙1 − 𝜙1 |ℓ exp

(
− 𝑛−1

3 (𝜙1 − 𝜙1)2 − 𝑛−1
2 (𝜙1 − 𝜙1)𝑞′(𝜙1) + 𝐶

√
𝑛 − 1|𝜙1 − 𝜙1 |

)
𝑑𝜙1∫

R
exp

(
− 𝑛−1

9 (𝜙1 − 𝜙1)2 − 𝑛−1
2 (𝜙1 − 𝜙1)𝑞′(𝜙1) − 𝐶

√
𝑛 − 1|𝜙1 − 𝜙1 |

)
𝑑𝜙1

≤ exp
(2𝑀

9
+ 2𝐶

)
×

∫
R
|𝜙1 − 𝜙1 |ℓ exp

(
− 𝑛−1

3 (𝜙1 − 𝜙1)+ 𝑐𝑀
3 (𝑛−1)

2𝑛3/4 |𝜙1 − 𝜙1 | + 𝐶
√
𝑛 − 1|𝜙1 − 𝜙1 |

)
𝑑𝜙1∫

R
exp

(
− 𝑛−1

9 (𝜙1 − 𝜙1)2 − 𝑐𝑀3 (𝑛−1)
2𝑛3/4 |𝜙1 − 𝜙1 | − 𝐶

√
𝑛 − 1|𝜙1 − 𝜙1 |

)
𝑑𝜙1

, (2.70)

where 𝑐 := sup𝑥∈[−1,1]
|𝑞′(𝑥) |
|𝑥 |3 . By a change of variable, the RHS of (2.70) becomes

𝑒
2𝑀

9 +2𝐶

(𝑛 − 1)ℓ/2

∫
R
|𝑥 |ℓ𝑒−

𝑥2
3 + 𝑐𝑀3√𝑛−1

2𝑛3/4 |𝑥 |+𝐶 |𝑥 |
𝑑𝑥∫

R
𝑒
− 𝑥2

9 − 𝑐𝑀3√𝑛−1
2𝑛3/4 −𝐶 |𝑥 |

𝑑𝑥

≲ 𝑛−ℓ/2,
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from which (2.69) follows. This completes the proof of the lemma.

2.4.3 Proof of Lemma 2.3.6

We begin by proving two lemmas, which will be useful for the proof.

Lemma 2.4.3. For every 𝑎 ∈ R, define the function 𝑞𝑎 : R ↦→ R by setting

𝑞𝑎 (𝑥) := \𝑥2 − log cosh(2\𝑥 + 𝑎).

Denote by 𝑡 (𝑎) the largest root of the equation 𝑞′𝑎 (𝑥) = 0. Then the following conclusions hold:

(a) The map 𝑡 (.) is well defined and C1 on (−2𝛿, 2𝛿), for some 𝛿 > 0.

(b) If 𝑎 ≥ 0, then 𝑡 (𝑎) is the unique global maximizer of 𝑞𝑎 (.) in [0,∞).

(c) There exists finite positive reals _′1, _
′
2 such that for all 𝑥, 𝑦 ∈ [0, 2] and 𝑎 ∈ [0, 𝛿] we have

_′1 [(𝑥 − 𝑡)
2 + (𝑦 − 𝑡)2] − _′1𝑎

2 ≤ 𝑞𝑎 (𝑥) − 𝑞𝑎 (𝑡 (𝑎)) ≤ _′2 [(𝑥 − 𝑡)
2 + (𝑦 − 𝑡)2] + _′2𝑎

2.

Lemma 2.4.4. Suppose \ > 1/2, and β ∈ [0, 2𝑛−1/2]𝑛. Then there exists a positive constant 𝑀

depending on 𝑛 such that

logP𝑛,\,β
( 𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝑡)2 > 𝑀
���𝜙 ∈ [0, 2]𝑛

)
≲ −𝑛. (2.71)

Proof of Lemma 2.4.3

(a) Since 𝑞′𝑎 (𝑥) = 2\ [𝑥 − tanh(2\𝑥 + 𝑎)], it follows that 𝑞𝑎 (.) has an odd number of roots in

R, and so the maximum root is well defined for all 𝑎 ∈ R, and satisfies 𝑥 = tanh(2\𝑥 + 𝑎).

If 𝑎 = 0, then the desired conclusion follows from Lemma 2.3.4, with 𝑡 (0) = 𝑡. Since

𝑞′′′0 (𝑡) ≠ 0, we must have 𝑞′′0 (𝑡) > 0, and so using Implicit function theorem, there exists
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𝛿 > 0 (depending on \) such that for all 𝑎 ∈ (−2𝛿, 2𝛿) the map 𝑡 (.) is C1.

(b) If 𝑎 = 0 then the conclusion follows from Lemma 2.3.4, and so we assume 𝑎 > 0. Since

𝑞𝑎 (𝑥) → ∞ as 𝑥 → ∞, the function 𝑞𝑎 (.) attains a global minima at a finite number in

[0,∞). Also since 𝑞′𝑎 (0+) = −2\ tanh(2\ + 𝑎) < 0, 0 is not a minima of 𝑞𝑎 (.). Since 𝑞𝑎 (.)

has a unique root in (0,∞) for 𝑎 > 0, the desired conclusion follows.

(c) Define the function 𝑄(., .) : [0, 𝛿] × [0, 2] ↦→ R by setting

𝑄(𝑎, 𝑡) :=
𝑞𝑎 (𝑥) − 𝑞𝑎 (𝑡 (𝑎))

(𝑥 − 𝑡 ((𝑎))2 if 𝑥 ≠ 𝑡 (𝑎),

=
1
2
𝑞′′𝑎 (𝑡 (𝑎)) if 𝑥 = 𝑡 (𝑎).

Using part (b) we have 𝑄(., .) is strictly positive point-wise, as 𝑡 (𝑎) is the unique global

minimizer of 𝑞𝑎 (.) in [0,∞). On the other hand, using part (a) we have𝑄(., .) is continuous.

Since a continuous function on a compact set attains its maximum and minimum, we have

_′′1 := inf
𝑎∈[0,𝛿],𝑥∈[0,2]

𝑄(𝑎, 𝑡) ≤ sup
𝑎∈[0,𝛿],𝑥∈[0,2]

𝑄(𝑎, 𝑡) =: _′′2 , (2.72)

Using (2.72) we get

𝑞𝑎 (𝑥) − 𝑞𝑎 (𝑡 (𝑎)) ≤ _′′2 [(𝑥 − 𝑡 (𝑎))
2 + (𝑦 − 𝑡 (𝑎))2] ≤ _′′2 [(𝑥 − 𝑡)

2 + (𝑦 − 𝑡)2] + 4_′′2 (𝑡 (𝑎) − 𝑡)
2,

𝑞𝑎 (𝑥) − 𝑞𝑎 (𝑡 (𝑎)) ≥ _′′1 [(𝑥 − 𝑡 (𝑎))
2 + (𝑦 − 𝑡 (𝑎))2] ≥ _′′1 [(𝑥 − 𝑡)

2 + (𝑦 − 𝑡)2] − 4_′′1 (𝑡 (𝑎) − 𝑡)
2.

The desired conclusion then follows on using part (a) to note the existence of 𝑐 > 0 such that

|𝑡 (𝑎) − 𝑡 | ≤ 𝑐 |𝑎 | for all 𝑎 ∈ [−𝛿, 𝛿].
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Proof of Lemma 2.4.4

With 𝑝𝑖 𝑗 (𝜙𝑖, 𝜙 𝑗 ) as in (2.20) we can write

𝑝𝑖 𝑗 (𝜙𝑖, 𝜙 𝑗 ) =
\

4
(𝜙𝑖 − 𝜙 𝑗 )2 + 𝑞 𝛽𝑖+𝛽 𝑗

2

(𝜙𝑖 + 𝜙 𝑗
2

)
, (2.73)

where the function 𝑞𝑎 (.) is defined in Lemma 2.4.3. For 𝜙𝑖, 𝜙 𝑗 ∈ [0, 2] and 𝛽𝑖, 𝛽 𝑗 ∈ [0, 2𝑛−1/2],

using part (c) of Lemma 2.4.3 gives

_′1

[𝜙𝑖 + 𝜙 𝑗
2

− 𝑡
]2

−
_′1
𝑛

≤ 𝑞 𝛽𝑖+𝛽 𝑗
2

(𝜙𝑖 + 𝜙 𝑗
2

)
− 𝑞 𝛽𝑖+𝛽 𝑗

2

(
𝑡

( 𝛽𝑖 + 𝛽 𝑗
2

))
≤ _′2

[𝜙𝑖 + 𝜙 𝑗
2

− 𝑡
]2

+
_′2
𝑛
.

Using this along with (2.73), this gives the existence of finite positive constants _1 and _2, such

that

_1
2

[
(𝜙𝑖 − 𝑡)2 + (𝜙 𝑗 − 𝑡)2

]
− 𝑛_1 ≤𝑝𝑖 𝑗 (𝜙𝑖, 𝜙 𝑗 ) − 𝑞 𝛽𝑖+𝛽 𝑗

2

(
𝑡

( 𝛽𝑖 + 𝛽 𝑗
2

))
≤_2

2

[
(𝜙𝑖 − 𝑡)2 + (𝜙 𝑗 − 𝑡)2

]
+ 𝑛_2.

(2.74)

Summing over 𝑖 < 𝑗 we get

(𝑛 − 1)_1
2

𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝑡)2 − 𝑛_1 ≤
∑︁
𝑖< 𝑗

𝑝𝑖 𝑗 (𝜙𝑖, 𝜙 𝑗 ) −
∑︁
𝑖< 𝑗

𝑞 𝛽𝑖+𝛽 𝑗
2

(
𝑡

( 𝛽𝑖 + 𝛽 𝑗
2

))
≤ (𝑛 − 1)_2

2

𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝑡)2 + 𝑛_2,
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which gives

P𝑛,\,β

( 𝑛∑︁
𝑖=1

(𝜙𝑖 − 𝑡)2 > 𝑀
���𝜙 ∈ [0, 2]𝑛

)
=

∫
R𝑛
𝑒−

∑
𝑖< 𝑗 𝑝(𝜙𝑖 ,𝜙𝑖)1{∑𝑛

𝑖=1(𝜙𝑖 − 𝑡)2 > 𝑀}𝑑𝜙∫
R𝑛
𝑒−

∑
𝑖< 𝑗 𝑝(𝜙𝑖 ,𝜙𝑖)𝑑𝜙1

≤𝑒𝑛(_1+_2)

∫
R𝑛
𝑒−

(𝑛−1)_1
2

∑𝑛
𝑖=1 (𝜙𝑖−𝑡)21{∑𝑛

𝑖=1(𝜙𝑖 − 𝑡)2 > 𝑀}𝑑𝜙∫
[0,2]𝑛 𝑒

− (𝑛−1)_2
2

∑𝑛
𝑖=1 (𝜙𝑖−𝑡)2

𝑑𝜙

≤𝑒𝑛(_1+_2)
(_2
_1

)𝑛/2 P(𝜒2
𝑛 > (𝑛 − 1)𝑀_1)

P
(
𝑁 (0, _−1

2 ) ∈
√
𝑛 − 1[−𝑡, 2 − 𝑡]

)𝑛 ,
The desired conclusion then follows on using standard tail bounds of the 𝜒2

𝑛 distribution.

Proof of Lemma 2.3.6

Summing over display (2.74) for 𝑗 ∈ [2, 𝑛] gives

_1
2

𝑛∑︁
𝑗=2

(𝜙 𝑗 − 𝑡)2 − _1
2
(𝜙1 − 𝑡)2 − _1 ≤

𝑛∑︁
𝑗=2

[
𝑝1 𝑗 (𝜙1, 𝜙 𝑗 ) − 𝑞 𝛽1+𝛽 𝑗

2
(𝑡1, 𝑡 𝑗 )

]
≤_2

2

𝑛∑︁
𝑗=2

(𝜙 𝑗 − 𝑡)2 + (𝑛 − 1)_2
2

(𝜙1 − 𝑡)2 + _2.

Thus, with 𝐷 := {∑𝑛
𝑗=2(𝜙 𝑗 − 𝑡)2 ≤ 𝑀}, for (𝜙2, . . . , 𝜙𝑛) ∈ 𝐷 ∩ [0, 2]𝑛−1 we have

E𝑛,\,β

(
|𝜙1 − 𝑡 |ℓ1{𝜙1 ∈ [0, 2]}

���𝜙𝑖, 𝑖 ≠ 1
)

=

∫
[0,2] |𝜙1 − 𝑡 |ℓ

𝑛∏
𝑖=2
𝑒−𝑝1𝑖 (𝜙1,𝜙𝑖)𝑑𝜙1∫

[0,2]

𝑛∏
𝑖=2
𝑒−𝑝1𝑖 (𝜙1,𝜙𝑖))𝑑𝜙1

≤𝑒
_2−_1

2
𝑛∑
𝑖=2

(𝜙𝑖−𝑡)2+_1+_2

∫
[0,2] exp

(
−(𝑛−1)_1 (𝜙1−𝑡)2

2

)
|𝜙1 − 𝑡 |ℓ𝑑𝜙1∫

[0,2] exp
(
−(𝑛−1)_1 (𝜙1−𝑡)2

2

)
𝑑𝜙1

≤𝑒(_2−_1)𝑀+_1+_2

√︄
_2

(𝑛 − 1)ℓ_1

E|𝑁 (0, _−1
1 ) |ℓ

P(𝑁
(
0, _−1

2 ) ∈ [−𝑡
√
𝑛 − 1, (2 − 𝑡)

√
𝑛 − 1]

) .
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Since the probability in the denominator above converges to 1, using tail estimates of the normal

distribution we get

sup
(𝜙2,...,𝜙𝑛)∈{𝐷∩[0,2]𝑛−1}

E
[
|𝜙1 − 𝑡 |ℓ1{𝜙1 ∈ [0, 2]}

���𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛
]
≲ 𝑛−ℓ/2.

The desired conclusion follows from the last display above, and using Lemma 2.4.4 to get that

logP𝑛,\,β (𝐷𝑐 |𝜙 ∈ [0, 2]𝑛) ≲ −𝑛.

2.4.4 Proof of Lemma 2.3.7

We first prove the following lemma which will be used in proving Lemma 2.3.7.

Lemma 2.4.5. Suppose \ > 1/2, and β ∈ [0, 2𝑛−1/2]𝑛. Then for any 𝛿 > 0 there exists a constant

𝑐 such that

logP𝑛,\,β (max
𝑖∈[𝑛]

|𝜙𝑖 − 𝑡 | > 𝛿 |𝜙 ∈ [0, 2]𝑛) ≤ −𝑐𝑛.

Proof of Lemma 2.4.5

Set 𝐷 := {∑𝑛
𝑖=2(𝜙𝑖 − 𝑡)2 ≤ 𝑀}, and use (2.74) to note that for any 𝛿 > 0 and (𝜙2, . . . , 𝜙𝑛) ∈

𝐷 ∩ [0, 2]𝑛−1 we have

P𝑛,\,β ( |𝜙1 − 𝑡 | > 𝛿, 𝜙1 ∈ [0, 2] |𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛)

=

∫
[0,2] 1{|𝜙𝑖 − 𝑡 | > 𝛿}

𝑛∏
𝑖=2
𝑒−𝑝1𝑖 (𝜙1,𝜙𝑖)𝑑𝜙1∫

[0,2]

𝑛∏
𝑖=2
𝑒−𝑝1𝑖 (𝜙1,𝜙𝑖)𝑑𝜙1

≤𝑒
_2−_1

2
𝑛∑
𝑖=2

(𝜙𝑖−𝑡)2+_1+_2

∫
[0,2] exp

(
−(𝑛−1)_1 (𝜙1−𝑡)2

2

)
1{|𝜙𝑖 − 𝑡 | > 𝛿}𝑑𝜙1∫

[0,2] exp
(
−(𝑛−1)_1 (𝜙1−𝑡)2

2

)
𝑑𝜙1

≤𝑒(_2−_1)𝑀+_1+_2

√︂
_2
_1

P
(
𝑁 (0, _−1

1 ) | > 𝛿
√
𝑛 − 1

)
P(𝑁

(
0, _−1

2 ) ∈ [−𝑡
√
𝑛 − 1, 2

√
𝑛 − 1]

) .
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From the above display, we get

sup
(𝜙2,...,𝜙𝑛)∈𝐷∩[0,2]𝑛−1

logP( |𝜙1 − 𝑡 | > 𝛿1{𝜙1 ∈ [0, 2] |𝜙𝑖, 2 ≤ 𝑖 ≤ 𝑛) ≲ −𝑛.

Recalling that logP𝑛,\,β (𝐷𝑐 |𝜙 ∈ [0, 2]𝑛) ≲ −𝑛, we get

logP𝑛,\,β
(
|𝜙1 − 𝑡 | > 𝛿,

���𝜙 ∈ [0, 2]𝑛
)
≲ −𝑛.

A similar argument applies to all co-ordinates of 𝜙, and so a union bound gives

logP𝑛,\,β
(

max
𝑖∈[𝑛]

|𝜙𝑖 − 𝑡 | > 𝛿
���𝜙 ∈ [0, 2]𝑛

)
≲ −𝑛,

as desired.

Proof of Lemma 2.3.7

(a) Note that

P𝑛,\,β (𝑈 ∩𝑈𝑐) =P𝑛,\,β (min
𝑖∈[𝑛]

𝜙𝑖 ≥ 0,max
𝑖∈[𝑛]

𝑘𝑖 <
(𝑛 − 1)𝑡

2

)
≤P𝑛,\,β

(
min
𝑖∈[𝑛]

𝜙𝑖 ≥
3𝑡
4
,max
𝑖∈[𝑛]

𝑘𝑖 <
(𝑛 − 1)𝑡

2

)
+ P𝑛,\,β

(
min
𝑖∈[𝑛]

𝜙𝑖 ≤
3𝑡
4
|𝜙 ∈ [0, 2]𝑛

)
.

The two terms in the RHS above decays exponentially using (2.18) and Lemma 2.4.5 respec-

tively, and so

logP𝑛,\,β (𝑈 ∩𝑈𝑐) ≲ −𝑛.

Also,

logP𝑛,\,β (𝑈𝑐 ∩𝑈) ≲ −𝑛
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using (2.18). The desired conclusion follows on combining the last two displays.

(b) This follows on using Cauchy-Schwarz inequality to note that

E𝑛,\,β (𝑊1{𝑈} −𝑊1{𝑈}) ≤
√︃
E𝑛,\,β𝑊2

√︃
P𝑛,\,β (𝑈) + P𝑛,\,β (𝑈) − 2P𝑛,\,β (𝑈 ∩𝑈)

≤
√︃
P𝑛,\,β (𝑈Δ𝑈).
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Chapter 3: Ising models on dense regular graphs

3.1 Introduction

The Ising Model is possibly the most well-known discrete graphical model, originating in sta-

tistical physics (see [28, 34, 42]), and henceforth studied in depth across several disciplines, in-

cluding statistics and machine learning (c.f. [3, 7, 18, 19, 26, 40] and the references therein). Under

this model, we observe a vector of dependent Rademacher (i.e. ±1 valued) random variables, where

the dependency is controlled by a coupling matrix, and an “inverse temperature” parameter \ > 0

(borrowing statistical physics terminology). Very often this coupling matrix is taken to be the

(scaled) adjacency matrix of a graph. Some of the common graph ensembles on which the Ising

model has been studied include the complete graph (the corresponding Ising model is known as

the Curie-Weiss model), the 𝑑 dimensional grid, Erdos-Rényi graphs, and random regular graphs

([20, 23, 35, 42]). Note that all the graph ensembles in the above list are (approximately) regular

graphs.

In this paper, we will study the behavior of Ising models on a sequence of “dense” regular

graphs converging in cut metric (see section 3.2.2 for a brief introduction to the theory of dense

graphs/graphons). Given an Ising model on a dense regular graph parametrized by the inverse

temperature parameter \ > 0 (see (3.1)), we study limits of experiments in the sense of Lucien

Le Cam ([36], see also [48]). In particular, we show that the Ising model is locally asymptotically

normal (LAN) in the low temperature regime (\ > 1), whereas the limiting experiment is very

different in critical (\ = 1) and high (\ < 1) temperature regimes. Using this framework, we derive

the limiting power of tests involving the parameter \, based on the maximum likelihood estimate,

pseudo-likelihood estimate, and the sample mean, across all regimes of \. We also study asymp-
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totic limiting distributions of the maximum likelihood estimate and pseudo-likelihood estimate in

the regime \ ≥ 1 (where consistent estimation of \ is possible), and compare their asymptotic per-

formances. Prior to our work, limit distribution of the maximum likelihood estimate was known

only for the Curie-Weiss model ([17]), and limit distribution for the pseudo-likelihood estimator

was not known in any example (to the best of our knowledge). Thus, we give a complete toolbox

for inference regarding the parameter \, for Ising model on dense graphs.

3.2 Main results

In this section we formally introduce the Ising model (section 3.2.1), and state our main re-

sults (section 3.2.6), which are essentially of three types, (i) limits of experiments, (ii) asymptotic

performance of estimators, and (iii) asymptotic performance of tests of hypothesis. We recall the

notion of limits of experiments in section 3.2.3. To obtain convergence in experiments, we require

the sequence coupling matrices for the Ising model to converge in cut metric, a notion which we

recall in section 3.2.2. We also introduce the estimators and test statistics that we study in sections

3.2.4 and 3.2.5 respectively. Section 3.2.7 illustrates our results with two concrete examples. Fi-

nally, section 3.2.8 discusses the main contributions of this paper, and possible avenues of future

research.

3.2.1 Formal set up

Let 𝑛 be a positive integer, and let 𝑄𝑛 be a (known) symmetric 𝑛 × 𝑛 matrix with non-negative

entries, and 0 on the diagonal. Let \ ≥ 0 be an unknown real valued parameter. Then the Ising

model with inverse temperature parameter \ and coupling matrix 𝑄𝑛 is a probability distribution

on {−1, 1}𝑛, defined by the probability mass function

P\,𝑄𝑛 (X = x) := exp
( \
2

x𝑇𝑄𝑛x − 𝑍𝑛 (\, 𝑄𝑛)
)
, for x ∈ {−1, 1}𝑛. (3.1)

Here 𝑍 (\, 𝑄𝑛) is the log normalizing constant which makes (3.1) into a probability distribution.
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One of the major challenges in analyzing Ising models is that 𝑍𝑛 (\, 𝑄𝑛) is typically intractable,

both analytically and computationally. Consequently, computing and analyzing the maximum

likelihood estimate is extremely challenging.

Throughout the paper we will assume that the matrix 𝑄𝑛 satisfies the following assumptions:

• The matrix 𝑄𝑛 is regular, i.e. setting [𝑛] := {1, 2, . . . , 𝑛} we have

𝑛∑︁
𝑗=1
𝑄𝑛 (𝑖, 𝑗) = 1, for all 𝑖 ∈ [𝑛] . (3.2)

• There exists a finite positive constant 𝐶𝑤 free of 𝑛 such that

max
𝑖, 𝑗∈[𝑛]

𝑄𝑛 (𝑖, 𝑗) <
𝐶𝑤

𝑛
. (3.3)

• The Frobenius norm of 𝑄𝑛 converges, i.e.

| |𝑄𝑛 | |𝐹 :=

√√√ 𝑛∑︁
𝑖, 𝑗=1

𝑄2
𝑛 (𝑖, 𝑗) → 𝛾. (3.4)

3.2.2 Graphon Convergence

Below we will briefly introduce some of the basics of cut metric theory needed for our pur-

poses, referring the audience for more details to [9, 10, 38].

By a graphon, we will mean a symmetric bounded measurable function 𝑓 : [0, 1]2 → [0, 𝐶𝑤].

Let W denote the space of all graphons. Equip the space W by the cut distance, defined by

𝑑□( 𝑓 , 𝑔) := sup
𝑆,𝑇⊂[0,1]

��� ∫
𝑆×𝑇

( 𝑓 (𝑥, 𝑦) − 𝑔(𝑥, 𝑦))𝑑𝑥𝑑𝑦
���.

Let M denote the space of all measurable measure preserving maps ] : [0, 1] ↦→ [0, 1]. Define an
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equivalence relation ∼ on the space W by setting

𝑓 ∼ 𝑔 if 𝑓 (𝑥, 𝑦) 𝑎.𝑠.= 𝑔](𝑥, 𝑦) := 𝑔(](𝑥), ](𝑦)), for some ] ∈ M .

Let W̃ denote the quotient space W/∼ under the above equivalence relation. Equip W̃ with the

cut metric, defined as follows:

𝛿□( 𝑓 , �̃�) := inf
]∈M

𝑑□( 𝑓 , 𝑔]) = inf
]∈M

𝑑□( 𝑓], 𝑔) = inf
]1,]2∈M

𝑑□( 𝑓]1 , 𝑔]2).

Then it follows from [9] that 𝛿□ is well defined, and (W̃, 𝛿□) is a compact metric space. We say a

sequence of graphons { 𝑓𝑛}𝑛≥1 converge to a graphon 𝑓 in cut metric, if

𝛿□( 𝑓𝑛, 𝑓 ) → 0.

Given a symmetric 𝑛× 𝑛 matrix 𝐴𝑛 with 0 on the diagonal, define a corresponding graphon 𝑓 𝐴𝑛 by

setting

𝑓 𝐴𝑛 (𝑥, 𝑦) := 𝐴⌈𝑛𝑥⌉,⌈𝑛𝑦⌉ .

We say {𝐴𝑛}𝑛≥1 converge in cut metric to a graphon 𝑓 , if the corresponding sequence of graphons

{ 𝑓 𝐴𝑛}𝑛≥1 converge to 𝑓 in cut metric, i.e.

𝛿□( 𝑓 𝐴𝑛 , 𝑓 ) → 0.

Given 𝑓 ∈ W, define a Hilbert-Schmidt operator 𝑇 𝑓 from 𝐿2 [0, 1] to 𝐿2 [0, 1] by setting

𝑇 𝑓 (𝑔) (·) :=
∫
[0,1]

𝑓 (·, 𝑦)𝑔(𝑦)𝑑𝑦.

This is a compact operator, and hence it has (at most) countably many eigenvalues. Let {_ 𝑗 } 𝑗≥1 be
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the eigenvalues of 𝑇 𝑓 , arranged in decreasing order of absolute value, i.e.

|_1 | ≥ |_2 | ≥ · · · .

Throughout the paper we assume that the sequence of matrices {𝑛𝑄𝑛}𝑛≥1 converge in cut metric

to a graphon 𝑓 ∈ W such that _2 < _1 (can be −_1), i.e.

𝛿□( 𝑓 𝑛𝑄𝑛 , 𝑓 ) → 0, _2 < _1. (3.5)

A similar spectral gap assumption on the eigenvalue was utilized in [19, p. 1.7], where the

authors study universal limiting distribution of X̄ for Ising models on dense regular graphs. In

particular, it was shown in [19, Ex 1.1] that universality can fail without such an assumption. The

same counter-example works in our setting as well, and demonstrates that the limiting experiment

may be different without this assumption.

Remark 3.2.1. To understand the exact nature of the assumptions (3.2), (3.3), (3.4) and (3.5), it

is instructive to consider the commonly studied case where 𝑄𝑛 is a scaled adjacency matrix of a

graph on 𝑛 vertices, defined as follows:

Let 𝐺𝑛 be a simple labeled graph on 𝑛 vertices, labeled by the set [𝑛]. Abusing notation

slightly, we also denote by 𝐺𝑛 the adjacency matrix of the graph. Then one takes 𝑄𝑛 = 1
𝑑
𝐺𝑛,

where 𝑑 := 1
𝑛

∑𝑛
𝑖=1 𝑑𝑖 is the average degree of the graph 𝐺𝑛, and (𝑑1, . . . , 𝑑𝑛) is the labeled degree

sequence of the graph 𝐺𝑛. This particular choice ensures that the resulting model is non trivial

(see [2, Cor 1.2]). For the above choice, the assumptions (3.2) and (3.3) reduce to the following:

𝑑𝑖 =

𝑛∑︁
𝑗=1
𝐺𝑛 (𝑖, 𝑗) =𝑑, for all 𝑖 ∈ [𝑛], and 𝑑 ≥ 𝑛

𝐶𝑊
.

The first assumption demands that the graph 𝐺𝑛 is regular, and the second assumption demands
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that the degree of 𝐺𝑛 grows linearly in 𝑛, i.e. the graph 𝐺𝑛 is dense. The fourth assumption

demands the convergence of the graph 𝐺𝑛 in cut metric to the function 𝑓 . In this case, the third

assumption (3.4) follows from (3.5), as

𝑛∑︁
𝑖, 𝑗=1

𝑄2
𝑛 (𝑖, 𝑗) =

1
𝑑2
𝑛

𝑛∑︁
𝑖, 𝑗=1

𝐺𝑛 (𝑖, 𝑗) =
𝑛

𝑑𝑛
→ 1∫

[0,1] 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
.

Thus our results apply to Ising models on dense regular graphs converging in cut metric (i.e. under

(3.2), (3.3) and (3.5)).

3.2.3 Limits of Experiments

In this section we briefly introduce the notion of convergence of experiments. For more details

we refer the reader to [48, Chapter 9].

Suppose that for each 1 ≤ 𝑛 ≤ ∞ we have a measure space (X𝑛, F𝑛). Let {Pℎ,𝑛, ℎ ∈ 𝐻}

be a collection of probability measures on (X𝑛, F𝑛). We say that {Pℎ,𝑛, ℎ ∈ 𝐻} converges to

{𝑃ℎ,∞, ℎ ∈ 𝐻} in the sense of limits of experiments, if for every finite subset 𝐼 of 𝐻 and ℎ0 ∈ 𝐻

we have ( 𝑑Pℎ,𝑛
𝑑Pℎ0,𝑛

(X)
)
ℎ∈𝐼

𝑑,Pℎ0 ,𝑛−→
( 𝑑Pℎ,∞
𝑑Pℎ0,∞

(𝑌 )
)
ℎ∈𝐼
. (3.6)

The RHS of (3.6) is also called the likelihood ratio process with base ℎ0. We will use the short

hand notation

Pℎ,𝑛
Exp
→ Pℎ,∞

to denote convergence of experiments.

In particular, if 𝐻 ⊆ R is open, and Pℎ,∞ = 𝑁 (ℎ, 𝜏2) for some 𝜏 > 0, then we say the collection

of experiments {Pℎ,𝑛, ℎ ∈ 𝐻} is locally asymptotically normal, or LAN. For examples of both LAN

and non LAN experiments, see [48, Chapters 7, 9]).
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3.2.4 Estimation of \

In this paper we will focus on the behavior of two estimators for \, the maximum likelihood

estimator, and the maximum pseudo-likelihood estimator.

• Maximum Likelihood Estimator (MLE)

The maximum likelihood estimator \̂𝑀𝐿𝐸𝑛 is defined as

arg sup
\∈R

{ \
2

X𝑇𝑄𝑛X − 𝑍𝑛 (\, 𝑄𝑛)
}
,

provided the supremum is attained uniquely. Since the function in the above display is

strictly concave in \, it follows that \̂𝑀𝐿𝐸𝑛 , if it exists, is the unique solution to the equation

1
2

X𝑇𝑄𝑛X = 𝑍′𝑛 (\, 𝑄𝑛) =
𝜕𝑍𝑛 (\, 𝑄𝑛)

𝜕\

���
\=\̂𝑀𝐿𝐸𝑛

=
1
2
EP\,𝑄𝑛X

𝑇𝑄𝑛X

in \ ∈ R. In the special case of the Curie-Weiss model, the asymptotics of \̂𝑀𝐿𝐸𝑛 was

studied in [17], where the authors demonstrated interesting phase transition properties in the

limit distribution across different regimes of \. However, to the best of our knowledge, the

behavior of \̂𝑀𝐿𝐸𝑛 is not understood for almost any other graph sequence.

• Maximum Pseudo-likelihood Estimator (MPLE)

Although the MLE is a natural estimator, from a computational perspective it is often dif-

ficult to evaluate, as the normalizing constant 𝑍𝑛 (\, 𝑄𝑛) is computationally intractable. To

bypass this, Besag introduced the maximum pseudo-likelihood estimator ([5, 4]) for spatial

interaction models. Below we define the maximum pseudo-likelihood estimator \̂𝑀𝑃𝐿𝐸𝑛 .

Given X ∼ P\,𝑄𝑛 , we have

P\,𝑄𝑛 (𝑋𝑖 = 𝑥𝑖 |𝑋 𝑗 for all 𝑗 ≠ 𝑖) :=
exp (\𝑡𝑖𝑥𝑖)

exp (\𝑡𝑖) + exp (−\𝑡𝑖)
, (3.7)
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where 𝑡𝑖 =
𝑛∑
𝑗=1
𝑄𝑛 (𝑖, 𝑗)𝑋 𝑗 . Define the pseudo-likelihood as the product of the above one

dimensional conditional distributions:

𝑃𝐿𝑛 (\) :=
𝑛∏
𝑖=1
P\,𝑄𝑛 (𝑋𝑖 |𝑋 𝑗 for all 𝑗 ≠ 𝑖) =

exp(\∑𝑛
𝑖=1 𝑋𝑖𝑡𝑖)

2𝑛
∏𝑛
𝑖=1 cosh(\𝑡𝑖)

.

The maximum pseudo-likelihood estimator \̂𝑀𝑃𝐿𝐸𝑛 is defined as

arg sup
\∈R

log 𝑃𝐿𝑛 (\) = arg sup
\∈R

{\
𝑛∑︁
𝑖=1

𝑋𝑖𝑡𝑖 −
𝑛∑︁
𝑖=1

log cosh(\𝑡𝑖)},

provided the supremum is attained uniquely. Since the function in the above display is

strictly concave in \, the MPLE, if it exists, satisfies the equation

X𝑇𝑄𝑛X =

𝑛∑︁
𝑖=1

𝑡𝑖 tanh (\𝑡𝑖). (3.8)

The above equation (3.8) does not involve the intractable function 𝑍𝑛 (\, 𝑄𝑛), and is much

easier to compute. Thus computational complexity of the pseudo-likelihood estimator is

much less as compared to the maximum likelihood estimator. The consistency of the pseudo-

likelihood estimator for Ising models was established in [7, 14, 26], but the question of

asymptotic distribution remained open.

Proposition 3.3.1 gives an exact characterization for the existence of the MLE and the MPLE,

and shows that the conditions hold with probability tending to 1.

3.2.5 Hypothesis Testing for \

Given X ∼ P\,𝑄𝑛 for some \ > 0, suppose we want to test

H0 : \ = \0 vs H1 : \ > \𝑛, (3.9)
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for a positive real number sequence {\𝑛}∞𝑛=1, at level 𝛼 ∈ (0, 1). Here \𝑛 will be chosen (depending

on \0) in such a manner, that we are in the contiguous regime, i.e. the limiting power of the most

powerful test will be between (0, 1). We consider three natural tests for the above problem in this

paper, which are introduced below:

• Mean Square Test (MS-test)

Let X̄ denote the sample mean of X, and let

𝜓𝑛 (X) =


1 If 𝑛X̄2 > 𝐾𝑛 (𝛼)

0 Otherwise
(3.10)

where 𝐾𝑛 (𝛼) is chosen such that 𝜓𝑛 has level 𝛼. Let 𝛽𝑀𝑆 denote the limiting power of the

above test (provided the limit exists).

• Neyman Pearson Test (NP-test) By Neyman Pearson Lemma, the UMP test for the above

hypothesis testing problem is based on the sufficient statistics X𝑇𝑄𝑛X, and is given by

𝜓𝑛 (X) =


1 If X𝑇𝑄𝑛X > 𝐾𝑛 (𝛼)

0 Otherwise
(3.11)

where 𝐾𝑛 (𝛼) is chosen such that the above test has level 𝛼. It follows from standard expo-

nential family calculations that the above test is equivalent to rejecting for large values of

\̂𝑀𝐿𝐸𝑛 . Let 𝛽𝑁𝑃 denote the limiting power of the above test (provided the limit exists).

• Pseudo-likelihood Test (PL-test) With \̂𝑀𝑃𝐿𝐸𝑛 denoting the pseudo-likelihood estimator,

define the pseudo-likelihood test by setting

𝜓𝑛 (X) =


1 If \̂𝑀𝑃𝐿𝐸𝑛 > 𝐾𝑛 (𝛼)

0 Otherwise
(3.12)

where 𝐾𝑛 (𝛼) is chosen such that the above test has level 𝛼. Let 𝛽𝑃𝐿 denote the limiting
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power of the above test (provided the limit exists).

Remark 3.2.2. Even though we consider a one sided testing problem in this paper, the

same analysis applies to the two sided versions of the above testing problem, with obvious

modifications.

3.2.6 Statement of main results

Before we state our main results, we require some technical definitions, most of which are

motivated by the following proposition from [19, Lemma 1.1]:

Proposition 3.2.1. For any \ > 0 consider the fixed point equation

𝑤(\, 𝑥) = 0, where 𝑤(\, 𝑥) := 𝑥 − tanh(\𝑥). (3.13)

(a) If \ > 1, then (3.13) has two non-zero roots ±𝑚(\) in 𝑥, where𝑚(\) > 0 and 𝜕𝑤(\,𝑥)
𝜕𝑥

���
𝑥=𝑚(\)

>

0.

(b) If \ = 1, then (3.13) has a unique root 𝑚1 = 0, and 𝜕𝑤(\,𝑥)
𝜕𝑥

���
𝑥=0

= 0.

(c) If \ ∈ (0, 1), then (3.13) has a unique root 𝑚(\) = 0, and 𝜕𝑤(\,𝑥)
𝜕𝑥

���
𝑥=0

> 0.

Definition 3.2.1. Using Proposition 3.2.1, we define the function \ ↦→ 𝑚(\), where 𝑚(\) is a

non-negative root of the equation 𝑤(\, 𝑥) = 0 “chosen carefully” as in Proposition 3.2.1. Note

that 𝑚(\) = 0 if \ ≤ 1, and 𝑚(\) > 0 if \ > 1.

We also use the above proposition to partition the parameter space (0,∞) into three distinct

domains:

• Low Temperature Regime: Θ1 := (1,∞);

• Critical point: Θ2 = 1;

• High Temperature Regime: Θ3 := (0, 1).
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The nomenclature of the three domains is inspired from statistical physics terminology (see for

e.g. [23]).

For any \ ∈ Θ1 ∪ Θ3, define the positive real 𝜎2(\) by setting

𝜎2(\) :=
1 − 𝑚2(\)

1 − \ (1 − 𝑚2(\))
. (3.14)

Note that 𝜎2(\) is well defined by Proposition 3.2.1, as 1 − (1 − 𝑚2(\))\ = 𝑤′
\
(𝑚(\)) > 0. In

particular, we have 𝜎2(\) = 1
1−\ if \ ∈ Θ3.

Definition 3.2.2. Given ℎ ∈ R and \0 > 0, define a positive sequence {\𝑛}𝑛≥1 (depending on ℎ, \0)

by setting

\𝑛 :=\0 +
ℎ
√
𝑛

if \0 ∈ Θ1 ∪ Θ2,

=\0 + ℎ if \ ∈ Θ3.

(3.15)

We will omit the dependence of \0, ℎ, since it will be clear from the context.

Definition 3.2.3. Given any continuous real valued random variable Z , let ΨZ (.) : (0, 1) ↦→ R

denote the quantile function, i.e. the inverse cdf of Z , defined by

ΨZ (𝑝) := inf{𝑡 ∈ R : 𝐹Z (𝑡) ≥ 𝑝},

where 𝐹Z is the cdf of Z . In particular if Z ∼ 𝑁 (0, 1), then we will also use the notation 𝑧𝛼 for

ΨZ (1 − 𝛼), as is standard in statistics literature.

Definition 3.2.4. Let ^ := 𝛾2 − ∥ 𝑓 ∥2
2, where 𝛾, 𝑓 are as in (3.4) and (3.5) respectively.

Let 𝑊∗ ∼ 𝑁 (0, 2^) and {𝑌 𝑗 } 𝑗≥2
𝑖𝑖𝑑∼ 𝜒2

1 be mutually independent. For any \ ∈ Θ, define two
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random variables 𝑆\ and 𝑇\ by setting

𝑆\ :=(1 − 𝑚2(\))
[ ∞∑︁
𝑗=2
_ 𝑗

( 𝑌 𝑗

1 − \ (1 − 𝑚2(\))_ 𝑗
− 1

)
− 1 + (1 − 𝑚2(\))\^ +𝑊∗

]
, (3.16)

𝑇\ :=(1 − 𝑚2(\))
[ ∞∑︁
𝑗=2

_2
𝑗
𝑌 𝑗

1 − \ (1 − 𝑚2(\))_ 𝑗
+ ^

]
, (3.17)

where 𝑚(\) is as in definition 3.2.1. Here the infinite sums in the limiting distributions converge in

𝐿2 (see Lemma 3.6.2).

We now state the results for each of the domains separately.

The low temperature regime Θ1

Our first theorem describes the limits of experiments, asymptotic performance of estimators,

and asymptotic performance of tests in low temperature regime Θ1.

Theorem 3.2.2. Suppose X ∼ P\,𝑄𝑛 with𝑄𝑛 satisfying (3.2), (3.3), (3.4) and (3.5) for some𝐶𝑊 , ^ ∈

(0,∞) and 𝑓 ∈ W. Then with 𝑅(\0) := 𝑚2(\0)𝜎2(\0), the following conclusions hold:

(a) We have

{P\0+ℎ𝑛−1/2,𝑄𝑛}ℎ∈R
Exp
−→ {𝑁

(
ℎ, 𝑅(\0)−1

)
}ℎ∈R.

(b) The MLE \̂𝑀𝐿𝐸𝑛 and the MPLE \̂𝑀𝑃𝐿𝐸𝑛 (as defined in section 3.2.4) exist with probability

tending to 1, and have a common asymptotic distribution, given by

√
𝑛(\̃𝑀𝐿𝐸𝑛 − \0)

𝑑→ 𝑁

(
0, 𝑅(\0)−1

)
,

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − \0)

𝑑→ 𝑁

(
0, 𝑅(\0)−1

)
.

(c) With \𝑛 = \0 + ℎ√
𝑛

for some ℎ > 0, and 𝛽𝑀𝑆, 𝛽𝑁𝑃 and 𝛽𝑃𝐿 as defined in section 3.2.5, we

have

𝛽𝑁𝑃 = 𝛽𝑃𝐿 = 𝛽𝑀𝑆 = P(𝑁 (0, 1) > 𝑧𝛼 − ℎ
√︁
𝑅(\0)),

where 𝑧𝛼 represents the (1 − 𝛼)𝑡ℎ quantile for 𝑁 (0, 1).
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Remark 3.2.3. The above theorem shows that for \0 > 1, the family of Ising models is LAN

at scale 𝑛−1/2, which is what happens in classical statistics for iid models. It then follows by

extension of classical arguments that \̂𝑀𝐿𝐸𝑛 is asymptotically optimal. Perhaps surprisingly, part

(b) above shows that \̂𝑀𝑃𝐿𝐸𝑛 (which requires significantly less computational resources) is also

asymptotically optimal. Carrying this through, it is shown in part (c) that the tests based on

\̂𝑀𝐿𝐸𝑛 and \̂𝑀𝑃𝐿𝐸𝑛 have the same asymptotic power. In fact, the much simpler test based on the

sample mean �̄� also has the same asymptotic power, computation of which does not even require

the knowledge of the matrix 𝑄𝑛. Thus in this regime it is possible to gain optimal asymptotic

performance for tests of hypothesis without the knowledge of 𝑄𝑛.

The critical regime Θ2

As demonstrated in our next result, the behavior is very different when \0 = 1 (which is

the critical point). To describe the limit experiment (which is no longer LAN), and the limiting

behavior of estimators/tests we make the following definitions.

Definition 3.2.5. Let {Hℎ (·), ℎ ∈ R} be a family of probability distributions on R parametrized by

ℎ, with density function

𝑝ℎ (𝑢) = exp (− 1
12
𝑢4 + 1

2
ℎ𝑢2 − 𝐹 (ℎ)). (3.18)

Here

𝐹 (ℎ) := log
∫
R

exp (− 1
12
𝑢4 + 1

2
ℎ𝑢2)𝑑𝑢

is the log normalizing constant, which makes 𝑝ℎ (.) into a density.

Let 𝑊∗ ∼ 𝑁 (0, 2^), 𝑈1,ℎ ∼ Hℎ, and (𝑆1, 𝑇1) be mutually independent, where (𝑆1, 𝑇1) are as

defined in (3.16) and (3.17) respectively. Set

𝑉1,ℎ =
1
3
𝑈2

1,ℎ +
𝑆1 − 𝑇1

𝑈2
1,ℎ

. (3.19)
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Theorem 3.2.3. Suppose X ∼ P\,𝑄𝑛 with𝑄𝑛 satisfying (3.2), (3.3), (3.4) and (3.5) for some𝐶𝑊 , ^ ∈

(0,∞) and 𝑓 ∈ W. Then the following conclusions hold:

(a) We have

{P\0+ℎ𝑛−1/2,𝑄𝑛}ℎ∈R
Exp
−→ {Hℎ}ℎ∈R. (3.20)

(b) The MLE \̂𝑀𝐿𝐸𝑛 and MPLE \̂𝑀𝑃𝐿𝐸𝑛 as defined in section 3.2.4 exist with probability tending

to 1, and satisfy

P1,𝑄𝑛
(√
𝑛(\̂𝑀𝐿𝐸𝑛 − 1) ≤ ℎ

)
−→P

(
𝑈2

1,0 ≤ E𝑈2
1,ℎ

)
, (3.21)

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − 1)

𝑑,P1,𝑄𝑛−→ 𝑉1,0, (3.22)

(c) With \𝑛 = 1+ ℎ√
𝑛

for some ℎ > 0, and 𝛽𝑀𝑆, 𝛽𝑁𝑃 and 𝛽𝑃𝐿 as defined in section 3.2.5, we have

𝛽𝑁𝑃 = 𝛽𝑀𝑆 =2P
(
𝑈1,ℎ > ΨH,0(1 − 𝛼/2)

)
, (3.23)

𝛽𝑃𝐿 =P
(
𝑉1,ℎ > Ψ𝑉1,0 (1 − 𝛼)

)
. (3.24)

Remark 3.2.4. Thus, similar to Theorem 3.2.2, the contiguous alternatives obtained in Theorem

3.2.3 in the critical regime is also of size 𝑂 ( 1√
𝑛
). However, the limit experiment is no longer

gaussian, and so we are outside the familiar LAN setting of classical settings. This is also reflected

through the non-gaussian limiting distributions for MLE and MPLE. In terms of tests of hypothesis,

part (c) shows that there is a discrepancy between the asymptotic powers of PL-Test and NP-test.

The MS-Test continuous to be asymptotically optimal, and thus provides a computationally efficient

𝑄𝑛 agnostic solution to our testing problem. We will show in section 3.2.7 that 𝛽𝑀𝑆 = 𝛽𝑃𝐿 for the

Curie-Weiss model.
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High temperature regime \ ∈ Θ1

When \0 ∈ (0, 1) (high temperature regime), the behavior is again different. In this regime the

contiguous alternatives are of the form {P\,𝑄𝑛}\∈(0,1) , and consistent estimation of the parameter \

is no longer possible. In this regime we do not study asymptotic distribution of the estimators, but

only look at the asymptotic performance of the tests regarding \. To describe the limit experiments,

and limiting behavior of tests, we require the following definitions:

Definition 3.2.6. For any \0 ∈ (0, 1) and 𝑗 ∈ Z+ := {1, 2, . . .} we define a probability measure

a\0, 𝑗 on R, by setting

a\0, 𝑗 := 𝑁
(
0,

1
1 − _ 𝑗\0

)
for 𝑗 ≥ 1, a\0,0 := 𝑁

(√︂^

2
\0, 1

)
.

Let a\0 =
⊗
𝑗∈Z+

a\, 𝑗 be the product probability measure on RZ
+
.

Definition 3.2.7. Let 𝑊∗ ∼ 𝑁 (0, 2^) and {𝑌𝑖}𝑖≥1
𝑖𝑖𝑑∼ 𝜒2

1 be mutually independent. For \ ∈ Θ3,

define

𝑈\ :=
∞∑︁
𝑗=1
_ 𝑗

( 𝑌 𝑗

1 − \_ 𝑗
− 1

)
+ \^ +𝑊∗, (3.25)

𝑉\ :=
𝑈\

∞∑
𝑗=1

_2
𝑗

1−\_ 𝑗𝑌 𝑗 + ^
. (3.26)

The infinite series in the above definitions converge in 𝐿2 (see Lemma 3.6.2).

Theorem 3.2.4. Suppose X ∼ P\0,𝑄𝑛 with 𝑄𝑛 satisfying (3.2), (3.3), (3.4) and (3.5) for some

𝐶𝑊 , ^ ∈ (0,∞) and 𝑓 ∈ W. Then the following conclusions hold:

(a) We have

{P\0+ℎ,𝑄𝑛}ℎ∈(−\0,1−\0)
Exp
−→ {a\0+ℎ}ℎ∈(−\0,1−\0) . (3.27)

Here
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(b) With \𝑛 = \0 + ℎ for some ℎ > 0, and 𝛽𝑀𝑆, 𝛽𝑁𝑃 and 𝛽𝑃𝐿 as defined in section 3.2.5, we have

𝛽𝑁𝑃 =P(𝑈\0+ℎ > Ψ𝑈\0
(1 − 𝛼)), (3.28)

𝛽𝑃𝐿 =P(𝑉\0+ℎ > Ψ𝑉\0
(1 − 𝛼)), (3.29)

𝛽𝑀𝑆 =2P

(
𝑁 (0, 1) > 𝑧𝛼/2

√︄
1 − \0 − ℎ

1 − \0

)
. (3.30)

Remark 3.2.5. The non-existence of consistent estimators for \ in Θ3 = (0, 1) for the above class

of Ising models was first shown in [7, Theorem 2.3]. The description of the limiting experiment

in this case is much more complicated, and requires us to work on probability measures on RZ
+
,

and needs detailed knowledge of the eigenvalues of 𝑓 . On the other hand, in the other two regimes

Θ1 and Θ2 did not require any knowledge of finer properties of 𝑓 . Thus the limiting experiment is

universal for a sequence of Ising models on dense regular graphs in regimes Θ1 ∪ Θ2, but not in

Θ3. Also, in general it seems unclear as to which of the two asymptotic powers 𝛽𝑀𝑆 and 𝛽𝑃𝐿 are

larger in this case, as their formulas are not very amenable.

3.2.7 Examples

To illustrate our results, we will now apply our main theorems and simulation results on two

examples, the Curie-Weiss model (where 𝐺𝑛 is the complete graph), and the Ising model on the

complete bi-partite graph 𝐾𝑛/2,𝑛/2.

Definition 3.2.8. • Suppose X ∼ P\,𝑄𝑛 (·) for some \ > 0, where

𝑄𝑛 (𝑖, 𝑗) :=
1
𝑛

if 𝑖 ≠ 𝑗 . (3.31)

Thus 𝑄𝑛 is the scaled adjacency graph of the complete graph 𝐾𝑛, and in this case P\,𝑄𝑛 (·) is

called the Curie-Weiss model. The limiting graphon for 𝑓𝑛𝑄𝑛 is the constant function 𝑓 = 1,

with only one non-zero eigenvalue _1 = 1.
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• Suppose X ∼ P\,𝑄𝑛 (·) for some \ > 0, where 𝑛 is even, and

𝑄𝑛 (𝑖, 𝑗) :=
2
𝑛

if 1 ≤ 𝑖 ≤ 𝑛

2
and

𝑛

2
+ 1 ≤ 𝑗 ≤ 𝑛,

=
2
𝑛

if 1 ≤ 𝑗 ≤ 𝑛

2
and

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛,

=0 otherwise.

Thus 𝑄𝑛 is the scaled adjacency matrix of the complete bipartite graph 𝐾𝑛/2,𝑛/2. We will

refer to P\,𝑄𝑛 (·) as the bipartite Ising model. The limiting graphon for 𝑓𝑛𝑄𝑛 is the piecewise

constant function 𝑓 given by

𝑓 (𝑥, 𝑦) =2 if 0 < 𝑥 < 1/2 and 1/2 < 𝑦 < 1,

=2 if 1/2 < 𝑥 < 1 and 0 < 𝑦 < 1/2,

=0 otherwise.

This function has two non zero eigenvalues, _1 = 1 and _2 = −1.

Table 3.2.7 compares the asymptotic distribution of the MLE and the MPLE under both the

Curie-Weiss Model and the bipartite Ising model. In the low temperature regime Θ1, the asymp-

totic distribution of both the MLE and MPLE is 𝑁 (0, 𝑅(\0)−1), for both the Curie-Weiss model

and the bipartite Ising model (see Theorem 3.2.2 part (b)). In fact, the same universal limit con-

tinues to hold for any sequence of graphs 𝐺𝑛 satisfying (3.2), (3.3), (3.4) and (3.5). At the critical

regime Θ2, the asymptotic distribution of the two estimators are not the same, for either the Curie-

Weiss model (see figure 3.1a, or the bipartite Ising model (see figure 3.1b). The simulations in

figures 3.1a and 3.1b use the limiting distribution obtained in Theorem 3.2.3 part (b). In the high

temperature regime all estimators (and hence MLE and MPLE) are both inconsistent.
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Table 1: Asymptotic distribution of MLE vs MPLE

Regimes of \ Curie-Weiss Model Bipartite Ising Model

Low Temperature normal, same limit normal, same limit

Critical Point non-normal, different limit non-normal, different limit

High Temperature not consistent not consistent

In a similar manner, table 3.2.7 compares the asymptotic powers of the three tests (NP, MS and

PL) for the Curie-Weiss Model and the bipartite Ising model. It follows from the main theorems

that the three tests have the same asymptotic power if either \ ∈ Θ1 or we are in the Curie-Weiss

setting. At criticality the NP test and MS test have the same power, but the PL test has a lower

power for the bipartite Ising model (see figure 3.2a). In the high temperature regime, all tests have

different power for the bipartite Ising model, with the PL test performing the worst (see figure

3.2b).

Table 2: Aymptotics powers of tests

Regimes of \ Curie-Weiss Model Bipartite Ising Model

Low Temperature 𝛽𝑁𝑃 = 𝛽𝑀𝑆 = 𝛽𝑃𝐿 𝛽𝑁𝑃 = 𝛽𝑀𝑆 = 𝛽𝑃𝐿

Critical Point 𝛽𝑁𝑃 = 𝛽𝑀𝑆 = 𝛽𝑃𝐿 𝛽𝑁𝑃 = 𝛽𝑀𝑆 > 𝛽𝑃𝐿

High Temperature 𝛽𝑁𝑃 = 𝛽𝑀𝑆 = 𝛽𝑃𝐿 𝛽𝑁𝑃 > 𝛽𝑀𝑆 > 𝛽𝑃𝐿

3.2.8 Main Contributions & Future Scopes

In this paper we establish limits of experiments for a class of one parameter Ising models on

dense regular matrices. We show that the limiting experiment is universal (i.e. does not depend

on the graph sequence) and LAN in the low temperature regime, is universal and non LAN in

the critical regime, and is non-universal and non LAN in the high temperature regime. Using the

tools developed, we analyze the performance of commonly studied estimators and tests of hypoth-

esis, and compare their performance across different regimes. One surprising discovery is that the

asymptotic performance of the MLE and the MPLE is the same in the low temperature regime, thus
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(a) Curie Weiss Model, \0 = 1 (b) Bipartite Ising Model, \0 = 1

Figure 3.1: The left panel shows the pdf of limiting distributions of MPLE and MLE under Biparite
Ising model at critical point, and the right panel shows that under Curie-weiss model at critical
point.

(a) Bipartite Ising Model, \0 = 1 (b) Bipartite Ising Model, \0 = 0.1

Figure 3.2: Both panels show the testing powers versus ℎ under biparite Ising model, at the critical
regime and the high temperature regime, respectively.

demonstrating that the extra computational burden of the MLE has no asymptotic gain in terms of

statistical accuracy. In terms of tests of hypothesis, there is a more computationally efficient test

(compared to tests based on either MLE or MPLE) based on the sample mean, which matches the

optimal power function in low and critical regimes. Prior to this work, such detailed inferential

result was largely non existent. We demonstrate our results by applying them to Ising models on

(i) complete graph, and (ii) complete bi-partite graph.
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Throughout this paper we focus on Ising models on dense regular matrices. It would be in-

teresting to develop inference for Ising models on matrices which are either non regular, or non

dense. Another direction of future interest is to consider the case when the Ising model has a non-

zero magnetic field, and study joint inference for both the inverse temperature parameter, and the

magnetic field. A more challenging problem is to extend these results to cubic and other higher

order interaction models, similar to the Exponential Random Graph Models of social sciences.

3.2.9 Outline

The rest of this paper is organized as follows:

In section 3.3, we give the proofs of our the main theorems. The proofs of the theorems

in section 3.3 rely on key lemmas about the Ising model, the proofs of which are deferred to

appendix A (section 3.5). The proofs of these lemmas, in turn, depend on a precise understanding

of quadratic forms under the Curie-Weiss model. The proofs of these results on the Curie-Weiss

model are deferred to appendix B (section 3.6). Some auxiliary results are proved in appendix C

(section 3.7).

3.3 Proofs of Main Theorems

We begin by stating the following lemmas, which we will use to prove our main results.

Our first lemma computes the limiting distributions of various quantities under the Ising model.

Lemma 3.3.1. Let X ∼ P\𝑛,𝑄𝑛 , where \0 > 0, ℎ ∈ R, and \𝑛 is as defined in (3.15). Assume

that the matrix 𝑄𝑛 satisfies (3.2), (3.3), (3.4) and (3.5) for some 𝐶𝑊 , ^ ∈ (0,∞) and 𝑓 ∈ W.

Also let 𝑆\0 , 𝑇\0 be random variables as defined in (3.16) and (3.17) respectively. Then, setting

𝐵𝑛 := 𝑄𝑛 − 1
𝑛
11𝑇 , the following conclusions hold:

(a) If \0 ∈ Θ1, then conditional on the set X̄ > 0 we have

[√
𝑛(X̄ − 𝑚(\𝑛)),X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
]

𝑑→ [𝑊\0 , 𝑆\0 , 𝑇\0] .
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where 𝑚(.) is as in definition 3.2.1, and𝑊\0 ∼ 𝑁 (0, 𝜎2(\0)) is independent of (𝑆\0 , 𝑇\0).

(b) If \0 ∈ Θ2, then [
𝑛1/4X̄,X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
]

𝑑→ [𝑈ℎ, 𝑆\0 , 𝑇\0],

where𝑈1,ℎ ∼ Hℎ (see (3.18)) is independent of (𝑆\0 , 𝑇\0).

(c) If \0 ∈ Θ3, then [√
𝑛X̄,X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
]

𝑑→ [𝑊\0 , 𝑆\0 , 𝑇\0],

where𝑊\0 ∼ 𝑁 (0, 𝜎2(\0)) is independent of (𝑆\0 , 𝑇\0).

Our second lemma gives very precise asymptotics for the normalizing constant of Ising models.

Lemma 3.3.2. . Let \0 > 0, ℎ ∈ R, and let \𝑛 be as defined in (3.15). Assume that the matrix 𝑄𝑛

satisfies (3.2), (3.3), (3.4) and (3.5) for some 𝐶𝑊 , ^ ∈ (0,∞) and 𝑓 ∈ W.

(a) If \0 > 1 then we have

lim
𝑛→∞

{
𝑍𝑛 (\𝑛, 𝑄𝑛) − 𝑍𝑛 (\0, 𝑄𝑛) −

1
2
√
𝑛ℎ𝑚2(\0)

}
=
𝑅(\0)ℎ2

2
.

(b) If \0 = 1, then we have

lim
𝑛→∞

{𝑍𝑛 (\𝑛, 𝑄𝑛) − 𝑍𝑛 (\0, 𝑄𝑛)} = 𝐹 (ℎ) − 𝐹 (0),

where 𝐹 (ℎ) is as defined in (3.18).

(c) If \0 ∈ (0, 1) and \0 + ℎ ∈ (0, 1) then we have

lim
𝑛→∞

{𝑍𝑛 (\𝑛, 𝑄𝑛) − 𝑍𝑛 (\𝑛, 𝑄𝑛)} =
^

4
ℎ2 + ^\0ℎ

2
− 1

2

∞∑︁
𝑗=1

(
_ 𝑗 − log

1 − \0_ 𝑗

1 − (\0 + ℎ)_ 𝑗

)
.

Our third result gives an exact characterization of the existence of MLE and MPLE, and show

that they exist with high probability.
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Proposition 3.3.1. (a) Let

𝑎𝑛 := min
x∈{−1,1}𝑛

x𝑇𝑄𝑛x ≤ max
x∈{−1,1}𝑛

x𝑇𝑄𝑛x =: 𝑏𝑛.

Then the MLE exists in R iff

𝑎𝑛 < X𝑇𝑄𝑛X < 𝑏𝑛.

(b) In particular, the MLE exists with probability tending to 1 for all \0 ∈ Θ.

(c) Let

𝑆 = 𝑆(X) := {𝑖 : 𝑡𝑖 ≠ 0}.

Then the MPLE exists in R iff neither of the following two events happen:

• X𝑖 = 1 for all 𝑖 ∈ 𝑆.

• X𝑖 = −1 for all 𝑖 ∈ 𝑆.

(d) In particular, the MPLE exists with probability tending to 1 for all \0 ∈ Θ.

Our final result is a calculus proposition which computes derivatives of the function 𝑚(.) de-

fined in 3.2.1.

Proposition 3.3.2. Let 𝑚(.) : (1,∞) ↦→ (0, 1) be as in definition 3.2.1. Then with \𝑛 = \0 + ℎ√
𝑛

for

some \0 ∈ Θ3 and ℎ > 0 we have

lim
𝑛→∞

𝑚(\𝑛) − 𝑚(\0)
ℎ√
𝑛

= 𝑚(\0)𝜎2(\0).
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3.3.1 Proof of Theorem 3.2.2

Before we begin, we use Lemma 3.3.1 parts (a), (b), (c) to conclude that in all regimes of

(\0, ℎ) we have X𝑇𝐵𝑛X = 𝑂𝑝 (1) under P\0+ℎ𝑛−1/2,𝑄𝑛 , and so

X𝑇𝑄𝑛X = 𝑛X̄2 + X𝑇𝐵𝑛X = 𝑛X̄2 +𝑂𝑝 (1). (3.32)

Proof of Theorem 3.2.2.

Part (a):

Let 𝐼 = {ℎ1, . . . , ℎ𝑘 } with ℎ1 < ℎ2 < . . . < ℎ𝑘 for some positive integer 𝑘 . Then setting

\𝑛,𝑖 := \0 + ℎ𝑖𝑛−1/2 we have

log
𝑑P\𝑛,𝑖 ,𝑄𝑛

(X)
𝑑P\0,𝑄𝑛

(X) = 𝑍𝑛 (\0, 𝑄𝑛) − 𝑍𝑛 (\𝑛,𝑖 , 𝑄𝑛) +
ℎ𝑖
√
𝑛𝑚2(\0)

2
+ ℎ𝑖

2

(X𝑇𝑄𝑛X√
𝑛

−
√
𝑛𝑚2(\0)

)
. (3.33)

By part (a) of Lemma 3.3.2 we have

𝑍𝑛 (\𝑛,𝑖, 𝑄𝑛) − 𝑍𝑛 (\0, 𝑄𝑛) −
ℎ𝑖
√
𝑛𝑚2(\0)

2
→

𝑅(\0)ℎ2
𝑖

2
.

Also, using (3.32), under P\0,𝑄𝑛 we have

1
√
𝑛

X𝑇𝑄𝑛X −
√
𝑛𝑚2(\0) =

√
𝑛

(
X̄2 − 𝑚2(\0)

)
+𝑂𝑝

( 1
√
𝑛

)
𝑑→ 2𝑚(\0)𝑊\0 , (3.34)

where the last step we use part (a) of Lemma 3.3.1 to conclude that under P\0,𝑄𝑛 we have

√
𝑛

(
X̄2 − 𝑚2(\0)

)
=
√
𝑛

(
X̄ − 𝑚(\0)

) (
X̄ + 𝑚(\0)

)
𝑑→ 2𝑚(\0)𝑊\0 , (3.35)

where𝑊\0 ∼ 𝑁 (0, 𝜎2(\0)). The above calculation gives that under P\0,𝑄𝑛 we have

[
log

𝑑P\𝑛,𝑖 ,𝑄𝑛 (X)
𝑑P\0,𝑄𝑛 (X)

]
1≤𝑖≤𝑘

𝑑→
[
−
𝑅(\0)ℎ2

𝑖

2
+ 𝑚(\0)ℎ𝑖𝑊\0

]
1≤𝑖≤𝑘

.
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Also note that if𝑊 ∼ 𝑁 (0, 𝑅(\0)−1) then

[
log

𝑑𝑁 (ℎ𝑖, 𝑅(\0)−1)
𝑑𝑁 (0, 𝑅(\0)−1)

(𝑊)
]

1≤𝑖≤𝑘
=

[
−
𝑅(\0)ℎ2

𝑖

2
+ 𝑅(\0)𝑊ℎ𝑖

]
1≤𝑖≤𝑘

𝑑
=

[
−
𝑅(\0)ℎ2

𝑖

2
+ 𝑚(\0)ℎ𝑖𝑊\0

]
1≤𝑖≤𝑘

.

It then follows from the last two displays that under P\0,𝑄𝑛 we have

[
log

𝑑P\𝑛,𝑖 ,𝑄𝑛 (X)
𝑑P\0,𝑄𝑛 (X)

]
1≤𝑖≤𝑘

𝑑→
[

log
𝑑𝑁 (ℎ𝑖, 𝑅(\0)−1)
𝑑𝑁 (0, 𝑅(\0)−1)

(𝑊)
]

1≤𝑖≤𝑘
,

which verifies convergence of experiments.

Part (b):

• MLE

Suppose X ∼ P\,𝑄𝑛 . Using Proposition 3.3.1 part (b), it follows that the MLE exists with

probability tending to 1. Also, the MLE \̂𝑀𝐿𝐸𝑛 satisfies the equation

𝑍′𝑛 (\̂𝑀𝐿𝐸𝑛 , 𝑄𝑛) =
1
2

X𝑇𝑄𝑛X.

Proceeding to find the limit distribution of \̂𝑀𝐿𝐸𝑛 , for any ℎ ∈ R setting \𝑛 := \0 + ℎ/
√
𝑛 we

have

P\0,𝑄𝑛

(√
𝑛(\̂𝑀𝐿𝐸𝑛 − \0) ≤ ℎ

)
=P\0,𝑄𝑛

(
X𝑇𝑄𝑛X ≤ 2𝑍′𝑛 (\𝑛)

)
=P\0,𝑄𝑛

( 1
√
𝑛

X𝑇𝑄𝑛X −
√
𝑛𝑚2(\0) ≤

2𝑍′𝑛 (\𝑛, 𝑄𝑛)√
𝑛

−
√
𝑛𝑚2(\0)

)
. (3.36)

We now claim that

2𝑍′𝑛 (\𝑛, 𝑄𝑛)√
𝑛

−
√
𝑛𝑚2(\0) = 2ℎ𝑅(\0) + 𝑜(1). (3.37)
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Given (3.37), using (3.34) and (3.36) we get

P\0,𝑄𝑛

(√
𝑛(\̂𝑀𝐿𝐸𝑛 − \0) ≤ ℎ

)
= = P\0,𝑄𝑛

( 1
√
𝑛

X𝑇𝑄𝑛X −
√
𝑛𝑚2(\0) ≤ 2ℎ𝑅(\0) + 𝑜(1)

)
−→ P

(
𝑁

(
0, 𝑅(\0)−1

)
≤ ℎ

)
,

which verifies asymptotic distribution for the MLE.

Proceeding to verify (3.37), note that the LHS of the display in part (a) of Lemma 3.3.2 is

convex in ℎ, and converges point-wise to a convex function which is differentiable every-

where. It follows that the derivatives of the functions also converge, which gives (3.37).

• MPLE

It follows from [7, Cor 3.1 (b)] that if \0 > 1, the MPLE \̂𝑀𝑃𝐿𝐸𝑛 exists with probability

going to 1, and is
√
𝑛 consistent (existence without consistency also follows from Proposition

3.3.1). It thus suffices to prove asymptotic normality. To this effect, we show the more

general result that for any ℎ ∈ R, setting \𝑛 := \0 + ℎ√
𝑛
, under P\𝑛,𝑄𝑛 we have

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − \0)

𝑑→ 𝑁

(
ℎ, 𝑅(\0)−1

)
. (3.38)

The claimed limiting distribution for \̂𝑀𝑃𝐿𝐸𝑛 follows form this, on setting ℎ = 0.

Proceeding to prove (3.38), using (3.8), we have

X𝑇𝑄𝑛X =

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\̂𝑀𝑃𝐿𝐸𝑛 𝑡𝑖)

=

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\0𝑡𝑖) +
𝑛∑︁
𝑖=1

𝑡2𝑖 sech2(b𝑛𝑡𝑖) (\̂𝑀𝑃𝐿𝐸𝑛 − \0),
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where b𝑛 lies between \0 and \̂𝑀𝑃𝐿𝐸𝑛 . The last display gives

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − \0) =

1√
𝑛
(X𝑇𝑄𝑛X −

𝑛∑
𝑖=1
𝑡𝑖 tanh(\0𝑡𝑖))

1
𝑛

𝑛∑
𝑖=1
𝑡2
𝑖
sech2(b𝑛𝑡𝑖)

. (3.39)

For analyzing the RHS of (3.39), use part (a) to note that P\0,𝑄𝑛 we have

log
𝑑P\𝑛,𝑄𝑛
𝑑P\0,𝑄𝑛

(X) 𝑑→ 𝑁

(
− ℎ2𝑅(\0)

2
, ℎ2𝑅(\0)

)
.

Then, using Le Cam’s third lemma, it follows that the measures P\0,𝑄𝑛 and P\𝑛,𝑄𝑛 are mutu-

ally contiguous. Along with [19, Lem 2.1 part (a)], this gives that under P\𝑛,𝑄𝑛 , we have

( 𝑛∑︁
𝑖=1

[
𝑡𝑖 − 𝑚(\0)

]2
|X̄ > 0

)
= 𝑂𝑝 (1).

On the set X̄ > 0, under P\𝑛,𝑄𝑛 this gives

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\0𝑡𝑖)

=

𝑛∑︁
𝑖=1

[
𝑚(\0) tanh

(
\0𝑚(\0)

)
+ 𝑚(\0)

(
1 + \0(1 − 𝑚2(\0))

) (
𝑡𝑖 − 𝑚(\0)

)]
+𝑂𝑝

( 𝑛∑︁
𝑖=1

(
𝑡𝑖 − 𝑚(\0)

)2)
=𝑛𝑚2(\0) + 𝑛𝑚(\0)

(
1 + \0(1 − 𝑚2(\0))

) (
X̄ − 𝑚(\0)

)
+𝑂𝑝 (1).

Since (3.32) gives X𝑇𝑄𝑛X = 𝑛X̄2 +𝑂𝑝 (1), the above display implies that under P\𝑛,𝑄𝑛 ,

X𝑇𝑄𝑛X −
𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\0𝑡𝑖)

=𝑛

(
X̄2 − 𝑚2(\0)

)
− 𝑛𝑚(\0)

(
1 + \0(1 − 𝑚2(\0))

) (
X̄ − 𝑚(\0)

)
+𝑂𝑝 (1)

=𝑛(X̄ − 𝑚(\0))
[
X̄ − \0𝑚(\0) (1 − 𝑚2(\0))

]
+𝑂𝑝 (1).
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Also, under P\𝑛,𝑄𝑛 we have

√
𝑛(X̄ − 𝑚(\0)) =

√
𝑛(X̄ − 𝑚(\𝑛)) +

√
𝑛(𝑚(\𝑛) − 𝑚(\0))

𝑑→ 𝑁 (𝑚(\0)𝜎2(\0)ℎ, 𝜎2),

(3.40)

where the last step uses part (a) of Lemma 3.3.1 along with Proposition 3.3.2. The last two

displays give that under P\𝑛,𝑄𝑛 ,

1
√
𝑛

(
X𝑇𝑄𝑛X −

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\0𝑡𝑖)
)

𝑑→
(
1 − \0(1 − 𝑚2(\0))

)
𝑁

(
ℎ𝑚2(\0)𝜎2(\0), 𝑚2(\0)𝜎2(\0)

)
.

Also, using contiguity of the two measures P\0,𝑄𝑛 and P\𝑛,𝑄𝑛 along with consistency of

\̂𝑀𝑃𝐿𝐸𝑛 gives b𝑛
𝑝
→ \0 under both measures, and so

1
𝑛

𝑛∑︁
𝑖=1

𝑡2𝑖 sech2(b𝑛𝑡𝑖)
𝑝
→ 𝑚2(\0)sech2

(
\0𝑚(\0)

)
= 𝑚2(\0)

(
1 − 𝑚2(\0)

)
.

Combining the last two displays along with (3.39) we get that under P\𝑛,𝑄𝑛 ,

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − \0)

𝑑→
[ 1 − \0(1 − 𝑚2(\0))
𝑚2(\0) (1 − 𝑚2(\0))

]
𝑁

(
ℎ𝑚2(\0)𝜎2(\0), 𝑚2(\0)𝜎2(\0)

)
=

1
𝑚2(\0)𝜎2(\0)

𝑁

(
ℎ𝑚2(\0)𝜎2(\0), 𝑚2(\0)𝜎2(\0)

)
,

which is equivalent to (3.38).

Part (c):

• MS Test

If X ∼ P\0,𝑄𝑛 , then (3.35) gives

𝐾𝑛 (𝛼) = 𝑛𝑚2(\0) + 2𝑧𝛼
√︁
𝑛𝑅(\0) + 𝑜(

√
𝑛).
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Also, using (3.40), under P\𝑛,𝑄𝑛 we have

√
𝑛

(
X̄2−𝑚2(\0)

)
𝑑→ 2𝑚(\0)𝑁

(
𝑚(\0)𝜎2(\0)ℎ, 𝜎2

)
= 𝑁 (2𝑚2(\0)𝜎2(\0)ℎ, 4𝑚2(\0)𝜎2(\0)

)
.

Using the last two displays, we have

P\𝑛,𝑄𝑛 (𝑛X̄2 > 𝐾𝑛 (𝛼)) =P\𝑛,𝑄𝑛
(√
𝑛(X̄2 − 𝑚2(\0)) > 2𝑧𝛼

√︁
𝑅(\0)

)
+ 𝑜(1)

=P
(
𝑁 (2𝑅(\0)ℎ, 4𝑅(\0)) > 2𝑧𝛼

√︁
𝑅(\0)

)
+ 𝑜(1)

=P
(
𝑁 (ℎ

√︁
𝑅(\0), 1) > 𝑧𝛼

)
+ 𝑜(1).

Thus we have 𝛽𝑀𝑆 = 1 −Φ(𝑧𝛼 − ℎ
√︁
𝑅(\0)), as claimed.

• NP Test

Note that

X𝑇𝑄𝑛X = 𝑛X̄2 +𝑂𝑝 (1),

using Lemma 3.3.1 part (a) under P\0,𝑄𝑛 and P\𝑛,𝑄𝑛 . Thus X𝑇𝑄𝑛X has the same asymptotic

distribution as 𝑛X̄2, under both null and the alternative. This gives 𝛽𝑁𝑃 = 𝛽𝑀𝑆, as desired.

• PL Test

Using the limit distribution of \̂𝑀𝑃𝐿𝐸𝑛 in part (b) (invoke (3.38) under P\0,𝑄𝑛) gives

𝐾𝑛 (𝛼) = \0 +
𝑧𝛼√︁
𝑛𝑅(\0)

+ 𝑜
( 1
√
𝑛

)
.
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Thus we have

P\𝑛,𝑄𝑛 (\̂𝑀𝑃𝐿𝐸𝑛 > 𝐾𝑛 (𝛼)) =P\𝑛,𝑄𝑛
(√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − \0) >

𝑧𝛼√︁
𝑅(\0)

)
+ 𝑜(1)

=P
(
𝑁

(
ℎ,

1
𝑅(\0)

)
>

𝑧𝛼√︁
𝑅(\0)

)
+ 𝑜(1),

where the last step again uses (3.38) under P\𝑛,𝑄𝑛 . The last term in the display above con-

verges to

P(𝑁 (ℎ
√︁
𝑅(\0), 1) > 𝑧𝛼) = 1 −Φ(𝑧𝛼 − ℎ

√︁
𝑅(\0)),

thus giving the same formula for 𝛽𝑃𝐿 .

□

3.3.2 Proof of Theorem 3.2.3

Proof of Theorem 3.2.3.

Part (a):

As in the proof of Theorem 3.2.2, let 𝐼 := {ℎ1, . . . , ℎ𝑘 } with {ℎ1 < ℎ2 < . . . < ℎ𝑘 } for some

positive integer 𝑘 , and let \𝑛,𝑖 := \0 + ℎ𝑖√
𝑛

for 1 ≤ 𝑖 ≤ 𝑘 . It thus suffices to analyze the terms in the

RHS of (3.33). To this effect, use Lemma 3.3.2 part (b) to get

𝑍𝑛 (\𝑛,𝑖, 𝑄𝑛) − 𝑍𝑛 (\0, 𝑄𝑛) → 𝐹 (ℎ) − 𝐹 (0).

Proceeding to analyze the second term in the RHS of (3.33), using (3.32), under P\0,𝑄𝑛 we have

X𝑇𝑄𝑛X√
𝑛

=
√
𝑛X̄2 +𝑂𝑝

( 1
√
𝑛

)
𝑑→ 𝑈2

1,0, (3.41)

where the last step uses part (b) of Lemma 3.3.1. Combining the last two displays along with
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(3.33), under P\0,𝑄𝑛 we have

[
log

𝑑P\𝑛,𝑖 ,𝑄𝑛
𝑑P\0,𝑄𝑛

(X)
]

𝑑→
[
− 𝐹 (ℎ𝑖) + 𝐹 (0) +

ℎ𝑖

2
𝑈2

1,0

]
1≤𝑖≤𝑘

.

Also, we have

log
𝑑Hℎ𝑖
𝑑H0

(𝑢) = 1
2
ℎ𝑖𝑢 − 𝐹 (ℎ𝑖) + 𝐹 (0).

Combining the above two displays, under P\0,𝑄𝑛 we have

[
log

𝑑P\𝑛,𝑖 ,𝑄𝑛
𝑑P\0,𝑄𝑛

(X)
]

𝑑→
[𝑑Hℎ𝑖
𝑑H0

(𝑈1,0)
]

1≤𝑖≤𝑘
,

where𝑈0 ∼ H0. This verifies the desired convergence of experiments.

Part (b):

• MLE

Existence of MLE follows from Proposition 3.3.1 part (b).

Proceeding to find the limiting distribution, for any ℎ ∈ R setting \𝑛 := 1+ ℎ√
𝑛
, differentiating

the second display in part (b) of Lemma 3.3.2 with respect to ℎ we get

2𝑍′𝑛 (\𝑛, 𝑄𝑛)√
𝑛

= E𝑈2
1,ℎ + 𝑜(1).

Consequently, using calculations similar to the proof of Theorem 3.2.2 part (b) we have

P1,𝑄𝑛
(√
𝑛(\̃𝑀𝐿𝐸𝑛 − 1) ≤ ℎ

)
=P1,𝑄𝑛

(
X𝑇𝑄𝑛X ≤ 2𝑍′𝑛 (\𝑛, 𝑄𝑛)

)
=P1,𝑄𝑛

( 1
√
𝑛

X𝑇𝑄𝑛X ≤ E𝑈2
1,ℎ + 𝑜(1)

)
=P

(
𝑈2

1,0 ≤ E𝑈2
1,ℎ

)
+ 𝑜(1),

which derives the limiting distribution of the MLE.
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• MPLE

Existence of the MPLE follows from Proposition 3.3.1 part (d). Proceeding to show consis-

tency, use (3.8) to note that on the set \̂𝑀𝑃𝐿𝐸𝑛 > 1 + 𝛿 under P1,𝑄𝑛 we have

X𝑇𝑄𝑛X =

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\̂𝑀𝑃𝐿𝐸𝑛 𝑡𝑖)

≥
𝑛∑︁
𝑖=1

𝑡𝑖 tanh((1 + 𝛿)𝑡𝑖)

=𝑛X̄ tanh((1 + 𝛿)X̄) +𝑂𝑝

(
𝑛∑︁
𝑖=1

(𝑡𝑖 − X̄)2

)
.

Using Lemma 3.3.1 part (b), under P1,𝑄𝑛 we get

X𝑇𝐵𝑛X = 𝑂𝑝 (1),
𝑛∑︁
𝑖=1

(𝑡𝑖 − X)2 = X𝑇𝐵2
𝑛X = 𝑂𝑝 (1).

Combining the last two displays, under P1,𝑄𝑛 we have

√
𝑛X̄2 ≥

√
𝑛X̄ tanh((1 + 𝛿)X̄) +𝑂𝑝

( 1
√
𝑛

)
.

But this is a contradiction, as the LHS of the above display converges in distribution𝑈2
0 under

P1,𝑄𝑛 (by Lemma 3.3.1 part (b)), and the RHS converges in distribution to (1 + 𝛿)𝑈2
0 (which

is larger). Thus we have shown that for any 𝛿 > 0 we have P1,𝑄𝑛 (\̂𝑀𝑃𝐿𝐸𝑛 ≥ 1 + 𝛿) → 0. A

similar proof gives P1,𝑄𝑛 (\̂𝑀𝑃𝐿𝐸𝑛 ≤ 1 − 𝛿) → 0, and so \̂𝑀𝑃𝐿𝐸𝑛

𝑝
→ 1.

Proceeding to find the limiting distribution of \̂𝑀𝑃𝐿𝐸𝑛 , setting \𝑛 := 1 + ℎ√
𝑛

for some ℎ ∈ R

we work under the measure P\𝑛,𝑄𝑛 , and claim that

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − 1) 𝑑→ 𝑉1,ℎ. (3.42)
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As before, the desired limiting distribution for
√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − 1) under P1,𝑄𝑛 then follows on

taking ℎ = 0.

For proving (3.42), use part (a) to conclude that the measures P1,𝑄𝑛 and P\𝑛,𝑄𝑛 are mutually

contiguous (as in the proof of Theorem 3.2.2 part (b)), and so \̂𝑀𝑃𝐿𝐸𝑛

𝑝
→ 1 under P\𝑛,𝑄𝑛 as

well. Further, using (3.8), under P\𝑛,𝑄𝑛 we have

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\̂𝑀𝑃𝐿𝐸𝑛 𝑡𝑖)

=

𝑛∑︁
𝑖=1

𝑡𝑖

[
tanh(𝑡𝑖) + (\̂𝑀𝑃𝐿𝐸𝑛 − 1)𝑡𝑖sech2(𝑡𝑖) +𝑂𝑝

(
(\̂𝑀𝑃𝐿𝐸𝑛 − 1)2 |𝑡𝑖 |3

)]
.

Under P\𝑛,𝑄𝑛 , this gives

\̂𝑀𝑃𝐿𝐸𝑛 − 1 =
X𝑇𝑄𝑛X − ∑𝑛

𝑖=1 𝑡𝑖 tanh(𝑡𝑖)∑𝑛
𝑖=1 𝑡

2
𝑖
sech2(𝑡𝑖) +𝑂𝑝 ((\̂𝑀𝑃𝐿𝐸𝑛 − 1)∑𝑛

𝑖=1 𝑡
4
𝑖
)
. (3.43)

For analyzing the numerator in (3.43), under P\𝑛,𝑄𝑛 we have

X𝑇𝑄𝑛X −
𝑛∑︁
𝑖=1

𝑡𝑖 tanh(𝑡𝑖)

=𝑛X̄2 + X𝑇𝐵𝑛X − 𝑛X̄ tanh(X̄) −
𝑛∑︁
𝑖=1

(𝑡𝑖 − X̄)2 +𝑂𝑝 (
𝑛∑︁
𝑖=1

|𝑡𝑖 − X̄|3)

=
𝑛X̄4

3
+ X𝑇𝐵𝑛X − X𝑇𝐵2

𝑛X +𝑂𝑝

(
𝑛

√︂
log 𝑛
𝑛

3)
+𝑂𝑝

(
𝑛1− 6

4

)
=
𝑛X̄4

3
+ X𝑇𝐵𝑛X − X𝑇𝐵2

𝑛X + 𝑜𝑝 (1),

where in the last but one step we use Lemma 3.3.1 part (b) and [19, Lem 2.4], along with

mutual contiguity shown above, to get that under P\𝑛,𝑄𝑛 we have

|X̄| = 𝑂𝑝 (𝑛−1/4), max
𝑖∈[𝑛]

|𝑡𝑖 − X̄| = 𝑂𝑝

(√︂ log 𝑛
𝑛

)
.
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For the denominator in (3.43), under P\𝑛,𝑄𝑛 we have

𝑛∑︁
𝑖=1

𝑡2𝑖 sech2(𝑡𝑖) +𝑂𝑝 ((\̂𝑀𝑃𝐿𝐸𝑛 − 1)
𝑛∑︁
𝑖=1

𝑡4𝑖 )

=

𝑛∑︁
𝑖=1

𝑡2𝑖 +𝑂𝑝 (
𝑛∑︁
𝑖=1

𝑡4𝑖 )

=𝑛X̄2 +
𝑛∑︁
𝑖=1

(𝑡𝑖 − X̄)2 +𝑂𝑝

( 𝑛∑︁
𝑖=1

(𝑡𝑖 − X̄)4 + 𝑛X̄4
)

=𝑛X̄2 +𝑂𝑝 (1),

where the last step uses Lemma 3.3.1 part (a), and mutual contiguity. Combining the above

two displays along with (3.43), under P\𝑛,𝑄𝑛 we get

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − 1) 𝑑

=

𝑛X̄4

3 + X𝑇𝐵𝑛X − X𝑇𝐵2
𝑛X + 𝑜𝑝 (1)

√
𝑛X̄2 + 𝑜𝑝 (1)

𝑑→
𝑈4

1,ℎ
3 + 𝑆1 − 𝑇1

𝑈2
1,ℎ

,

where we again use part (b) of Lemma 3.3.1. Recalling the formula of 𝑉1,ℎ we have verified

(3.42), and this completes part (b).

Part (c):

• MS Test

Using symmetry of the distribution of X̄ we have

𝛼 = P1,𝑄𝑛 (𝑛X̄2 > 𝐾𝑛 (𝛼)) = 2P1,𝑄𝑛 (X̄ >
√︁
𝐾𝑛 (𝛼)).

Using this, along with the limit distribution 𝑛1/4X̄ 𝑑→ 𝑈1,0 under P1,𝑄𝑛 (see part (b) of Lemma

3.3.1) gives √︁
𝐾𝑛 (𝛼) = 𝑛1/4ΨH0 (1 − 𝛼/2) + 𝑜(𝑛1/4).
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Then, setting \𝑛 = 1 + ℎ√
𝑛
, the asymptotic power is given by

2P\𝑛 (
√
𝑛X̄ > 𝐾𝑛 (𝛼)) =2P\𝑛,𝑄𝑛

(
𝑛1/4X̄ > ΨH0 (1 − 𝛼/2) + 𝑜(1)

)
=2P

(
𝑈1,ℎ > ΨH0 (1 − 𝛼/2)

)
+ 𝑜(1),

where the last line again uses part (b) of Lemma 3.3.1. Thus we have 𝛽𝑀𝑆 = 2P
(
𝑈1,ℎ >

ΨH0 (1 − 𝛼/2)
)
, as desired.

• NP Test

As in the proof of Theorem 3.2.2, we have X𝑇𝑄𝑛X = 𝑛X̄2 + 𝑂𝑝 (1) under both P1,𝑄𝑛 and

P\𝑛,𝑄𝑛 , using (3.32) and mutual contiguity. Thus we get 𝛽𝑁𝑃 = 𝛽𝑀𝑆 as before.

• PL Test

Using (3.42), under P1,𝑄𝑛 we have

√
𝑛(\̂𝑀𝑃𝐿𝐸𝑛 − 1) 𝑑→ 𝑉1,0, which gives 𝐾𝑛 (𝛼) = 1 +

Ψ𝑉1,0 (𝛼)√
𝑛

+ 𝑜
( 1
√
𝑛

)
.

Then the asymptotic power is given by

P\𝑛,𝑄𝑛 (\̂𝑛 > 𝐾𝑛 (𝛼)) = P(𝑉1,ℎ > Ψ𝑉1,0 (𝛼)) + 𝑜(1),

where the last step again uses (3.42). This shows that 𝛽𝑃𝐿 = P(𝑉1,ℎ > Ψ𝑉1,0 (𝛼)), as desired.

□

3.3.3 Proof of Theorem 3.2.4

Part (a):

As in the proof of Theorem 3.2.2, let 𝐼 := {ℎ1, . . . , ℎ𝑘 } ⊂ (−\0, 1 − \0) with {ℎ1 < ℎ2 < . . . <

ℎ𝑘 } for some positive integer 𝑘 , and let \𝑖 := \0 + ℎ𝑖 ∈ (0, 1) for 1 ≤ 𝑖 ≤ 𝑘 . It thus suffices to
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analyze the terms in the RHS of (3.33). To this effect, first use part (c) of Lemma 3.3.1 to note that

under P\0,𝑄𝑛 we have

X𝑇𝑄𝑛X = 𝑛X̄2 + X𝑇𝐵𝑛X
𝑑→𝑊2

\0
+ 𝑆\0

𝑑
=

∞∑︁
𝑗=1
_ 𝑗

( 𝑌 𝑗

1 − \0_ 𝑗
− 1

)
+ \0^ +𝑊∗ = 𝑈\0 , (3.44)

where {𝑌 𝑗 } 𝑗≥1
𝑖𝑖𝑑∼ 𝜒2

1 are mutually independent, 𝑈\0 is as defined (3.25), and we use the fact that

_1 = 1 (as 𝑄𝑛 satisfies (3.2), and using Proposition 3.7.1 part (b)). Thus combining the last display

along with (3.33) and part (c) of Lemma 3.3.2, under P\0,𝑄𝑛 we have

log
𝑑P\𝑖 ,𝑄𝑛
𝑑P\0,𝑄𝑛

(X) 𝑑→ ℎ𝑖

2
𝑈\0 −

^

4
ℎ2
𝑖 −

^\0ℎ𝑖
2

+ 1
2

∞∑︁
𝑗=1

(
_ 𝑗ℎ𝑖 − log

(1 − \0_ 𝑗

1 − \𝑖_ 𝑗

))
.

To show the desired convergence of experiments, with Z := (𝑍 𝑗 ) 𝑗∈Z+ ∈ RZ+ we need to show that

under a\0 we have

[ 𝑑a\𝑖
𝑑a\0

(Z)
]

1≤𝑖≤𝑘
𝑑
=

[ ℎ𝑖
2
𝑆(\0) −

^

4
ℎ2
𝑖 −

^\0ℎ𝑖
2

+ 1
2

∞∑︁
𝑗=1

(
_ 𝑗ℎ𝑖 − log

(1 − \0_ 𝑗

1 − \𝑖_ 𝑗

)]
1≤𝑖≤𝑘

, (3.45)

where a\ is as in Definition 3.2.6. To this effect, first note that for any 𝑗 ≥ 1 the log Hellinger

affinity between the centered Gaussian distributions a\𝑖 , 𝑗 and a\0, 𝑗 is given by

log
∫
R

√︂
𝑑a\𝑖 , 𝑗

𝑑𝑥

𝑑a\𝑖 , 𝑗

𝑑𝑥
𝑑𝑥 = log

2(1 − \0_ 𝑗 + \𝑖_ 𝑗 + \0\𝑖_
2
𝑗
)√︁

(1 − \0_ 𝑗 ) (1 − \𝑖_ 𝑗 ) (2 − \0_ 𝑗 − \𝑖_ 𝑗 )
= 𝑂 (_2

𝑗 ),

where the last equality uses the estimate log(1 + 𝑥) = 𝑥 + 𝑂 (𝑥2) for all |𝑥 | ≤ 1 − 𝛿, for any 𝛿 > 0.

Since
∑∞
𝑗=1 _

2
𝑗
< ∞ (by Proposition 3.7.1 part (a)), the LHS of the display above is summable in

𝑗 , for every 𝑖 ∈ [𝑘]. It then follows by Kakutani’s theorem [22, Thm 4.3.8] that the probability

measures ⊗ 𝑗∈Z+a\0, 𝑗 and ⊗ 𝑗∈Z+a\𝑖 , 𝑗 are mutually absolutely continuous, and further under a\0 we
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have

( 𝐽∏
𝑗=0

𝑑a\𝑖 , 𝑗

𝑑a\0, 𝑗

)
1≤𝑖≤𝑘

𝑑→
( ∏
𝑗∈Z+

𝑑a\𝑖 , 𝑗

𝑑a\0, 𝑗

)
1≤𝑖≤𝑘

. (3.46)

Now, for 𝑗 = 0 we have

log
𝑑a\𝑖 ,0

𝑑a\0,0
(𝑍0) = ℎ𝑖

√︂
^

2

(
𝑍0 − \0

√︂
^

2

)
− ^

4
ℎ2
𝑖

𝑑
= −^

4
ℎ2
𝑖 +

ℎ𝑖

2
𝑊∗

where 𝑍0 ∼ 𝑁
(
\0

√︁
^
2 , 1

)
and𝑊∗ ∼ 𝑁 (0, 2^). And for 𝑗 ≥ 1 we have

log
𝑑a\𝑖 , 𝑗

𝑑a\0, 𝑗
(𝑍 𝑗 )

𝑑
=

1
2

log
( 1 − \𝑖_ 𝑗
1 − \0_ 𝑗

)
+ ℎ𝑖

2
_ 𝑗𝑍

2
𝑗

𝑑
=

1
2

log
( 1 − \𝑖_ 𝑗
1 − \0_ 𝑗

)
+ 1

2(1 − \0_ 𝑗 )
ℎ𝑖_ 𝑗𝑌 𝑗 ,

where 𝑍 𝑗 ∼ 𝑁 (0, 1
1−\0_ 𝑗

) and 𝑌 𝑗 ∼ 𝜒2
1 . Combining the last two displays, under a\0 we get

log
𝑑

𝐽⊗
𝑗=0
a\𝑖 , 𝑗

𝑑
𝐽⊗
𝑗=0
a\0, 𝑗

(𝑍 𝑗 , 0 ≤ 𝑗 ≤ 𝐽) 𝑑
= − ^

4
ℎ2
𝑖 +

ℎ𝑖

2

( 𝐽∑︁
𝑗=1
_ 𝑗

( 𝑌 𝑗

1 − \0_ 𝑗
− 1

)
+𝑊∗

)

+ 1
2

( 𝐽∑︁
𝑗=1
_ 𝑗ℎ𝑖 − log

(1 − \0_ 𝑗

1 − \𝑖_ 𝑗

))
.

Letting 𝐽 → ∞ and using (3.46), under a\0 we get

log
𝑑

⊗
𝑗∈Z+

a\𝑖 , 𝑗

𝑑
⊗
𝑗∈Z+

a\0, 𝑗
(Z)

1≤𝑖≤𝑘

𝑑→
[
− ^

4
ℎ2
𝑖 +

ℎ𝑖

2

( ∞∑︁
𝑗=1
_ 𝑗

( 𝑌 𝑗

1 − \0_ 𝑗
− 1) +𝑊∗

)
+ 1

2

( 𝐽∑︁
𝑗=1
_ 𝑗ℎ𝑖 − log

(1 − \0_ 𝑗

1 − \𝑖_ 𝑗

))]
1≤𝑖≤𝑘

,

where we again use the fact
∑∞
𝑗=1 _

2
𝑗
< ∞ (from Proposition 3.7.1 part (a)). From this, the desired

conclusion (3.45) follows on using Lemma 3.3.2 part (c), along with (3.33). This verifies concludes
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the proof of Theorem 3.2.4 part (a).

Part (b):

• PL Test

We first investigate Pseudo-Likelihood test (3.12). Proposition 3.3.1 part (d) shows that the

MPLE exists with probability tending to 1. We now claim that \̂𝑀𝑃𝐿𝐸𝑛 = 𝑂𝑝 (1) under P\0,𝑄𝑛 .

Indeed, the MPLE \̂𝑀𝑃𝐿𝐸𝑛 satisfies

X𝑇𝑄𝑛X =

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\̂𝑀𝑃𝐿𝐸𝑛 𝑡𝑖)

=

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\0𝑡𝑖) +
𝑛∑︁
𝑖=1

𝑡2𝑖

∫ \̂𝑀𝑃𝐿𝐸𝑛

\0

sech2(b𝑡𝑖)𝑑b.
(3.47)

Also by [19, Lemma 2.3], under P\0,𝑄𝑛 we have

lim sup
𝑀→∞

lim sup
𝑛→∞

P\0,𝑄𝑛

(
max
1≤𝑖≤𝑛

|𝑡𝑖 | > 𝑀
√︂

log 𝑛
𝑛

)
= 0. (3.48)

Thus, fixing 𝐾, 𝑀 > 0 on the set{
max
1≤𝑖≤𝑛

|𝑡𝑖 | ≤ 𝑀

√︂
log 𝑛
𝑛

, |\̂𝑀𝑃𝐿𝐸𝑛 | > 𝐾
}
,

we have

��X𝑇𝑄𝑛X −
𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\0𝑡𝑖)
�� = �� 𝑛∑︁

𝑖=1
𝑡2𝑖

∫ \̂𝑀𝑃𝐿𝐸𝑛

\0

sech2(b𝑡𝑖)𝑑b
��

≥
��� 𝑛∑︁
𝑖=1

𝑡2𝑖

∫ 𝐾

\0

sech2
(
𝑀b

√︂
log 𝑛
𝑛

)
𝑑b

���
≥ (𝐾 − \0)sech2

(
𝑀𝐾

√︂
log 𝑛
𝑛

) 𝑛∑︁
𝑖=1

𝑡2𝑖 .
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Also we have

𝑛∑︁
𝑖=1

𝑡2𝑖 = X𝑇𝑄2
𝑛X = 𝑛X̄2 + X𝑇𝐵2

𝑛X, max
1≤𝑖≤𝑛

|𝑡𝑖 | = 𝑂𝑝

(√︂ log 𝑛
𝑛

)
(the second conclusion follows from (3.48)). Combining the last two displays, under P\0,𝑄𝑛

we get

(𝐾 − \0)sech2
(
𝑀𝐾

√︂
log 𝑛
𝑛

)
≤

��X𝑇𝑄𝑛X −
𝑛∑
𝑖=1
𝑡𝑖 tanh(\0𝑡𝑖)

��
𝑛∑
𝑖=1
𝑡2
𝑖

=

��X𝑇𝑄𝑛X − \0
𝑛∑
𝑖=1
𝑡2
𝑖
−𝑂𝑝

( 𝑛∑
𝑖=1
𝑡4
𝑖

)��
𝑛∑
𝑖=1
𝑡2
𝑖

=
��𝑛X̄2 + X𝑇𝐵𝑛X
𝑛X̄2 + X𝑇𝐵2

𝑛X
− \0

�� + 𝑜𝑝 (1).
The RHS of the display above converges in distribution as 𝑛 → ∞, by part (c) of Lemma

3.3.1, whereas the LHS converges to 𝐾 − \0. Since 𝐾 > 0 is arbitrary, this gives

lim sup
𝐾→∞

lim sup
𝑛→∞

P\0,𝑄𝑛

(
|\̂𝑀𝑃𝐿𝐸𝑛 | > 𝐾, max

1≤𝑖≤𝑛
|𝑡𝑖 | ≤ 𝑀

√︂
log 𝑛
𝑛

)
= 0.

Along with (3.48), this gives

lim sup
𝐾→∞

lim sup
𝑛→∞

P\0,𝑄𝑛 ( |\̂𝑀𝑃𝐿𝐸𝑛 | > 𝐾) = 0,

which is equivalent to \̂𝑀𝑃𝐿𝐸𝑛 = 𝑂𝑝 (1). Using (3.47) now gives under P\0,𝑄𝑛 ,

\̂𝑀𝑃𝐿𝐸𝑛 − \0 =

X𝑇𝑄𝑛X −
𝑛∑
𝑖=1
𝑡𝑖 tanh(\0𝑡𝑖)

𝑛∑
𝑖=1
𝑡2
𝑖
sech2(b𝑛𝑡𝑖)

=
𝑛X̄2 + X𝑇𝐵𝑛X
𝑛X̄2 + X𝑇𝐵2

𝑛X
− \0 + 𝑜𝑝 (1),
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for some b𝑛 lying between \0 and \̂𝑀𝑃𝐿𝐸𝑛 (and hence 𝑂𝑝 (1)). Using part (c) of Lemma 3.3.1

along with the above display, under P\0,𝑄𝑛 we get

\̂𝑀𝑃𝐿𝐸𝑛 − \0
𝑑→
𝑊2
\0
+ 𝑆\0

𝑊2
\0
+ 𝑇\0

𝑑
=

1
1−\𝑌1 +

∞∑
𝑗=2
_ 𝑗 (

𝑌 𝑗
1−\_ 𝑗 − 1) − 1 + \^ +𝑊∗

1
1−\𝑌1 +

∞∑
𝑗=2

_2
𝑗
𝑌 𝑗

1−\_ 𝑗 + ^
= 𝑉\0 , (3.49)

where 𝑉\0 is as defined in (3.26). Since \0 ∈ (0, 1) is arbitrary, the same argument above

also shows that under P\0+ℎ,𝑄𝑛 we have \̂𝑀𝑃𝐿𝐸𝑛 − \0
𝑑→ 𝑉\0+ℎ. The desired formula for 𝛽𝑃𝐿

follows from this.

• NP Test

Using (3.44) it follows that for all \ ∈ (0, 1), under P\,𝑄𝑛 we have X𝑇𝑄𝑛X
𝑑→ 𝑈\ . The

formula for 𝛽𝑁𝑃 follows on using this with \ = \0 + ℎ and \ = \0.

• MS Test

Again invoking part (c) of Lemma 3.3.1, under P\,𝑄𝑛 with \ ∈ (0, 1) we have

𝑛X̄2 𝑑→ 𝑊2
\

𝑑
=

𝑌1
1 − \ .

Thus we have

𝛼 = P\0,𝑄𝑛 (𝑛X̄2 > 𝐾𝑛 (𝛼)) =P(𝑌1 > (1 − \0)𝐾𝑛 (𝛼)) + 𝑜(1)

=2P(𝑁 (0, 1) >
√︁
(1 − \0)𝐾𝑛 (𝛼)) + 𝑜(1).

94



This gives 𝐾𝑛 (𝛼) =
𝑧2
𝛼/2

1−\0
+ 𝑜(1). In turn this gives

P\0+ℎ,𝑄𝑛 (𝑛�̄�2 > 𝐾𝑛 (𝛼)) = P
( 𝑌1
1 − \0 − ℎ

>
𝑧2
𝛼/2

1 − \0

)
+ 𝑜(1)

= 2P
(
𝑁 (0, 1) > 𝑧𝛼/2

√︄
1 − \0 − ℎ

1 − \0

)
+ 𝑜(1),

thus verifying the desired formula for 𝛽𝑀𝑆.

3.3.4 Proof of Proposition 3.3.1

(a) By definition of 𝑎𝑛, 𝑏𝑛 we have

lim
\→−∞

E\X′𝑄𝑛X = 𝑎𝑛, lim
\→∞
E\X𝑇𝑄𝑛X = 𝑏𝑛.

Since the function

\ ↦→ \

2
X𝑇𝑄𝑛X − 𝑍𝑛 (\, 𝑄𝑛)

is strictly concave, it follows that there exists a unique MLE in R iff the equation

X′𝑄𝑛X = E\X′𝑄𝑛X

has a real solution, which holds iff 𝑎𝑛 < X𝑇𝑄𝑛X < 𝑏𝑛, as desired.

(b) This is immediate from part (a), and on noting that X𝑇𝑄𝑛X has a continuous limiting distri-

bution in all regimes, as shown in the proofs above (in particular, see (3.34), (3.41), (3.44)

for domains Θ1,Θ2,Θ3 respectively).

(c) Using (3.8), the existence of MPLE is equivalent to the existence of a real valued root of the

equation

X𝑇𝑄𝑛X =

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\𝑡𝑖). (3.50)
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Taking limits as \ → ±∞, we get

lim
\→−∞

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\𝑡𝑖) = −
𝑛∑︁
𝑖=1

|𝑡𝑖 |, lim
\→∞

𝑛∑︁
𝑖=1

𝑡𝑖 tanh(\𝑡𝑖) =
𝑛∑︁
𝑖=1

|𝑡𝑖 |.

Thus the existence of MPLE holds iff

−
𝑛∑︁
𝑖=1

|𝑡𝑖 | < X𝑇𝑄𝑛X <

𝑛∑︁
𝑖=1

|𝑡𝑖 |.

Suppose X𝑇𝑄𝑛X =
∑𝑛
𝑖=1 𝑡𝑖. This happens iff 𝑋𝑖 = 1 for all 𝑖 ∈ 𝑆(X). Similarly we have

X𝑇𝑄𝑛X = −
𝑛∑︁
𝑖=1

𝑡𝑖 ⇔ 𝑋𝑖 = −1 for all 𝑖 ∈ 𝑆(X).

The conclusion of part (c) follows from this.

(d) By symmetry, we only show that

P\0,𝑄𝑛 (𝑋𝑖 = 1, 𝑖 ∈ 𝑆) → 0.

To this end, note that by mutual contiguity it suffices to show the result under the Curie-

Weiss model. To this effect, we first claim that for any positive sequence {Y𝑛}𝑛≥1 converging

to 0 and constant 𝐶 > 0 free of 𝑛, we have

lim
𝑛→∞

sup
a∈R𝑛/{0}:∥a∥∞≤Y𝑛∥a∥2

P(
𝑛∑︁
𝑖=1

𝑎𝑖b𝑖 = 0) = 0, (3.51)

where {b𝑖}1≤𝑖≤𝑛 are iid random variables such that Var(b1) ≠ 0,E|b1 |3 ≤ 𝐶.

Given this claim, we first complete the proof of part (d). Let 𝜙𝑛 be the auxiliary variable

introduced in Proposition . Then we have

P\0,CW(𝑡𝑖 = 0 for some i, 1 ≤ 𝑖 ≤ 𝑛) = EP\0,CW(𝑡𝑖 = 0 for some i, 1 ≤ 𝑖 ≤ 𝑛|𝜙𝑛).
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Given 𝜙𝑛, 𝑡𝑖 is a weighted sum of iid random random variables, with E( |𝑋1 |3 |𝜙𝑛) ≤ 1. Also,

we have

|𝑄𝑛 (𝑖, 𝑗) | ≤
𝐶𝑤

𝑛
,

√√√ 𝑛∑︁
𝑗=1
𝑄𝑛 (𝑖, 𝑗)2 =

1
√
𝑑𝑛
,

and so we can take 𝐶 = 1, Y𝑛 = 𝐶 ′
√
𝑛

for some suitable constant 𝐶′ free of 𝑛. Thus we have

P\0,CW(𝑡𝑖 = 0 for some i, 1 ≤ 𝑖 ≤ 𝑛|𝜙𝑛)
𝑝
→ 0 ⇒ lim

𝑛→∞
P\0,CW(𝑡𝑖 = 0 for some 𝑖) = 0.

To complete the proof, it suffices to show that P\0,CW(X̄ = 1) → 0. But this is immediate

from the weak law of X̄ derived in Lemma 3.3.1 (and mutual contiguity of P\0,𝑄𝑛 and P\0,CW).

It thus remains to verify the claim. But this follows on setting `𝑛 := Eb1, 𝜏
2
𝑛 = 𝑉𝑎𝑟 (b1) and

noting that

P(
𝑛∑︁
𝑖=1

𝑎𝑖b𝑖 = 0) = P
(∑𝑛

𝑖=1 𝑎𝑖 (b𝑖 − `𝑛)
𝜏𝑛∥a∥2

2
= −

`𝑛
∑𝑛
𝑖=1 𝑎𝑖

𝜏𝑛∥a∥2

)
,

and the fact that ∑𝑛
𝑖=1 𝑎𝑖 (b𝑖 − `𝑛)
𝜏𝑛∥a∥2

2

𝑑→ 𝑁 (0, 1)

by the Lyapunov CLT.
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3.5 Appendix A:Proofs of main lemmas

As it turns out, our proof technique relies on a very precise understanding of what happens

under the Curie-Weiss model. Denote the Curie-Weiss model by P\,CW. Let 𝑄𝑛 is given as in
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(3.31). A simple calculation shows that the probability mass function of the Curie-Weiss model is

given by

P\,CW(X = x) = exp
(𝑛\𝑥2

2
− 𝑍𝑛 (\,CW)

)
.

The following two lemmas summarize the estimates that we need from the Curie-Weiss model.

The proof of these lemmas are deferred to section 3.6.

Lemma 3.5.1. For any ℎ ∈ R and \0 > 0, let \𝑛 = \𝑛 (\0, ℎ) be as defined in (3.15). Let X ∼

P\𝑛,CW, where 𝑄𝑛 is a sequence of matrices which satisfy (3.2), (3.3), (3.4) and (3.5). Set 𝐵𝑛 =

𝑄𝑛 − 1
𝑛
11T as before. Also, let 𝑊\0 ∼ 𝑁 (0, 𝜎2(\0)), 𝑈1,ℎ ∼ Hℎ (see (3.18)) be independent of

(𝑆0, 𝑇0) (see (3.16) and (3.17) respectively). Then the following conclusions hold under P\𝑛,CW:

(a) Low Temperature Regime: Suppose \0 ∈ Θ1.

(i) With 𝑚(.) as in definition 3.2.1, we have

(√
𝑛(X̄ − 𝑚(\𝑛)),X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
)

𝑑−→ (𝑊\0 , (1 − 𝑚2(\0))𝑆0, (1 − 𝑚2(\0))𝑇0).

(ii) Further we have

lim
𝑛→∞

{
𝑍𝑛 (\𝑛,CW) − 𝑍𝑛 (\0,CW) −

√
𝑛𝑚2(\0)

2

}
=
𝑅(\0)ℎ2

2
,

where 𝑅(\0) is as defined in Theorem 3.2.2.

(b) Critical Point: Suppose \0 ∈ Θ2.

(i) We have (
𝑛1/4X̄,X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
) 𝑑−→ (𝑈1,ℎ, 𝑆0, 𝑇0).

(ii) Further, we have

lim
𝑛→∞

{𝑍𝑛 (1 + ℎ𝑛) − 𝑍𝑛 (1)} = 𝐹 (ℎ) − 𝐹 (0),
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where 𝐹 (.) is as defined in (3.18).

(c) High Temperature Regime: Suppose \0 ∈ Θ3.

(i) We have (√
𝑛X̄,X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
) 𝑑−→ (𝑊1, 𝑆0, 𝑇0).

(ii) Further we have

lim
𝑛→∞

{𝑍𝑛 (\0 + ℎ,CW) − 𝑍𝑛 (\0,CW)} = 1
2

[
log(1 − \0) − log(1 − \0 − ℎ)

]
.

Lemma 3.5.2. Suppose the matrix𝑄𝑛 satisfies (3.2), (3.3), (3.4) and (3.5) for some 𝐶𝑊 , ^ ∈ (0,∞)

and 𝑓 ∈ W. Let \0 > 0, ℎ ∈ R, and \𝑛 be as defined in (3.15). Then the following conclusions

hold in all the three regimes Θ1 ∪ Θ2 ∪ Θ3.

(a)

lim
𝑛→∞

𝑍𝑛 (\𝑛, 𝑄𝑛) − 𝑍𝑛 (\𝑛) = 𝐶 (\0),

where

𝐶 (\0) := −1
2
\ (1 − 𝑚2) + ^

4
\2

0 (1 − 𝑚2)2 + 1
2

∞∑︁
𝑖=2

[
log

(
1 − \0(1 − 𝑚2)_𝑖

)
+ _𝑖\0(1 − 𝑚2)

]
.

(b) The probability measures P\𝑛,𝑄𝑛 and P\𝑛,CW are mutually contiguous.

Using Lemma 3.5.1 and Lemma 3.5.2 , we now prove the lemmas used to prove the main

results in section 3.3.

3.5.1 Proof of Lemma 3.3.1

To begin, note that in all regimes of \, the following hold:
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• The log likelihood ratio

log
𝑑P\𝑛,𝑄𝑛
𝑑P\𝑛,CW

(X) = \𝑛

2
X𝑇𝐵𝑛X − 𝑍𝑛 (\𝑛, 𝑄𝑛) + 𝑍𝑛 (\𝑛,CW) (3.52)

is a function of X𝑇𝐵𝑛X.

• The asymptotic non degenerate limiting distribution of X̄ is jointly independent of X𝑇𝐵𝑛X

and X𝑇𝐵2
𝑛X (this follows from Lemma 3.5.1).

• The two measures P\𝑛,𝑄𝑛 and P\𝑛,CW are mutually contiguous (this follows from Lemma

3.5.2 part (b)).

It thus follows from Le-Cam’s third lemma that the asymptotic non degenerate distribution of X̄

under P\𝑛,𝑄𝑛 and P\𝑛,CW are the same, and is asymptotically independent of the joint distribution

of (X𝑇𝐵𝑛X,X𝑇𝐵2
𝑛X) under both models.

To complete the proof of Lemma 3.3.1, it then suffices to show that in all the regimes of \0 ∈ Θ,

under P\𝑛,𝑄𝑛 we have

(X𝑇𝐵𝑛X,X𝑇𝐵2
𝑛X) 𝑑→ (𝑆\0 , 𝑇\0). (3.53)

To show this, first note that under P\𝑛,CW we have

[
X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X, log
𝑑P\𝑛,𝑄𝑛
𝑑P\𝑛,CW

(X)
]

=

[
X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X,
\𝑛

2
X𝑇𝐵𝑛X − 𝑍𝑛 (\𝑛, 𝑄𝑛) + 𝑍𝑛 (\𝑛,CW)

]
𝑑→


(
1 − 𝑚2(\0)

)
𝑆0,

(
1 − 𝑚2(\0)

)
𝑇0,

\0

(
1 − 𝑚2(\0)

)
2

𝑆0 − 𝐶 (\0)
 ,

and we have used (3.52) in the first step, and Lemma 3.5.1 and Lemma 3.5.2 part (a) in the second

step (and 𝐶 (\0) is defined in Lemma 3.5.2 part (a)). Using mutual contiguity, it follows that under
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P\𝑛,𝑄𝑛 , we have

(X𝑇𝐵𝑛X,X𝑇𝐵2
𝑛X) 𝑑→ (𝑆′, 𝑇 ′),

where (𝑆′, 𝑇 ′) is a bi-variate random vector with characteristic function

E𝑒𝑖(𝑠𝑆
′+𝑡𝑇 ′)

= E exp
{
(1 − 𝑚2(\0))𝑖(𝑠𝑆0 + 𝑡𝑇0) +

\0(1 − 𝑚2(\0))
2

𝑆0 − 𝐶 (\0)
}

= 𝑒−𝐶 (\0)E exp
{
(1 − 𝑚2(\0))

(
𝑖𝑠 + \0

2

)
𝑆0 + 𝑖𝑡𝑇0

}
= 𝑒−𝐶 (\0)E exp

(1 − 𝑚2(\0))
(
𝑖𝑠 + \0

2

)
(
∞∑︁
𝑗=2
_ 𝑗 (𝑌 𝑗 − 1) − 1 +𝑊∗) + 𝑖𝑡 (1 − 𝑚2(\0))

( ∞∑︁
𝑗=2
_2
𝑗𝑌 𝑗 + ^

)
= 𝑒−𝐶 (\0) exp

{
− (1 − 𝑚2(\0))

(
𝑖𝑠 + \0

2

)
+ 𝑖^𝑡 (1 − 𝑚2(\0))

}
E exp

{
(1 − 𝑚2(\0))

(
𝑖𝑠 + \0

2
)
𝑊∗

}
∞∏
𝑗=2

exp
{
− (1 − 𝑚2(\0))

(
𝑖𝑠 + \0

2

)
_ 𝑗

}
E exp

{
(1 − 𝑚2(\0))

(
𝑖𝑠 + \0

2

)
_ 𝑗𝑌 𝑗 + (1 − 𝑚2(\0))𝑡_2

𝑗𝑌 𝑗

}
= 𝑒−𝐶 (\0) exp

{
(1 − 𝑚2(\0))

(
𝑖𝑡^ − 𝑖𝑠 − \0

2

)
+ (1 − 𝑚2(\0))2

(
𝑖𝑠 + \0

2

)2
^

}
∞∏
𝑗=2

exp
{
− (1 − 𝑚2(\0))

(
𝑖𝑠 + \0

2

)
_ 𝑗

}
√︃

1 − (1 − 𝑚2(\0))
(
\0_ 𝑗 + 2𝑖_ 𝑗 𝑠 + 2𝑖_2

𝑗
𝑡)

= 𝑒(1−𝑚
2 (\0)) (𝑖𝑡^−𝑖𝑠)+(1−𝑚2 (\0))2 (𝑖\0𝑠^−𝑠2^)

∞∏
𝑗=2

𝑒
−(1−𝑚2 (\0))

(
𝑖𝑠+ \02

)
_ 𝑗√︂

1 − (1 − 𝑚2(\0))
(
1 − 2𝑖(1 − 𝑚2(\0))

_ 𝑗 𝑠+_2
𝑗
𝑡

1−\0 (1−𝑚2 (\0))_ 𝑗

) ,
where in the last step we use the formula for 𝐶 (\0) from Lemma 3.5.2 part (a). The last display

above can be checked to be the joint characteristic function of

(1 − 𝑚2(\0))
[ ∞∑︁
𝑗=2
_ 𝑗

( 𝑌 𝑗

1 − \0(1 − 𝑚2(\0))_ 𝑗
− 1

)
− 1 + (1 − 𝑚2(\0))\0^ +𝑊∗,

∞∑︁
𝑗=2

_2
𝑗
𝑌 𝑗

1 − \0(1 − 𝑚2(\0))_ 𝑗
+ ^

]
,

and so the proof of (3.53) is complete.
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3.5.2 Proof of Lemma 3.3.2

This is immediate on combining Lemma 3.5.1 part (a)(ii), part (b)(ii), part (c)(ii), along with

Lemma 3.5.2 part (a).

3.6 Appendix B: Proofs of lemmas on Curie-Weiss models

The following proposition expresses the Curie-Weiss model as a mixture of iid laws. The same

decomposition was also utilized previously in the literature (see [39, 51]. We omit the proof.

Proposition 3.6.1. [51, Lem 3] Given X ∼ P\,CW, let 𝜙𝑛 be a real valued random variable defined

by

𝜙𝑛 ∼ 𝑁
(
X̄,

1
𝑛\

)
. (3.54)

Then the following conclusions hold:

(a) Given 𝜙𝑛, the random variables (𝑋1, . . . , 𝑋𝑛) are IID, with

P\,CW(𝑋 𝑗 = 1|𝜙𝑛) =
exp (\𝜙𝑛)

exp (\𝜙𝑛) + exp (−\𝜙𝑛)
(3.55)

(b) The marginal density of 𝜙𝑛 has a density with respect to Lebesgue measure, which is propor-

tional to

𝑓\,𝑛 (𝜙𝑛) = exp
(
− 1

2
𝑛\𝜙2

𝑛 + 𝑛 log cosh(\𝜙𝑛)
)
. (3.56)

Definition 3.6.1. Let 𝐹𝑛,\ denote the distribution of 𝜙𝑛, as defined in Proposition 3.6.1.

We first state a lemma about 𝐹𝑛,\ , which is the main ingredient to prove Lemma 3.3.1 and

Lemma 3.3.2.

Lemma 3.6.1. Fix \0 > 0, ℎ ∈ R, and let \𝑛 be as defined in (3.15). Let 𝜙𝑛 ∼ 𝐹𝑛,\𝑛 , where 𝐹𝑛,\ is

as in definition 3.6.1.
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(a) If \0 ∈ Θ3, then
√
𝑛𝜙𝑛 → 𝑁

(
0,

1
\0 − \2

0

)
in distribution, and in moments.

(b) If \0 ∈ Θ2, then

𝑛1/4𝜙𝑛 → Hℎ

in distribution, and in moments, where 𝐻ℎ is as defined in (3.18).

(c) If \0 ∈ Θ1, then conditional on 𝜙𝑛 > 0 we have

√
𝑛(𝜙𝑛 − 𝑚(\𝑛)) → 𝑁

(
0,

1
\0 − (1 − 𝑚2(\0))\2

0

)
in distribution, and in moments, where 𝑚(.) is as in definition 3.2.1.

Our second lemma characterizes the limit distribution of quadratic forms of IID random vari-

ables (by comparing it to quadratic forms of Gaussians).

Lemma 3.6.2. Suppose Z := (𝑍𝑖)1≤𝑖≤𝑛 are IID random variables with mean 0 and variance 𝜏2
𝑛

which converges to 𝜏2 ∈ (0,∞). Assume that the matrix 𝑄𝑛 satisfies (3.2), (3.3), (3.4) and (3.5)

for some 𝐶𝑊 , ^ ∈ (0,∞) and 𝑓 ∈ W. Then with 𝐵𝑛 = 𝑄𝑛 − 1
𝑛
11𝑇 we have

[
√
𝑛Z̄,Z𝑇𝐵𝑛Z,Z𝑇𝐵2

𝑛Z]
𝑑→

[
𝜏𝑊0, 𝜏

2
( ∞∑︁
𝑗=2
_ 𝑗 (𝑌 𝑗 − 1) − 1 +𝑊∗

)
, 𝜏2

( ∞∑︁
𝑗=2
_2
𝑗𝑌 𝑗 + ^

)]
,

where

𝑊0 ∼ 𝑁 (0, 1), 𝑊∗ ∼ 𝑁 (0, 2^), {𝑌 𝑗 } 𝑗≥2
𝑖𝑖𝑑∼ 𝜒2

1

are mutually independent. Here the infinite sums in the limiting distributions converge in 𝐿2.

The final result that we need is an elementary calculus result.

Proposition 3.6.2. Suppose 𝑔𝑛 (.) is a sequence of functions defined on a compact interval [𝑎, 𝑏].

Assume the following:
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• There exists a function 𝑔∞(.) on [𝑎, 𝑏], such that 𝑔𝑛 (.) converges to 𝑔∞(.) pointwise.

• The function 𝑔𝑛 (.) is non-decreasing, for every 𝑛 ≥ 1.

• The function 𝑔∞(.) is continuous.

Then 𝑔𝑛 converges to 𝑔∞ uniformly on [𝑎, 𝑏].

The proof of these results are deferred to the appendix C 3.7.

3.6.1 Proof of Lemma 3.5.1

(a) Before we begin the proof, we point out that Lemma 3.6.1 part (c) implies that by symmetry,

𝜙𝑛
𝑑→ 1

2
(𝛿𝑚(\0) + 𝛿−𝑚(\0)),

and Proposition 3.6.1 implies that

|𝜙𝑛 − X̄|
𝑝
→ 0.

The last two displays together imply

P𝑛,\𝑛 (𝜙𝑛 < 0|X̄ > 0) → 0,

and so without loss of generality we can interchange between the conditioning events X̄ > 0

and 𝜙𝑛 > 0. Also, conditional on 𝜙𝑛 > 0 we have 𝜙𝑛
𝑝
→ 𝑚(\0), from Lemma 3.6.1 part (c).

(i) Using Proposition 3.6.1, conditioning on 𝜙𝑛, the random variables (𝑋1, . . . , 𝑋𝑛) are

IID, with

E(𝑋1 |𝜙𝑛) = tanh(\𝑛𝜙𝑛) =: `𝑛, 𝑉𝑎𝑟 (𝑋1 |𝜙𝑛) = sech2(\𝑛𝜙𝑛).
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Noting that 𝐵𝑛1 = 0, setting µ𝑛 := `𝑛1 one can write

[√
𝑛(X̄ − 𝑚(\𝑛)),X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
]

=

[√
𝑛(X̄ − `𝑛), (X − µ𝑛)𝑇𝐵𝑛 (X − µ𝑛), (X − µ𝑛)𝑇𝐵2

𝑛 (X − µ𝑛)
]

+
[√
𝑛(`𝑛 − 𝑚(\𝑛)), 0, 0

]
.

(3.57)

By Lemma 3.6.2, conditioning on 𝜙𝑛, on the event 𝜙𝑛 > 0 we get

[√
𝑛(X̄ − `𝑛), (X − µ𝑛)𝑇𝐵𝑛 (X − µ𝑛), (X − µ𝑛)𝑇𝐵2

𝑛 (X − µ𝑛)
]

𝑑→
[
𝜏𝑊0, 𝜏

2𝑆0, 𝜏
2𝑇0

]
,

(3.58)

where

sech(\𝑛𝜙𝑛)
𝑝
→ sech(\0𝑚(\0)) =

√︁
1 − 𝑚2(\0) =: 𝜏.

Proceeding to analyze the second term in the RHS of (3.57), a one term Taylor’s ex-

pansion then gives that

√
𝑛(`𝑛 − 𝑚(\𝑛)) =

√
𝑛

(
tanh(\𝑛𝜙𝑛) − tanh(\𝑛𝑚(\𝑛))

)
=
√
𝑛(𝜙𝑛 − 𝑚(\𝑛))\𝑛sech2(\𝑛b𝑛),

where b𝑛 lies between 𝜙𝑛 and 𝑚(\𝑛), and hence converges to 𝑚(\0) in probability.

Along with the above display, this gives that conditional on 𝜙𝑛 > 0 we have

√
𝑛(`𝑛 − 𝑚(\𝑛))

𝑑→\0sech2(\0𝑚(\0))𝑁
(
0,

1
\0 − (1 − 𝑚2(\0))\2

0

)
=𝑁

(
0,

\0(1 − 𝑚2(\0))2

1 − (1 − 𝑚2(\0))\0

)
.

Combining the last display along with (3.57) and (3.58), the conclusion of part (a)
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follows, on noting that

1 − 𝑚2(\0) +
\0(1 − 𝑚2(\0))2

1 − (1 − 𝑚2(\0))\0
=

1 − 𝑚2(\0)
1 − \0(1 − 𝑚2(\0))

= 𝜎2(\0).

(ii) To begin, use Proposition 3.6.1 to get

𝜙𝑛 = X̄ + 𝑊0√
𝑛\𝑛

, (3.59)

where𝑊0 ∼ 𝑁 (0, 1) is independent of X. This gives

√
𝑛

(
X̄ − 𝑚(\𝑛)

)
=
√
𝑛

(
𝜙𝑛 − 𝑚(\𝑛)

)
− 𝑊0√

𝑛\𝑛
. (3.60)

which along with part (c) of Lemma 3.6.1 shows that conditional on X̄ > 0 we have

√
𝑛

(
X̄ − 𝑚(\𝑛)

)
𝑑→ 𝑁

(
0,

1 − 𝑚2(\0)
1 − \0(1 − 𝑚2(\0))

)
= 𝑁 (0, 𝜎2(\0)).

Thus in turn implies that unconditionally, we have

√
𝑛

(
X̄2 − 𝑚2(\𝑛)

)
𝑑→ 𝑁 (0, 4𝜎2(\0)𝑚2(\0)).

Using Proposition 3.3.2, we then have

√
𝑛

2

(
X̄2 − 𝑚2(\0)

)
𝑑→ 𝑁

(
𝑚2(\0)𝜎2(\0)ℎ, 𝑚2(\0)𝜎2(\0)

)
,

106



which gives

𝑍′𝑛 (\0 + ℎ/
√
𝑛)

√
𝑛

−
√
𝑛𝑚2(\0)

2
=

√
𝑛

2

(
EP\𝑛,CWX̄2 − 𝑚2(\0)

)
→E𝑁

(
𝑚2(\0)𝜎2(\0)ℎ, 𝑚2(\0)𝜎2(\0)

)2

=𝑚2(\0)𝜎2(\0)ℎ = 𝑅(\0)ℎ.

In the line above, we have used the fact that
√
𝑛(X̄2 − 𝑚2(\0)) is uniformly integrable.

But this follows on using (3.60), along with the fact that
√
𝑛(𝜙𝑛 − 𝑚(\𝑛)) is uniformly

integrable (from Lemma 3.6.1 part (c)).

The convergence in the above display holds for all ℎ fixed. Integrating both sides over

the interval [0, ℎ] we get

𝑍𝑛 (\0 + ℎ/
√
𝑛) − 𝑍𝑛 (\0,CW) −

√
𝑛ℎ𝑚2(\0)

2
→ 𝑅(\0)ℎ2

2
,

as desired. In the last convergence above, we use the fact that the function ℎ ↦→
𝑍 ′
𝑛 (\0+ℎ/

√
𝑛)√

𝑛
is monotone, and hence converges uniformly over compact sets, by Propo-

sition 3.6.2. This completes the proof of part (a).

(b) (i) Again using calculations similar to (3.57), we get

[
𝑛1/4X̄,X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
]

=

[
𝑛1/4(X̄ − `𝑛), (X − µ𝑛)𝑇𝐵𝑛 (X − µ𝑛), (X − µ𝑛)𝑇𝐵2

𝑛 (X − µ𝑛)
]
+ [𝑛1/4`𝑛, 0, 0] .

Conditioning on 𝜙𝑛, using Proposition 3.6.1 and Lemma 3.6.2 we have

[
𝑛1/4(X̄ − `𝑛), (X − µ𝑛)𝑇𝐵𝑛 (X − µ𝑛), (X − µ𝑛)𝑇𝐵2

𝑛 (X − µ𝑛)
]

𝑑→ [0, 𝑆0, 𝑇0],
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where we use the fact

𝑉𝑎𝑟 (𝑋1 |𝜙) = sech2(\𝑛𝜙𝑛)
𝑝
→ 1.

Also, an application of delta theorem along with Lemma 3.6.1 part (b) gives

𝑛1/4`𝑛 = 𝑛
1/4 tanh(𝜙𝑛)

𝑑→ 𝑈1.ℎ.

Combining the above, it follows that

[
𝑛1/4X̄,X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
]

𝑑→ [𝑈1,ℎ, 𝑆0, 𝑇0]

as desired.

(ii) Using (3.59) we get

𝑛1/4X̄ = 𝑛1/4𝜙𝑛 − 𝑛1/4 𝑊0√
𝑛\0

𝑑→ 𝑈1,ℎ,

where we have used Lemma 3.6.1 part (b). This in turn gives,

√
𝑛X̄2 𝑑→ 𝑈2

1,ℎ.

and so

𝑍′𝑛 (\𝑛)√
𝑛

=

√
𝑛

2
EP\𝑛,CWX̄2 → 1

2
E𝑈2

1,ℎ = 𝐹
′(ℎ).

Again in the last step we use the fact that
√
𝑛�̄�2 is uniformly integrable, which follows

from (3.59) and Lemma 3.6.1 part (b). The desired conclusion again follows on inte-

grating the above display over [0, ℎ], on noting that the above convergence is uniform

on compact sets, by Proposition 3.6.2.
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(c) (i) Using calculations similar to (3.57), we get

[√
𝑛X̄,X𝑇𝐵𝑛X,X𝑇𝐵2

𝑛X
]

=

[√
𝑛(X̄ − `𝑛), (X − µ𝑛)𝑇𝐵𝑛 (X − µ𝑛), (X − µ𝑛)𝑇𝐵2

𝑛 (X − µ𝑛)
]
+ [

√
𝑛`𝑛, 0, 0] .

Conditioning on 𝜙𝑛, using Proposition 3.6.1 and Lemma 3.6.2 we have

[√
𝑛(X̄ − `𝑛), (X − µ𝑛)𝑇𝐵𝑛 (X − µ𝑛), (X − µ𝑛)𝑇𝐵2

𝑛 (X − µ𝑛)
]

𝑑→ [𝑊0, 𝑆0, 𝑇0],

where𝑊0 ∼ 𝑁 (0, 1) is independent of (𝑆0, 𝑇0) In the above display, we again use

𝑉𝑎𝑟 (𝑋1 |𝜙) = sech2(\𝑛𝜙𝑛)
𝑝
→ 1.

Also, an application of delta theorem along with Lemma 3.6.1 part (b) gives

√
𝑛`𝑛 =

√
𝑛 tanh(\𝑛𝜙𝑛)

𝑑→ \0𝑁
(
0,

1
\0(1 − \0)

)
= 𝑁

(
0,

\0
1 − \0

)
.

Combining the above, the desired conclusion follows on noting that

\0
1 − \0

+ 1 =
1

1 − \0
= 𝜎2(\0).

(ii) As before, using (3.59) along with Lemma 3.6.1 part (a) we get

√
𝑛X̄ 𝑑→ 𝑁

(
0,

1
1 − \0

)
, which gives 𝑛X̄2 𝑑→

𝜒2
1

1 − \0
.

The desired conclusion follows from this using similar calculations as above, and using

uniform integrability along with Lemma 3.6.1 part (a) and Proposition 3.6.2.
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3.6.2 Proof of Lemma 3.5.2

(a) To begin, note that

exp
(
𝑍𝑛 (\𝑛, 𝑄𝑛) − 𝑍𝑛 (\𝑛,CW)

)
=

∑
x∈{−1,1}𝑛 𝑒

\𝑛
2 X𝑇𝑄𝑛X∑

x∈{−1,1}𝑛 𝑒
\𝑛
2 𝑛X̄2

=E\𝑛,CW𝑒
\𝑛
2 X𝑇𝐵𝑛X.

It follows from Lemma 3.5.1 that if X ∼ P\𝑛,CW, then for all \0 ∈ Θ0 we have

X𝑇𝐵𝑛X
𝑑→ (1 − 𝑚2(\0))𝑆0 ⇒ 𝑒

\𝑛
2 X𝑇𝐵𝑛X

𝑑→ 𝑒
\0 (1−𝑚2 (\0))

2 𝑆0 .

Assume now that there exists 𝛿 > 0 such that

E\𝑛,CW𝑒
(1+𝛿) \𝑛

2 X𝑇𝐵𝑛X < ∞. (3.61)

Uniform integrability then gives

E\𝑛,CW𝑒
\𝑛
2 X𝑇𝐵𝑛X → E𝑒

\0 (1−𝑚2 (\0))
2 𝑆0 ,

which equals 𝐶 (\0) using the formula for 𝑆0 (see (3.16)).

It thus remains to verify (3.61). To this effect, note that

E\𝑛,CW𝑒
\𝑛
2 X𝑇𝐵𝑛X = E\𝑛,CW

(
𝑒
\𝑛
2 X−µ𝑛)𝑇𝐵𝑛 (X−µ𝑛)

���𝜙𝑛) ,
where µ𝑛 = `𝑛1 with `𝑛 = tanh(\𝑛𝜙𝑛), as in the proof of Lemma 3.5.1. Invoking Lemma

3.6.1, we have that given 𝜙𝑛 the random variables (𝑋1, . . . , 𝑋𝑛) are IID with mean `𝑛. Also,
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setting

𝑠` := 2`
log(1+`)−log(1−`) if ` ≠ 0,

= 1 if ` = 0

we have that 𝑠. is a strictly positive continuous even function, with 𝑠`𝑛
𝑝
→ 𝑠𝑚(\0) =

1
\0

in all

regimes, where the last equality uses the fact that 𝑚(\0) = tanh(\0𝑚(\0)). Since

lim sup
𝑛→∞

_1(𝐵𝑛) = _2 < 1

by (3.5), there exists 𝛿 > 0 such that on the set | |`𝑛 | − 𝑚(\0) | > 𝛿 we have

lim sup
𝑛→∞

\𝑛_1(𝐵𝑛)𝑠`𝑛 < 1.

Thus using [19, Prop 4.1] with

𝑁 = 𝑛, 𝐷𝑁 (𝑖, 𝑗) = \𝑛𝐵𝑛 (𝑖, 𝑗), 𝑐𝑖 = 0,

we get the existence of a constant 𝐶 free of 𝑛 such that on the set | |`𝑛 | − 𝑚 | > 𝛿 we have

logE\𝑛,CW

(
𝑒
\𝑛
2 (X−µ𝑛)𝑇𝐵𝑛 (X−µ𝑛)

���𝜙𝑛) ≤ 𝐶.

To complete the proof of (3.61), it suffices to show that

lim sup
𝑛→∞

E\𝑛,CW𝑒
\𝑛
2 X𝑇𝐵𝑛X1{|`𝑛 | − 𝑚(\0) | > 𝛿} < ∞,

for some 𝛿 > 0. But this follows from [19, Lem 4.2] on using

𝑁 = 𝑛, 𝑉𝑁 = \𝑛X𝑇𝐵𝑛X.

111



The statement of this lemma does not include Θ3 = (0, 1), but the proof applies verbatim in

all regimes, and allows for \ = \𝑛 depending on 𝑛.

(b) The likelihood ratio between P\𝑛,𝑄𝑛 and P\𝑛 is given by

𝑑P\𝑛,𝑄𝑛
𝑑P\𝑛,CW

(X) = exp
( \𝑛

2
X𝑇𝐵𝑛X − 𝑍𝑛 (\𝑛, 𝑄𝑛) + 𝑍𝑛 (\𝑛,CW)

)
.

Using Lemma 3.5.1, for all \0 ∈ Θ we have

X𝑇𝐵𝑛X
𝑑→ (1 − 𝑚2(\0))𝑆0.

Also, using part (a) we have

𝑍𝑛 (\𝑛, 𝑄𝑛) − 𝑍𝑛 (\𝑛,CW) → logE𝑒
\0 (1−𝑚2 (\0))

2 𝑆0 .

Combining, if X ∼ P\𝑛,CW, then we have

𝑑P\𝑛,𝑄𝑛
𝑑P\𝑛,CW

(X) 𝑑→ 𝑒
\0 (1−𝑚2 (\0))

2 𝑆0

E𝑒
\0 (1−𝑚2 (\0))

2 𝑆0

.

Since the limiting random variable in the above display is strictly positive and has mean 1,

mutual contiguity follows by Le-Cam’s first lemma.

3.7 Appendix C: Proofs of supporting lemmas

3.7.1 Proof of Proposition 3.3.2

We prove the more general result

lim
ℎ→0

𝑚(\0 + ℎ) − 𝑚(\0)
ℎ

= 𝑚(\0)𝜎2(\0).
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The desired conclusion then follows on replacing ℎ by ℎ√
𝑛
, and letting 𝑛 → ∞. Recall that 𝑚(\)

satisfies the equation 𝑤(\, 𝑚) = 0 in 𝑚, where

𝑤(\, 𝑚) := 𝑚 − tanh(\𝑚).

Differentiating with respect to \ we get

𝜕𝑤(\, 𝑚)
𝜕\

= 1 − \sech2(\𝑚).

By Proposition 3.3.1, we have \ (1 − 𝑚2(\)) < 1, and so the above derivative is always posi-

tive. By Implicit Function Theorem, it follows that the function \ ↦→ 𝑚(\) is differentiable. On

differentiating the equation

𝑚(\) = tanh(\𝑚(\))

with respect to \, we get

𝑚′(\) = sech2(\𝑚(\)) [𝑚(\) + \𝑚′(\)] = (1 − 𝑚2(\)) [𝑚(\) + \𝑚′(\)] .

Solving for 𝑚′(\) gives

𝑚′(\) = 𝑚(\) (1 − 𝑚2(\)
1 − \ (1 − 𝑚2(\))

= 𝑚(\)𝜎2(\),

as desired.

3.7.2 Proof of Proposition 3.6.2

Let {𝑡𝑛}𝑛≥1 be a real sequence in [𝑎, 𝑏] converging to 𝑡∞. We need to show that 𝑔𝑛 (𝑡𝑛) con-

verges to 𝑔∞(𝑡∞). To this effect, fixing 𝛿 > 0 arbitrary, for all 𝑛 large we have |𝑡𝑛 − 𝑡∞ | < 𝛿. Using
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the monotonicity of {𝑔𝑛}1≤𝑛≤∞ gives

𝑔𝑛 (𝑡𝑛) − 𝑔∞(𝑡∞) ≤ 𝑔𝑛 (𝑡 − 𝛿) − 𝑔∞(𝑡𝛿).

Taking limits as 𝑛→ ∞ gives

lim sup
𝑛→∞

{𝑔𝑛 (𝑡𝑛) − 𝑔∞(𝑡∞)} ≤ 𝑔∞(𝑡∞ + 𝛿) = 𝑔∞(𝛿).

Since 𝛿 is arbitrary, letting 𝛿 ↓ 0 and using the continuity of 𝑔∞(.) gives

lim sup
𝑛→∞

{𝑔𝑛 (𝑡𝑛) − 𝑔∞(𝑡∞)} ≤ 0.

A similar proof gives

lim inf
𝑛→∞

{𝑔𝑛 (𝑡𝑛) − 𝑔∞(𝑡∞)} ≥ 0.

The proof is complete by combining the last two displays.

3.7.3 Proof of Lemma 3.6.1

(a) Proof of part (a): High Temperature Regime Θ3. Recall from Proposition 3.6.1 that 𝜙𝑛 has

a density proportional to

𝑓\𝑛,𝑛 (𝜙) = exp{−𝑛𝑞\𝑛 (𝜙)}, 𝑞\ (𝜙) =
1
2
\𝜙2 − log 𝑐𝑜𝑠ℎ(\𝜙). (3.62)

Differentiating twice we get

\𝑛 ≥ 𝑞′′\𝑛 (𝜙) ≥ \𝑛 − \
2
𝑛,

and so if \0 ∈ Θ3, there exists finite positive constants 𝑐1, 𝑐2 depending only on \0, ℎ (and

free of 𝑛), such that for all 𝑛 large enough we have

𝑐1 ≤ 𝑞′′\𝑛 (𝜙) ≤ 𝑐2.
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Consequently, for any 𝜙 we have

𝑐1
2
𝜙2 ≤ 𝑞\𝑛 (𝜙) ≤

𝑐2
2
𝜙2,

and so for any 𝐾 > 0 we have

P(
√
𝑛|𝜙𝑛 | > 𝐾) ≤

2
∫ ∞
𝐾
𝑒−𝑛𝑞\𝑛 (𝜙)𝑑𝜙∫ ∞

−∞ 𝑒
−𝑛𝑞\𝑛 (𝜙)𝑑𝜙

≤
2
∫ ∞
𝐾
𝑒−𝑐1𝜙

2/2𝑑𝜙∫ ∞
−∞ 𝑒

−𝑐2𝜙2/2𝑑𝜙
≤ 2

√︂
𝑐2
𝑐1
P
(
𝑁 (0, 1

𝑐1
) > 𝐾

)
.

Thus we have
√
𝑛𝜙𝑛 = 𝑂𝑝 (1), and further all moments of

√
𝑛𝜙𝑛 are bounded. Finally, since

𝑞′′
\𝑛
(𝜙) → \0 − \2

0, it follows from standard calculus that for any 𝑎, 𝑏 fixed, standard calculus

gives

√
𝑛

∫ 𝑏/
√
𝑛

𝑎/
√
𝑛

𝑒−𝑛𝑞\𝑛 (𝜙) 𝑑𝜙 →
∫ 𝑏

𝑎

𝑒−
\0−\2

0
2 𝑡2𝑑𝑡.

Combining the above calculations, it follows that

√
𝑛𝜙𝑛 → 𝑁

(
0,

1
\0 − \2

0

)
,

in distribution and in moments.

(b) In this case we have

𝑞′\𝑛 (0) = 𝑞
′′′
\𝑛
(0) = 0,

√
𝑛𝑞′′\𝑛 (0) =

√
𝑛(\𝑛 − \2

𝑛) → −ℎ, 𝑐′1 ≤ inf
|𝜙 |≤2

𝑞′′′′\𝑛 (𝜙) ≤ sup
|𝜙 |≤2

𝑞′′′′\𝑛 (𝜙) ≤ 𝑐
′
2,

for some constants 𝑐′1, 𝑐
′
2 depending only on ℎ. Also, using Proposition 3.6.1 we have

P( |𝜙𝑛 | > 2) ≤ P( |𝑁 (0, 1) | >
√︁
𝑛\𝑛),

which is exponentially small in 𝑛. The above two displays together give 𝑛1/4𝜙𝑛 = 𝑂𝑝 (1).
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Finally, fixing 𝑎, 𝑏, straight-forward calculus gives

∫ 𝑏/𝑛1/4

𝑎/𝑛1/4
𝑛1/4𝑒−𝑛𝑞\𝑛 (𝜙)𝑑𝜙 →

∫ 𝑏

𝑎

𝑒
ℎ
2 𝜙

2−𝜙4/12𝑑𝜙,

where we use the fact that 𝑞′′′′
\𝑛
(0) → 2. Combining, the desired limiting distribution follows.

Uniform integrability also follows from the estimates on 𝑞\𝑛 (.).

(c) In this case we have P(𝜙𝑛 > 0) = P(𝜙𝑛 < 0) = 1
2 by symmetry. Restricting on the positive

half without loss of generality, note that the function 𝑞\ (𝜙) has a unique minimizer in 𝜙

on (0,∞), at the point 𝑚(\). From Proposition 3.6.1 we have 𝑞′′(𝑚(\)) > 0, and so the

function Ψ : [0, 2] × [0, 1] defined by

Ψ(𝑥, \) :=
𝑞\ (𝑥) − 𝑞\ (𝑚(\))

(𝑥 − 𝑚(\))2 if 𝑥 ≠ 𝑚(\),

=
𝑞′′
\
(𝑚(\))

2
if 𝑥 = 𝑚(\),

is strictly positive and continuous, and so there exists finite positive constants 𝑐1, 𝑐2 depend-

ing on \0, ℎ, such that for all 𝜙 > 0 we have

𝑐1
2
𝜙2 ≤ 𝑞\𝑛 (𝜙) − 𝑞\𝑛 (𝑚(\𝑛)) ≤

𝑐2
2
𝜙2.

From this, a similar calculation as in part (a) of this lemma applies, on noting that

𝑞′′\𝑛 (𝑚(\𝑛))
𝑝
→ \0 − \2

0

(
1 − 𝑚2(\0)

)
.

3.7.4 Proof of Lemma 3.6.2

We first state the following proposition connecting eigenvalues of the matrix 𝑄𝑛 and eigenval-

ues of the limiting graphon 𝑓 .

Proposition 3.7.1. Let {𝑄𝑛}∞𝑛=1 be a sequence of matrices satisfying (3.2), (3.3), (3.4) and (3.5)
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for some 𝐶𝑊 , ^ ∈ (0,∞) and 𝑓 ∈ W. Let {_ 𝑗 ,𝑛}𝑛𝑗=1 denote the eigenvalues of 𝑄𝑛 arranged

in decreasing order of absolute value, and let {_ 𝑗 } 𝑗≥1 be the eigenvalues of the operator 𝑇 𝑓 as

defined in section 3.2.2. Then the following conclusions hold:

(a)
∞∑︁
𝑗=1
_2
𝑗 =

∫
[0,1]2

𝑓 (𝑥, 𝑦)2𝑑𝑥𝑑𝑦 = | | 𝑓 | |22 < ∞;

(b) For any 𝑗 ∈ N,

lim
𝑛→∞

_ 𝑗 ,𝑛 = _ 𝑗 .

(c) For any 𝑖 ≥ 3 we have

lim
𝑛→∞

𝑛∑︁
𝑗=2
_𝑖𝑗 ,𝑛 =

∞∑︁
𝑗=2
_𝑖𝑗 .

The proof of Proposition 3.7.1 part (a) follows [38, Chapter 7.5], whereas part (b) and (c)

follow from [38, Theorem 11.54].

The proof of Lemma 3.6.2 will be completed, once we can show the following two steps:

(a) Suppose {𝑅𝑖}1≤𝑖≤𝑛 are IID 𝑁 (0, 1). Then the desired conclusion holds.

(b) For any positive integers 𝑎, 𝑏, 𝑐 we have

E
(√
𝑛Z̄

)𝑎 (
Z𝑇𝐵𝑛Z

)𝑏 (
Z𝑇𝐵2

𝑛Z
)𝑐

− E
(√
𝑛R̄

)𝑎 (
R𝑇𝐵𝑛R

)𝑏 (
R𝑇𝐵2

𝑛R
)𝑐

→ 0.

Proof of (a). Let

𝑄𝑛 = 𝑃
𝑇Λ𝑃 =

𝑛∑︁
𝑖=1

_𝑖,𝑛p𝑖p𝑇𝑖

be the spectral decomposition of 𝑄𝑛, where the eigenvalues {_𝑖,𝑛}1≤𝑖≤𝑛 are arranged in decreasing

order of absolute values.Thus we have _1,𝑛 = 1, and p1 = 1√
𝑛
1. Then setting R̃ := 𝑃R we have

[√
𝑛R̄,R𝑇𝐵𝑛R,R𝑇𝐵2

𝑛R
]
=

[
𝑅1,

𝑛∑︁
𝑖=2

_𝑖,𝑛𝑅
2
𝑖 ,

𝑛∑︁
𝑖=2

_2
𝑖,𝑛𝑅

2
𝑖

]
.
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Since R̃ 𝑑
= R, it suffices to find the limiting distribution of[

𝑅1,

𝑛∑︁
𝑖=2

_𝑖,𝑛𝑅
2
𝑖 ,

𝑛∑︁
𝑖=2

_2
𝑖,𝑛𝑅

2
𝑖

]
.

Clearly, 𝑅1 is independent of the other two random variables, and has a 𝑁 (0, 1) distribution. It

thus suffices to focus on the joint distribution of the other two random variables. To this effect, for

any 𝑠, 𝑡 with max( |𝑠 |, |𝑡 |) ≤ 1
8 we have

logE exp
{
𝑠

𝑛∑︁
𝑗=2
_ 𝑗 ,𝑛𝑅

2
𝑗 + 𝑡

𝑛∑︁
𝑗=2
_2
𝑗 ,𝑛𝑅

2
𝑖

}
= − 1

2

𝑛∑︁
𝑗=2

log
[
1 − 2(_ 𝑗 ,𝑛𝑠 + _2

𝑗 ,𝑛𝑡)
]

=
1
2

𝑛∑︁
𝑗=2

∞∑︁
𝑖=1

2𝑖 (_ 𝑗 ,𝑛𝑠 + _2
𝑗 ,𝑛
𝑡)𝑖

𝑖

=

[
− 𝑠 + 𝑡

𝑛∑︁
𝑗=2
_2
𝑗 ,𝑛

]
+ 1

2

𝑛∑︁
𝑗=2

∞∑︁
𝑖=2

2𝑖 (_ 𝑗 ,𝑛𝑠 + _2
𝑗 ,𝑛
𝑡)𝑖

𝑖

=

[
− 𝑠 + 𝑡

𝑛∑︁
𝑗=2
_2
𝑗 ,𝑛

]
+ 1

2

∞∑︁
𝑖=2

𝑛∑︁
𝑗=2

2𝑖 (_ 𝑗 ,𝑛𝑠 + _2
𝑗 ,𝑛
𝑡)𝑖

𝑖
, (3.63)

where the last line uses Fubini’s theorem, along with the trivial bound

2𝑖 (_ 𝑗 ,𝑛𝑠 + _2
𝑗 ,𝑛𝑡)𝑖 ≤ 4𝑖 |_ 𝑗 ,𝑛 |𝑖8−𝑖 ≤ 2−𝑖_2

𝑗 ,𝑛. (3.64)

For every fixed 𝑖 ≥ 2, uses Proposition 3.7.1 part (b) we have

𝑛∑︁
𝑗=2

(_ 𝑗 ,𝑛𝑠 + _2
𝑗 ,𝑛𝑡)𝑖 →

∞∑︁
𝑗=2

(_ 𝑗 𝑠 + _2
𝑗 𝑡)𝑖 .

Also, using (3.64) we have

𝑛∑︁
𝑗=2

2𝑖 (_ 𝑗 ,𝑛𝑠 + _2
𝑗 ,𝑛
𝑡)𝑖

𝑖
≤ 2−𝑖

𝑛∑︁
𝑗=2
_2
𝑗 ,𝑛,
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where
𝑛∑︁
𝑗=2
_2
𝑗 ,𝑛 →

∞∑︁
𝑗=2
_2
𝑗 < ∞

by Proposition 3.7.1 part (c). Combining the last three displays along with dominated convergence

theorem, the RHS of (3.63) converges to

[
− 𝑠 + 𝑡

∞∑︁
𝑗=2
_2
𝑗

]
+ 1

2

∞∑︁
𝑗=2

∞∑︁
𝑖=2

2𝑖 (_ 𝑗 𝑠 + _2
𝑗
𝑡)𝑖

𝑖
.

This is the log moment generating function of

(
∞∑︁
𝑗=2
_ 𝑗 (𝑌 𝑗 − 1) − 1 +𝑊∗,

∞∑︁
𝑗=2
_2
𝑗𝑌 𝑗 + ^).

The random variables in the RHS above converge in 𝐿2, as

E
[ ∞∑︁
𝑗=𝑘+1

_ 𝑗 (𝑌 𝑗 − 1)
]2

=2
∞∑︁

𝑗=𝑘+1
_2
𝑗

𝑘→∞→ 0,

E
[ ∞∑︁
𝑗=𝑘+1

_2
𝑗𝑌 𝑗

]2
≤3

∞∑︁
𝑗=𝑘+1

_4
𝑗 +

( ∞∑︁
𝑗=𝑘+1

_2
𝑗

)2 𝑘→∞→ 0.

The convergence in the above display uses Proposition 3.7.1 part (a). The proof of the lemma is

complete. □

Proof of (b). To begin, use (3.3) to note that |𝐵𝑛 (𝑖, 𝑗) | ≤ 𝐶𝑊
𝑛

, and

|𝐵2
𝑛 (𝑖, 𝑗) | ≤

𝑛∑︁
𝑘=1

|𝐵𝑛 (𝑖, 𝑘)𝐵𝑛 (𝑘, 𝑗) | ≤
𝐶2
𝑊

𝑛
.

Set 𝑟 := 𝑎
2 + 𝑏 + 𝑐, and let S(ℓ, 2𝑟) denote the set of all positive integer solutions to the equation
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∑ℓ
𝑖=1 𝛼𝑖 = 2𝑟. Then we have

���E(√𝑛Z)𝑎 (Z𝑇𝐵𝑛Z)𝑏 (Z𝑇𝐵2
𝑛Z)𝑐 − E(

√
𝑛R)𝑎 (R𝑇𝐵𝑛R)𝑏 (R𝑇𝐵2

𝑛R)𝑐
���

≤𝑛−𝑟𝐶𝑏+2𝑐
𝑊

2𝑟∑︁
ℓ=1

𝑛ℓ
∑︁

α∈S(ℓ,2𝑟)

���E ℓ∏
𝑖=1

𝑍
𝛼𝑖
𝑖

− E
ℓ∏
𝑖=1

𝑅
𝛼𝑖
𝑖

���. (3.65)

To bound the RHS of (3.65), we consider the following cases based on α

• There exists 𝑖 ∈ [ℓ] such that 𝛼𝑖 = 1

In this case we have

E
ℓ∏
𝑖=1

𝑍
𝛼𝑖
𝑖

= E
ℓ∏
𝑖=1

𝑅
𝛼𝑖
𝑖

= 0.

• ℓ > 𝑟

In this case we claim that there exists 𝑖 ∈ [ℓ] such that 𝛼𝑖 = 1. Thus this is a sub case of the

above case.

Suppose not. Then we have

2𝑟 =
ℓ∑︁
𝑖=1

𝛼𝑖 ≥ 2ℓ,

which is a contradiction.

• ℓ = 𝑟, 𝛼𝑖 ≥ 2 for all 𝑖 ∈ [ℓ]

In this case we must have 𝛼𝑖 = 2 for all 𝑖. If not, then we must have

2𝑟 =
ℓ∑︁
𝑖=1

𝛼𝑖 > 2ℓ,

a contradiction. Since E𝑍2
𝑖
= E𝑅2

𝑖
= 1, we have

E
ℓ∏
𝑖=1

𝑍
𝛼𝑖
𝑖

= E
ℓ∏
𝑖=1

𝑅
𝛼𝑖
𝑖

= 1.
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Combining the cases above, the RHS of (3.65) is bounded by

𝑛−𝑟𝐶𝑏+2𝑐
𝑊

𝑟−1∑︁
ℓ=1

𝑛ℓ
∑︁

α∈S(ℓ,2𝑟)

���E ℓ∏
𝑖=1

𝑍
𝛼𝑖
𝑖

− E
ℓ∏
𝑖=1

𝑅
𝛼𝑖
𝑖

��� = 𝑂 (1
𝑛

)
,

and so the proof of part (b) is complete. □
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