
Incremental Packing Problems: Algorithms and Polyhedra

Lingyi Zhang

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2022

© 2022

Lingyi Zhang

All Rights Reserved

Abstract

Incremental Packing Problems: Algorithms and Polyhedra

Lingyi Zhang

In this thesis, we propose and study discrete, multi-period extensions of classical packing prob-

lems, a fundamental class of models in combinatorial optimization. Those extensions fall under the

general name of incremental packing problems. In such models, we are given an added time com-

ponent and different capacity constraints for each time. Over time, capacities are weakly increasing

as resources increase, allowing more items to be selected. Once an item is selected, it cannot be

removed in future times. The goal is to maximize some (possibly also time-dependent) objective

function under such packing constraints. Below, we further elaborate upon such problems studied

in this thesis.

The generalized incremental knapsack problem is a multi-period extension of the classical

knapsack problem. In this setting, we are given a set of 𝑛 items, 𝑇 time periods with non-decreasing

capacities 𝑊1 ≤ · · · ≤ 𝑊𝑇 . Each item 𝑖 has a non-negative weight 𝑤𝑖 and item-time profit 𝑝𝑖𝑡 for

each 𝑡 ∈ [𝑇]. If an item 𝑖 is inserted into the knapsack at time 𝑡, it earns a profit of 𝑝𝑖𝑡 and

must remain in the knapsack for all future times. The goal is to maximize the overall profit while

satisfying the knapsack capacity constraint at each time.

In the monotone submodular all-or-nothing incremental knapsack problem (IK-AoN), we are

given identical feasibility constraints as the generalized incremental knapsack problem. The dif-

ference in this setting is that for every item 𝑖, we are given a unique profit 𝑝𝑖 > 0. For every time 𝑡,

we are given a time-dependent scaling parameter Δ𝑡 ≥ 0. Furthermore, we are given a monotone

submodular profit function 𝛾 where for every 𝑆 ⊆ [𝑛], 𝛾(𝑆) gives the profit of 𝑆. Having a set 𝑆 in

the knapsack at time 𝑡 earns profit Δ𝑡𝛾(𝑆). Finally, we assume the presence of an item 𝑖 in a set 𝑆

either earns the whole profit contribution 𝑝𝑖 or 0. That is, 𝛾(𝑆 ∪ {𝑖}) − 𝛾(𝑆) ∈ {0, 𝑝𝑖}.

The incremental generalized assignment problem is a multi-period extension of the classical

generalized assignment problem. We are given 𝑛 items to be assigned to 𝑚 bins, 𝑇 time periods

where the capacity of each and every bin is non-decreasing over time. If an item 𝑖 is assigned to

bin 𝑗 starting at time 𝑡, it takes up capacity 𝑤𝑖, 𝑗 for all times 𝜏 ≥ 𝑡 and earns profit 𝑝𝑖 𝑗 𝑡 . The goal

is to find an item to bin assignment such that the overall profit is maximized and the capacity for

each bin is respected for each time.

In Chapter 1, we give a detailed formulation of each of the problems mentioned above, as well

as an overview of the contributions of this thesis and a review of related literature.

In Chapter 2, we present a policy that reduces the generalized incremental knapsack problem

to sequentially solving 𝑇 classical knapsack problems, for which many efficient algorithms are

known. We call such an algorithm a single-time algorithm. We prove that this algorithm gives a

(0.17 − 𝜖)-approximation for the generalized incremental knapsack problem. Moreover, we show

that the algorithm is very efficient in practice. On randomly generated instances of the generalized

incremental knapsack problem, it returns near optimal solutions and runs much faster compared to

Gurobi solving the problem using the standard integer programming formulation.

In Chapter 3, we present additional approximation algorithms for the generalized incremental

knapsack problem. We first give a polynomial-time (1
2 − 𝜖)-approximation, improving upon the

approximation ratio given in Chapter 2. This result is based on a new reformulation of the general-

ized incremental knapsack problem as a single-machine sequencing problem, which is addressed

by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the

generalized assignment problem [60]. Using the same sequencing reformulation, combined with

further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal

solutions, we give a quasi-polynomial time approximation scheme for the problem, thus ruling

out the possibility that the generalized incremental knapsack problem is APX-hard under widely-

believed complexity assumptions.

In Chapter 4, we first turn our attention to IK-AoN. We show that each instance of IK-AoN

can be reduced to a linear version of the problem. In particular, using a known PTAS for the linear

version [4] as a subroutine, this implies that IK-AoN admits a PTAS. Next, we study special cases

of the generalized incremental knapsack problem. Using guessing and LP-rounding techniques, we

give a PTAS for the generalized incremental knapsack problem if 𝑇 is bounded. Finally, adapting

classical dynamic programming ideas to the multi-time setting, we give an FPTAS for the gener-

alized incremental knapsack problem when we assume for each 𝑖 ∈ [𝑛], 𝑝𝑖,𝑡 > 0 for exactly one

time 𝑡 ∈ [𝑇].

In Chapter 5, we give a polynomial-time (1
4 − 𝜖)-approximation in expectation for the incre-

mental generalized assignment problem. To develop this result, similar to the reformulation from

Chapter 3, we reformulate the incremental generalized assignment problem as a multi-machine

sequencing problem. Following the reformulation, we show that the (1
2 − 𝜖)-approximation for

the generalized incremental knapsack problem, combined with further randomized rounding tech-

niques, can be leveraged to give a constant factor approximation in expectation for the incremental

generalized assignment problem.

In Chapter 6, we turn our attention to the incremental knapsack polytope. First, we extend one

direction of Balas’s characterization of 0/1-facets of the knapsack polytope [6] to the incremental

knapsack polytope. Starting from extended cover inequalities valid for the knapsack polytope, we

show how to strengthen them to define facets for the incremental knapsack polytope. In particular,

we prove that under the same conditions for which these inequalities define facets for the knapsack

polytope, following our strengthening procedure, the resulting inequalities define facets for the

incremental knapsack polytope. Then, as there are up to exponentially many such inequalities, we

give separation algorithms for this class of inequalities.

Table of Contents

Acknowledgments . xi

Chapter 1: Incremental packing problems . 1

1.1 Introduction . 1

1.2 The main models . 4

1.2.1 The generalized incremental knapsack problem 4

1.2.2 Monotone submodular all-or-nothing incremental knapsack problem 5

1.2.3 Incremental generalized assignment problem 6

1.3 Main contributions . 8

1.4 Related literature . 13

1.4.1 Directly related incremental knapsack settings 13

1.4.2 The generalized assignment problem . 14

1.4.3 Submodular function maximization . 15

1.4.4 Other related packing problems . 15

1.4.5 Lifting valid inequalities . 16

1.5 Shared notations . 17

Chapter 2: Single-time policies for the generalized incremental knapsack problem 18

2.1 Introduction and preliminaries . 18

i

2.2 Rigid and fully-flexible single-time algorithms . 19

2.3 𝒄-flexible algorithms . 20

2.4 Technical overview . 22

2.4.1 Main results . 22

2.4.2 Proof overview . 23

2.4.3 Proof of Theorem 2.4.1 . 26

2.5 Experimental results . 27

2.5.1 Algorithms tested . 28

2.5.2 Instance generation and experimental setup 28

2.5.3 Results and discussion . 29

Chapter 3: Algorithms for the generalized incremental knapsack problem through a se-
quencing reformulation . 31

3.1 Introduction . 31

3.2 A polynomial-Time (1
2 − 𝜖)-approximation . 31

3.2.1 An equivalent sequencing formulation . 32

3.2.2 Profit decomposition and high-level overview 34

3.2.3 Algorithm for heavy contributions . 36

3.2.4 Algorithm for light contributions . 42

3.3 QPTAS for bounded weight ratio . 49

3.3.1 Residual instances and their properties . 50

3.3.2 The boosting algorithm . 52

3.3.3 The ratio improvement and final algorithm 55

3.4 QPTAS for general instances . 57

ii

3.4.1 Technical overview . 58

3.4.2 Proof of Lemma 3.4.2: Creating a well-spaced instance 60

3.4.3 Proof of Lemma 3.4.3: The sparse-crossing property 63

3.4.4 The external dynamic program . 68

3.5 Experimental results . 75

3.5.1 Algorithms tested . 75

3.5.2 Instance generation and experimental setup 76

3.5.3 Results and discussion . 76

Chapter 4: Some easier, and some not harder, incremental knapsack problems 79

4.1 Introduction . 79

4.2 Algorithm for the monotone submodular all-or-nothing incremental knapsack
problem . 80

4.2.1 The linearization algorithm . 81

4.2.2 Independent sets . 83

4.2.3 Independent sets in single profit classes 88

4.2.4 A decomposition theorem for monotone submodular all-or-nothing functions 90

4.2.5 Proof of Theorem 1.3.4 . 93

4.3 A PTAS for the generalized incremental knapsack problem with a bounded number
of times . 95

4.3.1 Preliminaries and algorithm . 95

4.3.2 The LP rounding procedure . 97

4.3.3 Proof of Theorem 1.3.5 . 98

4.4 An FPTAS for the generalized incremental knapsack - single profit problem 100

iii

4.4.1 Continuous dynamic program . 100

4.4.2 Discretization and analysis . 102

Chapter 5: Single-machine algorithms for incremental packing problems 104

5.1 Introduction . 104

5.2 Incremental packing problems . 105

5.3 Sequencing reformulation of incremental packing problems 106

5.3.1 Example . 109

5.4 Ex uno plures: approximation algorithms to multi-machine problems 110

5.4.1 LP relaxation and approximate dual separation 111

5.4.2 Approximate primal solution from approximate dual separation 114

5.4.3 The rounding procedure . 114

5.4.4 Proof of Theorem 5.3.1 . 116

5.4.5 Proof of Theorem 1.3.7 . 117

5.5 Comparison with the approach by Fleischer et al. 117

Chapter 6: On the facets of the incremental knapsack polytope 120

6.1 Introduction . 120

6.2 Cover inequalities for the classical knapsack polytope 121

6.3 Lift and push cover inequalities for the incremental knapsack polytope 122

6.3.1 The lift and push procedure . 123

6.3.2 Facet defining lift and push cover inequalities 125

6.4 Separation algorithms . 130

6.4.1 Exact separation . 130

iv

6.4.2 Approximate separation . 135

Conclusion . 141

References . 145

Appendix A: Incremental packing problems . 150

A.1 Reduction to Unsplittable Flow on a Path with Bag Constraints 150

Appendix B: Single-time policies for the generalized incremental knapsack problem 151

B.1 Proof of Lemma 2.1.1 . 151

B.2 The fully rigid algorithm may output a solution with an arbitrarily bad approxima-
tion ratio . 152

B.3 The fully flexible algorithm may output an 𝑂 (1
𝑇
)-approximated solution 152

B.4 Additional proofs from Chapter 2 . 153

B.4.1 Proof of Lemma 2.3.1 . 153

B.4.2 Proof of Lemma 2.4.4 . 154

B.4.3 Proof of Lemma 2.4.5 . 154

B.4.4 Auxiliary lemmas . 154

B.4.5 Proof of Lemma 2.4.6 . 159

B.4.6 Proof of Lemma 2.4.7 . 160

B.4.7 Proof of Lemma 2.4.8 . 161

B.4.8 Proof of Lemma 2.4.9 . 166

B.4.9 Proof of Claim 2.4.10 . 168

B.4.10 Proof of Claim 2.4.11 . 170

v

B.4.11 Proof of Theorem 2.4.2 . 170

Appendix C: Algorithms for the generalized incremental knapsack problem through a se-
quencing reformulation . 173

C.1 Additional proofs from Section 3.2 . 173

C.1.1 Proof of Claim 3.2.5 . 173

C.1.2 Proof of Lemma 3.2.6 . 175

C.1.3 Proof of Lemma 3.2.8 . 177

C.2 Additional proofs from Section 3.3 . 179

C.2.1 Proof of Lemma 3.3.3 . 179

C.2.2 Proof of Lemma 3.3.4 . 179

C.2.3 Proof of Lemma 3.3.6 . 180

C.2.4 Proof of Lemma 3.3.7 . 181

C.2.5 Proof of Lemma 3.3.10 . 181

C.3 Additional proofs from Section 3.4 . 182

C.3.1 Proof of Lemma 3.4.4 . 182

C.3.2 Proof of Claim 3.4.7 . 183

C.3.3 Proof of Claim 3.4.8 . 184

C.3.4 Proof of Lemma 3.4.9 . 184

C.3.5 Proof of Lemma 3.4.10 . 185

C.3.6 Proof of Lemma 3.4.11 . 188

C.3.7 Proof of Lemma C.3.2 . 192

C.3.8 Proof of Lemma 3.4.12 . 195

vi

Appendix D: Some easier, and some not harder, incremental knapsack problems 199

D.1 Additional proofs from Section 4.2 . 199

D.1.1 Proof of Lemma 4.2.2 . 199

D.1.2 Proof of Lemma 4.2.3 . 199

D.1.3 Proof of Lemma 4.2.4 . 200

D.2 Additional proofs from Section 4.3 . 200

D.2.1 Proof of Claim 4.3.2 . 200

D.2.2 Proof of Claim 4.3.3 . 202

D.2.3 Proof of Claim 4.3.5 . 203

D.2.4 Proof of Claim 4.3.6 . 203

D.3 Additional proof from Section 4.4 . 204

D.3.1 Proof of Lemma 4.4.1 . 204

Appendix E: Single-machine algorithms for incremental packing problems 206

E.1 Proof of Lemma 5.3.2 . 206

E.2 Proof of Lemma 5.3.3 . 208

E.3 Proof of Lemma 5.4.2 . 209

Appendix F: On the facets of the incremental knapsack polytope 210

F.1 Additional proofs from Section 6.3 . 210

F.1.1 Additional details from Example 6.3.3 . 210

F.1.2 Proof of Claim 6.3.4 . 211

F.1.3 Proof of Claim 6.3.5 . 211

F.1.4 Proof of Claim 6.3.6 . 212

vii

F.1.5 Proof of Claim 6.3.7 . 213

F.1.6 Proof of Claim 6.3.8 . 213

F.2 Additional proofs from Section 6.4 . 214

F.2.1 Proof of Claim 6.4.3 . 214

F.2.2 Proof of Claim 6.4.4 . 215

F.2.3 Proof of Claim 6.4.5 . 215

F.2.4 Proof of Claim 6.4.6 . 216

viii

List of Figures

1.1 In this example, the bridge, school, and park represent three potential infrastruc-
ture projects. The different colored bars underneath represent their respective costs.
There are 𝑇 = 2 discrete times. We indicate two different possible feasible solu-
tions where the green bar represents any unused budget in each time. 3

1.2 continued from Figure 1.1. In this example, we have the same three items as Fig-
ure 1.1 but now two different bins to assign these items. We show a possible
feasible solution. 7

3.1 In this example, we give a chain representation of 5 items and 3 times and an equiv-
alent sequencing reformulation. In the chain representation, the number within
each bar represents the weight of the item. An unlabeled bar represents any unused
capacity for that time. The sequencing reformulation gives an equivalent permuta-
tion for the chain representation, where the number in each block indicates item 𝑖’s
completion time, given by 𝐶𝜋 (𝑖) =

∑
𝑗∈[𝑛]:𝜋(𝑗)≤𝜋(𝑖) 𝑤 𝑗 34

ix

List of Tables

2.1 Correlated weights and profits, Gurobi and 𝑐-flexible algorithms 29

2.2 Random and uncorrelated weights and profits, Gurobi and 𝑐-flexible algorithms . . 29

3.1 Correlated weights and profits, Gurobi and (1
2 − 𝜖)-approximated algorithm for

𝜖 = 1
3 . The mean difference of the light algorithm is with respect to the solution

obtained by the fully flexible algorithm from Table 2.1. 77

3.2 Random and uncorrelated weights and profits, Gurobi and (1
2 − 𝜖)-approximated

algorithm for 𝜖 = 1
3 . The mean difference of the light algorithm is with respect to

the solution obtained by the fully flexible algorithm from Table 2.2. 77

x

Acknowledgements

First and foremost, I need to thank my advisor Yuri Faenza, who taught me how to be a better

researcher and a more careful and thoughtful person. Thank you for your patience and kindness

and for being my biggest source of support throughout my entire PhD career. I am so fortunate to

have had an advisor as attentive and caring as you for the past five years. You have taught me more

than what I can fit in this acknowledgement, but for a subset of these things, see the remainder of

the thesis. You have made this journey both challenging and fun. Without you, this thesis would

not have been possible.

A big thank you to Donniell Fishkind. Thank you, first of all, for being the first person to

teach me anything about combinatorial optimization. Your undergraduate classes piqued my initial

interest in operations research. Beyond the classes, you helped me through my many moments of

doubts and setbacks in trying to pursuing a graduate degree. In so many ways, my PhD career

would never have happened without your unwavering belief, support and guidance. Your advice

has never failed me, whether I knew it at the time or not.

Thank you to my thesis committee, Daniel Bienstock, Vineet Goyal, Jay Sethuraman, and

Huseyin Topaloglu. I am grateful for your feedback and help that made this thesis possible. Thank

you to my coauthor, Danny Segev, for your inspiring ideas and diligence.

To Yeyuan, whom I have annoyed with math problems that are only interesting to me for over

a decade. Thank you for putting up with me, for humoring me, and for feigning enthusiasm in all

the convoluted, irrelevant topics I refuse to stop talking about. However, if you think I will stop

now, I regret to inform you that you are wrong.

xi

Thank you to the IEOR department staff for providing a friendly, collaborative and fun envi-

ronment. I will deeply miss all of our social events, particularly those pre-pandemic. A special

shout out to Lizbeth, Kristen, and Winsor for your help and support. Thank you to all of my friends

in the department whom I shared this PhD journey with, Shatian, Oussama, Steven, Tugce, Agathe

Xuan, Ruizhe, Jacob, Harsh, and many more... Thank you for all the times we’ve studied together

and helped and supported each other through the last 5 years. Thank you to my first math buddy,

Tony. When I started working on optimization, a lot of the joy and interest I had came from work-

ing with you. Everything I did subsequently came in part from trying to replicate the experience

we had.

Last but not least, to my family. A special thanks to my mom for raising me as a single mother

for most of my life and for giving me every advantage I needed to be here. Thank you for always

challenging me to do more but supporting me even when I couldn’t.

xii

Chapter 1: Incremental packing problems

1.1 Introduction

Packing problems are a fundamental class of combinatorial optimization models. In its most

general setting, a packing problem requires a decision-maker to choose a subset of items from a fi-

nite ground set. The objective function usually rewards selecting additional items, while feasibility

requirements impose the opposite constraint, limiting the amount of items that can be chosen. Due

to this adaptable formulation, packing problems are employed in modeling a variety of settings

in optimization and operations research. Spanning from fundamental graph-theoretical structures

like matching and independent (stable) set, to industrial applications like cutting stock and pallet

loading, research on packing problems has helped developing many a fundamental technique, as

well as tightening the relationship between theory and applications [23, 49, 54].

In a typical packing problem, all items to be selected are chosen simultaneously. However, clas-

sic, statical optimization problems are often too simple to realistically capture real world scenarios.

With the improvement in computing power, much research has therefore been devoted to extend

fundamental well-studied models to more realistic, yet still algorithmically tractable settings. A

very common extension along these lines introduces a time-dependent component. For instance,

maximum flow over time, originally introduced in the seminal work of Ford and Fulkerson [31],

has recently received a great deal of attention [37, 52, 61]. Additional examples for such settings

include time-expanded versions of various packing problems [1, 14, 24], network scheduling over

time [2, 8], adaptive routing over time [33, 43], and facility location over time [27, 55], just to

mention a few. Multi-period extensions naturally capture real-world scenarios where assumptions

and constraints may change over time. Theoretically, they add a computationally-challenging layer

on top of the inherent complexity of the underlying problem.

1

Building upon these motivations, in this thesis, we investigate incremental versions of various

packing problems. Much recent research has been devoted to problems of this nature, particularly

for the incremental knapsack problem, a multi-period extension of the classical knapsack problem

(see Section 1.4.1 for references). This thesis expands upon existing research by proposing gener-

alizations of incremental knapsack problems, as well as approximation algorithms and polyhedral

results for these new problems.

Before giving a formal definition of incremental knapsack problems, to provide initial intuition

for the inner-workings of our models, consider the problem faced by urban planners, who intend to

build infrastructural facilities over the course of several years, under budget constraints. Once an

infrastructure has been built, its construction cost cannot be recovered. Given each infrastructure’s

annual contribution to welfare once it is in place, the goal is to maximize the total benefit over the

course of the planning horizon (hence, the mayor’s chances of being re-elected). In Figure 1.1,

we give a pictorial example of a problem in this setting. A host of additional applications, such as

planning the incremental growth of highways and networks, community development, and memory

allocation can be found within several of the papers mentioned in Section 1.4.1 and the references

therein.

As our first set of results, we introduce and study the generalized incremental knapsack prob-

lem. As we discuss in Section 1.4.1, this problem subsumes as special cases, to the best of our

knowledge, all other incremental knapsack problems studied thus far. In Chapters 2 and 3 we

present different algorithms for the generalized incremental knapsack problem, and investigate

their merits and drawbacks. In Chapter 4, we give polynomial time approximation schemes to

special cases of this problem. Finally, in Chapter 6, we study the generalized incremental knap-

sack problem from a polyhedral perspective and define a class of facet-defining inequalities for the

incremental knapsack polytope.

As our second set of results, we present a non-linear extension of the incremental knapsack

problem. To give an initial motivation, in the incremental knapsack setting, the objectives con-

sidered by the generalized incremental knapsack problem and other previously studied problems

2

Figure 1.1: In this example, the bridge, school, and park represent three potential infrastructure
projects. The different colored bars underneath represent their respective costs. There are 𝑇 = 2
discrete times. We indicate two different possible feasible solutions where the green bar represents
any unused budget in each time.

have always been linear, meaning every item earns some fixed profit or utility, independent of other

items selected. However, in many scenarios, choosing multiple items that are close substitutes of

each other gives much less total utility than the sum of the utility of the individual items. Going

back to the urban planning example, building two parks in close proximity to each other would earn

less total utility than the sum of the utility of each of them built individually. Submodular functions

capture profit functions of this nature, and have a wide range of applications, including in machine

learning [47], viral marketing [46], scheduling [53], facility location [32], and many more [50]. We

extend a special case of monotone submodular function maximization under a knapsack constraint

to a multi-period setting. In this special case, in addition to the profit function being monotone

and submodular, we associate each item with a specific profit. Adding an item to a set either earns

the full profit, or no profit at all. We call this the monotone submodular all-or-nothing incremental

knapsack problem, which we will formally define in Section 1.2.2. In Chapter 4, we show that

3

approximation results for the linear variant of the problem transfer to this non-linear setting.

Finally, as our final set of results, we initiate the study a multi-period extension of the gener-

alized assignment problem, which we call the incremental generalized assignment problem. The

classical generalized assignment problem is a multi-bin generalization of the knapsack problem

where 𝑛 items are assigned to 𝑚 capacitated bins. The problem has been extensively studied (see

Section 1.4.2) and has a wide range of applications such as scheduling, telecommunication, facil-

ity location, transportation and production planning; see, e.g., [57]. One such natural application

appears in production planning, where jobs are assigned to different plants for production, sub-

ject to capacity constraints of each plant. Over a certain planning horizon, expansions increase

the capacity of each plant, allowing more jobs to be assigned to it. The assignment of more jobs

naturally translate to the ability to earn more profit over the planning horizon. We give the formal

problem description in Section 1.2.3. In Chapter 5, we give a constant-factor approximation for

this problem in polynomial time.

1.2 The main models

1.2.1 The generalized incremental knapsack problem

To model multi-period extensions of the classical knapsack problem, we are given a set of 𝑛

items, each with a strictly positive weight {𝑤𝑖}𝑖∈[𝑛] , a collection of 𝑇 times with non-decreasing

capacities {𝑊𝑡}𝑡∈[𝑇] , i.e., such that 𝑊1 ≤ · · · ≤ 𝑊𝑇 . We say that a sequence of item sets S =

(𝑆1, . . . , 𝑆𝑇) is a chain when 𝑆1 ⊆ · · · ⊆ 𝑆𝑇 ⊆ [𝑛]; here, 𝑆𝑡 represents the subset of items inserted

into the knapsack up to and including time 𝑡. As such, the chain S is feasible when 𝑤(𝑆𝑡) ≤ 𝑊𝑡

for every 𝑡 ∈ [𝑇]. Problems with these feasibility conditions are collectively known as incremental

knapsack problems. For each item 𝑖 ∈ [𝑛] and time 𝑡 ∈ [𝑇], we are further given an item-time

profit, on which we will further elaborate below.

In the generalized incremental knapsack problem, our fundamental assumption is that, for each

item 𝑖 ∈ [𝑛] and time 𝑡 ∈ [𝑇], we are given a non-negative profit parameter 𝑝𝑖,𝑡 . An item 𝑖 earns

profit 𝑝𝑖,𝑡 if it is inserted at time 𝑡 (i.e., when 𝑖 ∈ 𝑆𝑡 \ 𝑆𝑡−1, with the convention that 𝑆0 = ∅).

4

Hence, the cumulative profit of any chain S = (𝑆1, . . . , 𝑆𝑇) over all time periods is captured by

Φ(S) =
∑
𝑡∈[𝑇]

∑
𝑖∈𝑆𝑡\𝑆𝑡−1 𝑝𝑖,𝑡 . The goal is to find a feasible chain S that maximizes Φ(S). The

generalized incremental knapsack problem generalizes the time-invariant incremental knapsack

problem (as studied in [7, 25, 40, 59]) and the incremental knapsack problem (as studied in [4, 21,

22, 64]). We will discuss both problems and the relevant results in detail in Section 1.4.1.

Throughout this thesis, it is often useful to consider an integer programming formulation for

the generalized incremental knapsack problem. For each 𝑡 ∈ [𝑇] and 𝑖 ∈ [𝑛], let 𝑥𝑖,𝑡 be binary

variables such that 𝑥𝑖,𝑡 = 1 if an item 𝑖 is in the knapsack at time 𝑡, 𝑥𝑖,𝑡 = 0 otherwise. Let

𝑥𝑖,0 = 0 for each 𝑖 ∈ [𝑛]. This leads to the following IP formulation for the generalized incremental

knapsack problem:

max
∑︁
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

𝑝𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1)

s.t.
∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 ∀ 𝑡 ∈ [𝑇]

𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 ∀ 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇 − 1]

𝑥𝑖,𝑡 ∈ {0, 1} ∀ 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇] .

(GIK-IP)

Given any feasible 𝑥 to (GIK-IP), for every 𝑡 ∈ [𝑇], taking 𝑆𝑡 = {𝑖 ∈ [𝑛] : 𝑥𝑖,𝑡 = 1} gives a feasible

chain to the generalized incremental knapsack problem. Indeed, the constraints
∑
𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡

guarantee that 𝑤(𝑆𝑡) ≤ 𝑊𝑡 for every 𝑡 ∈ [𝑇]; while the constraints 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 guarantee that

𝑆1 ⊆ · · · ⊆ 𝑆𝑇 . Vice versa, given a feasible chain S = (𝑆1, . . . , 𝑆𝑇), we can obtain a feasible

solution to (GIK-IP) by setting 𝑥𝑖,𝑡 = 1 if 𝑖 ∈ 𝑆𝑡 for any 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇], 𝑥𝑖,𝑡 = 0 otherwise.

1.2.2 Monotone submodular all-or-nothing incremental knapsack problem

In the monotone submodular all-or-nothing incremental knapsack problem (IK-AoN), we as-

sume the same feasibility setting as other incremental knapsack problems, with the following as-

sumptions on the objective function. We are given a profit parameter 𝑝𝑖 > 0 for every item 𝑖 ∈ [𝑛]

and a scaling factor Δ𝑡 ≥ 0 for every 𝑡 ∈ [𝑇]. For every set 𝑆 ⊆ [𝑛] we let Δ𝑡𝛾(𝑆) be the profit

5

associated to set 𝑆 at time 𝑡. We assume that the function 𝛾 : 2[𝑛] → N satisfies the following

properties:

1. (Monotone Submodularity) 𝛾 is a monotonically non-decreasing submodular function, that

is, for 𝑖 ∈ [𝑛] and 𝑆 ⊆ 𝑇 ⊆ [𝑛], we have 𝛾(𝑆 ∪ {𝑖}) − 𝛾(𝑆) ≥ 𝛾(𝑇 ∪ {𝑖}) − 𝛾(𝑇).

2. (All-or-Nothing Contributions) for each 𝑖 ∈ [𝑛] and 𝑆 ⊆ [𝑛]\{𝑖}, we have 𝛾(𝑆∪{𝑖})−𝛾(𝑆) ∈

{0, 𝑝𝑖}.

Hence, the presence of item 𝑖 in 𝑆 at time 𝑡 either realizes the “full profit” of Δ𝑡 𝑝𝑖, or no profit at

all. The goal is to find a feasible chain S = (𝑆1, . . . , 𝑆𝑇) that maximizes Φ(S) = ∑
𝑡∈𝑇 Δ𝑡𝛾(𝑆𝑡).

It is easy to see that IK-AoN captures linear profits by letting 𝛾(𝑆) = ∑
𝑖∈𝑆 𝑝𝑖 for all 𝑆 ⊆ [𝑛].

Additionally, IK-AoN allows us to capture problems with nonlinear profit structures. For exam-

ple, the matroid rank function satisfies the monotone submodular all-or-nothing profit properties.

Hence, IK-AoN subsumes both linear profits and more combinatorial ones, making it incompara-

ble to the generalized incremental knapsack problem.

1.2.3 Incremental generalized assignment problem

Before defining the incremental generalized assignment problem, we first give the definition of

the generalized assignment problem, a “static” generalization to the classical knapsack problem.

In this setting, we are given 𝑛 items and 𝑚 bins. For each 𝑗 ∈ [𝑚], bin 𝑗 has capacity 𝑊 𝑗 .

Assigning an item 𝑖 to a bin 𝑗 takes up capacity 𝑤𝑖 𝑗 while generating a profit of 𝑝𝑖 𝑗 . The goal is to

compute a feasible item-to-bin assignment whose overall profit is maximized. It is easy to see that

when 𝑚 = 1, this problem reduces to the classical knapsack problem. The generalized assignment

problem has been well studied, as seen in [17, 29, 30, 56, 60], just to name a few.

We extend the generalized assignment problem to a multi-period setting, along the same lines

of the incremental knapsack problems. Specifically, in addition to the parameters of the generalized

assignment problem, we are given a collection of 𝑇 times, where for each bin 𝑗 ∈ [𝑚], we have

non-decreasing capacities {𝑊 𝑗 ,𝑡}𝑡∈[𝑇] , i.e., such that 𝑊 𝑗 ,1 ≤ · · · ≤ 𝑊 𝑗 ,𝑇 . We denote a feasible

6

Figure 1.2: continued from Figure 1.1. In this example, we have the same three items as Figure 1.1
but now two different bins to assign these items. We show a possible feasible solution.

solution in the form of 𝑚 chains S1, . . . ,S𝑚. For each 𝑗 ∈ [𝑚], we have S 𝑗 = (𝑆 𝑗 ,1, . . . , 𝑆 𝑗 ,𝑇)

where 𝑆 𝑗 ,1 ⊆ · · · ⊆ 𝑆 𝑗 ,𝑇 ⊆ [𝑛]. Analogous to the incremental knapsack setting, the set 𝑆 𝑗 ,𝑡

represents the subset of items inserted into the 𝑗-th bin up to and including time 𝑡. Feasibility of

each chain necessitates that for each 𝑗 ∈ [𝑚] and 𝑡 ∈ [𝑇], we have 𝑤 𝑗 (𝑆 𝑗 ,𝑡) ≤ 𝑊 𝑗 ,𝑡 . Furthermore,

we require that each item is assigned to at most one bin, that is, 𝑆 𝑗 ,𝑇 ∩ 𝑆 𝑗 ′,𝑇 = ∅ for each distinct

𝑗 , 𝑗 ′ ∈ [𝑚]. In Figure 1.2, we give a pictorial example of a problem in this setting.

Finally, we are given non-negative profit parameters 𝑝𝑖, 𝑗 ,𝑡 for each 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] and

𝑡 ∈ [𝑇]. Item 𝑖 earns profit 𝑝𝑖, 𝑗 ,𝑡 if it is inserted in bin 𝑗 at time 𝑡 (i.e., if 𝑖 ∈ 𝑆 𝑗 ,𝑡 \ 𝑆 𝑗 ,𝑡−1 where

𝑆 𝑗 ,0 = ∅ for every 𝑗 ∈ [𝑚]). The profit earned by the chain S 𝑗 in bin 𝑗 is therefore given by

Φ 𝑗 (S 𝑗) =
∑
𝑡∈[𝑇]

∑
𝑖∈𝑆 𝑗 ,𝑡\𝑆 𝑗 ,𝑡−1 𝑝𝑖, 𝑗 ,𝑡 . The objective is to find feasible chains S1, . . . ,S𝑚 that maxi-

mizes
∑
𝑗∈[𝑚] Φ 𝑗 (S 𝑗), the total profit of chains summed across all bins.

7

1.3 Main contributions

In this section, we give a brief outline of this thesis and our main contributions in each chapter.

Chapter 2: Single-time policies for the generalized incremental knapsack problem. It is

natural to try reducing the generalized incremental knapsack problem to the classical knapsack

problem – although the latter is only weakly NP-Hard, and the former is strongly NP-Hard [7].

As our first contribution, we show that indeed some kind of reduction to the classical knapsack

problem is possible. More formally, we present what we call a single-time algorithm for the gen-

eralized incremental knapsack problem with a constant-approximation bound on its performance

guarantee. The main idea behind single-time algorithms (introduced for the first time in this the-

sis) is to reduce an incremental packing problem to a sequence of “static” packing problems on

the same ground set, which can then be solved using known techniques. This approach has two

interesting features: first, classical packing problems are more studied, and many techniques to

find good solutions are known. Second, the dimension of the problem is reduced dramatically,

since the number of variables of each of the resulting classical packing problems do not depend on

𝑇 . The main result of this chapter is given below.

Theorem 1.3.1. For any accuracy level 𝜖 > 0, there exists a single-time algorithm that approxi-

mates the generalized incremental knapsack problem within factor 0.17−𝜖 in time �̃� (𝑇𝑛+𝑇 (𝑇
𝜖
) 9

4).

In addition to the theoretical guarantee, we also test our algorithm in practice. We show in

Section 2.5 that on randomly generated instances of the generalized incremental knapsack problem,

our algorithm gives near-optimal solutions, far better than the theoretical lower bound given in

Theorem 1.3.1. Due to its feature of reducing the incremental packing problem to complexity-wise

much simpler static packing problems, it runs much faster compared to Gurobi solving the problem

using the standard integer programming formulation. As another added benefit of reducing the

dimension of the problem, we show that it is capable of solving much larger instances than Gurobi.

The work in this chapter is based on an ongoing work in collaboration with Yuri Faenza and

8

Danny Segev.

Chapter 3: Algorithms for the generalized incremental knapsack problem through a se-

quencing reformulation. In this chapter, we provide additional constant factor approximations

for the generalized incremental knapsack problem, including an improvement upon the factor given

in Theorem 1.3.1. The first contribution comes in the form of a polynomial-time constant-factor

approximation.

Theorem 1.3.2. For any error parameter 𝜖 ∈ (0, 1
2), the generalized incremental knapsack

problem can be approximated within factor 1
2 − 𝜖 . The running time of our algorithm is

𝑂 (𝑛𝑂 (1/𝜖2) · |I |𝑂 (1)), where |I | stands for the input size.

We note that in addition to the approximation factor being better than that given in Theo-

rem 1.3.1, the algorithm also uses completely different approaches and techniques. The starting

point of this algorithm is a new reformulation of the generalized incremental knapsack problem as

a single-machine sequencing problem, where feasible chains are mapped to permutations. Based

on this reformulation, we decompose the optimal permutation into heavy and light parts, depend-

ing on how item weights compare against the combined weight of all previously-inserted items.

This sequencing reformulation is, to our knowledge, very different from how existing related prob-

lems were approached up until now. At a high level, to compete against the heavy part, we exploit

dynamic programming ideas, whereas for the light part, we propose a further reformulation as a

highly-structured generalized assignment instance, which is handled by leveraging the Shmoys-

Tardos algorithm [60] and an additional greedy truncation phase. Consequently, we show that both

subproblems can be approximated within factor 1 − 𝜖 of optimal, thus leading to Theorem 1.3.2.

As we will explain in Section 1.4.1, even seemingly-simple special cases of the generalized in-

cremental knapsack problem are known to be strongly NP-hard, admitting a PTAS under specific

profit-structure assumptions. A natural question is whether we one can design efficient algorithms

with the same degree of accuracy for the generalized incremental knapsack problem, without mit-

igating assumptions. Towards this goal, our second main contribution of this chapter establishes

9

the existence of a QPTAS.

Theorem 1.3.3. The generalized incremental knapsack problem admits a quasi-polynomial time

approximation scheme.

Hence, unless NP ⊆ DTIME(2polylog (𝑛)) , this result rules out the possibility that the general-

ized incremental knapsack problem is APX-hard, thus making it substantially different from other

knapsack extensions, such as the generalized assignment problem (see a brief discussion in Sec-

tion 1.4.2). Finally we observe how those algorithms in practice do not terminate in reasonable

times, thus making the algorithm from Section 2 more interesting for real-world applications.

The work in this chapter is in collaboration with Yuri Faenza and Danny Segev and appears

in [26].

Chapter 4: Some easier, and some not harder, incremental knapsack problems. Our main

result in this chapter provides a PTAS for IK-AoN. For a family C of instances of IK-AoN, let us

call their linearization the family C of IK instances containing all and only the instances obtained

as follows: starting from an instance I ∈ C with profits 𝑝, first drop some of the items, assuming

(possibly after renaming) that items [𝑛′] ⊆ [𝑛] are kept; then define a new (linear) profit function

𝛾′ such that for every 𝑆 ⊆ [𝑛′], 𝛾′(𝑆) = 𝑝(𝑆) (or equivalently for every 𝑖 ∈ [𝑛′] and 𝑆 ⊆ [𝑛′] \ {𝑖},

𝛾′(𝑆 ∪ {𝑖}) − 𝛾′(𝑆) = 𝑝𝑖).

Our main result shows, that, somehow surprisingly, any family of IK-AoN instances is not

harder than its linearization.

Theorem 1.3.4. Let C be a family of IK-AoN instances and let 𝛼 ∈ [0, 1]. If there is an 𝛼-

approximation algorithm for instances in C, then there is an 𝛼-approximation algorithm for in-

stances in C running in time 𝑂 (Time𝛼 (𝑛, 𝑇) + 𝑛𝑇), where Time𝛼 (𝑛, 𝑇) is the running time of the

𝛼-approximation algorithm for instances in C with 𝑛 items and 𝑇 time periods.

Theorem 1.3.4 implies, for instance, that IK-AoN has a PTAS (using the PTAS for the incre-

mental knapsack problem [4] as a subroutine). Moreover, if one aims at practical algorithms with

10

good (though suboptimal) theoretical performance guarantee for IK-AoN, then Theorem 1.3.4 can

be employed using as a subroutine the single-time algorithm from Chapter 2, which, as previously

mentioned, runs much faster than Gurobi – the additional steps added by our algorithm is only in

creating the specific linearized instance, which is computationally very little.

Beyond the study of IK-AoN, in this chapter, we also provide approximation schemes for two

special cases of the generalized incremental knapsack problem. In the first case, using classical

guessing and LP-rounding techniques, we give a PTAS for the generalized incremental knapsack

problem when we assume 𝑇 is a constant.

Theorem 1.3.5. For any 𝜖 > 0, the generalized incremental knapsack problem can be approxi-

mated within a factor of (1 − 𝜖) in time 𝑂 ((𝑛𝑇)𝑂 (𝑇3
𝜖
)). Therefore, it admits a PTAS when 𝑇 is a

constant.

In the second special case, we assume that in the generalized incremental knapsack setting,

for each 𝑖 ∈ [𝑛], there is a unique time 𝑡 such that 𝑝𝑖,𝑡 > 0. For all other times 𝜏 ≠ 𝑡, we have

𝑝𝑖,𝑡 = 0. We call this problem the generalized incremental knapsack single profit problem. Notice

that taking 𝑇 = 1, this problem still subsumes the classical knapsack problem as a special case,

and hence is NP-hard. We show that, despite the added time dimension, we can modify standard

dynamic programming ideas for the classical knapsack problem to obtain an FPTAS.

Theorem 1.3.6. For any 𝜖 > 0, the generalized incremental knapsack single profit problem can be

approximated within a factor of 1 − 𝜖 in time 𝑂 (𝑛3

𝜖
).

The work in Section 4.2 of this chapter is based on an ongoing work in collaboration with

Federico D’Onofrio and Yuri Faenza. The work in Sections 4.3 and 4.4 of this chapter is in collab-

oration with Yuri Faenza.

Chapter 5: Single-machine algorithms for incremental packing problems. Our main contri-

bution in this chapter is to give a polynomial-time constant factor approximation for the incremen-

tal generalized assignment problem.

11

Theorem 1.3.7. For any 𝜖 > 0, there exists a polynomial-time algorithm that in expectation gives

a (1
4 − 𝜖)-approximation to the incremental generalized assignment problem.

To prove this result, we generalize the scheduling reformulation of the generalized incremental

knapsack problem from Chapter 3, and show how general packing problems can be reformulated

as multi-machine sequencing problems. Following this reformulation, the (1
2 − 𝜖)-approximated

algorithm from Section 3.2 can be leveraged to obtain a polynomial time approximation algorithm

for the incremental generalized assignment problem.

In fact, in order to show the above result, we prove a more general version. We show that any

single-bin packing problem can be reformulated as a single-machine sequencing problem. Simi-

larly, any multi-bin packing problem can be reformulated as a multi-machine sequencing problem.

Furthermore, if there exists a polynomial-time 𝛽-approximation algorithm for the single-machine

sequencing problem, then for any 𝛿 > 0, there exists a polynomial-time 1
2 (𝛽 − 𝛿)-approximation

algorithm for its multi-machine extension. The techniques used in proving this approximation

result extends the ideas developed in [30] for the separable assignment problem. We defer the

technical details to Chapter 5, including a discussion of how our results differ from that of [30] in

Section 5.5.

The work in this chapter is based on an ongoing work in collaboration with Yuri Faenza and

Danny Segev.

Chapter 6: On the facets of the incremental knapsack polytope. In the final chapter, we

give polyhedral results for the incremental knapsack polytope. In [6], Balas gave a complete

characterization of facets with 0/1 coefficients of the knapsack polytope using extended cover

inequalities from strong covers. For our first contribution, we give a technique that strengthens

extended cover inequalities for the incremental knapsack polytope, which we call lift and push. We

show that lift and push cover inequalities define facets for the incremental knapsack polytope under

the same conditions for which extended cover inequalities define facets for the classical knapsack

polytope. Notably, this result extends only one direction of Balas’s work. For the other direction,

12

we show that there exists facets with 0/1 coefficients for the incremental knapsack polytope that

cannot be characterized by extended cover inequalities of strong covers.

Then, we show that separation problem for lift and push cover inequalities can be solved in

pseudo-polynomial time.

Theorem 1.3.8. Given a fractional point 𝑥 ∈ [0, 1]𝑛𝑇 that satisfies the linear relaxation

of (GIK-IP), the lift and push cover inequality separation problem can be solved in time

𝑂 (𝑇𝑛4 | |𝑤 | |∞).

Given that the extended cover inequality separation problem for the knapsack polytope is al-

ready NP-hard [20], a polynomial time separation algorithm for the lift and push cover inequalities

is not possible unless P = NP. As a final contribution, we show an approximate separation algo-

rithm for lift and push cover inequalities in polynomial time.

Theorem 1.3.9. Given a fractional point 𝑥 ∈ [0, 1]𝑛𝑇 that satisfies the constraints of the linear

relaxation of (GIK-IP). For any 𝜖 > 0, there exists an algorithm that, in time 𝑂 (𝑇 𝑛7

𝜖
), gives a lift

and push cover inequality that 𝑥 violates, or concludes that (1 − 𝜖)𝑥 satisfies all such inequalities.

The work in this chapter is in collaboration with Yuri Faenza.

1.4 Related literature

1.4.1 Directly related incremental knapsack settings

The generalized incremental knapsack problem and IK-AoN subsume as special cases several

previously-studied incremental knapsack problems, all of which have identical feasibility con-

straints. Probably the simplest incremental knapsack problem studied so far is time-invariant in-

cremental knapsack (IIK), where each item 𝑖 is assumed to contribute a profit of 𝑝𝑖 to each period

starting at its insertion time.

The generalized incremental knapsack problem captures this profit setting by letting 𝑝𝑖𝑡 =

(𝑇 + 1 − 𝑡) · 𝑝𝑖. From an IK-AoN standpoint, to capture the time-invariant incremental knapsack

13

setting, we take Δ𝑡 = 1 for all 𝑡 ∈ [𝑇], and set 𝑝𝑖 = 𝜙𝑖 and 𝛾(𝑆) = 𝑝(𝑆) for all 𝑆 ⊆ [𝑛].

Surprisingly, unlike the classical knapsack problem, Bienstock et al. [7] showed that this extension

is strongly NP-hard. On the positive side, Faenza and Malinovic [25] proposed a polynomial-time

approximation scheme (PTAS) based on rounding fractional solutions to an appropriate disjunctive

relaxation.

The broader incremental knapsack problem (IK) is the linear variant to the IK-AoN problem.

Specifically, we are given the same input parameters, 𝑝𝑖 for every 𝑖 ∈ [𝑛] and Δ𝑡 for every 𝑡 ∈

[𝑇]. Since the profit structure is linear, for all 𝑆 ⊆ [𝑛], we let 𝛾(𝑆) = 𝑝(𝑆) =
∑
𝑖∈𝑆 𝑝𝑖. Thus,

inserting item 𝑖 always realizes the full profit of 𝑝𝑖. From a generalized incremental knapsack

problem standpoint, setting 𝑝𝑖𝑡 = 𝑝𝑖 ·
∑𝑇
𝜏=𝑡 Δ𝜏 captures the incremental knapsack setting. For this

problem, Aouad and Segev [4] have recently obtained a PTAS, leveraging on approximate dynamic

programming ideas. We refer the reader to a number of additional resources related to incremental

knapsack problems [21, 22, 40, 59, 64] for a deeper look into these settings.

In contrast, in the generalized incremental knapsack setting, the flexibility of our item- and

time-dependent profit structure allows us to capture a variety of situations. For instance, when an

item 𝑖 gains a profit of 𝜙𝑖𝜏 for each period 𝜏, starting at its insertion time, we can set 𝑝𝑖𝑡 =
∑𝑇
𝜏=𝑡 𝜙𝑖𝜏.

If, moreover, the per-period profits 𝜙𝑖𝜏 are discounted by a factor of 𝑐𝜏−𝑡 after 𝜏 − 𝑡 time units have

elapsed since the insertion of item 𝑖, we set 𝑝𝑖𝑡 =
∑𝑇
𝜏=𝑡 𝑐𝜏−𝑡𝜙𝑖𝜏.

1.4.2 The generalized assignment problem

In this section, we briefly discuss known results of the generalized assignment problem. From

a complexity standpoint, even special cases of the problem is shown to be APX-hard [16]. On

the positive side, for the minimization variant of the generalized assignment problem, Shmoys

and Tardos [60] proposed an LP-based 2-approximation, which was observed by Chekuri and

Khanna [16] to be easily adaptable to obtain a 1/2-approximation for the maximization variant.

Interestingly, while it is unclear whether these algorithmic ideas are translatable to the incremental

generalized assignment problem setting, they will be useful within one of the subroutines employed

14

by our approach to solve the generalized incremental knapsack problem (see Section 3.2.4).

Feige and Vondrák [29] attained a (1−1/𝑒 + 𝛿)-approximation, for some absolute constant 𝛿 >

0, which is currently the best known performance guarantee for maximum generalized assignment.

Earlier constant-factor approximations were obtained in [17, 30, 56]. The ideas used in [30] inspire

our techniques used in solving the incremental generalized assignment problem in Chapter 5.

1.4.3 Submodular function maximization

Submodular function maximization is a classical well-studied problem. Unconstrained sub-

modular function maximization can be approximated to a tight 1
2 factor [10]. For maximiz-

ing monotone submodular function subject to a knapsack constraint, Sviridenko obtained a

tight (1 − 1
𝑒
)-approximation through a combination of guessing and combinatorial greedy tech-

niques [62]. There is also extensive literature on submodular function maximization subject to

various different types of packing constraints, such as cardinality constraint [11], matroid con-

straint [13], and multiple knapsack or matroid constraints [51].

To the best of our knowledge, submodular function maximization in an incremental knapsack

setting has not previously been studied. In this setting, we already know that commonly-used

greedy techniques do not work, even when the objective function is linear. Hence, the quest for

tools that can solve the incremental version of the problem is open.

1.4.4 Other related packing problems

In the unsplittable flow on a path problem, we are given an edge-capacitated path as well as a

collection of tasks. Each task is characterized by its own subpath, profit, and demand. The goal

is to select a subset of tasks of maximum total profit, under the constraint that the overall demand

of the selected tasks along each edge resides within its capacity. Grandoni et al. recently gave

a PTAS for the unsplittable flow on a path problem [35], improving upon many earlier constant-

factor guarantees [3, 9, 12, 36]. In Appendix A.1, we describe an unfruitful attempt of reducing

the generalized incremental knapsack problem to unsplittable flow on a path, explaining what the

15

main technical issues are. That said, we further present a reduction to a generalization of the

latter problem, with so-called “bag constraints”. In the latter setting, the best known polynomial-

time algorithm attains an approximation factor of 𝑂 (log log 𝑛
log 𝑛). This result is incomparable to the

constant-factor approximation results of this thesis.

1.4.5 Lifting valid inequalities

There is a wealth of literature on valid inequalities for the classical knapsack polytope. These

inequalities have shown to be useful in solving large scale linear and integer programming prob-

lems in practice [19, 39]. In this section, we will briefly discuss a few classes of such inequalities

and techniques used to obtain them. We refer the reader to [42] for a recent survey that provides a

thorough discussion on these topics.

Given an instance of the classical knapsack problem with knapsack capacity 𝑊 , a set of 𝑛

items, each item with non-negative weight 𝑤𝑖 and non-negative profit 𝑝𝑖, the knapsack polytope is

defined as the convex hull of the feasible points satisfying the knapsack constraint:

conv
𝑥 ∈ {0, 1}𝑛 :

∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖 ≤ 𝑊
 .

Given a set 𝑆 ⊆ [𝑛] and a valid inequality
∑
𝑖∈𝑆 𝛼𝑖𝑥𝑖 ≤ 𝛽 for the knapsack polytope, the

inequality
∑
𝑖∈[𝑛] 𝛼𝑖𝑥𝑖 ≤ 𝛽 is called a lifting of

∑
𝑖∈𝑆 𝛼𝑖𝑥𝑖 ≤ 𝛽 if it is also valid. The goal of

lifting is to compute large coefficients of 𝛼𝑖 for 𝑖 ∉ 𝑆 as to obtain stronger, or even facet-defining,

inequalities.

We call 𝑆 ⊆ [𝑛] a minimal cover if

•
∑
𝑖∈𝑆 𝑤𝑖 > 𝑊 , and

• for every 𝑗 ∈ 𝑆,
∑
𝑖∈𝑆\{ 𝑗} 𝑤𝑖 ≤ 𝑊 .

Starting with a minimal cover 𝑆, Balas showed how to obtain extended cover inequalities and gave

necessary and sufficient conditions for when these inequalities define a facet [6]. As it is the main

16

inspiration of our results in Chapter 6, we give a more in-depth look at this work in Section 6.2.

Zemel [65] showed how to obtain a facet-defining lifted cover inequality of the form

∑︁
𝑖∈𝑆

𝑥𝑖 +
∑︁

𝑖∈[𝑛]\𝑆
𝛼𝑖𝑥𝑖 ≤ |𝑆 | − 1,

through sequential lifting in 𝑂 (𝑛|𝑆 |) time. Other works in lifting resulting in more general lifted

inequalities can be found in [39, 58, 63].

1.5 Shared notations

In this section, we give some shared notations that will be used throughout this thesis.

• We use [𝑛] to denote the set {1, 2, . . . , 𝑛} and [𝑛]0 to denote the set {0, 1, 2, . . . , 𝑛}.

• We use 2[𝑛] to denote the set containing all subsets of [𝑛].

• Given a chain S = (𝑆1, . . . , 𝑆𝑇), for any 𝑖 ∈ 𝑆𝑇 ⊆ [𝑛], we use 𝑡 (𝑖) to denote the insertion

time of 𝑖. That is, 𝑡 (𝑖) is the unique time 𝑡 for which 𝑖 ∈ 𝑆𝑡 \ 𝑆𝑡−1.

• For any function 𝑔 defined over a set [𝑛], for any 𝑆 ⊆ [𝑛], we let 𝑔(𝑆) = ∑
𝑖∈𝑆 𝑔𝑖.

• For any 𝑥 ∈ R, we let [𝑥]+ = max{0, 𝑥}.

17

Chapter 2: Single-time policies for the generalized incremental knapsack

problem

2.1 Introduction and preliminaries

In this chapter, we present single-time algorithms for the generalized incremental knapsack

problem. Somewhat informally, the goal of single-time algorithms is to remove the complexity

added by the time component of the problem by sequentially solving classical knapsack prob-

lems instead, for which many efficient algorithms are known. Since the generalized incremental

knapsack problem consists of 𝑇 distinct knapsack constraints and items with distinct profits when

inserted into the knapsack a certain time, it is natural to consider reducing it to 𝑇 classical knapsack

problems.

In Section 2.2, we first show why certain trivial reductions of the generalized incremental knap-

sack problem to the classical knapsack problem perform poorly. Although not leading to efficient

algorithms, these ideas form the basis for the development of the 𝑐-flexible single-time algorithm

presented in Section 2.3. We show that this algorithm gives a constant factor approximation for

the generalized incremental knapsack problem in Sections 2.4, proving Theorem 1.3.1. Finally, we

test the algorithm in practice in Section 2.5.

Throughout this chapter, we assume that in an instance of the generalized incremental knapsack

problem, for every 𝑖 ∈ [𝑛], item 𝑖 has monotonically non-increasing profit in 𝑡. That is, we have

𝑝𝑖,𝑡 ≥ 𝑝𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1]. The next lemma shows that this assumption can be

made without loss of generality. Its proof is provided in Appendix B.1

Lemma 2.1.1. Given an instance I of the generalized incremental knapsack problem, in polyno-

mial time, we can reformulate I as a new instance I′ of the generalized incremental knapsack

problem, where 𝑝𝑖,𝑡 ≥ 𝑝𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1]. Specifically, any feasible chain S of

18

I is feasible for I′ and Φ′(S) ≥ Φ(S), where Φ and Φ′ denote the profit functions of I and I′

respectively. Conversely, any feasible chain S′ of I′ can be mapped to a feasible chain S of I

such that Φ(S) = Φ′(S′).

2.2 Rigid and fully-flexible single-time algorithms

A rigid algorithm. Our first single-time algorithm starts by solving the knapsack problem in

time 1 with capacity 𝑊1, where each item 𝑖 ∈ [𝑛] has profit 𝑝𝑖,1 and weight 𝑤𝑖. Let 𝑆1 be the

solution to this classical knapsack problem. We select 𝑆1 in the generalized incremental knapsack

solution at time 1. These items are removed from future knapsack problems, and their weights

subtracted from future capacities. The algorithm then iterates by solving the residual knapsack

problem in time 2 with capacity 𝑊2 − 𝑤(𝑆1), set of items [𝑛] \ 𝑆1, where each item 𝑖 ∈ [𝑛] \ 𝑆1

has profit 𝑝𝑖,2 and weight 𝑤𝑖. Let 𝑄2 be the solution to this knapsack problem, set 𝑆2 = 𝑆1 ∪ 𝑄2

and consider the knapsack problem with items in 𝑆2 removed, and so on. It is easy to see that

(𝑆1, 𝑆1 ∪ 𝑄2, 𝑆1 ∪ 𝑄2 ∪ 𝑄3, . . . , 𝑆1 ∪ (∪𝑇
𝑡=2𝑄𝑡)) is a feasible chain for the original generalized

incremental knapsack problem. This algorithm is rigid in the sense that it never reconsiders its

previous decisions. As such, it may not insert an item that gives a very large profit, but does not

fit early capacity constraints. It is easy to build examples containing such items that lead to an

arbitrarily bad approximation ratio. We give such an example in Appendix B.2.

A fully flexible algorithm. At the opposite side of the spectrum of single-time algorithms, con-

sider a fully flexible algorithm that removes a set of items inserted at previous times to make room

for another set of items if the contribution of the latter set to the overall profit is strictly larger than

that of the former set. More formally, 𝑆1 is computed as in the rigid case. In the second round,

we define a knapsack problem over all items in [𝑛] with capacity 𝑊2. Here, an item 𝑖 ∈ [𝑛] \ 𝑆1

has profit 𝑝𝑖,2, whereas an item 𝑖 ∈ 𝑆1 has profit 𝑝𝑖,1 ≥ 𝑝𝑖,2. So items from 𝑆1 are also part of the

decision process in the second knapsack problem, but their profit is modified to take into account

of the fact that they are already part of the chain, hence they give a potentially larger contribution

19

to the objective function (recall that by Lemma 2.1.1, we have 𝑝𝑖,1 ≥ 𝑝𝑖,2 for all 𝑖 ∈ [𝑛]). Given a

solution 𝑆2 to this knapsack problem, 𝑆1 is modified by setting 𝑆1 = 𝑆1 ∩ 𝑆2. Hence, we remove

from 𝑆1 items that are not selected in 𝑆2. We can now iterate by defining, in round 𝑡, a knapsack

problem with capacity𝑊𝑡 , ground set of items [𝑛], where an item 𝑖 ∈ [𝑛] \𝑆𝑡−1 has profit 𝑝𝑖,𝑡 , while

every other item 𝑖 ∈ 𝑆𝜏 \ 𝑆𝜏−1 for some 𝜏 ∈ [𝑡 − 1] has profit 𝑝𝑖,𝜏 (where 𝑆0 = ∅ by convention).

Once a solution 𝑆𝑡 to the 𝑡-th round knapsack problem has been computed, we set 𝑆𝜏 = 𝑆𝜏 ∩ 𝑆𝑡 for

all 𝜏 ∈ [𝑡 − 1]. It is easy to see that (𝑆1, . . . , 𝑆𝑇) is a feasible chain.

The more sophisticated fully flexible algorithm can also be tricked into giving a bad approxi-

mation. In fact, it will always remove a previously inserted item with less profit in order to insert

an item with more profit, even if the profit difference is negligible and the more profitable item has

a much larger weight. Thus, the algorithm might insert an item with a large weight, making many

slightly less profitable items with much smaller weights infeasible over time. As such, it can output

an 𝑂 (1
𝑇
)-approximated solution, even if we can solve the single-time classical knapsack problem

optimally. A detailed example where this bound is achieved is given in Appendix B.3.

2.3 𝒄-flexible algorithms

Interpolating between the two algorithms. These two elementary examples suggest that, in

order to give a constant factor approximation for the generalized incremental knapsack problem,

a single-time algorithm should balance between updating an existing solution greedily and never

updating an existing solution. Thus, in the following section, we present a class of single-time

algorithms called 𝑐-flexible, where 𝑐 ≥ 1 is a parameter. At each time 𝑡 ∈ [𝑇], the algorithm

solves a knapsack problem where the profit of items inserted in a previous time is multiplied by a

factor of 𝑐. Intuitively, the parameter 𝑐 gives a measure of how “conservative” the algorithm will

be: the higher the 𝑐, the less likely the algorithm is to remove items it has already inserted. Thus,

the rigid algorithm corresponds to 𝑐 = +∞ and the fully flexible algorithm to 𝑐 = 1. We show

that for appropriate choices of 𝑐 > 1, this approach gives a constant-factor approximation for the

generalized incremental knapsack problem.

20

The algorithmic framework. Let 𝑐 ≥ 1 and 𝜖 ∈ (0, 1) (possibly a function of 𝑐 and 𝑇) be given.

The algorithm constructs 𝑇 chains ALG(1) , . . . ,ALG(𝑇) , one for each (classical) knapsack problem

it solves, where for 𝑡 ∈ [𝑇], ALG(𝑡) = (ALG(𝑡)
1 ,ALG(𝑡)

2 , . . . ,ALG(𝑡)
𝑇
).

1. For 𝑡 = 1, . . . , 𝑇 :

(a) Let Π (𝑡) be the (classical) knapsack problem with capacity𝑊𝑡 over the set of items [𝑛],

where item 𝑖 ∈ [𝑛] has weight 𝑤𝑖 and profit

𝑝′𝑖 =

𝑐 · 𝑝𝑖,𝜏 if 𝑡 ≥ 2 and 𝑖 ∈ ALG(𝑡−1)

𝜏 \ ALG(𝑡−1)
𝜏−1 for some 𝜏 < 𝑡

𝑝𝑖,𝑡 otherwise

(b) Using the FPTAS for knapsack, solve Π (𝑡) to (1 − 𝜖
1+𝜖)-optimality, i.e., as to obtain

solution 𝑆 so that (1 + 𝜖)𝑝′(𝑆) ≥ 𝑝′(𝑆∗), where 𝑆∗ is the optimal solution to Π (𝑡) .

(c) If 𝑡 = 1, set ALG(𝑡)
𝜏 = 𝑆 for all 𝜏 ∈ [𝑇].

(d) If 𝑡 ≥ 2,

• if 𝑝′(𝑆) ≥ 𝑝′(ALG(𝑡−1)
𝑡−1), set

ALG(𝑡)
𝜏 =

ALG(𝑡−1)

𝜏 ∩ 𝑆 for all 𝜏 ∈ [𝑡 − 1]

𝑆 for 𝜏 = 𝑡, . . . , 𝑇,

• else, set ALG(𝑡)
𝜏 = ALG(𝑡−1)

𝜏 for all 𝜏 ∈ [𝑇].

2. Output ALG(𝑇) = (ALG(𝑇)
1 , . . . ,ALG(𝑇)

𝑇
).

Feasibility. The following lemma establishes the feasibility of the solution ALG(𝑡) after every

iteration of Step 1. Its proof can be found in Appendix B.4.1.

Lemma 2.3.1. For 𝑡 ∈ [𝑇], ALG(𝑡) = (ALG(𝑡)
1 , . . . ,ALG(𝑡)

𝑇
) is a feasible chain.

21

2.4 Technical overview

2.4.1 Main results

In this section, we give an overview of the theoretical results of the 𝑐-flexible algorithm. First,

we show that for any constant 𝑐 > 1, the algorithm gives a constant factor approximation to the

generalized incremental knapsack problem.

Theorem 2.4.1. For 𝑐 > 1 and 𝜖 > 0 the 𝑐-flexible algorithm outputs a (𝑐−1
𝑐2+𝑐 − 𝜖

′)-approximation

for the generalized incremental knapsack problem in time �̃� (𝑇𝑛+𝑇 (1
𝜖
) 9

4) where 𝜖′ = (𝑐 +1+ 𝑐+1
𝑐−1 +

𝑐𝑇)𝜖 .

The next result shows that for any 𝑐 > 1, the algorithm cannot achieve an approximation factor

better than 𝑐−1
𝑐2 . Its proof can be found in Appendix B.4.11.

Theorem 2.4.2. For every 𝑐 > 1 and 𝜖 > 0, there is an instance of the generalized incremental

knapsack problem where the 𝑐-flexible algorithm gives a (𝑐−1
𝑐2 + 𝑓 (𝜖))-approximation, where 𝑓 (𝜖)

is some function of 𝜖 only.

By optimizing the functions of Theorem 2.4.1 and Theorem 2.4.2 over 𝑐, we obtain the follow-

ing result, which implies Theorem 1.3.1.

Corollary 2.4.3. For each constant 𝜖′ > 0, the (1 +
√

2)-flexible algorithm gives a (0.17 − 𝜖′)-

approximation algorithm for the generalized incremental knapsack problem in time �̃� (𝑇𝑛 +

𝑇 (𝑐𝑇
𝜖 ′)

9
4). Moreover, for any choice of 𝑐 > 1, the 𝑐-flexible algorithm cannot give an approxi-

mation factor better than 0.25 + 𝜖′.

The rest of the section is organized as follows. We start with an overview of the proof of

Theorem 2.4.1 in Section 2.4.2, where we highlight the main ideas and steps, with many of the

technical details postponed to Appendix B.4. In Section 2.4.3, we tie the steps together to prove

Theorem 2.4.1.

22

2.4.2 Proof overview

Preliminaries. Let OPT = (OPT1,OPT2, . . . ,OPT𝑇) denote an optimal chain. Throughout this

section, we extend any chain by adding a 0-th set equal to the empty set. This set will be denoted

by 𝑆0 for a chain S = (𝑆1, . . . , 𝑆𝑇), by ALG(𝑡)
0 for ALG(𝑡) , by OPT0 for OPT, etc. We assume that

the chain OPT is inclusionwise maximal. That is, for any 𝑖, 𝑡 such that 𝑖 ∈ OPT𝑡 \OPT𝑡−1, we have

𝑤(OPT𝑡−1 ∪ {𝑖}) > 𝑊𝑡−1. Note that this assumption is without loss generality since we assume

𝑝𝑖,𝑡 ≥ 𝑝𝑖,𝑡+1 for all 𝑡 ∈ [𝑇 − 1].

For 𝑆 ⊆ [𝑛] and 𝑡 ∈ [𝑇], we let 𝑝𝑡 (𝑆) =
∑
𝑖∈𝑆 𝑝𝑖,𝑡 denote the profit set 𝑆 earns if all its elements

are first inserted into the knapsack at time 𝑡. For all 𝑡 ∈ [𝑇] and all sets 𝑆 ⊆ [𝑛], 𝑝𝑡 (𝑆) is non-

negative, monotonically non-decreasing in 𝑆, and monotonically non-increasing in 𝑡. Recall that,

for a chain S = (𝑆1, . . . , 𝑆𝑇), we write

Φ(S) =
𝑇∑︁
𝑡=1

𝑝𝑡 (𝑆𝑡 \ 𝑆𝑡−1) =
𝑇∑︁
𝑡=1

∑︁
𝑖∈𝑆𝑡\𝑆𝑡−1

𝑝𝑖,𝑡

to denote its profit with respect to the original objective function of the problem. For any 𝑡 ∈ [𝑇],

by construction, we have ALG(𝑡)
𝑗

\ ALG(𝑡)
𝑗−1 = ∅ for all 𝑗 > 𝑡. It then follows that

Φ(ALG(𝑡)) =
𝑡∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗
\ALG(𝑡)

𝑗−1) +
𝑇∑︁

𝑗=𝑡+1
𝑝 𝑗 (ALG(𝑡)

𝑗
\ ALG(𝑡)

𝑗−1)︸ ︷︷ ︸
=0

=

𝑡∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗
\ALG(𝑡)

𝑗−1).

(2.1)

We remark that by Lemma 2.3.1, ALG(𝑡) = (ALG(𝑡)
1 , . . . ,ALG(𝑡)

𝑇
) is a feasible chain for all 𝑡 ∈ [𝑇].

In particular, the chain ALG = ALG(𝑇) output by the algorithm is feasible. We next give an

inclusion relationship between ALG(𝑡)
𝑗

and ALG(𝑡−1)
𝑗

for all 𝑗 , 𝑡 such that 𝑗 < 𝑡. Its proof can be

found in Appendix B.4.2.

Lemma 2.4.4. For 𝑡 ∈ [𝑇] and 𝑡 ≥ 2 and all 𝑗 ∈ [𝑡 − 1]0, we have ALG(𝑡)
𝑗

⊆ ALG(𝑡−1)
𝑗

.

When Π (𝑡) is solved in Step 1, some items that are in the chain ALG(𝑡−1) may not appear in the

newly constructed chain ALG(𝑡) . To keep track of these items, for 𝑗 , 𝑡 ∈ [𝑇], 𝑡 ≥ 2, we let 𝑅(𝑡)
𝑗

be

23

the items that belong to ALG(𝑡−1)
𝑗

but are not in ALG(𝑡)
𝑗

. Formally, let 𝑅(𝑡)
𝑗

= ALG(𝑡−1)
𝑗

\ ALG(𝑡)
𝑗

for 𝑗 ∈ [𝑡 − 1], 𝑡 ≥ 2. By letting 𝑅(𝑡)
𝑗

= 𝑅
(𝑡)
𝑡−1 for all 𝑗 ≥ 𝑡, we can define

R (𝑡) = (𝑅(𝑡)
1 , . . . , 𝑅

(𝑡)
𝑇
).

The next lemma shows that R (𝑡) is a chain for each 𝑡 ∈ [𝑇], 𝑡 ≥ 2. Its proof can be found in

Appendix B.4.3.

Lemma 2.4.5. For every 𝑡 ∈ [𝑇], 𝑡 ≥ 2, R (𝑡) is a chain.

In the remainder of the section, we are going to extensively compare the following quantities

related to the choices made by the algorithm in iteration 𝑡:

𝑎𝑡 = 𝑝𝑡 (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1) for 𝑡 ∈ [𝑇],

𝑏𝑡 =

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1) for 𝑡 ∈ [𝑇], 𝑡 ≥ 2,

𝑑𝑡 =

𝑇∑︁
𝑗=𝑡+1

𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1)) for 𝑡 ∈ [𝑇].

Main ideas. The key steps of the proof are as follows:

1. We create a family of possibly infeasible “hybrid” chains HB(0) ,HB(1) , . . . ,HB(𝑇) , interpo-

lating between OPT and ALG. This technique is inspired by certain proofs appearing in the

literature on submodular functions, such as [10], where however all intermediate solutions

that are created are feasible. We set HB(0) = OPT and as 𝑡 increases we smoothly move from

OPT to ALG:

HB(𝑡)
𝑗

=

ALG(𝑡)

𝑗
for 𝑗 ∈ [𝑡]

(OPT 𝑗 \ OPT𝑡) ∪ ALG(𝑡)
𝑡 otherwise

for 𝑡 ∈ [𝑇] .

24

Note that, in particular, HB(𝑇) = ALG(𝑇) = ALG. Clearly, upper bounding Φ(HB(𝑡−1)) −

Φ(HB(𝑡)) for all 𝑡 ∈ [𝑇] and summing those bounds leads to an upper bound on the

difference between Φ(OPT) and Φ(ALG). Hence, we would like to bound each of

Φ(HB(𝑡−1)) − Φ(HB(𝑡)) against a function of Φ(ALG), that is, of the profit of the solution

output by the algorithm. This is achieved in two steps.

2. First, we compare Φ(HB(𝑡−1)) − Φ(HB(𝑡)) with the improvement made by the algorithm

at time 𝑗 – that is, the change of profit between ALG(𝑗) and ALG(𝑗−1) – for appropriately

chosen times 𝑗 ≤ 𝑡. We distinguish two cases, according to how the improvement made by

the algorithm compares with the improvement made by OPT.

To define the two cases, we first partition [𝑇] into two sets, according to how the increment

of the profit of OPT compares to the increment of the profits of ALG(𝑡) and R (𝑡) . Formally,

for 𝑡 ∈ [𝑇], define

𝛿𝑡 = 𝑎𝑡 − 𝑐𝑏𝑡 ,

where we let 𝑏1 = 0. Let B = {𝑡1, 𝑡2, . . . , 𝑡𝑘 } denote all the times where for 𝑡𝑖 ∈ B,

𝑝𝑡𝑖 (OPT𝑡𝑖 \ OPT𝑡𝑖−1) > (1 + 𝜖)𝛿𝑡𝑖 .

Case 1: 𝑡 ∈ [𝑇] \ B. Intuitively, when 𝑡 ∈ [𝑇] \ B, the increment of profit of OPT is not

much larger than the increment of profit of ALG(𝑡) . In this case, we can bound Φ(HB(𝑡−1)) −

Φ(HB(𝑡)) as a function of the operations performed by the algorithm at time 𝑡 only. In

particular, we show the following (see Appendix B.4.5 and Appendix B.4.6 for proofs):

Lemma 2.4.6 (Step-by-step loss, part 1). Φ(HB(0)) −Φ(HB(1)) ≤ 𝜖𝑎1 + 𝑑1.

Lemma 2.4.7 (Step-by-step loss, part 2). Φ(HB(𝑡−1)) −Φ(HB(𝑡)) ≤ 𝜖𝑎𝑡 − (𝑐 − 1)𝑏𝑡 + 𝑑𝑡 for

𝑡 ∈ [𝑇] \ B, 𝑡 ≥ 2.

Case 2: 𝑡 ∈ B. When 𝑡 ∈ B, to bound Φ(HB(𝑡−1)) − Φ(HB(𝑡)) we also need to take into

25

account decisions made by the algorithm in certain previous steps. This is achieved in the

following lemma, where we let 𝑡0 = 1 (see Appendix B.4.7 for a proof):

Lemma 2.4.8 (Step-by-step loss, part 3). For 𝑡𝑖 ∈ B, let 𝑡′ = 𝑡𝑖−1. Then:

Φ(HB(𝑡𝑖−1)) −Φ(HB(𝑡𝑖)) ≤ 𝜖𝑎𝑡𝑖 − (𝑐 − 1)𝑏𝑡𝑖 + 𝑑𝑡𝑖 + (1 + 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑎 𝑗 + 𝑐𝜖 Φ(ALG(𝑡𝑖)).

3. Notice that in Lemma 2.4.7 and Lemma 2.4.8, the bound on Φ(HB(𝑡−1)) −Φ(HB(𝑡)) depends

also on R (𝑡) via the term 𝑏𝑡 . Keeping in mind our final goal of bounding the improvement

made by the algorithm at time 𝑡 against Φ(ALG) only, the following lemma eliminates the

dependence on 𝑏𝑡 . The proof is provided in Appendix B.4.8.

Lemma 2.4.9 (Removal Lemma).
∑𝑇
𝑡=2 𝑏𝑡 ≤ 1

𝑐−1Φ(ALG).

4. Finally, we put these bounds together to achieve a bound for
∑𝑇
𝑡=1 Φ(HB(𝑡−1)) − Φ(HB(𝑡)),

which leads to a constant factor bound for the ratio between the profit of the optimal solution

and the profit of the solution output by the algorithm. See Theorem 2.4.1. We present the

proof in Section 2.4.3.

Running time. Immediately from the running time of the FPTAS for knapsack from [44], that

takes time �̃� (𝑛 + (1
𝜖
)9/4).

2.4.3 Proof of Theorem 2.4.1

We can now put things together and prove Theorem 2.4.1. By summing over all 𝑡 ∈ [𝑇] the

bounds from Lemmas 2.4.7 and 2.4.8 and employing Lemma 2.4.6, in Claim 2.4.10 below we give

an initial bound on
∑𝑇
𝑡=1(Φ(HB(𝑡−1)) −Φ(HB(𝑡))). Its proof can be found in Appendix B.4.9.

Claim 2.4.10.

𝑇∑︁
𝑡=1

(Φ(HB(𝑡−1))−Φ(HB(𝑡))) ≤ (𝑐+1+ (𝑐+1)𝜖)Φ(ALG) + (2+ (𝑐+1)𝜖)
𝑇∑︁
𝑡=2

𝑏𝑡 +𝑐𝜖
𝑇∑︁
𝑡=1

Φ(ALG(𝑡)).

26

Let 𝑈 be the right-hand side of the inequality from Claim 2.4.10. We bound 𝑈 term-by-term.

To bound 𝑐𝜖
∑𝑇
𝑡=1 Φ(ALG(𝑡)), note that Φ(ALG(𝑡)) ≤ Φ(ALG) for all 𝑡 ∈ [𝑇]. Thus,

𝑇∑︁
𝑡=1

Φ(ALG(𝑡)) ≤ 𝑇 Φ(ALG). (2.2)

Finally, using (2.2) and Lemma 2.4.9, we give the following upper bound to the right hand side of

the inequality in Claim 2.4.10. Its proof can be found in Appendix B.4.10.

Claim 2.4.11.

𝑈 ≤ (𝑐 + 1 + 2
𝑐 − 1

+ 𝜖′) Φ(ALG).

Combining Claims 2.4.10 and 2.4.11, we obtain

𝑇∑︁
𝑡=1

(Φ(HB(𝑡−1)) −Φ(HB(𝑡))) ≤ (𝑐 + 1 + 2
𝑐 − 1

+ 𝜖′) Φ(ALG).

The left hand side of the inequality is a telescoping sum and reduces to Φ(HB(0)) − Φ(HB(𝑇)) =

Φ(OPT) −Φ(ALG). Thus,

Φ(OPT) ≤ (𝑐 + 2 + 2
𝑐 − 1

+ 𝜖′) Φ(ALG) ⇒ (𝑐 − 1
𝑐2 + 𝑐

− 𝜖′) Φ(OPT) ≤ Φ(ALG),

concluding the proof.

2.5 Experimental results

In this section, we give some computational results that compare the performance of the 𝑐-

flexible algorithm presented in Section 2.3 with the integer programming solver Gurobi. In Sec-

tion 2.5.1, we discuss each of the algorithms tested. In Section 2.5.2, we give detail on the genera-

tion of the instances, and on the settings of the experiments. Finally, in Section 2.5.3, we compare

the results of the algorithms and discuss their implications.

27

2.5.1 Algorithms tested

Integer programming solver. For the integer programming solver, we give Gurobi the stan-

dard integer programming formulation for the generalized incremental knapsack problem given

in (GIK-IP) in Section 1.2.1.

𝒄-flexible algorithms. For the 𝑐-flexible algorithms, we implement the algorithm given in Sec-

tion 2.3, for 𝑐 = 1 (fully flexible) and 𝑐 = 2.

2.5.2 Instance generation and experimental setup

For randomly generated instances of the generalized incremental knapsack problem of dif-

ferent sizes, we test each of the algorithms described in Section 2.5.1. The results are reported in

Tables 2.1 and 2.2. For instances of different sizes, Gurobi was given different optimality tolerance

thresholds, ranging from 5% to 1%. In Table 2.1, for each of the randomly generated instances,

each item has a random weight and random profits that are correlated with the weight of the item;

whereas in Table 2.2, each item has random and uncorrelated weight and profits.

We now give more details on the generation of random instances. For Table 2.1, the capacity

at time 1 is a random integer between 1 and 50. For each subsequent time, the capacity increases

by a random integer between 1 and 50. For each item 𝑖, weight 𝑤𝑖 is a random integer between 1

and 10·𝑊𝑇
𝑛

. Each 𝑝𝑖,1 is correlated with the weight 𝑤𝑖. In particular, it is a random integer between

𝑤𝑖 and 1.2 · 𝑤𝑖. For 𝑡 ∈ [𝑇], 𝑡 ≥ 2, profit 𝑝𝑖,𝑡 = 𝑝𝑖,𝑡−1 · (𝑇−𝑡
𝑇−𝑡+1 + 𝑟 · 1

𝑇−𝑡+1), where 𝑟 is a randomly

selected element from the set {−1,−0.9, . . . , 0, 0.1, . . . , 1}. For Table 2.2, the capacity is generated

identically to Table 2.1. For each item 𝑖 and for each time 𝑡, weight 𝑤𝑖 and profits 𝑝𝑖,𝑡 are all random

integers between 1 and 10·𝑊𝑇
𝑛

. Experiments were performed on a Dell XPS 15.

For each value of 𝑛 and 𝑇 , we report an average over 10 instances. For all problem sizes except

𝑛 = 𝑇 = 3000, for each of the algorithm tested, the “Mean difference” columns report the mean

difference with respect to the solution that Gurobi outputs. For 𝑛 = 𝑇 = 3000, Gurobi runs out of

memory and are not able to return feasible solutions. Hence, the “Mean difference” column for the

28

2-flexible algorithm reports the mean difference with respect to the fully-flexible algorithm.

2.5.3 Results and discussion

Problem Size Gurobi Fully flexible (𝑐 = 1) 2-flexible

𝑛 𝑇
Optimality
Gap

Time
(Sec)

Mean
difference

Time
(Sec)

Mean
difference

Time
(Sec)

50 50 1% 175 2.9% 0.1 12.1% 0.1

100 100
5% 4.3 1.1%

0.8
9.1%

0.83% 210 2.0% 9.9%
2% 1534 2.1% 10.0%

500 500
5% 98 0.0%

6.8
7.8%

8.43% 100 0.2% 7.9%
2% 125 0.8% 8.5%

3000 3000 100% - - 191 7.0% 262

Table 2.1: Correlated weights and profits, Gurobi and 𝑐-flexible algorithms

Problem Size Gurobi Fully flexible (𝑐 = 1) 2-flexible

𝑛 𝑇
Optimality
Gap

Time
(Sec)

Mean
difference

Time
(Sec)

Mean
difference

Time
(Sec)

50 50 1% 0.6 6.9% 0.1 3.0% 0.1
100 100 1% 2.4 5.9% 0.3 2.5% 0.3
500 500 1% 25.3 2.9% 7.7 1.4% 6.8
3000 3000 100% - - 333 −0.3% 286

Table 2.2: Random and uncorrelated weights and profits, Gurobi and 𝑐-flexible algorithms

Unsurprisingly, compared to problems with random and uncorrelated weights and profits, prob-

lems with correlated weights and profits take longer to solve across all algorithms implemented.

However, these problems drastically increase the running time for Gurobi but only slightly increase

the running time for our 𝑐-flexible algorithms.

More generally, while for small values of 𝑛, 𝑇 Gurobi converges given a not-too-small gap

tolerance, for 𝑛 = 𝑇 = 3000, it is not even able to find a feasible solution. In contrast, the 𝑐-flexible

algorithms converge fast even in instances with large 𝑛 and 𝑇 , and very fast on instances with

smaller values of 𝑛 and 𝑇 , outputting solutions of good quality (the best of the solutions output

by the algorithms with 𝑐 = 1 and 𝑐 = 2 has profit that is never worse than 3% the solution output

29

by Gurobi). We also find that when profits and weights are uncorrelated, the 𝑐-flexible algorithm

perform better when 𝑐 = 2 than when 𝑐 = 1, both in terms of the profit of the solution it outputs as

well as in running time.

30

Chapter 3: Algorithms for the generalized incremental knapsack problem

through a sequencing reformulation

3.1 Introduction

In this chapter, we show additional approximability results for the generalized incremental

knapsack problem. First, in Section 3.2, we give a polynomial time (1
2 − 𝜖)-approximation, that

improves upon the theoretical results presented in Chapter 2. In Section 3.3, using ideas developed

for the (1
2 − 𝜖)-approximated algorithm, we first give a (1 − 𝜖)-approximation with running time

exponentially dependent on log(𝑛 · 𝑤max
𝑤min

). Thus, this result only gives a QPTAS when the ratio 𝑤max
𝑤min

is polynomial in the problem’s input size. With that being said, in Section 3.4, we develop a true

QPTAS using a dynamic programming approach, which employs the algorithm from Section 3.3

as a subroutine.

3.2 A polynomial-Time (1
2 − 𝜖)-approximation

In this section, we show that the generalized incremental problem can be approximated within

a factor arbitrarily close to 1
2 . The specifics of this finding, given in Theorem 1.3.2, is reprinted

here for convenience.

Theorem 1.3.2. For any error parameter 𝜖 ∈ (0, 1
2), the generalized incremental knapsack

problem can be approximated within factor 1
2 − 𝜖 . The running time of our algorithm is

𝑂 (𝑛𝑂 (1/𝜖2) · |I |𝑂 (1)), where |I | stands for the input size.

Outline. We start off Section 3.2.1 by proposing an equivalent formulation of the generalized

incremental knapsack problem as a single-machine sequencing problem. Given this reformula-

tion, we explain in Section 3.2.2 how the profit function can be decomposed into “heavy” and

31

“light” item contributions. Somewhat informally, with respect to an unknown optimal sequencing

solution, the marginal contribution of each item to the overall profit will be classified as being

either heavy or light, depending on the item’s weight and position on the timeline. Guided by

this decomposition, our approach consists of devising two approximation schemes, one competing

against the best-possible profit due to heavy contributions (Section 3.2.3) and the other against the

analogous quantity due to light contributions (Section 3.2.4). The best of these algorithms will be

shown to provide an approximation guarantee of 1
2 − 𝜖 , thereby deriving Theorem 1.3.2. It is worth

pointing out that the techniques involved in competing against light contributions will be further

utilized in Sections 3.3 and 3.4 to obtain an approximation scheme for general instances, albeit in

quasi-polynomial time.

3.2.1 An equivalent sequencing formulation

In what follows, we present an equivalent sequencing reformulation for the generalized incre-

mental knapsack problem. As explained in subsequent sections, the interchangeability between

these formulations allows us to describe our algorithmic ideas and to analyze their performance

guarantees with greater ease. For this purpose, we proceed by arguing that the generalized in-

cremental knapsack problem can be rephrased as a sequencing problem on a single machine as

follows:

• Let 𝜋 : [𝑛] → [𝑛] be a permutation of the underlying items, where 𝜋(𝑖) stands for the

position of item 𝑖.

• By viewing the weight of each item as its processing time, we define the completion time of

item 𝑖 with respect to 𝜋 as 𝐶𝜋 (𝑖) =
∑
𝑗∈[𝑛]:𝜋(𝑗)≤𝜋(𝑖) 𝑤 𝑗 . Accordingly, the profit 𝜑𝜋 (𝑖) of this

item is given by the largest profit we can gain by inserting 𝑖 at a time period whose capacity

occurs is at least 𝐶𝜋 (𝑖), namely, 𝜑𝜋 (𝑖) = max{𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ 𝐶𝜋 (𝑖)}, with the

convention that𝑊𝑇+1 = ∞ and 𝑝𝑖,𝑇+1 = 0 for every item 𝑖.

• The overall profit of the permutation 𝜋 is specified by Ψ(𝜋) = ∑
𝑖∈[𝑛] 𝜑𝜋 (𝑖). Our objective is

32

to compute a permutation whose profit is maximized.

The next lemma captures the equivalence between the item-introducing perspective of the gen-

eralized incremental knapsack problem and the sequencing perspective described above.

Lemma 3.2.1. Any feasible chain S can be mapped to a permutation 𝜋S with Ψ(𝜋S) ≥ Φ(S).

Conversely, any permutation 𝜋 of a subset of the items can be mapped to a feasible chain S𝜋 with

Φ(S𝜋) = Ψ(𝜋).

Proof. First, given a feasible chain S, we construct the permutation 𝜋S as follows:

• For each 𝑡 ∈ [𝑇], let 𝜋𝑡 be an arbitrary permutation of the items introduced in this period,

𝑆𝑡 \ 𝑆𝑡−1. In addition, let 𝜋𝑇+1 be an arbitrary permutation of the remaining items, i.e., those

in [𝑛] \ 𝑆𝑇 .

• The permutation 𝜋S is defined as the concatenation of 𝜋1, . . . , 𝜋𝑇+1 in this order. Namely,

for 𝑖 ∈ 𝑆𝑡 \ 𝑆𝑡−1 with 𝑡 ∈ [𝑇], we have 𝜋S (𝑖) = 𝜋𝑡 (𝑖) + |𝑆𝑡−1 |, whereas for 𝑖 ∈ [𝑛] \ 𝑆𝑇 , we

have 𝜋S (𝑖) = 𝜋𝑇+1(𝑖) + |𝑆𝑇 |.

To prove that Ψ(𝜋S) ≥ Φ(S), it suffices to argue that 𝜑𝜋S (𝑖) ≥ 𝑝𝑖,𝑡𝑖 for every item 𝑖 ∈ 𝑆𝑇 , where 𝑡𝑖

stands for the insertion time of item 𝑖 with respect to the chain S. To derive this relation, note that

𝐶𝜋S (𝑖) ≤ 𝑤(𝑆𝑡𝑖) ≤ 𝑊𝑡𝑖 for any such item, where the last inequality follows from the feasibility of

S. Therefore, 𝜑𝜋S (𝑖) = max{𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ 𝐶𝜋S (𝑖)} ≥ 𝑝𝑖,𝑡𝑖 .

Conversely, given a permutation 𝜋 of any subset of items, we construct a chain S𝜋 that includes

all items whose completion time is at most𝑊𝑇 . Specifically, the insertion time 𝑡𝑖 of each such item

𝑖 will be the time period that maximizes 𝑝𝑖,𝑡𝑖 over the set {𝑡 ∈ [𝑇] : 𝑊𝑡 ≥ 𝐶𝜋 (𝑖)}. As such, the

chain S𝜋 is indeed feasible, since 𝑤(𝑆𝑡) ≤
∑
𝑖∈[𝑛]:𝐶𝜋 (𝑖)≤𝑊𝑡 𝑤𝑖 ≤ 𝑊𝑡 for every 𝑡 ∈ [𝑇]. To show that

Φ(S𝜋) = Ψ(𝜋), it remains to explain why 𝑝𝑖,𝑡𝑖 = 𝜑𝜋 (𝑖) for inserted items and why 𝜑𝜋 (𝑖) = 0 for

non-inserted ones. To this end, note that our choice for the insertion time 𝑡𝑖 follows the definition

of 𝜑𝜋 (𝑖) to the letter, meaning that 𝑝𝑖,𝑡𝑖 = 𝜑𝜋 (𝑖). On the other hand, for any item 𝑖 we do not insert

to S𝜋, one has 𝜑𝜋 (𝑖) = 0, since 𝐶𝜋 (𝑖) > 𝑊𝑇 . □

33

Figure 3.1: In this example, we give a chain representation of 5 items and 3 times and an equivalent
sequencing reformulation. In the chain representation, the number within each bar represents the
weight of the item. An unlabeled bar represents any unused capacity for that time. The sequencing
reformulation gives an equivalent permutation for the chain representation, where the number in
each block indicates item 𝑖’s completion time, given by 𝐶𝜋 (𝑖) =

∑
𝑗∈[𝑛]:𝜋(𝑗)≤𝜋(𝑖) 𝑤 𝑗 .

In Figure 3.1, we give a pictorial example of this sequencing reformulation. It is worth noting

that, eventually, in Lemma 5.3.2, we will generalize the ideas of Lemma 3.2.1 to give a reformula-

tion of (multi-bin) incremental packing problems as (multi-machine) sequencing problems.

3.2.2 Profit decomposition and high-level overview

In what follows, we focus our attention on the sequencing formulation and present a decompo-

sition of the profit function Ψ into “heavy” and “light” contributions, collected over geometrically-

increasing intervals. With the necessary definitions in place, we outline how a decomposition of

this nature guides us in proposing two approximation schemes, to separately compete against heavy

and light contributions. The main result of this section, as stated in Theorem 1.3.2, will eventually

be derived by taking the more profitable of these approaches.

For simplicity of presentation, we assume without loss of generality that 𝜖 ∈ (0, 1
2), and more-

over, that 1
𝜖

is an integer. In addition, we assume that 𝑤min = min𝑖∈[𝑛] 𝑤𝑖 = 3; the latter property

can easily be enforced through scaling all item weights 𝑤𝑖 and time period capacities𝑊𝑡 by a factor

of 3
𝑤min

.

34

Profit decomposition. We begin by geometrically partitioning the interval [0,∑𝑖∈[𝑛] 𝑤𝑖] by pow-

ers of 1 + 𝜖 into a collection of intervals I0, . . . ,I𝐾 , where 𝐾 = ⌈log1+𝜖 (
∑
𝑖∈[𝑛] 𝑤𝑖)⌉. Specifi-

cally, I0 = [0, 1] and I𝑘 = ((1 + 𝜖)𝑘−1, (1 + 𝜖)𝑘] for 𝑘 ∈ [𝐾]. With this definition, the profit

Ψ(𝜋) =
∑
𝑖∈[𝑛] 𝜑𝜋 (𝑖) of any permutation 𝜋 can be expressed by summing item contributions ac-

cording to the interval in which their completion times fall, i.e.,

Ψ(𝜋) =
∑︁
𝑘∈[𝐾]0

∑︁
𝑖∈[𝑛]:

𝐶𝜋 (𝑖) ∈I𝑘

𝜑𝜋 (𝑖) .

We say that item 𝑖 is 𝑘-heavy when 𝑤𝑖 ≥ 𝜖2 · (1+ 𝜖)𝑘 ; otherwise, this item is 𝑘-light. We denote

the sets of 𝑘-heavy and 𝑘-light items by 𝐻𝑘 and 𝐿𝑘 , respectively, noting that 𝐻0 ⊇ 𝐻1 ⊇ · · · ⊇ 𝐻𝐾

and that 𝐿𝑘 = [𝑛] \ 𝐻𝑘 for every 𝑘 . As a side note, one can easily verify that all items are 0-heavy

(i.e., 𝐻0 = [𝑛]), by recalling that 𝑤min = 3 and 𝜖 < 1
2 . Consequently, the profit Ψ(𝜋) can be refined

by separating 𝑘-heavy and 𝑘-light items, namely,

Ψ(𝜋) =
∑︁
𝑘∈[𝐾]0

∑︁
𝑖∈𝐻𝑘 :

𝐶𝜋 (𝑖) ∈I𝑘

𝜑𝜋 (𝑖)

︸ ︷︷ ︸
Ψheavy (𝜋)

+
∑︁
𝑘∈[𝐾]0

∑︁
𝑖∈𝐿𝑘 :

𝐶𝜋 (𝑖) ∈I𝑘

𝜑𝜋 (𝑖)

︸ ︷︷ ︸
Ψlight (𝜋)

. (3.1)

As shown above, we designate the first and second terms in the above expression by Ψheavy(𝜋) and

Ψlight(𝜋), respectively.

Overview. Let 𝜋∗ be an optimal permutation, with Ψ(𝜋∗) = Ψheavy(𝜋∗) +Ψlight(𝜋∗). The remain-

der of this section is dedicated to presenting two approximation schemes that would separately

compete against Ψheavy(𝜋∗) and Ψlight(𝜋∗):

• Heavy contributions: Section 3.2.3 explains how dynamic programming ideas allow us to

efficiently compute a permutation 𝜋heavy : [𝑛] → [𝑛] satisfying Ψ(𝜋heavy) ≥ (1 − 𝜖) ·

Ψheavy(𝜋∗). The resulting running time will be 𝑂 (𝑛𝑂 (1/𝜖2) · |I |).

• Light contributions: Section 3.2.4 argues that the generalized assignment algorithm of

35

Shmoys and Tardos [60] can be leveraged to compute a permutation 𝜋light : [𝑛] → [𝑛] sat-

isfying Ψ(𝜋light) ≥ (1 − 𝜖) · Ψlight(𝜋∗). This algorithm can be implemented in 𝑂 ((|I |
𝜖
)𝑂 (1))

time.

Consequently, to establish the approximation guarantee stated in Theorem 1.3.2, we pick the more

profitable permutation out of 𝜋heavy and 𝜋light, to obtain a profit of

max
{
Ψ

(
𝜋heavy

)
,Ψ

(
𝜋light

)}
≥ 1

2
·
(
Ψ

(
𝜋heavy

)
+ Ψ

(
𝜋light

))
≥ 1 − 𝜖

2
·
(
Ψheavy (𝜋∗) + Ψlight (𝜋∗)

)
=

1 − 𝜖
2

· Ψ (𝜋∗) .

3.2.3 Algorithm for heavy contributions

In what follows, we present a dynamic programming approach for computing a permutation

that competes against Ψheavy(𝜋∗), as formally stated in the next theorem.

Theorem 3.2.2. For any error parameter 𝜖 ∈ (0, 1), there is an 𝑂 (𝑛𝑂 (1/𝜖2) · |I |)-time algorithm

for constructing a permutation 𝜋heavy with a profit of Ψ(𝜋heavy) ≥ (1 − 𝜖) · Ψheavy(𝜋∗).

3.2.3.1 Preliminaries

The intuition behind our algorithm begins with the observation that, in order to compete against

Ψheavy(𝜋∗), we can safely eliminate items that are classified as light with respect to the interval in

which their completion time falls. While the remaining items will be shifted back in the residual

permutation, potentially being completed in a lower-index interval, each of them will still be heavy.

To formalize these notions, for a subset of items 𝑆 ⊆ [𝑛] and a permutation 𝜋 : 𝑆 → [|𝑆 |], we

say that the pair (𝑆, 𝜋) is bulky if, for every 𝑘 ∈ [𝐾]0, all items with a completion time in I𝑘 are

𝑘-heavy, i.e., {𝑖 ∈ 𝑆 : 𝐶𝜋 (𝑖) ∈ I𝑘 } ⊆ 𝐻𝑘 . The next claim shows that bulky pairs can attain a total

profit of at least Ψheavy(𝜋∗).

36

Lemma 3.2.3. There exist a subset of items 𝑆 ⊆ [𝑛] and a permutation 𝜋 : 𝑆 → [|𝑆 |] such that

(𝑆, 𝜋) is bulky and
∑
𝑖∈𝑆 𝜑𝜋 (𝑖) ≥ Ψheavy(𝜋∗).

Proof. With respect to the optimal permutation 𝜋∗, we define a new permutation 𝜋 by eliminating,

for every 𝑘 ∈ [𝐾]0, all items 𝑖 ∈ 𝐿𝑘 with 𝐶𝜋∗ (𝑖) ∈ I𝑘 . The subset 𝑆 will consist of the remaining

items. To see why (𝑆, 𝜋) is bulky, note that 𝐶𝜋 (𝑖) ≤ 𝐶𝜋∗ (𝑖) for any 𝑖 ∈ 𝑆, meaning that each such

item is still heavy with respect to the interval that contains 𝐶𝜋 (𝑖), since 𝐻0 ⊇ · · · ⊇ 𝐻𝐾 . In terms

of profit, the latter observation implies that, for every item 𝑖 ∈ 𝑆,

𝜑𝜋 (𝑖) = max
{
𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ 𝐶𝜋 (𝑖)

}
≥ max

{
𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ 𝐶𝜋∗ (𝑖)

}
= 𝜑𝜋∗ (𝑖) .

Summing the above inequality over all items in 𝑆, we have
∑
𝑖∈𝑆 𝜑𝜋 (𝑖) ≥

∑
𝑖∈𝑆 𝜑𝜋∗ (𝑖) = Ψheavy(𝜋∗),

where the latter equality holds since every eliminated item does not contribute toward Ψheavy(𝜋∗)

but rather toward Ψlight(𝜋∗). □

Additional notation. For a bulky pair (𝑆, 𝜋), we define its top index as top(𝑆, 𝜋) = max{𝑘 ∈

[𝐾]0 : {𝐶𝜋 (𝑖) : 𝑖 ∈ 𝑆} ∩ I𝑘 ≠ ∅}, that is, the largest index of an interval that contains at least

one completion time. In addition, we define core(𝑆) as the set of min{ 1
𝜖2 , |𝑆 |} heaviest items

in 𝑆, breaking ties by adding to core(𝑆) small-index items before large-index ones. Finally, the

makespan of (𝑆, 𝜋) corresponds to the maximum completion time of an item in 𝑆 with respect to

the permutation 𝜋; in our case, this measure identifies with 𝑤(𝑆).

3.2.3.2 The continuous dynamic program

The technical crux in restricting attention to bulky pairs will be exhibited through our dynamic

programming formulation. As formally explained below, by focusing on the dual objective of

makespan minimization, we prove the existence of a well-hidden optimal substructure within the

37

sequencing problem.

States. Each state (𝑘, 𝜓𝑘 ,Q𝑘) of our dynamic program consists of the following parameters,

whose precise role will be clarified once their corresponding value function is presented:

• The index of the current interval 𝑘 , taking values in [𝐾]0.

• The total profit 𝜓𝑘 collected thus far, due to items whose completion time falls in I0, . . .I𝑘 .

For the time being, 𝜓𝑘 will be treated as a continuous parameter, taking values in

[0,∑𝑖∈[𝑛] max𝑡∈[𝑇] 𝑝𝑖,𝑡].

• The core Q𝑘 of the set of items whose completion time falls in I0, . . .I𝑘 . By definition of

core(·), this parameter is restricted to item sets of cardinality at most 1
𝜖2 .

It is important to emphasize that, since 𝜓𝑘 is a continuous parameter, the dynamic programming

formulation below is still not algorithmic in nature, and should be viewed as a characterization of

optimal solutions. We remark that when the profits 𝑝𝑖,𝑡 are all integers, we can restrict 𝜓𝑘 to integer

values in [0,∑𝑖∈[𝑛] max𝑡∈[𝑇] 𝑝𝑖,𝑡], and our dynamic program can be solved in pseudo-polynomial

time. In either case, we explain in Section 3.2.3.3 how to discretize the parameter 𝜓𝑘 to take

polynomially-many values while incurring only an 𝜖-loss in profit.

Value function. The value function 𝐹 (𝑘, 𝜓𝑘 ,Q𝑘) represents the minimum makespan 𝑤(𝑆) that

can be attained over all bulky pairs (𝑆, 𝜋) that satisfy the following conditions:

1. Top index: top(𝑆, 𝜋) ≤ 𝑘 .

2. Total profit: Ψ(𝜋) ≥ 𝜓𝑘 .

3. Core: core(𝑆) = Q𝑘 .

For ease of presentation, we denote the collection of bulky pairs that meet conditions 1-3

by Bulky(𝑘, 𝜓𝑘 ,Q𝑘). When the latter set is empty, we define 𝐹 (𝑘, 𝜓𝑘 ,Q𝑘) = ∞. With

these definitions, Lemma 3.2.3 proves in retrospect the existence of a bulky pair (𝑆, 𝜋) ∈

38

Bulky(𝐾,Ψheavy(𝜋∗), core(𝑆)) with 𝐹 (𝐾,Ψheavy(𝜋∗), core(𝑆)) < ∞. Therefore, had we been able

to compute the maximal value 𝜓∗ that satisfies 𝐹 (𝐾, 𝜓∗,Q𝐾) < ∞ over all possible cores Q𝐾 , its

corresponding bulky pair would have guaranteed a profit of at least 𝜓∗ ≥ Ψheavy(𝜋∗).

Optimal substructure. To this end, we proceed by unveiling the optimal substructure that allows

us to compute the value function 𝐹 by means of dynamic programming. In order to gain intuition,

suppose that (𝑆, 𝜋) is a bulky pair that attains 𝐹 (𝑘, 𝜓𝑘 ,Q𝑘). Then, we argue that, by eliminating

from 𝑆 the set of items 𝑄 whose completion time falls within the interval I𝑘 , one obtains a bulky

pair that attains 𝐹 (𝑘 − 1, 𝜓𝑘−1,Q𝑘−1), where the residual profit 𝜓𝑘−1 is obtained by removing from

𝜓𝑘 the contribution of items in 𝑄 and Q𝑘−1 is an appropriately chosen core. In this regard, the

obvious question is: To attain 𝐹 (𝑘 − 1, 𝜓𝑘−1,Q𝑘−1), why would our dynamic program not pick

any of the items in 𝑄? The crux of our argument would be that, since the intervals I0, . . . ,I𝑘

are geometrically increasing in length, the 𝑘-heaviness of all items in 𝑄 forces each such item

to reside within the core Q𝑘 , meaning that we will indeed prevent it from being picked when

𝐹 (𝑘 − 1, 𝜓𝑘−1,Q𝑘−1) is computed by a suitable choice of the core Q𝑘−1 that, in particular, will be

disjoint from 𝑄.

Formally, suppose that Bulky(𝑘, 𝜓𝑘 ,Q𝑘) ≠ ∅, and let (𝑆, 𝜋) be a bulky pair that minimizes

𝑤(𝑆) over this set. Let 𝑄 = {𝑖 ∈ 𝑆 : 𝐶𝜋 (𝑖) ∈ I𝑘 } be the set of items in 𝑆 whose completion

time with respect to 𝜋 falls in the interval I𝑘 . Note that since top(𝑆, 𝜋) ≤ 𝑘 , completion times

cannot fall in I𝑘+1, . . . ,I𝐾 . We first argue that |𝑄 | ≤ 1
𝜖
. To verify this claim, note that since

(𝑆, 𝜋) is bulky, 𝑄 ⊆ 𝐻𝑘 . As a result, every item in 𝑄 has a weight of at least 𝜖2 · (1 + 𝜖)𝑘 , while

I𝑘 = ((1 + 𝜖)𝑘−1, (1 + 𝜖)𝑘], meaning that we necessarily have |𝑄 | ≤ (1+𝜖)𝑘−(1+𝜖)𝑘−1

𝜖2·(1+𝜖)𝑘 ≤ 1
𝜖
.

Now, let us define the pair (𝑆, �̂�), where 𝑆 = 𝑆 \𝑄 and �̂� : 𝑆 → [|𝑆 |] is the permutation where

items in 𝑆 follow their relative order in 𝜋, that is, for any pair of items 𝑖1 and 𝑖2, we have �̂�(𝑖1) <

�̂�(𝑖2) if and only if 𝜋(𝑖1) < 𝜋(𝑖2). In addition, let 𝜓𝑘−1 = [𝜓𝑘 −
∑
𝑖∈𝑄 𝜑𝜋 (𝑖)]+ and Q𝑘−1 = core(𝑆),

where [𝑥]+ = max{𝑥, 0}. These definitions directly ensure that (𝑆, �̂�) ∈ Bulky(𝑘 − 1, 𝜓𝑘−1,Q𝑘−1).

Moreover, as we show in Lemma 3.2.4 below, (𝑆, �̂�) forms an optimal solution with respect to

39

the latter state. Intuitively, the key idea for proving this claim shows that, had there been a bulky

pair (𝑆, �̃�) ∈ Bulky(𝑘 − 1, 𝜓𝑘−1,Q𝑘−1) with 𝑤(𝑆) < 𝑤(𝑆), it can be extended to a bulky pair

(𝑆+, �̃�+) ∈ Bulky(𝑘, 𝜓𝑘 ,Q𝑘) by adding the items in 𝑄 following their internal order in 𝜋, to obtain

𝑤(𝑆+) < 𝑤(𝑆), thereby contradicting the optimality of (𝑆, 𝜋).

Lemma 3.2.4. 𝑤(𝑆) = 𝐹 (𝑘 − 1, 𝜓𝑘−1,Q𝑘−1).

Proof. Suppose there exists some bulky pair (𝑆, �̃�) ∈ Bulky(𝑘−1, 𝜓𝑘−1,Q𝑘−1) with 𝑤(𝑆) < 𝑤(𝑆).

We first claim that 𝑆 ∩𝑄 = ∅. To verify this property, had there been an item 𝑖 ∈ 𝑆 ∩𝑄, its weight

would satisfy 𝑤𝑖 ≥ 𝜖2 · (1 + 𝜖)𝑘 , since 𝑄 ⊆ 𝐻𝑘 . On the other hand, since top(𝑆, �̃�) ≤ 𝑘 − 1, the

completion times of all items in 𝑆 with respect to �̃� reside within the union of I0, . . . ,I𝑘−1, which

is the interval [0, (1 + 𝜖)𝑘−1], implying that 𝑤(𝑆) ≤ (1 + 𝜖)𝑘−1. Therefore, since core(𝑆) is the set

of min{ 1
𝜖2 , |𝑆 |} heaviest items in 𝑆, regardless of how ties are broken we must have 𝑖 ∈ core(𝑆).

We have just arrived at a contradiction: Since core(𝑆) = Q𝑘−1 = core(𝑆) = core(𝑆 \𝑄), it follows

that 𝑖 ∉ 𝑄.

Knowing that 𝑆 ∩ 𝑄 = ∅, we can extend the permutation �̃� : 𝑆 → [|𝑆 |] to 𝑆+ = 𝑆 ∪ 𝑄 by

appending the set of items 𝑄 in exactly the same order as they appear in 𝜋. Letting �̃�+ : 𝑆+ →

[|𝑆+ |] be the resulting permutation, we next argue that (𝑆+, �̃�+) is in fact a feasible solution to

precisely the same subproblem with respect to which (𝑆, 𝜋) is optimal. The proof of this structural

result is provided in Appendix C.1.1.

Claim 3.2.5. (𝑆+, �̃�+) ∈ Bulky(𝑘, 𝜓𝑘 ,Q𝑘).

We have just arrived at a contradiction to the fact that (𝑆, 𝜋) minimizes 𝑤(𝑆) over the set

Bulky(𝑘, 𝜓𝑘 ,Q𝑘), by observing that 𝑤(𝑆+) = 𝑤(𝑆) + 𝑤(𝑄) < 𝑤(𝑆) + 𝑤(𝑄) = 𝑤(𝑆). □

Recursive equations. In light of this structural characterization, to obtain a recursive equation

for 𝐹 (𝑘, 𝜓𝑘 ,Q𝑘), it suffices to “guess” the collection of items 𝑄, their internal permutation 𝜋𝑄 , the

residual profit requirement 𝜓𝑘−1, and the resulting core Q𝑘−1. Formally, 𝐹 (𝑘, 𝜓𝑘 ,Q𝑘) is given by

minimizing 𝐹 (𝑘 − 1, 𝜓𝑘−1,Q𝑘−1) + 𝑤(𝑄) over all choices of 𝑄, 𝜋𝑄 , 𝜓𝑘−1, and Q𝑘−1 that simulta-

neously satisfy the following conditions:

40

1. Top index: 𝐹 (𝑘 − 1, 𝜓𝑘−1,Q𝑘−1) + 𝑤(𝑄) ≤ (1 + 𝜖)𝑘 . This constraint ensures that, with the

addition of 𝑄, all items can still be packed within I0, . . . ,I𝑘 .

2. Total profit: 𝜓𝑘−1 ≥ [𝜓𝑘 − ∑
𝑖∈𝑄 𝜑

⇝
𝜋𝑄

(𝑖)]+, where the term 𝜑⇝𝜋𝑄 (𝑖) denotes the profit of

item 𝑖 with respect to the permutation 𝜋𝑄 , when its completion time is increased by 𝐹 (𝑘 −

1, 𝜓𝑘−1,Q𝑘−1). This constraint guarantees that, by appending 𝜋𝑄 , we obtain a total profit of

at least 𝜓𝑘 .

3. Core: Q𝑘−1 ∩ 𝑄 = ∅, core(Q𝑘−1 ∪ 𝑄) = Q𝑘 , 𝑄 ⊆ 𝐻𝑘 , and |𝑄 | ≤ 1
𝜖
. These constraints

ensure a correct core update as a result of adding the item set 𝑄, where the latter set consists

of at most 1
𝜖

items, each restricted to being 𝑘-heavy. To better understand the requirement

core(Q𝑘−1 ∪ 𝑄) = Q𝑘 , note that the core resulting from the addition of 𝑄 can be computed

without a complete knowledge of all previously packed items, as all those outside the current

core Q𝑘−1 are irrelevant for this purpose (i.e., too light to be one of the 1
𝜖2 heaviest).

3.2.3.3 Discretization and final algorithm

As previously mentioned, due to the continuity of the profit requirement 𝜓𝑘 , it remains to

propose an appropriate discretization of this parameter, so that we obtain a polynomially-sized

state space with only negligible loss in profit.

The discrete program �̃�. To this end, we alter the underlying state space of our dynamic pro-

gram, by restricting the continuous parameter 𝜓𝑘 to a finite set of values, D𝜓 = {𝑑 · 𝜖 𝑝max
𝑛

: 𝑑 ∈

[𝑛2

𝜖
]0}. Here, 𝑝max is the maximum profit attainable by any single item, i.e., 𝑝max = max{𝑝𝑖𝑡 :

𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇], and 𝑤𝑖 ≤ 𝑊𝑡}. We make use of �̃� (𝑘, 𝜓𝑘 , 𝑄𝑘) to designate the value function 𝐹

restricted to the resulting set of states, and similarly, �Bulky(𝑘, 𝜓𝑘 ,Q𝑘) will stand for the collection

of bulky pairs that meet conditions 1-3. As a side note, beyond the additional restriction on 𝜓𝑘 ,

both �̃� and �Bulky are defined identically to 𝐹 and Bulky.

41

Analysis. We remind the reader that, in Section 3.2.3.2, the quantity 𝜓∗ was defined as the max-

imal value satisfying 𝐹 (𝐾, 𝜓∗,Q𝐾) < ∞ over all possible cores Q𝐾 , noting that its corresponding

bulky pair guarantees a profit of at least 𝜓∗ ≥ Ψheavy(𝜋∗). In order to establish a parallel claim with

respect to the discretized program �̃�, we prove in Lemma 3.2.6 a lower bound of (1 − 𝜖) · 𝜓∗ on

the analogous quantity �̃� that satisfies �̃� (𝐾, �̃�,Q𝐾) < ∞; the proof is provided in Appendix C.1.2.

It follows that our dynamic program computes a bulky pair (𝑆, 𝜋) in which the permutation 𝜋 has

a profit of Ψ(𝜋) ≥ �̃� ≥ (1 − 𝜖) · 𝜓∗ ≥ (1 − 𝜖) · Ψheavy(𝜋∗).

Lemma 3.2.6. There exists a value �̃� ∈ D𝜓 such that �̃� ≥ (1−𝜖) ·𝜓∗ and such that �̃� (𝐾, �̃�,Q𝐾) <

∞ for some core Q𝐾 .

Running time. We first observe that the function �̃� (𝑘, 𝜓𝑘 ,Q𝑘) needs to be evaluated over

𝑂 (𝑛𝑂 (1/𝜖2) · |I |) possible states. Indeed, there are 𝑂 (𝐾) choices for the interval index 𝑘 , where

by definition, 𝐾 = ⌈log1+𝜖 (
∑
𝑖∈[𝑛] 𝑤𝑖)⌉ = 𝑂 (|I |

𝜖
). As for the profit parameter 𝜓𝑘 , following its

restriction to the set D𝜓 , we ensure that 𝜓𝑘 takes only |D𝜓 | = 𝑂 (𝑛2

𝜖
) values. Finally, since the core

Q𝑘 ⊆ [𝑛] consists of at most 1
𝜖2 items, there are only 𝑂 (𝑛𝑂 (1/𝜖2)) subsets to consider.

Now, evaluating each state requires minimizing the restricted function �̃� (𝑘 − 1, 𝜓𝑘−1,Q𝑘−1) +

𝑤(𝑄) over all choices of 𝑄, 𝜋𝑄 , 𝜓𝑘−1, and Q𝑘−1 that simultaneously satisfy conditions 1-3 of

the recursive equations (see Section 3.2.3.2). In this context, the number of joint configurations

for these parameters is 𝑂 (𝑛𝑂 (1/𝜖2)). Specifically, the profit parameter 𝜓𝑘−1 and the core Q𝑘−1

respectively take 𝑂 (𝑛2

𝜖
) and 𝑂 (𝑛𝑂 (1/𝜖2)) values as before. In addition, the number of choices for

the augmenting set 𝑄 is 𝑂 (𝑛𝑂 (1/𝜖)), due to being comprised of at most 1
𝜖

items, and there are only

𝑂 ((1
𝜖
)𝑂 (1/𝜖)) permutations 𝜋𝑄 of these items. To summarize, we incur an overall running time of

𝑂 (𝑛𝑂 (1/𝜖2) · |I |).

3.2.4 Algorithm for light contributions

In this section, we construct a suitably-defined instance of the maximum generalized assign-

ment problem, intended to compete against Ψlight(𝜋∗). We show that, when applied to this highly-

42

structured instance, the LP-based algorithm of Shmoys and Tardos [60] can be leveraged for com-

puting a permutation that competes against Ψlight(𝜋∗) along the lines of the next theorem.

Theorem 3.2.7. For any error parameter 𝜖 ∈ (0, 1), there is an 𝑂 ((|I |
𝜖
)𝑂 (1))-time algorithm for

constructing a permutation 𝜋light with a profit of Ψ(𝜋light) ≥ (1 − 13𝜖) · Ψlight(𝜋∗).

3.2.4.1 Instance construction

Intuition. The general intuition behind our construction resides in viewing the intervals

I1, . . . ,I𝐾−1 as distinct buckets, to which items should be assigned subject to capacity constraints.

Clearly, this perspective lacks the extra flexibility of the sequencing formulation, where items may

be crossing between multiple successive intervals. In addition, any item-to-bucket assignment has

to be associated with a specific profit a-priori, whereas the sequencing-related profits depend on

the exact completion time of each item. As explained in the sequel, our approach bypasses the

first obstacle by focusing on light items, for which greedy repacking of rounded solutions will be

argued to be near-optimal. In regard to the second obstacle, we will allow seemingly unattainable

profits, showing that appropriately scaled fractional solutions can be rounded to attain these profits

up to negligible loss in optimality.

The construction. Guided by this intuition, we define an instance of the maximum generalized

assignment problem as follows:

• Buckets: For every 𝑘 ∈ [𝐾 − 1], we set up a bucket B𝑘 . The capacity of this bucket is

capacity(B𝑘) = (1 + 𝜖)𝑘 − (1 + 𝜖)𝑘−1, i.e., precisely the length of the interval I𝑘 . It is worth

mentioning that there are no buckets corresponding to the intervals I0 and I𝐾 .

• Items: The set of items is still [𝑛], where each item has a weight of 𝑤𝑖.

• Allowed assignments and profits: An item 𝑖 can be assigned to bucket B𝑘 only when 𝑖 is

(𝑘 + 1)-light. For such an assignment, our profit is 𝑞𝑖𝑘 = max{𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥

(1 + 𝜖)𝑘 }.

43

The goal is to compute a capacity-feasible assignment whose total profit is maximized.

IP formulation. Moving forward, it is instructive to represent this instance through its standard

integer programming formulation:

max
∑︁
𝑖∈[𝑛]

∑︁
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1

𝑞𝑖𝑘𝑥𝑖𝑘

s.t.
∑︁

𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1

𝑥𝑖𝑘 ≤ 1 ∀ 𝑖 ∈ [𝑛]∑︁
𝑖∈𝐿𝑘+1

𝑤𝑖𝑥𝑖𝑘 ≤ capacity(B𝑘) ∀ 𝑘 ∈ [𝐾 − 1]

𝑥𝑖𝑘 ∈ {0, 1} ∀ 𝑘 ∈ [𝐾 − 1], 𝑖 ∈ 𝐿𝑘+1

(GAP-IP)

In this formulation, each decision variable 𝑥𝑖𝑘 indicates whether item 𝑖 is assigned to bucket B𝑘 .

The first constraint guarantees that every item is assigned to at most one bucket, and the second

constraint ensures that the total weight of the items assigned to each bucket fits within its capacity.

The next lemma shows that any feasible assignment can be efficiently mapped to a permutation

for our sequencing formulation that collects at least as much profit; the proof is provided in Ap-

pendix C.1.3.

Lemma 3.2.8. Any feasible solution 𝑥 to (GAP-IP) can be translated in 𝑂 (𝑛𝐾) time to a permu-

tation 𝜋𝑥 : [𝑛] → [𝑛] satisfying Ψ(𝜋𝑥) ≥
∑
𝑖∈[𝑛]

∑
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1 𝑞𝑖𝑘𝑥𝑖𝑘 .

LP relaxation and lower bound. The linear relaxation of this integer program, (GAP-LP), is

obtained by replacing the integrality constraints 𝑥𝑖𝑘 ∈ {0, 1} with non-negativity constraints, 𝑥𝑖𝑘 ≥

0. To have a better intuition for how the fractional optimum of (GAP-LP) is related to Ψlight(𝜋∗),

let 𝐶∗
𝑘
= {𝑖 ∈ 𝐿𝑘 : 𝐶𝜋∗ (𝑖) ∈ I𝑘 } be the subset of 𝑘-light items whose completion time with respect

to the optimal permutation 𝜋∗ falls in I𝑘 . Then, within the proof of Lemma 3.2.9 below, we argue

that a 1−𝑂 (𝜖) fraction of each such item can be assigned to bucket B𝑘−1. This claim would follow

by observing that capacity(B𝑘−1) nearly matches the length of the interval I𝑘 , in which all items in

𝐶∗
𝑘

are known to fit, potentially except for one item that crosses into I𝑘 . However, the latter item is

44

𝑘-light, meaning that its weight is very small in comparison to capacity(B𝑘−1), and scaling down

all items in 𝐶∗
𝑘

by a factor of 1 − 𝑂 (𝜖) clears sufficient capacity for this item as well. The next

claim formally shows that this fractional solution is indeed feasible in (GAP-LP) and earns a profit

of nearly Ψlight(𝜋∗).

Lemma 3.2.9. OPT(GAP-LP) ≥ (1 − 5𝜖) · Ψlight(𝜋∗).

Proof. In order to derive the desired bound, we prove that (LP) has a feasible fractional solution 𝑥

with an objective value of at least (1 − 5𝜖) · Ψlight(𝜋∗). To this end, recalling that 𝐶∗
𝑘
= {𝑖 ∈ 𝐿𝑘 :

𝐶𝜋∗ (𝑖) ∈ I𝑘 }, we have

Ψlight(𝜋∗) =
∑︁
𝑘∈[𝐾]0

∑︁
𝑖∈𝐶∗

𝑘

𝜑𝜋∗ (𝑖) =
𝐾∑︁
𝑘=2

∑︁
𝑖∈𝐶∗

𝑘

𝜑𝜋∗ (𝑖) , (3.2)

where the second equality follows by observing that completion times cannot fall in either of the

intervals I0 and I1, since their union is [0, 2 + 𝜖] whereas 𝑤min = 3, by our initial assumption in

Section 3.2.2.

We define a fractional solution 𝑥 to (GAP-LP) by setting 𝑥𝑖,𝑘−1 = 1 − 5𝜖 for every 2 ≤ 𝑘 ≤ 𝐾

and 𝑖 ∈ 𝐶∗
𝑘
; all other variables take zero values. To verify the feasibility of this solution, note that

we clearly have
∑
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1 𝑥𝑖𝑘 ≤ 1 for every item 𝑖 ∈ [𝑛]. As for the capacity constraints, for

every 2 ≤ 𝑘 ≤ 𝐾 ,

∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑘−1 = (1 − 5𝜖) ·
∑︁
𝑖∈𝐶∗

𝑘

𝑤𝑖

≤ (1 − 5𝜖) ·
(
(1 + 𝜖)𝑘 − (1 + 𝜖)𝑘−1 + 𝜖2 · (1 + 𝜖)𝑘

)
≤ (1 − 5𝜖) · (1 + 5𝜖) ·

(
(1 + 𝜖)𝑘−1 − (1 + 𝜖)𝑘−2

)
≤ capacity (B𝑘−1) .

Here, the first inequality holds since all items in 𝐶∗
𝑘

have completion times in I𝑘 , implying that

their total weight is upper bounded by the length (1 + 𝜖)𝑘 − (1 + 𝜖)𝑘−1 of this interval plus the

45

maximum weight of any item in 𝐶∗
𝑘
, which is at most 𝜖2 · (1+ 𝜖)𝑘 due to being 𝑘-light. The second

inequality can easily be verified to hold for every 𝜖 ∈ (0, 1).

Consequently, the fractional optimum can be lower-bounded by the objective function of 𝑥, to

obtain

OPT(GAP-LP) ≥
∑︁
𝑖∈[𝑛]

∑︁
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1

𝑞𝑖𝑘𝑥𝑖𝑘

= (1 − 5𝜖) ·
𝐾∑︁
𝑘=2

∑︁
𝑖∈𝐶∗

𝑘

𝑞𝑖,𝑘−1

≥ (1 − 5𝜖) ·
𝐾∑︁
𝑘=2

∑︁
𝑖∈𝐶∗

𝑘

𝜑𝜋∗ (𝑖)

= (1 − 5𝜖) · Ψlight(𝜋∗) ,

where the last equality is precisely (3.2). To understand the second inequality, note that for every

item 𝑖 ∈ 𝐶∗
𝑘
,

𝜑𝜋∗ (𝑖) = max
{
𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ 𝐶𝜋∗ (𝑖)

}
≤ max

{
𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ (1 + 𝜖)𝑘−1}

= 𝑞𝑖,𝑘−1 ,

where the above inequality holds since 𝐶𝜋∗ (𝑖) ≥ (1 + 𝜖)𝑘−1. □

3.2.4.2 Employing the Shmoys-Tardos algorithm

The rounding algorithm. We proceed by utilizing the LP-rounding approach of Shmoys and

Tardos [60, Sec. 2], which was originally proposed for the minimum generalized assignment prob-

lem. Specifically, given an optimal fractional solution to the linear program (GAP-LP), their algo-

rithm computes an integral vector 𝑥 that satisfies the following properties:

46

1. Objective value: 𝑥 has a super-optimal objective value, i.e.,

∑︁
𝑖∈[𝑛]

∑︁
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1

𝑞𝑖𝑘𝑥𝑖𝑘 ≥ OPT(GAP-LP) . (3.3)

2. Item assignment: 𝑥 assigns each item to at most one bucket, namely,
∑
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1 𝑥𝑖𝑘 ≤ 1

for every 𝑖 ∈ [𝑛].

3. Fixable capacity: For every bucket B𝑘 , if its capacity is violated (i.e.,
∑
𝑖∈𝐿𝑘+1 𝑤𝑖𝑥𝑖𝑘 >

capacity(B𝑘)), there exists a single infeasibility item 𝑖inf (𝑘) with 𝑥𝑖inf (𝑘) ,𝑘 = 1 whose removal

restores the feasibility of that bucket, i.e.,

∑︁
𝑖∈𝐿𝑘+1

𝑤𝑖𝑥𝑖𝑘 − 𝑤𝑖inf (𝑘) ≤ capacity(B𝑘) . (3.4)

Restoring feasibility with negligible profit loss. Given the above-mentioned properties, a fea-

sible integral solution can obviously be obtained by eliminating the infeasibility item of each

bucket with violated capacity. However, this straightforward approach may decrease the objec-

tive value by a non-𝜖-bounded factor. Instead, the final step of our algorithm greedily defines an

integral solution 𝑥− ≤ 𝑥 which is feasible for (GAP-IP) and has an objective value of at least

(1− 8𝜖) ·OPT(GAP-LP). To this end, for every bucket B𝑘 whose capacity is not violated by 𝑥, we

simply have 𝑥−
𝑖𝑘
= 𝑥𝑖𝑘 for all 𝑖 ∈ 𝐿𝑘+1. In contrast, for every bucket B𝑘 whose capacity is violated,

we proceed as follows:

• Let 𝑖1, . . . , 𝑖𝑀 be an indexing of the set {𝑖 ∈ 𝐿𝑘+1 : 𝑥𝑖𝑘 = 1} such that
𝑞𝑖1 ,𝑘
𝑤𝑖1

≥ · · · ≥ 𝑞𝑖𝑀 ,𝑘

𝑤𝑖𝑀
.

• Let ` be the maximal index for which
∑
𝑚∈[`] 𝑤𝑖𝑚 ≤ capacity(B𝑘).

• Then, our solution sets 𝑥−
𝑖1,𝑘

= · · · = 𝑥−
𝑖` ,𝑘

= 1 and 𝑥−
𝑖𝑘

= 0 for any other item. Clearly,

𝑥−
𝑖𝑘
≤ 𝑥𝑖𝑘 for all 𝑖 ∈ 𝐿𝑘+1.

In Lemma 3.2.10, we show that the profit collected by 𝑥− nearly matches the fractional op-

timum. To gain some intuition for the proof of this claim, the main idea is that the capacity of

47

each bucket B𝑘 will be shown to be violated in 𝑥 only by an 𝜖-related fraction, if at all, due to

being assigned only (𝑘 + 1)-light items. For the same reason, our greedy procedure will be shown

to nearly exhaust the entire capacity of each violated bucket. In this case, packing items by their

profit-to-weight ratio guarantees that we are very close to matching the original profit contribution

of such buckets.

Lemma 3.2.10.
∑
𝑖∈[𝑛]

∑
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1 𝑞𝑖𝑘𝑥

−
𝑖𝑘
≥ (1 − 8𝜖) · OPT(GAP-LP).

Proof. Recall that the super-optimality property of 𝑥, as stated in (3.3), corresponds to having∑
𝑖∈[𝑛]

∑
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1 𝑞𝑖𝑘𝑥𝑖𝑘 ≥ OPT(GAP-LP). Therefore, by changing the order of summation,

we can establish the desired claim by proving that
∑
𝑖∈𝐿𝑘+1 𝑞𝑖𝑘𝑥

−
𝑖𝑘

≥ (1 − 8𝜖) · ∑𝑖∈𝐿𝑘+1 𝑞𝑖𝑘𝑥𝑖𝑘 for

every 𝑘 ∈ [𝐾 − 1]. Moreover, since one has 𝑥−·𝑘 = 𝑥·𝑘 with respect to buckets whose capacity is not

violated by 𝑥, it remains to focus on violated buckets.

For such buckets, we first observe that, by the maximality of `,

∑︁
𝑚∈[`]

𝑤𝑖𝑚 > capacity (B𝑘) − 𝑤𝑖`+1 ≥ (1 − 4𝜖) · capacity(B𝑘) , (3.5)

where the second inequality holds since 𝑖`+1 ∈ 𝐿𝑘+1, and therefore 𝑤𝑖`+1 ≤ 𝜖2 · (1 + 𝜖)𝑘+1 ≤

4𝜖 · ((1 + 𝜖)𝑘 − (1 + 𝜖)𝑘−1) = 4𝜖 · capacity(B𝑘) for 𝜖 ∈ (0, 1). On the other hand,

∑︁
𝑚∈[𝑀]

𝑤𝑖𝑚 =
∑︁
𝑖∈𝐿𝑘+1

𝑤𝑖𝑥𝑖𝑘

≤ capacity(B𝑘) + 𝑤𝑖inf (𝑘)

≤ (1 + 4𝜖) · capacity(B𝑘) , (3.6)

where the equality above follows from how the indices 𝑖1, . . . , 𝑖𝑀 were defined, the first inequality

is precisely the fixable capacity property of 𝑥 (see (3.4)), and the second inequality holds since

𝑤𝑖inf (𝑘) ≤ 4𝜖 · capacity(B𝑘), as explained earlier for 𝑤𝑖`+1 . Consequently,

∑︁
𝑖∈𝐿𝑘+1

𝑞𝑖𝑘𝑥
−
𝑖𝑘 =

∑︁
𝑚∈[`]

𝑞𝑖𝑚,𝑘

48

≥
∑
𝑚∈[`] 𝑤𝑖𝑚∑
𝑚∈[𝑀] 𝑤𝑖𝑚

·
∑︁
𝑚∈[𝑀]

𝑞𝑖𝑚,𝑘

≥ 1 − 4𝜖
1 + 4𝜖

·
∑︁
𝑚∈[𝑀]

𝑞𝑖𝑚,𝑘

≥ (1 − 8𝜖) ·
∑︁
𝑖∈𝐿𝑘+1

𝑞𝑖𝑘𝑥𝑖𝑘 ,

where the first inequality holds since
𝑞𝑖1 ,𝑘
𝑤𝑖1

≥ · · · ≥ 𝑞𝑖𝑀 ,𝑘

𝑤𝑖𝑀
, and the second inequality is obtained by

plugging in (3.5) and (3.6). □

Performance guarantee. We conclude by noting that, since 𝑥− is a feasible solution to (GAP-IP),

Lemma 3.2.8 allows us to construct a permutation 𝜋light with an overall profit of

Ψ(𝜋light) ≥
∑︁
𝑖∈[𝑛]

∑︁
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1

𝑞𝑖𝑘𝑥
−
𝑖𝑘

≥ (1 − 8𝜖) · OPT(GAP-LP)

≥ (1 − 13𝜖) · Ψlight(𝜋∗) ,

where the second and third inequalities follow from Lemmas 3.2.10 and 3.2.9, respectively.

From a running time perspective, the computational bottleneck of our approach is the Shmoys-

Tardos algorithm [60]. As the latter is applied to a maximum generalized assignment instance

consisting of 𝑛 items and 𝑂 (𝐾) = 𝑂 (|I |
𝜖
) buckets, it requires 𝑂 ((|I |

𝜖
)𝑂 (1)) time in total. Beyond

that, restoring the feasibility of 𝑥 and translating the resulting solution 𝑥− back to a permutation

can both be implemented in 𝑂 ((𝑛𝐾)𝑂 (1)) time.

3.3 QPTAS for bounded weight ratio

In this section, we develop an approximation scheme for the generalized incremental knap-

sack problem by embedding our LP-based approach for competing against light contributions

within a self-improving algorithm. As formally stated in Theorem 3.3.1 below, the running time

of this algorithm will be exponentially-dependent on log(𝑛 · 𝑤max
𝑤min

), meaning that it provides a

49

quasi-polynomial time approximation scheme (QPTAS) when the ratio between the extremal item

weights is polynomial in the input size. In Section 3.4, these ideas will be exploited within an

approximate dynamic programming framework to derive a true QPTAS, without making any as-

sumptions on the ratio 𝑤max
𝑤min

.

Theorem 3.3.1. For any error parameter 𝜖 ∈ (0, 1), the generalized incremental knapsack problem

can be approximated within a factor of 1 − 𝜖 in time 𝑂 ((𝑛𝑇)𝑂 (1
𝜖 5 ·log(𝑛·𝑤max

𝑤min
)) · |I |𝑂 (1)).

Outline. As an instructive step, we dedicate Section 3.3.1 to explaining how, given any feasible

chain, one can define a residual instance on the remaining (non-inserted) items. In this context,

we establish a number of structural properties that relate between the solution spaces of the orig-

inal and residual instances, which will be useful moving forward. As explained in Section 3.3.2,

the basic idea behind our “self-improving” algorithm resides in arguing that, given a black-box

𝛼-approximation for the generalized incremental knapsack problem, efficient guessing methods

can be utilized to construct a solution that optimally competes against heavy contributions, and

simultaneously, 𝛼-competes against light contributions. In Section 3.3.3, we combine this result

with our near-optimal algorithm for light contributions and attain a performance guarantee of 1
2−𝛼 ,

up to lower-order terms. Repeated applications of these 𝛼 ↦→ 1
2−𝛼 improvements will be shown to

obtain a (1 − 𝜖)-fraction of the optimal profit within 𝑂 (1
𝜖
) rounds. It is important to mention that

each such application by itself incurs an exponential dependency on log(𝑛 · 𝑤max
𝑤min

), meaning that the

results of this section are incomparable to those stated in Theorem 1.3.2, where the running time

involved is truly polynomial for any fixed 𝜖 > 0.

3.3.1 Residual instances and their properties

Instance representation. Due to working with modified instances in subsequent sections, we

will designate the underlying set of items in a given instance by N . As before, each item 𝑖 ∈ N is

associated with a weight of 𝑤𝑖, each time period 𝑡 ∈ [𝑇] has a capacity of𝑊𝑡 , and we gain a profit

of 𝑝𝑖𝑡 for introducing item 𝑖 in period 𝑡. That said, what differentiates between one instance and

50

the other are two ingredients: The item set N and the time period capacities 𝑊 = (𝑊1, . . . ,𝑊𝑇)

with respect to which these instances are defined. It is important to point out that, regardless of

the instance being considered, the item weights 𝑤𝑖, the number of time periods 𝑇 , and the item-to-

period profits 𝑝𝑖𝑡 will be kept unchanged. For these reasons, we denote a generalized incremental

knapsack instance simply by I = (N ,𝑊).

The |𝑮-operator. In the following, we introduce additional definitions, notation, and struc-

tural properties related to modified instances and their solution space. For a pair of chains,

S = (𝑆1, . . . , 𝑆𝑇) and G = (𝐺1, . . . , 𝐺𝑇), we define the union of S and G as S ∪ G =

(𝑆1 ∪ 𝐺1, . . . , 𝑆𝑇 ∪ 𝐺𝑇), which is clearly a chain itself. For a chain S and a subset of items

𝐺 ⊆ N , we denote by S|𝐺 the restriction of S to 𝐺, namely, S|𝐺 = (𝑆1 ∩ 𝐺, . . . , 𝑆𝑇 ∩ 𝐺); one

can easily verify that S|𝐺 is a chain as well. The next observation, whose straightforward proof is

omitted, establishes the feasibility of S|𝐺 whenever S is feasible.

Observation 3.3.2. Let S be a feasible chain for I. Then, for any set of items 𝐺 ⊆ N , the chain

S|𝐺 is feasible as well.

The residual instance. Given a feasible chain G = (𝐺1, . . . , 𝐺𝑇) for an instance I = (N ,𝑊),

we define the residual generalized incremental knapsack instance I−G = (N−G ,𝑊−G) as follows:

• The new set of items is N−G = N \𝐺𝑇 . Namely, we eliminate all items that were introduced

at any point in time by G.

• The residual capacity of every time 𝑡 ∈ [𝑇] is set to𝑊−G
𝑡 = min𝑡≤𝜏≤𝑇 (𝑊𝜏 − 𝑤(𝐺𝜏)).

• As previously mentioned, all item weights and profits remain unchanged.

To verify that the residual instance I−G is well defined, it suffices to show that the residual ca-

pacities 𝑊−G are non-negative and non-decreasing over time. The former property holds since

𝑤(𝐺 𝑡) ≤ 𝑊𝑡 for every 𝑡 ∈ [𝑇], by feasibility of G. The latter property follows by observing that

𝑊
−G
𝑡 = min

𝑡≤𝜏≤𝑇
(𝑊𝜏 − 𝑤(𝐺𝜏)) ≤ min

𝑡+1≤𝜏≤𝑇
(𝑊𝜏 − 𝑤(𝐺𝜏)) = 𝑊−G

𝑡+1 .

51

The next two claims, whose respective proofs appear in Appendices C.2.1 and C.2.2, explain

the relationship between the solution spaces of the original instance I and its residual instance

I−G . For our purposes, the main implication of this relationship will be that, whenever we are able

to “guess” a chain G = S∗ |𝐺 , where S∗ is an optimal chain for I, it suffices to focus on solving

the residual instance I−G . With an appropriate guess for the set of items 𝐺, this property will be a

key idea within the approximation scheme we devise in the remainder of this section.

Lemma 3.3.3. Let G be a feasible chain for I and let R be a feasible chain for I−G . Then, G ∪R

is a feasible chain for I with profit Φ(G ∪ R) = Φ(G) +Φ(R).

Lemma 3.3.4. Let S be a feasible chain for I and let G = S|𝐺 , for some set of items 𝐺 ⊆ N .

Then, S|N\𝐺 is a feasible chain for I−G with profit Φ(S|N\𝐺) = Φ(S) −Φ(G). Moreover, if S is

optimal for I, then S|N\𝐺 is optimal for I−G .

3.3.2 The boosting algorithm

Given a generalized incremental knapsack instance I = (N ,𝑊), let us focus our attention on

a fixed optimal chain S∗. As argued in Lemma 3.2.1, this chain can be mapped to a permutation

𝜋S∗ : N → [|N |] whose objective value with respect to the corresponding sequencing formulation

is Ψ(𝜋S∗) ≥ Φ(S∗). By decomposing the overall profit Ψ(𝜋S∗) into heavy and light contributions,

as prescribed by Equation (3.1), we have:

Ψ(𝜋S∗) =
∑︁
𝑘∈[𝐾]0

∑︁
𝑖∈𝐻𝑘 :

𝐶𝜋S∗ (𝑖) ∈I𝑘

𝜑𝜋S∗ (𝑖)

︸ ︷︷ ︸
Ψheavy (𝜋S∗)

+
∑︁
𝑘∈[𝐾]0

∑︁
𝑖∈𝐿𝑘 :

𝐶𝜋S∗ (𝑖) ∈I𝑘

𝜑𝜋S∗ (𝑖)

︸ ︷︷ ︸
Ψlight (𝜋S∗)

. (3.7)

Given these quantities, for 𝛼𝐻 , 𝛼𝐿 ∈ [0, 1], we say that an algorithm A guarantees an (𝛼𝐻 , 𝛼𝐿)-

approximation with respect to S∗ when it computes a feasible chain S with Φ(S) ≥ 𝛼𝐻 ·

Ψheavy(𝜋S∗) + 𝛼𝐿 · Ψlight(𝜋S∗). We mention in passing that this definition depends on the spe-

cific permutation 𝜋S∗ , and is generally different from the standard notion of an 𝛼-approximation,

where the chain S is required to satisfy Φ(S) ≥ 𝛼 · Φ(S∗).

52

From 𝛼-approximation to (1, 𝛼)-approximation. In what follows, we show how to boost the

profit performance of any approximation algorithm for the generalized incremental knapsack prob-

lem. For every 𝛼 ∈ [0, 1], we explain how to combine a black-box 𝛼-approximation with further

guesses for the positioning of heavy items with respect to the permutation 𝜋S∗ in order to derive

a (1, 𝛼)-approximation, incurring an extra multiplicative factor of 𝑂 ((𝑛𝑇)𝑂 (1
𝜖 2 log(𝑛𝜌))) in running

time, where 𝜌 =
𝑤max
𝑤min

. This result can be formally stated as follows.

Lemma 3.3.5. Suppose that the algorithm A constitutes an 𝛼-approximation for generalized in-

cremental knapsack, for some 𝛼 ∈ [0, 1]. Then, there exists a (1, 𝛼)-approximation whose running

time is 𝑂 ((𝑛𝑇)𝑂 (1
𝜖 2 log(𝑛𝜌)) · TimeA (𝑛, 𝑇)). Here, TimeA (𝑛, 𝑇) designates the worst-case running

time of A for instances with 𝑛 items and 𝑇 time periods.

Preliminaries. We remind the reader that Section 3.2.2 has previously defined the intervals I0 =

[0, 1) and I𝑘 = ((1 + 𝜖)𝑘−1, (1 + 𝜖)𝑘] for 𝑘 ∈ [𝐾], where 𝐾 = ⌈log1+𝜖 (
∑
𝑖∈[𝑛] 𝑤𝑖)⌉; similarly,

we assume without loss of generality that 𝑤min ≥ 3. In this regard, an item 𝑖 is 𝑘-heavy when

𝑤𝑖 ≥ 𝜖2 · (1 + 𝜖)𝑘 , with the convention that 𝐻𝑘 stands for the collection of 𝑘-heavy items. Let

𝐺∗heavy be the set of items that are heavy for the interval that contains their completion time with

respect to the permutation 𝜋S∗ , i.e., 𝐺∗heavy =
⋃
𝑘∈[𝐾]0{𝑖 ∈ 𝐻𝑘 : 𝐶𝜋S∗ (𝑖) ∈ I𝑘 }. The following

lemma, whose proof appears in Appendix C.2.3, provides an upper bound on the cardinality of this

set.

Lemma 3.3.6. |𝐺∗heavy | ≤ 3 log(𝑛𝜌)
𝜖2 .

We proceed by considering the restriction of the optimal chain S∗ to the set of items 𝐺∗heavy,

which will be denoted by H ∗ = S∗ |𝐺∗heavy . By Observation 3.3.2, we know that H ∗ is a feasible

chain for I. The next lemma, whose proof can be found in Appendix C.2.4, relates between the

profit of this chain and heavy contributions with respect to the permutation 𝜋S∗ .

Lemma 3.3.7. Φ(H ∗) = Ψheavy(𝜋S∗).

53

The algorithm. At a high level, our algorithm relies on “knowing” the restricted chain H ∗ in

advance, which will be justified by guessing all items in 𝐺∗heavy and their insertion times with

respect to the optimal chain S∗. This procedure will be implemented by enumerating over all pos-

sible configurations of these parameters. For each such guess, we construct the residual generalized

incremental knapsack instance, to which the 𝛼-approximation algorithm A is applied. Formally,

given an instance I = (N ,𝑊) and an error parameter 𝜖 > 0, we proceed as follows:

1. For every feasible chain G = (𝐺1, . . . , 𝐺𝑇) with |𝐺𝑇 | ≤ 3 log(𝑛𝜌)
𝜖2 :

(a) Construct the residual instance I−G .

(b) Apply the algorithm A to obtain an 𝛼-approximate feasible chain S−G =

(𝑆−G1 , . . . , 𝑆
−G
𝑇

) for I−G .

2. Return the chain G∗ ∪ S−G∗
of maximum profit among those considered above.

Analysis: Feasibility and running time. We first observe that, for any feasible chain G con-

structed in step 1, since S−G is a feasible chain for I−G , the feasibility of G ∪ S−G for I

follows by Lemma 3.3.3. In terms of running time, we are considering only chains that in-

troduce at most 3 log(𝑛𝜌)
𝜖2 items over all time periods. Thus, the number of chains being enu-

merated is 𝑂 ((𝑛𝑇)𝑂 (1
𝜖 2 log(𝑛𝜌))). For each residual instance, consisting of 𝑇 time periods and at

most 𝑛 items, we apply the algorithm A once, implying that the overall running time is indeed

𝑂 ((𝑛𝑇)𝑂 (1
𝜖 2 log(𝑛𝜌)) · TimeA (𝑛, 𝑇)).

Analysis: (1, 𝛼)-approximation guarantee. We conclude the proof of Lemma 3.3.5 by arguing

that G∗ ∪ S−G∗
is a (1, 𝛼)-approximate chain with respect to S∗ for the original instance I.

Lemma 3.3.8. Φ(G∗ ∪ S−G∗) ≥ Ψheavy(𝜋S∗) + 𝛼 · Ψlight(𝜋S∗).

Proof. We begin by observing that the feasible chain H ∗ = S∗ |𝐺∗heavy is one of those considered

in step 1. To verify this claim, note that |𝐺∗heavy | ≤ 3 log(𝑛𝜌)
𝜖2 by Lemma 3.3.6, meaning that H ∗

introduces at most that many items across all time periods. As a result, since the chain G∗ ∪ S−G∗

54

attains a maximum profit among those considered, we have Φ(G∗ ∪S−G∗) ≥ Φ(H ∗ ∪S−H ∗), and

it remains to prove that Φ(H ∗ ∪ S−H ∗) ≥ Ψheavy(𝜋S∗) + 𝛼 · Ψlight(𝜋S∗).

For this purpose, let L∗ = S∗ |N\𝐺∗heavy be the restriction of S∗ to the set N \ 𝐺∗heavy, which is

a feasible chain for I by Observation 3.3.2. We next show that Φ(L∗) = Ψlight(𝜋S∗). In order to

derive this claim, note that since 𝐿∗
𝑇

and 𝐻∗
𝑇

are disjoint and S∗ = H ∗ ∪ L∗, it follows that

Φ(L∗) = Φ(S∗) −Φ(H ∗)

= Φ(S∗) − Ψheavy(𝜋S∗)

= Ψ(𝜋S∗) − Ψheavy(𝜋S∗)

= Ψlight(𝜋S∗) ,

where the second equality holds due to Lemma 3.3.7, the third equality is obtained by recalling

that Ψ(𝜋S∗) = Φ(S∗), as shown along the proof of Lemma 3.3.7, and the last equality follows

from the profit decomposition (3.7).

However, the crucial observation is that L∗ is a feasible chain for the residual instance I−H ∗
,

by Lemma 3.3.4. Consequently, since the algorithm A computes an 𝛼-approximate feasible chain

S−H ∗
for the latter instance, Φ(S−H ∗) ≥ 𝛼 · Φ(L∗) = 𝛼 · Ψlight(𝜋S∗), implying that H ∗ ∪ S−H ∗

indeed has a profit of Φ(H ∗ ∪ S−H ∗) = Φ(H ∗) +Φ(S−H ∗) ≥ Ψheavy(𝜋S∗) + 𝛼 · Ψlight(𝜋S∗). □

3.3.3 The ratio improvement and final algorithm

We proceed by revealing the self-improving feature of our approach, by showing that a (1, 𝛼)-

approximation for generalized incremental knapsack leads in turn to a 1−𝛿
2−𝛼 -approximation, when

combined with our algorithm for light items, presented in Section 3.2.4. We will then show how

to recursively apply this self-improving idea to eventually derive an approximation scheme.

Lemma 3.3.9. Suppose that, for some 𝛼 ∈ [0, 1], the algorithm A constitutes an 𝛼-approximation.

Then, for any error parameter 𝛿 > 0, the generalized incremental knapsack problem can be ap-

proximated within factor 1−𝛿
2−𝛼 in time 𝑂 ((𝑛𝑇)𝑂 (1

𝛿2 log(𝑛𝜌)) · TimeA (𝑛, 𝑇) + (|I |
𝛿
)𝑂 (1)).

55

Proof. As explained in Section 3.3.2, the optimal chain S∗ can be mapped to a permutation

𝜋S∗ whose overall profit Ψ(𝜋S∗) decomposes into heavy and light contributions, Ψ(𝜋S∗) =

Ψheavy(𝜋S∗) + Ψlight(𝜋S∗). Now, on the one hand, Lemma 3.3.5 provides us with a (1, 𝛼)-

approximation in 𝑂 ((𝑛𝑇)𝑂 (1
𝛿2 log(𝑛𝜌)) · TimeA (𝑛, 𝑇)) time. That is, we obtain a feasible chain

S(1,𝛼) with Φ(S(1,𝛼)) ≥ Ψheavy(𝜋S∗) + 𝛼 · Ψlight(𝜋S∗). On the other hand, the main result of

Section 3.2.4 allows us to compute in 𝑂 ((|I |
𝛿
)𝑂 (1)) time a permutation 𝜋light with a profit of

Ψ(𝜋light) ≥ (1 − 𝛿) · Ψlight(𝜋S∗). By converting this permutation to a feasible chain S(0,1−𝛿)

along the lines of Lemma 3.2.1, we clearly obtain a (0, 1 − 𝛿)-approximation, meaning that

Φ(S(0,1−𝛿)) ≥ (1 − 𝛿) · Ψlight(𝜋S∗). Our combined approach independently employs both algo-

rithms and returns the more profitable of the two feasible chains computed, S(1,𝛼) and S(0,1−𝛿) , to

obtain a profit of

max
{
Φ(S(1,𝛼)),Φ(S(0,1−𝛿))

}
≥ max

{
Ψheavy(𝜋S∗) + 𝛼 · Ψlight(𝜋S∗),

(1 − 𝛿) · Ψlight(𝜋S∗)
}

≥ 1
2 − 𝛼 ·

(
Ψheavy(𝜋S∗) + 𝛼 · Ψlight(𝜋S∗)

)
+
(
1 − 1

2 − 𝛼

)
· (1 − 𝛿) · Ψlight(𝜋S∗)

≥ 1 − 𝛿
2 − 𝛼 ·

(
Ψheavy(𝜋S∗) + Ψlight(𝜋S∗)

)
=

1 − 𝛿
2 − 𝛼 · Ψ(𝜋S∗)

≥ 1 − 𝛿
2 − 𝛼 · Φ(S∗),

where the last inequality follows from Lemma 3.2.1. □

The final approximation scheme. We conclude by explaining how our 𝛼 ↦→ 1−𝛿
2−𝛼 improvement,

outlined in Lemma 3.3.9, can be iteratively applied to derive an approximation scheme for the

generalized incremental knapsack problem, thereby completing the proof of Theorem 3.3.1.

For the purpose of ensuring a (1− 𝜖)-fraction of the optimal profit, we will set the error param-

eter 𝛿 in Lemma 3.3.9 as a function of 𝜖 , where the exact dependency will be determined later on.

56

Given this self-improving result, we define a sequence of algorithms A0,A1, . . . , with the con-

vention that the approximation ratio of each such algorithm A𝑟 is denoted by 𝛼𝑟 . Specifically, this

sequence begins with the trivial algorithm A0 that returns an empty solution (∅, . . . , ∅), meaning

that 𝛼0 = 0. Then, by applying Lemma 3.3.9 with respect to A0, we obtain the algorithm A1,

for which 𝛼1 = 1−𝛿
2 . Subsequently, by a similar application with respect to A1, we obtain A2,

with 𝛼2 = 1−𝛿
2−𝛼1

. In general, for every integer 𝑟 ≥ 1, the resulting algorithm A𝑟 guarantees an

approximation ratio of 𝛼𝑟 = 1−𝛿
2−𝛼𝑟−1

. The next lemma, whose proof is presented in Appendix C.2.5,

provides a closed-form lower bound on 𝛼𝑟 .

Lemma 3.3.10. 𝛼𝑟 ≥ 𝑟
𝑟+1 − 𝑟𝛿, for every 𝑟 ≥ 0.

By choosing 𝛿 = 𝜖2

2 , the above lemma implies that ⌈2
𝜖
⌉ self-improving rounds produce an algo-

rithm A⌈ 2
𝜖
⌉ for computing a feasible chain S with a profit of Φ(S) ≥ (⌈2/𝜖⌉

⌈2/𝜖⌉+1 − ⌈2
𝜖
⌉ · 𝜖2

2) ·Φ(S∗) ≥

(1− 𝜖) ·Φ(S∗), thereby deriving the approximation guarantee of Theorem 3.3.1. Furthermore, it is

not difficult to verify that algorithm A⌈ 2
𝜖
⌉ runs in 𝑂 ((𝑛𝑇)𝑂 (1

𝜖 5 ·log(𝑛𝜌)) · |I |𝑂 (1)) time, by induction

on 𝑟.

3.4 QPTAS for general instances

Thus far, we have developed an approximation scheme whose running time includes an expo-

nential dependency on log(𝑛 · 𝑤max
𝑤min

), leading to a quasi-PTAS for problem instances where the ratio

𝑤max
𝑤min

is polynomial in the input size. In what follows, we show how to obtain a true quasi-PTAS,

without any assumptions on 𝑤max
𝑤min

.

Theorem 3.4.1. For any error parameter 𝜖 ∈ (0, 1), the generalized incremental knapsack problem

can be approximated within a factor of 1 − 𝜖 in time 𝑂 (|I|𝑂 ((1
𝜖

log |I |)𝑂 (1))).

Interestingly, our algorithmic approach shows that any (1 − 𝜖)-approximation running in

T (𝑛, 𝑇, 𝑤max
𝑤min

) time can be executed in black-box fashion on appropriately-constructed instances

with 𝑤max
𝑤min

= 𝑂 (𝑛1/𝜖), leading to a (1 − 𝜖)-approximation for the general problem formulation in

𝑂 (|I|𝑂 ((1
𝜖

log |I |)𝑂 (1))) · T (𝑛, 𝑇, 𝑛1/𝜖) time.

57

3.4.1 Technical overview

Step 1: Creating a well-spaced instance. We begin by slightly altering a given instance

I = (N ,𝑊), with the objective of creating nearly-ideal circumstances for the approximation

scheme of Section 3.3 to operate, losing negligible profits along the way. For this purpose, given

an error parameter 𝜖 > 0, we say that the instance I is well-spaced when its set of items N can be

partitioned into clusters C1, . . . , C𝑀 satisfying the following properties:

1. Weight ratio within clusters: For every 𝑚 ∈ [𝑀], the weights of any two items in cluster C𝑚

differ by a multiplicative factor of at most 𝑛1/𝜖 .

2. Weight gap between clusters: For every 𝑚1, 𝑚2 ∈ [𝑀] with 𝑚1 < 𝑚2, the weight of any item

in cluster C𝑚2 is greater than the weight of any item in cluster C𝑚1 by a multiplicative factor

of at least 𝑛1+(𝑚2−𝑚1−1)/𝜖 .

In Section 3.4.2, we show that one can efficiently identify a subset of items over which the induced

instance is well-spaced, while still admitting a near-optimal solution. We derive this result, as

formally stated below, through an application of the shifting method (see, for instance, [5, 41]).

Lemma 3.4.2. There exists an item set Nspaced ⊆ N for which Ispaced = (Nspaced,𝑊) is a well-

spaced instance, whose optimal chain Sspaced guarantees a profit of Φ(Sspaced) ≥ (1 − 𝜖) · Φ(S∗).

Such a set can be determined in 𝑂 ((𝑛/𝜖)𝑂 (1)) time.

Step 2: Proving the sparse-crossing property. For simplicity of notation, we assume from this

point on that the instance I = (N ,𝑊) is well-spaced, with clusters C1, . . . , C𝑀 . Now suppose

that the optimal permutation 𝜋∗ for the sequencing-based formulation of this instance was known

to be “crossing-free”, namely, items belonging to cluster C1 appear first in 𝜋∗, followed by those

belonging to cluster C2, so on and so forth. In other words, a left-to-right scan of the permutation

𝜋∗ reveals that it is weakly-increasing by cluster. In this ideal situation, the approximation scheme

we propose in Section 3.3 can be sequentially employed to the clusters C1, . . . , C𝑀 in increasing

58

order. This way, we would have obtained a (1 − 𝜖)-approximation in truly quasi-polynomial time,

since the extremal weight ratio within each cluster is 𝑛1/𝜖 -bounded, by property 1.

Unfortunately, elementary examples show that an optimal permutation 𝜋∗ may not be crossing-

free, in the sense that items in any given cluster can be preceded by items belonging to higher-

index clusters. That said, a suitable relaxation of these ideas can still be exploited. Formally, let us

denote by cross𝑚 (𝜋) the number of items in clusters C𝑚+1, . . . , C𝑀 that appear in the permutation

𝜋 before the last item belonging to cluster C𝑚; note that crossing-free is equivalent to having

cross1(𝜋) = · · · = cross𝑀 (𝜋) = 0. Our next structural result, formally established in Section 3.4.3,

proves the existence of a near-optimal permutation with very few items crossing each cluster.

Lemma 3.4.3. There exist an item set Nsparse ⊆ N and a permutation 𝜋sparse : Nsparse → [|Nsparse |]

satisfying:

1. Sparse crossing: max𝑚∈[𝑀] cross𝑚 (𝜋sparse) ≤ ⌈log2 𝑀⌉
𝜖

.

2. Near-optimal profit: Ψ(𝜋sparse) ≥ (1 − 𝜖) · Ψ(𝜋∗).

Technically speaking, our proof is based on applying a sequence of recursive transformations

with respect to the unknown optimal permutation 𝜋∗. To convey the high-level idea, let 𝑖mid be

the last-appearing item in 𝜋∗ out of clusters C1, . . . , C𝑀/2. When fewer than 1/𝜖 items in clusters

C(𝑀/2)+1, . . . , C𝑀 appear before 𝑖mid, each of the clusters C1, . . . , C𝑀/2 has at most 1/𝜖 crossings

due to items in C(𝑀/2)+1, . . . , C𝑀 . We can therefore recursively proceed into the left part of 𝜋∗,

stretching up to the item 𝑖mid, and into its right part, consisting of the remaining items. In the

opposite case, where at least 1/𝜖 items in clusters C(𝑀/2)+1, . . . , C𝑀 appear before 𝑖mid, the impor-

tant observation is that we can eliminate the cheapest out of the first 1/𝜖 such items while losing

only an 𝑂 (𝜖)-fraction of their combined profit. However, since this item is heavier than any item

in lower-index clusters by a factor of at least 𝑛 (see property 2), the gap we have just created is

sufficiently large to pull back each and every item in clusters C1, . . . , C𝑀/2, only increasing their

profit contributions. We can now recursively proceed into the left and right parts.

59

Step 3: The external dynamic program. Given the sparse-crossing property, we dedicate Sec-

tion 3.4.4 to proposing a dynamic programming approach for computing a near-optimal permu-

tation. For this purpose, by recycling some of the notation introduced in Section 3.2.3, our state

description (𝑚, 𝜓𝑚,Q>𝑚) will consists of the following parameters:

• The index of the current cluster, 𝑚.

• The profit requirement, 𝜓𝑚.

• The set of items Q>𝑚 belonging to clusters C𝑚+1, . . . , C𝑀 that will be crossing into lower-

index clusters, noting that Lemma 3.4.3 allows us to consider only small sets, of size

𝑂 (log𝑀
𝜖

).

At a high level, the value function 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) will represent the minimum makespan 𝑤(𝑆)

that can be attained, over all subset of items 𝑆 within the union of Q>𝑚 and the clusters C1, . . . , C𝑚

(namely, 𝑆 ⊆ Q>𝑚 ⊎ (⊎`∈[𝑚] C`)) and over all permutations 𝜋 : 𝑆 → [|𝑆 |] that generate a total

profit of at least 𝜓𝑚. Clearly, the best-possible profit of a sparse-crossing permutation corresponds

to the maximal value 𝜓𝑀 that satisfies 𝐹 (𝑀, 𝜓𝑀 , ∅) < ∞, which is at least (1 − 𝜖) · Ψ(𝜋∗), by

Lemma 3.4.3.

As formally explained in Section 3.4.4, within the recursive equations for computing

𝐹 (𝑚, 𝜓𝑚,Q>𝑚), evaluating the marginal makespan increase of each possible action involves solv-

ing a single-cluster subproblem. Specifically for the latter, the approximation scheme we have

devised in Section 3.3 will be shown to incur a quasi-polynomial running time. In parallel, the

dominant factor in determining the underlying number of states emerges from the set of items

Q>𝑚, taking 𝑂 (𝑛𝑂 (1
𝜖

log𝑀)) possible values, respectively, thus forming the second source of quasi-

polynomiality in our approach and concluding the proof of Theorem 3.4.1.

3.4.2 Proof of Lemma 3.4.2: Creating a well-spaced instance

Bucketing. For the purpose of identifying the desired subset Nspaced, we initially partition the

overall collection of items N into buckets B1, . . . ,B𝐿 according to their weights. This partition

60

will be geometric, by powers of 𝑛, meaning that 𝐿 = ⌈log𝑛 (
𝑤max
𝑤min

)⌉ + 1. Specifically, the first bucket

B1 consists of items whose weight resides in [𝑤min, 𝑛·𝑤min), the second bucket B2 consists of those

with weight in [𝑛 · 𝑤min, 𝑛
2 · 𝑤min), so on and so forth, where in general, bucket Bℓ corresponds to

the interval [𝑛ℓ−1 · 𝑤min, 𝑛
ℓ · 𝑤min). It is easy to verify that B1, . . . ,B𝐿 is indeed a partition of N .

Creating clusters. Now let 𝑟 ∈ {0, . . . , 1
𝜖
− 1} be an integer parameter whose value will be

determined later. Accordingly, we create a subset of items N𝑟 ⊆ N , that will be clustered into

C𝑟1 , . . . , C
𝑟
𝑀

with 𝑀 = 𝑂 (𝜖𝐿), as follows. Intuitively, we introduce “gaps” within the sequence

of buckets B1, . . . ,B𝐿 , spaced apart by 1
𝜖

indices, through eliminating every bucket Bℓ with ℓ

mod 1
𝜖
= 𝑟; then, between every pair of successive gaps, buckets will be unified to form a single

cluster. That is, the first cluster is defined as C𝑟1 =
⊎𝑟−1
ℓ=1 Bℓ, the second cluster is C𝑟2 =

⊎𝑟−1+1/𝜖
ℓ=𝑟+1 Bℓ,

the third is C𝑟3 =
⊎𝑟−1+2/𝜖
ℓ=𝑟+1+1/𝜖 Bℓ, and so on. Finally, we define the subset of items N𝑟 as the union

of all clusters, i.e., N𝑟 =
⊎
𝑚∈[𝑀] C𝑟𝑚, with a corresponding generalized incremental knapsack

instance I𝑟 = (N𝑟 ,𝑊).

Analysis. In what follows, we argue that for every 𝑟 ∈ {0, . . . , 1
𝜖
− 1}, the instance I𝑟 we have

just constructed is in fact well-spaced, via the partition of N𝑟 into clusters C𝑟1 , . . . , C
𝑟
𝑀

. For this

purpose, we separately prove each of the required well-spaced properties.

1. Weight ratio within clusters: Consider two items 𝑖1 and 𝑖2 belonging to the same cluster C𝑟𝑚.

Letting Bℓ1 and Bℓ2 be the buckets containing these items, respectively, their weight ratio

can be upper bounded by observing that

𝑤𝑖2

𝑤𝑖1
≤

max𝑖∈Bℓ2 𝑤𝑖
min𝑖∈Bℓ1 𝑤𝑖

≤ 𝑛ℓ2−(ℓ1−1)

≤ 𝑛(1/𝜖)−1 ,

where the second inequality holds since each bucket Bℓ contains items whose weight falls

within [𝑛ℓ−1 · 𝑤min, 𝑛
ℓ · 𝑤min), and the third inequality follows by noting that each cluster

61

represents the union of at most 1
𝜖
− 1 successive buckets, implying that ℓ2 − ℓ1 ≤ 1

𝜖
− 2.

2. Weight gap between clusters: Similarly, let 𝑖1 and 𝑖2 be a pair of items that belong to clusters

C𝑟𝑚1 and C𝑟𝑚2 , respectively, with 𝑚1 < 𝑚2. In this case, when we denote the corresponding

buckets by Bℓ1 and Bℓ2 , their weight ratio can be lower bounded by

𝑤𝑖2

𝑤𝑖1
≥

min𝑖∈Bℓ2 𝑤𝑖
max𝑖∈Bℓ1 𝑤𝑖

≥ 𝑛(ℓ2−1)−ℓ1

≥ 𝑛1+(𝑚2−𝑚1−1)/𝜖 ,

where the last inequality holds since ℓ1 ∈ {𝑟 + 1 + 𝑚1−2
𝜖
, . . . , 𝑟 − 1 + 𝑚1−1

𝜖
} and ℓ2 ∈ {𝑟 + 1 +

𝑚2−2
𝜖
, . . . , 𝑟 − 1 + 𝑚2−1

𝜖
}, by definition of C𝑟𝑚1 and C𝑟𝑚2 .

We conclude the proof of Lemma 3.4.2 by showing that at least one of the well-spaced instances

I0, . . .I1
𝜖
−1 is associated with an optimal profit of at least (1− 𝜖) ·Φ(S∗). To this end, with respect

to the optimal chain S∗ for the original instance I, note that the restriction of this chain S∗ |N𝑟 to

the item set N𝑟 is clearly feasible for I𝑟 , by Observation 3.3.2. Letting S𝑟∗ be an optimal chain for

I𝑟 , we consequently have

max
0≤𝑟≤(1/𝜖)−1

Φ(S𝑟∗) ≥ max
0≤𝑟≤(1/𝜖)−1

Φ(S∗ |N𝑟)

≥ 𝜖 ·
(1/𝜖)−1∑︁
𝑟=0

Φ(S∗ |N𝑟)

= 𝜖 ·
(1/𝜖)−1∑︁
𝑟=0

∑︁
𝑡∈[𝑇]

∑︁
𝑖∈(𝑆∗𝑡 \𝑆∗𝑡−1)∩N𝑟

𝑝𝑖𝑡

= 𝜖 ·
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝑆∗𝑡 \𝑆∗𝑡−1

����{𝑟 ∈ {
0, . . . ,

1
𝜖
− 1

}
:

𝑖 ∈
(
𝑆∗𝑡 \ 𝑆∗𝑡−1

)
∩ N𝑟

}���� · 𝑝𝑖𝑡
= (1 − 𝜖) ·

∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝑆∗𝑡 \𝑆∗𝑡−1

𝑝𝑖𝑡

= (1 − 𝜖) · Φ(S∗) ,

62

where the next-to-last equality holds since every item introduced in the optimal chain S∗ appears

in all but one of the sets N0, . . . ,N(1/𝜖)−1.

3.4.3 Proof of Lemma 3.4.3: The sparse-crossing property

Preliminaries. We begin by introducing some additional definitions and notation that will be

utilized throughout this proof. For a set of cluster indices M ⊆ [𝑀], we use CM to designate the

union of M-indexed clusters, i.e., CM =
⊎
𝑚∈M C𝑚. Expanding upon the definition of cross𝑚 (𝜋),

given disjoint sets, M1 ⊆ [𝑀] and M2 ⊆ [𝑀], let crossM1,M2 (𝜋) denote the number of items in

CM2 that appear in the permutation 𝜋 before the last item in CM1 , namely,

crossM1,M2 (𝜋) =
�����{𝑖 ∈ CM2 : 𝜋(𝑖) < max

𝑗∈CM1

𝜋(𝑗)
}����� .

When crossM1,M2 (𝜋) ≥ 1
𝜖
, we use XM1,M2 (𝜋) to designate the set comprised of the first 1

𝜖
items in

M2-indexed clusters in the permutation 𝜋. When crossM1,M2 (𝜋) < 1
𝜖
, we simply set XM1,M2 (𝜋) =

∅.

Fixing permutations. In order to formalize the notion of “pulling back” items within

a given permutation, as briefly sketched in Section 3.4.1, we define a fixing procedure,

FixCrossing(𝜋,M−,M+). Here, we receive as input a permutation 𝜋 : Q → [|Q|] over an item set

Q ⊆ N , along with two disjoint sets of cluster indices, M− and M+, which are assumed to satisfy

maxM− < minM+, i.e., any index in M− is strictly smaller than any index in M+. As explained

below, this procedure constructs in polynomial time a modified permutation �̄� : Q̄ → [|Q̄ |] over a

subset Q̄ ⊆ Q, that satisfies the following properties:

(P1) Sparse (M−,M+)-crossing: crossM−,M+ (�̄�) ≤ 1
𝜖
.

(P2) Completion times: 𝐶�̄� (𝑖) ≤ 𝐶𝜋 (𝑖), for every 𝑖 ∈ Q̄.

(P3) Difference: Q \ Q̄ consists of at most one item, which is a member of XM−,M+ (𝜋).

63

For this purpose, when crossM−,M+ (𝜋) < 1
𝜖
, the procedure FixCrossing(𝜋,M−,M+) returns

exactly the same permutation (i.e., �̄� = 𝜋), without any alterations. In the opposite case, when

crossM−,M+ (𝜋) ≥ 1
𝜖
, let 𝑖M−,M+ be the least profitable item in XM−,M+ (𝜋) with respect to the

permutation 𝜋, namely, 𝑖M−,M+ = argmin{𝜑𝜋 (𝑖) : 𝑖 ∈ XM−,M+ (𝜋)}. Our construction consists of

eliminating 𝑖M−,M+ and placing instead all items in CM− appearing in 𝜋 after 𝑖M−,M+; this alteration

results in a permutation �̄� over Q \ {𝑖M−,M+}. Formally, let A− and Ā− be the items appearing

after 𝑖M−,M+ out of CM− and N \ CM− , respectively, i.e.,

A− =
{
𝑖 ∈ CM− : 𝜋(𝑖) > 𝜋(𝑖M−,M+)

}
and Ā− =

{
𝑖 ∈ N \ CM− : 𝜋(𝑖) > 𝜋(𝑖M−,M+)

}
.

For simplicity, we index the items in A− according to their order within the permutation 𝜋, which

results in having A− = {𝑖1, . . . , 𝑖 |A− |} with 𝜋(𝑖1) < · · · < 𝜋(𝑖 |A− |). Now, the modified permutation

�̄� is constructed as follows:

• Before 𝑖M−,M+: Items in positions 1, . . . , 𝜋(𝑖M−,M+) − 1 of the permutation 𝜋 remain within

their original positions, meaning that �̄�(𝑖) = 𝜋(𝑖) for every item 𝑖 with 𝜋(𝑖) ≤ 𝜋(𝑖M−,M+) −1.

• Instead of 𝑖M−,M+: Items in A− will appear in place of 𝑖M−,M+ following their relative order

in 𝜋. That is, �̄�(𝑖𝑘) = 𝜋(𝑖M−,M+) − 1 + 𝑘 for every 𝑘 ∈ [|A− |].

• After 𝑖M−,M+: Items in Ā− will appear after those in A−, again following their relative order

in 𝜋. In other words, �̄�(𝑖) = 𝜋(𝑖) − 1 + |{𝑘 ∈ [|A− |] : 𝜋(𝑖𝑘) > 𝜋(𝑖)}| for every item 𝑖 ∈ Ā−.

In Appendix C.3.1, we show that the resulting permutation satisfies its desired properties, as for-

mally stated below.

Lemma 3.4.4. The permutation �̄� satisfies properties (P1)-(P3).

The recursive construction. We are now ready to explain how recursive applications of the

fixing procedure allow us to conclude the proof of Lemma 3.4.3. At a high level, we bisect the

64

cluster indices [𝑀], such that in each step the indices being considered are split into their lower

half M− and upper half M+, with respect to which the fixing procedure FixCrossing(·,M−,M+)

will be applied. The resulting permutation will then be divided into left and right parts, which are

recursively bisected along the same lines.

To present the specifics of this bisection as simply as possible, we assume without loss of

generality that the number of clusters 𝑀 is a power of 2; otherwise, empty clusters can be ap-

pended to the sequence C1, . . . , C𝑀 . At the upper level of the recursion, we bisect the entire

collection of cluster indices [𝑀] into M[1,𝑀2] = {1, . . . , 𝑀2 } and M[𝑀2 +1,𝑀] = {𝑀2 + 1, . . . , 𝑀}.

Designating the optimal permutation by 𝜋[1,𝑀] = 𝜋∗, we employ our fixing procedure with

FixCrossing(𝜋[1,𝑀] ,M[1,𝑀2] ,M[𝑀2 +1,𝑀]), to obtain the permutation �̄�[1,𝑀] . Now, we break the

latter into its left and right part, 𝜋[1,𝑀2] and 𝜋[𝑀2 +1,𝑀] , such that the left permutation 𝜋[1,𝑀2] is the

prefix of �̄�[1,𝑀] ending at the last item in CM [1, 𝑀2]
∪ XM [1, 𝑀2] ,M [𝑀2 +1,𝑀]

(𝜋[1,𝑀]), whereas the right

permutation 𝜋[𝑀2 +1,𝑀] is comprised of the remaining suffix.

In the second level of the recursion, for the left permutation 𝜋[1,𝑀2] , we bi-

sect M[1,𝑀2] into M[1,𝑀4] = {1, . . . , 𝑀4 } and M[𝑀4 +1,𝑀2] = {𝑀4 + 1, . . . , 𝑀2 }, fol-

lowed by applying FixCrossing(𝜋[1,𝑀2] ,M[1,𝑀4] ,M[𝑀4 +1,𝑀2]). Similarly, for the right per-

mutation 𝜋[𝑀2 +1,𝑀] , its corresponding set of cluster indices M[𝑀2 +1,𝑀] is bisected into

M[𝑀2 +1, 3𝑀4] = {𝑀2 + 1, . . . , 3𝑀
4 } and M[3𝑀

4 +1,𝑀] = { 3𝑀
4 + 1, . . . , 𝑀}, in which case we apply

FixCrossing(𝜋[𝑀2 +1,𝑀] ,M[𝑀2 +1, 3𝑀4] ,M[3𝑀
4 +1,𝑀]). This recursive procedure continues up until the

resulting sets of cluster indices are singletons. At that point in time, our final permutation 𝜋sparse is

obtained by concatenating 𝜋[1,1] , 𝜋[2,2] , . . . , 𝜋[𝑀,𝑀] .

Analysis. For ease of presentation, we make use of Ω to denote the set of pairs of cluster index

sets with respect to which FixCrossing(·, ·, ·) is employed throughout our recursive construction,

65

meaning that

Ω =

{ (
M[1,𝑀2] ,M[𝑀2 +1,𝑀]

)
, [level 1](

M[1,𝑀4] ,M[𝑀4 +1,𝑀2]

)
,

(
M[𝑀2 +1, 3𝑀4] ,M[3𝑀

4 +1,𝑀]

)
, [level 2]

· · ·(
M[1,1] ,M[2,2]

)
, . . . ,

(
M[𝑀−1,𝑀−1] ,M[𝑀,𝑀]

) }
. [level log2 𝑀]

With this notation, we show in the next two claims that the permutation 𝜋sparse indeed satisfies the

sparse crossing and near-optimal profit properties of Lemma 3.4.3.

Lemma 3.4.5. cross𝑚 (𝜋sparse) ≤ log2 𝑀
𝜖

, for every 𝑚 ∈ [𝑀].

Proof. By construction of 𝜋sparse, every item belonging to one of the clusters C𝑚+1, . . . , C𝑀

that appears in this permutation before the last item in cluster C𝑚 necessarily resides in

XM−,M+ (𝜋[minM−,maxM+]), for some pair (M−,M+) ∈ Ω with 𝑚 ∈ M−. To verify this claim, con-

sider such a crossing item 𝑖, say belonging to cluster C𝑚+ . By the way our recursive construction

of Ω is defined, there exists a unique pair of cluster index sets (M−,M+) ∈ Ω for which 𝑚 ∈ M−

and 𝑚+ ∈ M+; we argue that 𝑖 ∈ XM−,M+ (𝜋[minM−,maxM+]). Indeed, in the next recursion level,

the left permutation 𝜋[minM−,maxM−] is the prefix of �̄�[minM−,maxM+] ending with the last item in

CM− ∪ XM−,M+ (𝜋[minM−,maxM+]). Furthermore, by construction, all items in the right permuta-

tion 𝜋[minM+,maxM+] will appear in 𝜋sparse after all items in the left permutation 𝜋[minM−,maxM−] .

Therefore, since 𝑖 ∈ C𝑚+ with 𝑚+ ∈ M+ and since this item appears in 𝜋sparse before the last item

in cluster C𝑚, we know that 𝑖 appears as part of the left permutation 𝜋[minM−,maxM−] , implying that

𝑖 ∈ XM−,M+ (𝜋[minM−,maxM+]).

As any such item 𝑖 ∈ XM−,M+ (𝜋[minM−,maxM+]) contributes at most once toward

crossM−,M+ (�̄�[minM−,maxM+]), we have

cross𝑚 (𝜋sparse) ≤
∑︁

(M− ,M+)∈Ω:
𝑚∈M−

crossM−,M+
(
�̄�[minM−,maxM+]

)

66

≤ 1
𝜖
·
��{(M−,M+) ∈ Ω : 𝑚 ∈ M−}��

≤
log2 𝑀

𝜖
.

Here, the second inequality holds since crossM−,M+ (�̄�[minM−,maxM+]) ≤ 1
𝜖

by property (P1) of the

fixing procedure. The third inequality is obtained by observing that, as the definition of Ω shows,

all sets appearing in a single level of the recursion form a partition of [𝑀], implying that 𝑚 ∈ M−

for at most one pair (M−,M+) in that level. As there are log2 𝑀 levels overall, it follows that

|{(M−,M+) ∈ Ω : 𝑚 ∈ M−}| ≤ log2 𝑀 . □

Lemma 3.4.6. Ψ(𝜋sparse) ≥ (1 − 𝜖) · Ψ(𝜋∗).

Proof. To prove the desired claim, we begin by relating the profits Ψ(𝜋sparse) and Ψ(𝜋∗), with

the corresponding proof in Appendix C.3.2. The main idea is that our fixing procedure elimi-

nates the least profitable item out of XM−,M+ (𝜋[minM−,maxM+]), without increasing the comple-

tion time of any other item. Hence, every execution of this procedure loses a profit of at most

𝜖 · 𝜑𝜋∗ (XM−,M+ (𝜋[minM−,maxM+])).

Claim 3.4.7. Ψ(𝜋sparse) ≥ Ψ(𝜋∗) − 𝜖 ·∑(M−,M+)∈Ω 𝜑𝜋∗ (XM−,M+ (𝜋[minM−,maxM+])).

The next claim establishes the disjointness of XM−
1 ,M

+
1
(𝜋[minM−

1 ,maxM+
1]) and

XM−
2 ,M

+
2
(𝜋[minM−

2 ,maxM+
2]), for all distinct pairs (M−

1 ,M
+
1) and (M−

2 ,M
+
2) in Ω. Infor-

mally, this property holds since, once an item appears in some XM−,M+ (𝜋[minM−,maxM+]), it will

not appear in any item set belonging to future levels of the recursion, due to the specific way

we are pulling back items in the fixing procedure. For ease of presentation, the formal proof is

deferred to Appendix C.3.3.

Claim 3.4.8. For any two distinct pairs (M−
1 ,M

+
1) and (M−

2 ,M
+
2) in Ω, the item sets

XM−
1 ,M

+
1
(𝜋[minM−

1 ,maxM+
1]) and XM−

2 ,M
+
2
(𝜋[minM−

2 ,maxM+
2]) are disjoint.

67

Consequently, the profit attained by the permutation 𝜋sparse can be bounded by noting that

Ψ(𝜋sparse) ≥ Ψ(𝜋∗) − 𝜖 ·
∑︁

(M−,M+)∈Ω
𝜑𝜋∗

(
XM−,M+

(
𝜋[minM−,maxM+]

))
≥ Ψ(𝜋∗) − 𝜖 ·

∑︁
𝑖∈N

𝜑𝜋∗ (𝑖)

= (1 − 𝜖) · Ψ(𝜋∗),

where the first inequality is precisely Claim 3.4.7, and the second inequality follows from

Claim 3.4.8. □

3.4.4 The external dynamic program

Given the sparse-crossing property of the near-optimal permutation 𝜋sparse, whose existence

has been established in Lemma 3.4.3, we turn our attention to formally presenting a dynamic

programming approach for computing a permutation with a profit of at least (1 − 2𝜖) · Ψ(𝜋sparse).

States. Building on the intuition provided in Section 3.4.1, we remind the reader that each state

(𝑚, 𝜓𝑚,Q>𝑚) of our dynamic program consists of the following parameters:

• The index of the current cluster 𝑚, taking values in [𝑀]0.

• The total profit 𝜓𝑚 collected thus far. Initially, 𝜓𝑚 will be treated as a continuous parameter,

taking values in [0, 𝑛𝑝max], where 𝑝max is the maximum profit attainable by any single item,

i.e., 𝑝max = max{𝑝𝑖𝑡 : 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇], and 𝑤𝑖 ≤ 𝑊𝑡}.

• The set of items Q>𝑚 belonging to clusters C𝑚+1, . . . , C𝑀 that will be crossing into lower-

index clusters. Motivated by the sparse-crossing property established in Lemma 3.4.3, we

only consider sets Q>𝑚 of cardinality at most ⌈log2 𝑀⌉
𝜖

.

Value function. For a subset of items 𝑆 ⊆ N and a permutation 𝜋 : 𝑆 → [|𝑆 |], we say that the

pair (𝑆, 𝜋) is thin when cross𝑚 (𝜋) ≤ ⌈log2 𝑀⌉
𝜖

for all 𝑚 ∈ [𝑀]. Given this definition, the value

68

function 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) represents the minimum makespan 𝑤(𝑆) that can be attained over all thin

pairs (𝑆, 𝜋) that satisfy the following conditions:

1. Allowed items: The set 𝑆 consists of items that belong to one of the clusters C1 . . . , C𝑚 or to

Q>𝑚. In other words, 𝑆 ⊆ C[1,𝑚] ⊎ Q>𝑚, where C[1,𝑚] =
⊎
`∈[1,𝑚] C` by convention.

2. Required crossing items: The set 𝑆 contains all items in Q>𝑚, meaning that Q>𝑚 ⊆ 𝑆.

3. Total profit: Ψ(𝜋) ≥ 𝜓𝑚.

Recycling some of the notation introduced in Section 3.2.3.2, we use Thin(𝑚, 𝜓𝑚,Q>𝑚) to denote

the collection of thin pairs that meet conditions 1-3 above. When the latter set is empty, we define

𝐹 (𝑚, 𝜓𝑚,Q>𝑚) = ∞. With these definitions, Lemma 3.4.3 proves the existence of a thin pair

(𝑆, 𝜋) ∈ Thin(𝑀,Ψ(𝜋sparse), ∅) with 𝐹 (𝑀,Ψ(𝜋sparse), ∅) ≤ 𝑊𝑇 . It is worth pointing out that,

for the item set Nsparse over which the permutation 𝜋sparse is defined, we can indeed assume that

𝑤(Nsparse) ≤ 𝑊𝑇 , as all items whose completion time with respect to 𝜋sparse exceeds 𝑊𝑇 can be

eliminated, leaving us with a permutation that still satisfies Lemma 3.4.3. Therefore, had we been

able to compute the maximal value 𝜓∗ for which 𝐹 (𝑀, 𝜓∗, ∅) ≤ 𝑊𝑇 , its corresponding permutation

would have guaranteed a profit of at least 𝜓∗ ≥ Ψ(𝜋sparse) ≥ (1− 𝜖) ·Ψ(𝜋∗). Once again, since 𝜓𝑚

is a continuous parameter, we will eventually explain how to discretize 𝜓𝑚 to take polynomially-

many values, incurring only an 𝜖-loss in profit.

Optimal substructure. In what follows, we identify the optimal substructure that allows us to

compute the value function 𝐹 by means of dynamic programming. To this end, suppose that (𝑆, 𝜋)

is a thin pair that minimizes 𝑤(𝑆) over Thin(𝑚, 𝜓𝑚,Q>𝑚). We will argue that by eliminating from

(𝑆, 𝜋) a carefully-selected suffix of the permutation 𝜋 consisting of items in clusters C𝑚, . . . , C𝑀 ,

one obtains a thin pair that attains 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) for an appropriately defined state (𝑚 −

1, 𝜓𝑚−1,Q>𝑚−1). We proceed by first defining the latter state, for which a suitable alteration of

(𝑆, 𝜋) will be shown to be optimal:

69

• Crossing set: Q>𝑚−1 is defined as the set of items in C𝑚 ⊎ Q>𝑚 that appear before the last

item in C1, . . . , C𝑚−1 with respect to the permutation 𝜋. Namely,

Q>𝑚−1 =

{
𝑖 ∈ 𝑆 ∩ (C𝑚 ⊎ Q>𝑚) : 𝜋(𝑖) < max

𝑗∈𝑆∩C[1,𝑚−1]
𝜋(𝑗)

}
. (3.8)

• Profit requirement: 𝜓𝑚−1 = [𝜓𝑚 −∑
𝑖∈𝑆\(C[1,𝑚−1]⊎Q>𝑚−1) 𝜑𝜋 (𝑖)]+.

It is worth pointing out that, for this state to be well-defined, we should ensure that Q>𝑚−1 indeed

consists of at most ⌈log2 𝑀⌉
𝜖

items. To understand why this property is satisfied, note that since

every item in Q>𝑚−1 appears in the permutation 𝜋 before the last item in 𝑆 ∩ C[1,𝑚−1] , we have

|Q>𝑚−1 | ≤ max`∈[𝑚−1] cross` (𝜋) ≤ ⌈log2 𝑀⌉
𝜖

, where the last inequality holds since (𝑆, 𝜋) is thin.

Now, let us define the pair (𝑆, �̂�), in which 𝑆 = 𝑆 ∩ (C[1,𝑚−1] ⊎ Q>𝑚−1), meaning that 𝑆 is the

restriction of 𝑆 to items belonging to either one of the clusters C1, . . . , C𝑚−1 or to Q>𝑚−1. It is not

difficult to verify that any item in 𝑆 appears in 𝜋 before any item in 𝑆 \ 𝑆, as any item in 𝑆∩C[𝑚,𝑀]

that appears before an item in C[1,𝑚−1] is necessarily a member of Q>𝑚−1. Therefore, the items in

𝑆 form a prefix of 𝜋, whereas those in 𝑆 \ 𝑆 form the remaining suffix. Given this observation, we

define the permutation �̂� : 𝑆 → [|𝑆 |] as the former prefix, or equivalently, as the restriction of 𝜋 to

the items in 𝑆.

In Lemma 3.4.9 below, we show that the pair (𝑆, �̂�) indeed resides within Thin(𝑚 −

1, 𝜓𝑚−1,Q>𝑚−1). Subsequently, we prove in Lemma 3.4.10 that this pair is in fact makespan-

optimal over the latter set. At a high level, this claim will be established by showing that, for any

pair (𝑆, �̃�) ∈ Thin(𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1), the item sets 𝑆 and 𝑆 \ 𝑆 are disjoint. Therefore, had there

been such a pair with 𝑤(𝑆) < 𝑤(𝑆), it could be extended to a pair in Thin(𝑚, 𝜓𝑚,Q>𝑚) via an

appropriate addition of 𝑆 \ 𝑆, contradicting the optimality of (𝑆, 𝜋). To avoid deviating from the

overall flow of this section, the proofs of the next two lemmas are presented in Appendices C.3.4

and C.3.5, respectively.

Lemma 3.4.9. (𝑆, �̂�) ∈ Thin(𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1).

Lemma 3.4.10. 𝑤(𝑆) = 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1).

70

Recursive equations. Given the optimal substructure characterization discussed above, we pro-

ceed by explaining how to express 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) in recursive form. In essence, had we known

what the preceding state (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) is, the remaining question would have been that of

identifying the lightest set of “extra” items E to be appended, along with their internal permutation

𝜋E : E → [|E|], under a marginal profit constraint. Formally, to capture the agreement between

crossing items, we say that state (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) is conceivable for state (𝑚, 𝜓𝑚,Q>𝑚) when

Q>𝑚−1\C𝑚 ⊆ Q>𝑚. In the opposite direction, (𝑚, 𝜓𝑚,Q>𝑚) is reachable from (𝑚−1, 𝜓𝑚−1,Q>𝑚−1)

when there exist an item set E and permutation 𝜋E : E → [|E|] that simultaneously satisfy the

following constraints:

1. Extra items: The collection of extra items can be written as E = E𝑚 ⊎ (Q>𝑚 \ Q>𝑚−1).

Here, items in E𝑚 are to be picked out of cluster C𝑚, with the exclusion of those appearing

in Q>𝑚−1, meaning that we have the constraint E𝑚 ⊆ C𝑚 \ Q>𝑚−1. Concurrently, each and

every item in Q>𝑚 \ Q>𝑚−1 should be picked.

2. Marginal profit:
∑
𝑖∈E 𝜑

⇝
𝜋E (𝑖) ≥ 𝜓𝑚 − 𝜓𝑚−1, where the term 𝜑⇝𝜋E (𝑖) denotes the profit of

item 𝑖 with respect to the permutation 𝜋E , when its completion time is increased by 𝐹 (𝑚 −

1, 𝜓𝑚−1,Q>𝑚−1). This constraint guarantees that, by appending 𝜋E to the permutation that

achieves 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1), we obtain a total profit of at least 𝜓𝑚.

Letting Extra[(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)] denote the collection of item sets and permutations that satisfy

these constraints, we mention in passing that this set may be empty. Moreover, it will be utilized

only for purposes of analysis, and in particular, we will not assume that Extra[(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)] can

be efficiently constructed. Nevertheless, the function value 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) can still be expressed

by minimizing 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) + 𝑤(E) over all conceivable states (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1)

and over all item sets and permutations (E, 𝜋E) ∈ Extra[(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)]. For convenience, when

𝐹 (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝑊𝑇 , we use Best(𝑚, 𝜓𝑚,Q>𝑚) to denote an arbitrary state (𝑚−1, 𝜓𝑚−1,Q>𝑚−1)

chosen out of those for which the minimum value 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) is attained. As mentioned earlier,

we wish to compute the maximal value 𝜓∗ that satisfies 𝐹 (𝑀, 𝜓∗, ∅) ≤ 𝑊𝑇 , as its corresponding

71

permutation guarantees a profit of at least (1 − 𝜖) · Ψ(𝜋∗).

Approximate recursion. That said, due to having a lower bound on the marginal profit, even

when Best(𝑚, 𝜓𝑚,Q>𝑚) is known, the recursive formulation above is expected to identify an item

set and permutation (E, 𝜋E) ∈ Extra[(𝑚,𝜓𝑚,Q>𝑚)
Best(𝑚,𝜓𝑚,Q>𝑚)] for which 𝑤(E) is minimized. This setting

can be viewed as an “inverse” generalized incremental knapsack problem, where the objective is

to minimize makespan rather than to maximize profit. To deal with this obstacle, we employ our

QPTAS for bounded weight ratio instances (see Section 3.3) in order to approximately solve these

recursive equations.

Specifically, for Δ ≥ 0, we say that constraint 2 is (𝜖,Δ)-satisfied when
∑
𝑖∈E 𝜑

+Δ
𝜋E (𝑖) ≥ (1 −

𝜖) · (𝜓𝑚 − 𝜓𝑚−1), where 𝜑+Δ𝜋E (𝑖) is the profit of item 𝑖 with respect to the permutation 𝜋E , when its

completion time is increased by Δ. As such, the standard sense of satisfying this constraint can be

recovered by picking 𝜖 = 0 and Δ = 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1). With this definition, we say that state

(𝑚, 𝜓𝑚,Q>𝑚) is (𝜖,Δ)-reachable from state (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) when there exist an item set E

and permutation 𝜋E : E → [|E|] that satisfy constraint 1 and (𝜖,Δ)-satisfy constraint 2; as before,

Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)] will stand for the collection of such item sets and permutations. In what

follows, we devise an auxiliary procedure for approximately solving the recursive equations, as

summarized in the next claim; for readability purposes, the proof is deferred to Appendix C.3.6.

Lemma 3.4.11. Suppose that (𝑚, 𝜓𝑚,Q>𝑚) and (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) are two given states, such

that 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝑊𝑇 and (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) = Best(𝑚, 𝜓𝑚,Q>𝑚). Given a parameter

Δ ≤ 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1), we can identify an item set Ê and permutation �̂�Ê : Ê → [|Ê |] for

which:

1. (Ê, �̂�Ê) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)].

2. 𝑤(Ê) ≤ 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) − 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1).

The running time of our algorithm is 𝑂 ((𝑛𝑇)𝑂 (1
𝜖 6 ·(log 𝑛+log𝑀)) · |I |𝑂 (1)), regardless of whether the

assumptions above hold or not.

72

With this procedure in-hand, we define an approximate value function �̂�, whose state space is

identical to that of 𝐹. However, rather than attempting to solve an inverse generalized incremental

knapsack problem, the recursive equations through which �̂� is defined will tackle the latter problem

in an approximate way via our auxiliary procedure. To formalize this approach, the function value

�̂� (𝑚, 𝜓𝑚,Q>𝑚) is evaluated as follows:

• Terminal states (𝑚 = 0): Here, we simply define �̂� (0, 𝜓0,Q>0) = 𝐹 (0, 𝜓0,Q>0). While

𝐹-values are unknown in general, 𝐹 (0, 𝜓0,Q>0) evaluates to either 𝑤(Q>0), when there

exists a permutation 𝜋Q>0 : Q>0 → [|Q>0 |] with profit Ψ(𝜋Q>0) ≥ 𝜓0, or to ∞ other-

wise. This distinction can be made by enumerating over all permutations of Q>0 in time

𝑂 ((1
𝜖

log𝑀)𝑂 (1
𝜖

log𝑀)) = 𝑂 (|I|𝑂 ((1
𝜖

log |I |)𝑂 (1))), since |Q>0 | ≤ ⌈log2 𝑀⌉
𝜖

.

• General states (𝑚 ∈ [𝑀]): For each state (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1), we instantiate

Lemma 3.4.11 with Δ = �̂� (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1), to obtain the item set Ê and its per-

mutation �̂�Ê : Ê → [|Ê |]. The value �̂� (𝑚, 𝜓𝑚,Q>𝑚) is determined by minimizing

�̂� (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) + 𝑤(Ê) over all conceivable states (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) for which

(Ê, �̂�Ê) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)], noting that the latter condition can easily be tested.

It is important to emphasize that, when employing our auxiliary procedure above, we have no way

of knowing a-priori whether the assumptions made in Lemma 3.4.11 hold or not. Nevertheless, as

we show in the next lemma, whose proof is provided in Appendix C.3.8, any profit requirement

which is attainable by the original dynamic program 𝐹 can be attained up to factor 1 − 𝜖 by our

approximate program �̂�. The precise relationship we establish between these functions can be

formally stated as follows.

Lemma 3.4.12. Let (𝑚, 𝜓𝑚,Q>𝑚) be a state for which 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝑊𝑇 . Then,

�̂� (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝐹 (𝑚, 𝜓𝑚,Q>𝑚), where the makespan �̂� (𝑚, 𝜓𝑚,Q>𝑚) is attained by an item

set 𝑆𝑚 and a permutation �̂�𝑆𝑚 : 𝑆𝑚 → [|𝑆𝑚 |] for which:

• Allowed and required items: 𝑆𝑚 ⊆ C[1,𝑚] ⊎ Q>𝑚 and Q>𝑚 ⊆ 𝑆𝑚.

73

• Profit: Ψ(�̂�𝑆𝑚) ≥ (1 − 𝜖) · 𝜓𝑚.

As previously mentioned, the primary intent of this section is to compute a permutation with

a profit of at least (1 − 2𝜖) · Ψ(𝜋sparse). To argue that we have nearly achieved this objective,

recall that Lemma 3.4.3 proves the existence of a thin pair (𝑆, 𝜋) ∈ Thin(𝑀,Ψ(𝜋sparse), ∅) with

𝐹 (𝑀,Ψ(𝜋sparse), ∅) ≤ 𝑊𝑇 . Therefore, as an immediate consequence of Lemma 3.4.12, we infer

that �̂� (𝑀,Ψ(𝜋sparse), ∅) ≤ 𝑊𝑇 , which is attained by a permutation 𝜋 with a profit of Ψ(𝜋) ≥

(1 − 𝜖) · Ψ(𝜋sparse).

The discrete program �̃�. That said, the above-mentioned existence proof still does not corre-

spond to a constructive algorithm, due to the continuity of the profit requirement parameter 𝜓𝑚.

To discretize this parameter, similarly to Section 3.2.3.3, we restrict 𝜓𝑚 to a finite set of values,

D𝜓 = {𝑑 · 𝜖 𝑝max
2𝑛 : 𝑑 ∈ [2𝑛2

𝜖
]0}. In turn, we use �̃� (𝑚, 𝜓𝑚,Q>𝑚) to denote the resulting dynamic

program over the discretized set of states, whose recursive equations are identical to those of �̂�,

except for instantiating Lemma 3.4.11 with Δ = �̃� (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1).

We conclude our analysis by lower-bounding the best-possible profit achievable through this

dynamic program, showing that it indeed matches that of the permutation 𝜋sparse up to 𝜖-related

terms. To avoid redundancy, we omit the corresponding proof, as it is nearly identical to that of

Lemma 3.2.6.

Lemma 3.4.13. There exists a value �̃� ∈ D𝜓 such that �̃� ≥ (1 − 𝜖) · Ψ(𝜋sparse) and such that

�̃� (𝑀, �̃�, ∅) ≤ 𝑊𝑇 . This makespan is attained by an item set 𝑆 and a permutation �̃�𝑆 whose profit

is Ψ(�̃�𝑆) ≥ (1 − 𝜖) · �̃� ≥ (1 − 2𝜖) · Ψ(𝜋sparse).

Running time. We first observe that the function �̃� (𝑚, 𝜓𝑚,Q>𝑚) is being evaluated over

𝑂 (𝑛𝑂 (1
𝜖

log𝑀) · |I |𝑂 (1)) possible states. To verify this claim, note that there are 𝑂 (𝑀) = 𝑂 (|I|)

choices for the cluster index 𝑚, and that the discretized profit parameter 𝜓𝑚 takes values in D𝜓 ,

with |D𝜓 | = 𝑂 (𝑛2

𝜖
). In addition, the set of crossing items Q>𝑚 is of cardinality at most ⌈log2 𝑀⌉

𝜖
,

implying that there are only 𝑂 (𝑛𝑂 (1
𝜖

log𝑀)) subsets to consider for this parameter. Now, evaluating

74

�̃� (𝑚, 𝜓𝑚,Q>𝑚) for a given state depends on its type:

• Terminal states (𝑚 = 0): As previously explained, such states are handled by enumerating

over all permutations of Q>0 in time 𝑂 (|I|𝑂 ((1
𝜖

log |I |)𝑂 (1))).

• General states (𝑚 ∈ [𝑀]): Here, each state (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) would involve a single

application of our auxiliary procedure, running in 𝑂 ((𝑛𝑇)𝑂 (1
𝜖 6 ·(log 𝑛+log𝑀)) · |I |𝑂 (1)) accord-

ing to Lemma 3.4.11. As argued above, there are only 𝑂 (𝑛𝑂 (1
𝜖

log𝑀) · |I |𝑂 (1)) states of the

form (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) to be considered.

Overall, we incur a running time of 𝑂 (|I|𝑂 ((1
𝜖

log |I |)𝑂 (1))), as stated in Theorem 3.4.1.

3.5 Experimental results

In this section, we give computational results that compare the performance of the (1
2 − 𝜖)-

approximated algorithm presented in Section 3.2 with the performance of a LP rounding procedure

as well as with the integer programming solver Gurobi. In Section 3.5.1, we discuss in detail each

of the algorithms tested. In Section 3.5.2, we discuss the generation of the instances and the settings

of the experiments. Finally, in Section 3.5.3, we compare the results of the algorithms and discuss

their implications.

3.5.1 Algorithms tested

LP rounding approach. In the LP rounding approach, we give the solver the linear relaxation

of (GIK-IP) given in Section 1.2.1 where the binary constraints for each variable 𝑥𝑖,𝑡 are replaced

with 0 ≤ 𝑥𝑖,𝑡 ≤ 1. The linear relaxation is solved to optimality as to obtain 𝑥. Since 𝑥 may contain

fractional coordinates, it may not be feasible for the generalized incremental knapsack instance.

To restore feasibility, we return the rounded integral solution ⌊𝑥⌋ as our final solution. It is easy to

see that ⌊𝑥⌋ is feasible for (GIK-IP).

(1
2 − 𝝐)-approximation. We implement the (1

2 −𝜖)-approximated algorithm from Section 3.2 for

𝜖 = 1
3 . Recall that the algorithm relies on reformulating the problem as a sequencing problem on

75

a single machine. Following the reformulation, the profit function is decomposed into heavy and

light items contributions. We then proposed two approximation schemes, one for heavy contribu-

tions and one for light contributions. We separately present the computational results for each of

these two approximation schemes.

3.5.2 Instance generation and experimental setup

Table 3.1 (resp. Table 3.2) tests the same instances as Table 2.1 (resp. Table 2.2). The instance

generation details can be found in Section 2.5.2. Thus, the performance between the 𝑐-flexible

algorithms from Section 2.3, the (1
2 − 𝜖)-approximated algorithm, and the LP rounding approach

are directly comparable across these tables. For the (1
2 − 𝜖)-approximation, the heavy algorithm

relies on dynamic programming ideas which is polynomial in theory, but requires a state space that

is too large to be solved efficiently in practice, even for relatively small problem sizes. Hence, we

only report the number of states required for the dynamic program.

As is the case from Section 2.5.2, for all problem sizes except 𝑛 = 𝑇 = 3000, for each of the

algorithm tested, the “Mean difference” columns report the mean difference with respect to the so-

lution that Gurobi outputs. For 𝑛 = 𝑇 = 3000, Gurobi and LP rounding runs out of memory and are

not able to return feasible solutions. Hence, the “Mean difference” columns for the light algorithm

in Tables 3.1 and 3.2 report the mean difference with respect to the fully-flexible algorithm from

Tables 2.1 and 2.2 respectively.

3.5.3 Results and discussion

Similar to the running time of the fully flexible and 2-flexible algorithms tested in Tables 2.1

and 2.2, the light algorithm and the LP rounding approach generally takes slightly longer to solve

for problems with correlated weights and profits compared to problems with random and uncorre-

lated weights and profits. We remark that the simple LP rounding approach typically takes longer

to solve compared to the 𝑐-flexible algorithms from Tables 2.1 and 2.2, even though the 𝑐-flexible

algorithms require the solutions to 𝑇 knapsack problems.

76

Problem
Size

Gurobi
Results

LP Rounding (1
2 − 𝜖)-approximation
Light Heavy

𝑛 𝑇
Optimality
Gap

Time
(Sec)

Mean
difference

Time
(Sec)

Mean
difference

Time
(Sec) States

50 50 1% 175 49.7% 0.1 20.5% 0.2 3.8 × 1022

100 100
5% 4.3 35.4%

1.1
14.6%

1.1 1.9× 10383% 210 35.9% 15.4%
2% 1534 36.0% 15.5%

500 500
5% 98 15.0%

69
9.6%

2.7
1.5 ×
101603% 100 15.1% 9.7%

2% 125 15.6% 10.3%
3000 3000 100% - 100% - 7.8% 63.9 2.4 × 10914

Table 3.1: Correlated weights and profits, Gurobi and (1
2 − 𝜖)-approximated algorithm for 𝜖 = 1

3 .
The mean difference of the light algorithm is with respect to the solution obtained by the fully
flexible algorithm from Table 2.1.

Problem
Size

Gurobi
Results

LP Rounding (1
2 − 𝜖)-approximation
Light Heavy

𝑛 𝑇
Optimality
Gap

Time
(Sec)

Mean
difference

Time
(Sec)

Mean
difference

Time
(Sec) States

50 50 1% 0.6 5.9% 0.1 68.3% 0.3 3.6 × 1022

100 100 1% 2.4 5.2% 0.3 65.5% 0.4 1.9 × 1038

500 500 1% 25.3 2.1% 30.6 57.9% 2.6 1.5 × 10160

3000 3000 100% - 100% - 18.8% 84.9 2.4 × 10914

Table 3.2: Random and uncorrelated weights and profits, Gurobi and (1
2 − 𝜖)-approximated algo-

rithm for 𝜖 = 1
3 . The mean difference of the light algorithm is with respect to the solution obtained

by the fully flexible algorithm from Table 2.2.

For the LP rounding based algorithm, since it requires only the solution of a linear program,

it is quite efficient for relative small problem sizes. However, without a theoretical approximation

guarantee, it can perform relatively poorly, especially for instances of small problem sizes on

correlated instances (See Table 3.1). For the problem size of 𝑛 = 𝑇 = 3000, even solving a

linear program proves to be too memory-intensive. The light items algorithm runs efficiently,

even on large instances. However, while the better of the heavy and light algorithm achieves an

approximation factor of 1
2 −𝜖 , each algorithm by itself does not have any theoretical approximation

guarantee. Hence, the light algorithm solutions are generally considerably worse than those given

by Gurobi and the 𝑐-flexible algorithm, especially for random and uncorrelated weights and profits

77

(See Tables 2.2 and 3.2).

We remark that the algorithms presented in Sections 3.3 and 3.4 were not implemented for

comparison, as even one round of the algorithm given in Section 3.3 is quasi-polynomial in running

time and more expensive than the implementation of the heavy algorithm.

78

Chapter 4: Some easier, and some not harder, incremental knapsack

problems

4.1 Introduction

In this chapter, we investigate variations to the incremental knapsack problems. Our first and

most interesting result of this chapter deals with the incremental knapsack problem whose objec-

tive function is defined through a monotone submodular all-or-nothing function (IK-AoN). Such

functions are a common generalization of linear functions and rank functions of matroids. Some-

what surprisingly, we show that IK-AoN can be reduced to the linear case, and hence, using results

from the literature, has a PTAS [4]. This is shown in Section 4.2.

In Section 4.3, we give a PTAS for the generalized incremental knapsack problem when 𝑇

is bounded. This approach relies on the fact that there always exists an optimal solution to the

linear relaxation of (GIK-IP) with the number of fractional components depending only on 𝑇 (in

particular, independent of 𝑛). Hence, standard guessing and rounding techniques can be employed

when the number of times is assumed to be bounded.

In Section 4.4, we study the generalized incremental problem when, for every item 𝑖 ∈ [𝑛],

there is a unique time 𝑡 such that 𝑝𝑖,𝑡 > 0. For all other times 𝜏 ≠ 𝑡, we assume the profit is

𝑝𝑖,𝜏 = 0. In such a case, for each item, there is a unique time in which it should be inserted into

the knapsack, or it will not be inserted into the knapsack at all. With this insight, we modify the

dynamic programming that gives an FPTAS for the classical knapsack problem to also give an

FPTAS for this special case.

79

4.2 Algorithm for the monotone submodular all-or-nothing incremental knapsack problem

In this section, we give an algorithm that proves Theorem 1.3.4, reprinted below for con-

venience. Recall from Section 1.4.1 that IK is the linear variant to IK-AoN. Namely, the two

problems have identical feasibility conditions, and the same input parameters 𝑝𝑖 for every 𝑖 ∈ [𝑛]

and Δ𝑡 for every 𝑡 ∈ [𝑇]. For every item 𝑖 in the knapsack at time 𝑡, it earns the full profit of Δ𝑡 𝑝𝑖.

The profit of any chain S in an IK instance is therefore given by Φ(S) = ∑
𝑡∈[𝑇] Δ𝑡

∑
𝑖∈𝑆𝑡 𝑝𝑖. For

a family C of instances of IK-AoN, we call a family C of IK instances the linearization of C if

C consists of I′ if and only if I′ is defined as follows: starting from an instance I ∈ C with the

ground set of items [𝑛] with profits 𝑝, after dropping some items (and possibly after renaming),

we have I′ on the ground set of item [𝑛′] ⊆ [𝑛] and a new (linear) function 𝛾′ such that for every

𝑆 ⊆ [𝑛′], we have the linear profit 𝛾′(𝑆) = 𝑝(𝑆).

Theorem 1.3.4. Let C be a family of IK-AoN instances and let 𝛼 ∈ [0, 1]. If there is an 𝛼-

approximation algorithm for instances in C, then there is an 𝛼-approximation algorithm for in-

stances in C running in time 𝑂 (Time𝛼 (𝑛, 𝑇) + 𝑛𝑇), where Time𝛼 (𝑛, 𝑇) is the running time of the

𝛼-approximation algorithm for instances in C with 𝑛 items and 𝑇 time periods.

In Section 4.2.1, we give the algorithm that, given an instance of IK-AoN, creates a linearized

instance of the problem. We then give a high-level overview of how the algorithm leads to the

proof of Theorem 1.3.4. In Section 4.2.2, we show some properties of the monotone submodular

all-or-nothing function 𝛾 and give conditions for when a set has linear profits for this function.

In Section 4.2.3, we show further properties of 𝛾 when we assume every item in the ground set

has the same profit. This leads us to a decomposition theorem in Section 4.2.4 that may be of

independent interest. Specifically, we show that monotone submodular all-or-nothing functions

can be characterized by the sum of scaled ranked functions of matroids. Finally, in Section 4.2.5,

we tie the properties together to give a proof of Theorem 1.3.4.

80

4.2.1 The linearization algorithm

In this section, we first present the algorithm that achieves Theorem 1.3.4. We then give a

high-level overview before proceeding with the proofs in subsequent sections.

Preliminaries. We mentioned in Section 1.4.1 that the IK-AoN is a generalization of the incre-

mental knapsack problem and the matroid rank function maximization. In the following example,

we discuss the matroid rank function maximization in more detail.

Example 4.2.1 (Matroid rank profits). Let Δ𝑡 = 1 for every 𝑡 ∈ [𝑇] and 𝛾 be the rank function

of a matroid. Hence, our goal is to find sequence of sets 𝑆1 ⊆ · · · ⊆ 𝑆𝑇 so that 𝑤(𝑆𝑡) ≤ 𝑊𝑡

for every 𝑡 ∈ [𝑇] and the sum of their ranks is maximized. By a perturbation of the classical

proof of the optimality of the greedy algorithm to find an independent set of maximum weight,

see, for example [18, Chapter 8], or by Lemma 4.2.10 proved later in this chapter, one deduces

that the optimal solution can be obtained with a greedy procedure. In particular: Sort the items

[𝑛] = {1, 2, . . . , 𝑛} such that 𝑤1 ≤ · · · ≤ 𝑤𝑛. For 𝑡 = 1, . . . , 𝑇 , first set 𝑆𝑡 = 𝑆𝑡−1 (with 𝑆0 = ∅).

Then, for 𝑖 ∈ [𝑛], let 𝑆𝑡 = 𝑆𝑡 ∪ {𝑖} if 𝑤(𝑆𝑡 ∪ {𝑖}) ≤ 𝑊𝑡 and 𝑆𝑡 ∪ {𝑖} is independent.

Motivated by the rank function of 𝑟 of a matroid, where 𝑟 (𝑆) = |𝑆 | if and only if 𝑆 is indepen-

dent, we call a set 𝑆 ⊆ [𝑛] independent if 𝛾(𝑆) = ∑
𝑖∈𝑆 𝑝𝑖, dependent otherwise.

The algorithm.

1. Let I be an instance of on items [𝑛] with profits 𝑝 and profit function 𝛾.

2. Partition [𝑛] into (P1, . . . ,P𝑘) so that, for ℓ ∈ [𝑘], all items in Pℓ have profit 𝑝 (ℓ) , and

0 < 𝑝 (1) < 𝑝 (2) < · · · < 𝑝 (𝑘) .

3. For each ℓ ∈ [𝑘], we create independent sets P 𝐼
ℓ
⊆ Pℓ as follows:

(a) Let Pℓ = {𝑒ℓ1, . . . , 𝑒
ℓ

𝑚ℓ
} such that 𝑤𝑒ℓ1 ≤ · · · ≤ 𝑤𝑒ℓ

𝑚ℓ
.

(b) Set P 𝐼
ℓ
= ∅.

81

(c) For each 𝑗 ∈ [𝑚ℓ],

• if P 𝐼
ℓ
∪ {𝑒ℓ

𝑗
} is independent, set P 𝐼

ℓ
= P 𝐼

ℓ
∪ {𝑒ℓ

𝑗
}.

4. Define an incremental knapsack instance I′ with items ∪ℓ∈[𝑘]P 𝐼
ℓ
, same weights and capaci-

ties as I, and 𝑝′
𝑖
= 𝑝𝑖 for all 𝑖 ∈ ∪ℓ∈[𝑘]P 𝐼

ℓ
.

5. Apply the 𝛼-approximation algorithm to the incremental knapsack instance I′ as to obtain

feasible chain S.

6. Output S.

A high-level view of the proof of Theorem 1.3.4. We saw that the linear incremental knapsack

case and the matroid case are special settings of IK-AoN. Our approach shows conversely that

combining tools from these two settings suffices to solve IK-AoN.

First, we can assume that all sets of the form {𝑖} for 𝑖 ∈ [𝑛] are independent – else, by submod-

ularity, 𝛾(𝑆) = 𝛾(𝑆\{𝑖}) for all 𝑆 ⊆ [𝑛], and we can consider the problem restricted to [𝑛] \ {𝑖}. In

our setting, independent sets share with the matroid setting classical properties, e.g., independence

is preserved under taking subsets, see Lemma 4.2.3.

We call a chain S = (𝑆1, . . . , 𝑆𝑇) independent if 𝑆1, . . . , 𝑆𝑇 are independent (equivalently,

if 𝑆𝑇 is independent). Observe that, in Example 4.2.1, there is always an optimal chain that is

independent. The same happens if the instance is an incremental knapsack problem, since all

chains are trivially independent. As our first step, we show in Lemma 4.2.6 that, also in the

IK-AoN setting, we can restrict to consider independent chains only, because one such chain is

optimal.

How do independent chains look like? As our second step, we show that dependency can only

be created among sets with the same profit. More formally, let (P1, . . . ,P𝑘) be the partition of [𝑛]

given by the algorithm. That is, for ℓ ∈ [𝑘], all items in the profit class Pℓ have profit 𝑝 (ℓ) , and

0 < 𝑝 (1) < 𝑝 (2) < · · · < 𝑝 (𝑘) . If for ℓ ∈ [𝑘], 𝑆ℓ ⊆ Pℓ is independent, ∪ℓ∈[𝑘]𝑆ℓ is also independent.

See Lemma 4.2.7 and Lemma 4.2.8.

82

Hence, we can “slice” the ground set [𝑛] by profit, and focus on understanding independent

sets contained in each given profit class Pℓ separately. Lemma 4.2.9 implies that the classical

greedy algorithm for matroids can be employed to find an independent set P 𝐼
ℓ

of Pℓ of minimum

weight. This leads to a characterization of monotone submodular all-or-nothing function as the

sum of scaled ranks of matroids: see Theorem 4.2.11.

As we show in Lemma 4.2.10, we can assume that the restriction to Pℓ of any optimal in-

dependent chain is, without loss of generality, contained in P 𝐼
ℓ
. So we can restrict to consider

independent sets contained in P 𝐼
ℓ
. By monotonicity, all subsets of P 𝐼

ℓ
are independent. So we can

just consider the linearized problem where we remove from each profit class items in Pℓ \ P 𝐼
ℓ
. On

this problem, we can apply the 𝛼-approximation algorithm whose existence is guaranteed by the

hypothesis of Theorem 1.3.4, and the thesis follows.

4.2.2 Independent sets

To study independent sets, we first introduce some relevant concepts and properties, mostly

extending the analogous ones for matroids.

Dependent sets, cycles and monotonicity. We call a set 𝐶 ⊆ [𝑛] a cycle if 𝐶 is dependent and

for every 𝑖 ∈ 𝐶, 𝐶 \ {𝑖} is independent.

The next lemma guarantees that every dependent set contains a cycle. The proof can be found

in Appendix D.1.1.

Lemma 4.2.2. Let 𝑆 ⊆ [𝑛] be dependent. Then there exists 𝐶 ⊆ 𝑆 such that 𝐶 is a cycle.

We show in the next lemma that the property of being independent is monotone with respect to

set inclusion. Its proof is provided in Appendix D.1.2.

Lemma 4.2.3. Let 𝑆′ ⊆ 𝑆 ⊆ [𝑛]. If 𝑆 is independent, then 𝑆′ is independent.

The next lemma shows that for any set 𝑆, there exists an independent subset of 𝑆 with equal

profit. Its proof can be found in Appendix D.1.3.

83

Lemma 4.2.4. For any set 𝑆 ⊆ [𝑛], there exists an independent set 𝑆′ ⊆ 𝑆 such that 𝛾(𝑆) =

𝛾(𝑆′) = ∑
𝑖∈𝑆′ 𝑝𝑖.

Restriction to independent chains. Recall that we call a chain S = (𝑆1, . . . , 𝑆𝑇) independent

if 𝑆1, . . . , 𝑆𝑇 are independent (using Lemma 4.2.3, this is equivalent to 𝑆𝑇 being independent). In

the case of incremental knapsack problems where the objective function is linear, all chains are

trivially independent. It is immediate to see that the converse is also true.

Observation 4.2.5. Let I be an IK-AoN instance. All chains of I are independent if and only if

I is an instance of IK.

As we show next, in IK-AoN, we can also restrict our attention to independent chains.

Lemma 4.2.6. Every IK-AoN instance admits an optimal chain that is independent.

Proof. Let S∗ = (𝑆∗1, . . . , 𝑆
∗
𝑇
) denote an optimal chain. For every 𝑖 ∈ 𝑆∗

𝑇
, let 𝑡 (𝑖) be the insertion

time of item 𝑖 with respect to S∗. We assume without loss of generality that

𝑝𝑖 = 𝛾(𝑆∗𝑡 (𝑖)) − 𝛾(𝑆
∗
𝑡 (𝑖) \ {𝑖}). (4.1)

Else, we claim that the chain S = (𝑆1, 𝑆2, . . . , 𝑆𝑇) with 𝑆𝑡 = 𝑆∗𝑡 \{𝑖} for 𝑡 ∈ [𝑇] is also optimal, and

we can iteratively remove items that do not satisfy (4.1). Suppose in fact 𝛾(𝑆∗
𝑡 (𝑖))−𝛾(𝑆

∗
𝑡 (𝑖)\{𝑖}) = 0.

Then

0 = 𝛾(𝑆∗
𝑡 (𝑖)) − 𝛾(𝑆

∗
𝑡 (𝑖) \ {𝑖}) ≥ 𝛾(𝑆

∗
𝑡) − 𝛾(𝑆∗𝑡 \ {𝑖})

for every 𝑡 ≥ 𝑡 (𝑖) by submodularity and the definition of a chain. Hence, 𝛾(𝑆∗𝑡) = 𝛾(𝑆∗𝑡 \ {𝑖}) for

all 𝑡 ≥ 𝑡 (𝑖). Since for 𝑡 ∈ [𝑡 (𝑖) − 1] we have 𝑆𝑡 = 𝑆∗𝑡 , the claim follows. We therefore assume

that (4.1) holds for all 𝑖 ∈ 𝑆∗
𝑇

.

By way of contradiction, suppose S∗ is not independent. Thus, there exists some 𝑡 ∈ [𝑇]

and 𝑖 ∈ 𝑆∗𝑡 such that 𝛾(𝑆∗𝑡 \ {𝑖}) = 𝛾(𝑆∗𝑡). Let 𝜏(𝑖) be the smallest time 𝑡 ∈ [𝑇] where 0 =

84

𝛾(𝑆∗𝑡) − 𝛾(𝑆∗𝑡 \ {𝑖}). We know that 𝜏(𝑖) > 𝑡 (𝑖) ≥ 1. Furthermore, 𝑆∗
𝜏(𝑖) \ 𝑆

∗
𝜏(𝑖)−1 ≠ ∅, else

𝛾(𝑆∗
𝜏(𝑖)) − 𝛾(𝑆

∗
𝜏(𝑖) \ {𝑖}) = 𝛾(𝑆

∗
𝜏(𝑖)−1) − 𝛾(𝑆

∗
𝜏(𝑖)−1 \ {𝑖}) ≠ 0,

contradicting the choice of 𝜏(𝑖). Let { 𝑗1, . . . , 𝑗𝑘 } = 𝑆∗𝜏(𝑖) \ 𝑆
∗
𝜏(𝑖)−1. For ℓ ∈ [𝑘], since the insertion

time of 𝑗ℓ is 𝜏(𝑖), we know that 𝑝 𝑗ℓ = 𝛾(𝑆∗𝜏(𝑖)) − 𝛾(𝑆
∗
𝜏(𝑖) \ { 𝑗ℓ}). Furthermore,

𝑝 𝑗ℓ = 𝛾(𝑆∗𝜏(𝑖)−1 ∪ { 𝑗1, . . . , 𝑗ℓ}) − 𝛾(𝑆∗𝜏(𝑖)−1 ∪ { 𝑗1, . . . 𝑗ℓ−1}). (4.2)

by submodularity since 𝑆∗
𝜏(𝑖)−1 ∪ { 𝑗1, . . . , 𝑗ℓ−1} ⊆ 𝑆∗

𝜏(𝑖) \ { 𝑗ℓ}. By a similar reasoning,

𝑝 𝑗ℓ = 𝛾(𝑆∗𝜏(𝑖)−1 \ {𝑖} ∪ { 𝑗1, . . . , 𝑗ℓ}) − 𝛾(𝑆∗𝜏(𝑖)−1 \ {𝑖} ∪ { 𝑗1, . . . 𝑗ℓ−1}). (4.3)

We have

𝑘∑︁
ℓ=1

𝑝 𝑗ℓ = 𝛾(𝑆∗𝜏(𝑖)−1 ∪ { 𝑗1, . . . , 𝑗𝑘 }) − 𝛾(𝑆∗𝜏(𝑖)−1) = 𝛾(𝑆
∗
𝜏(𝑖)) − 𝛾(𝑆

∗
𝜏(𝑖)−1),

where the first equality follows by summing together (4.2) for all ℓ ∈ [𝑘], and then by telescoping

cancellations, and the second equality follows from definition.

Similarly, summing together (4.3) for all ℓ ∈ [𝑘], we have

𝑘∑︁
ℓ=1

𝑝 𝑗ℓ = 𝛾(𝑆∗𝜏(𝑖)−1 \ {𝑖} ∪ { 𝑗1, . . . , 𝑗𝑘 }) − 𝛾(𝑆∗𝜏(𝑖)−1 \ {𝑖}) = 𝛾(𝑆
∗
𝜏(𝑖) \ {𝑖}) − 𝛾(𝑆

∗
𝜏(𝑖)−1 \ {𝑖}).

Combining the above two equalities, we have

𝛾(𝑆∗
𝜏(𝑖)) − 𝛾(𝑆

∗
𝜏(𝑖)−1) = 𝛾(𝑆

∗
𝜏(𝑖) \ {𝑖}) − 𝛾(𝑆

∗
𝜏(𝑖)−1 \ {𝑖}) ⇒ 𝛾(𝑆∗

𝜏(𝑖)−1) = 𝛾(𝑆
∗
𝜏(𝑖)−1 \ {𝑖}),

where the second equality follows since by assumption 0 = 𝛾(𝑆∗
𝜏(𝑖)) − 𝛾(𝑆

∗
𝜏(𝑖) \ {𝑖}). We have

reached a contradiction since we assumed 𝜏(𝑖) is the smallest time such that 0 = 𝛾(𝑆∗𝑡) − 𝛾(𝑆∗𝑡 \

85

{𝑖}). □

Splitting and merging sets. The next lemma shows that each dependent set contains a dependent

set containing only items of equal profit.

Lemma 4.2.7. Let 𝑆 ⊆ [𝑛] be dependent. Then there exists 𝑆′ ⊆ 𝑆 where 𝑆′ is dependent and for

any 𝑖, 𝑗 ∈ 𝑆′, 𝑝𝑖 = 𝑝 𝑗 .

Proof. We prove the statement by induction on |𝑆 |. Let |𝑆 | = 1. Since we assume all sets of

cardinality 1 are independent, the statement is vacuously true. For the general case, let 𝐶 ⊆ 𝑆 be a

cycle, whose existence is guaranteed by Lemma 4.2.2. If |𝐶 | < |𝑆 |, then by inductive hypothesis,

there exists 𝑆′ ⊆ 𝐶 ⊆ 𝑆 such that 𝑆′ is dependent and contain only items with equal profits. Else,

𝑆 is a cycle. For all 𝑖 ∈ 𝑆, 𝑆 \ {𝑖} is independent, that is, 𝛾(𝑆 \ {𝑖}) = ∑
𝑗∈𝑆\{𝑖} 𝑝 𝑗 . Furthermore,

𝛾(𝑆) = 𝛾(𝑆 \ {𝑖}), else if

𝛾(𝑆) > 𝛾(𝑆 \ {𝑖}) =
∑︁
𝑗∈𝑆\{𝑖}

𝑝 𝑗 ,

we must have 𝛾(𝑆) = ∑
𝑗∈𝑆 𝑝 𝑗 , and 𝑆 is independent as well, a contradiction.

Thus, for 𝑖, 𝑗 ∈ 𝑆,

∑︁
ℓ∈𝑆\{𝑖}

𝑝ℓ = 𝛾(𝑆) =
∑︁

ℓ∈𝑆\{ 𝑗}
𝑝ℓ .

Cancelling out all 𝑝ℓ for ℓ ∉ {𝑖, 𝑗} in the equality above, we get 𝑝𝑖 = 𝑝 𝑗 . Taking 𝑆′ = 𝑆 concludes

the proof. □

Let 𝑆1, . . . , 𝑆𝑘 be the restriction of 𝑆 to each profit class P1, . . . ,P𝑘 . The next lemma shows

that, in order to compute the function 𝛾 on a set 𝑆, we can sum the profits of 𝑆1, . . . , 𝑆𝑘 . In

particular, if 𝑆1, . . . , 𝑆𝑘 are all independent, so is their union.

Lemma 4.2.8. Let 𝑆1 ⊆ P1, . . . , 𝑆
𝑘 ⊆ P𝑘 . Then 𝛾(∪ℓ∈[𝑘]𝑆ℓ) =

∑
ℓ∈[𝑘] 𝛾(𝑆ℓ). In particular, if

𝑆1 . . . , 𝑆𝑘 are independent, so is ∪ℓ∈[𝑘]𝑆ℓ.

86

Proof. First, we will show that 𝛾(∪ℓ∈[𝑘]𝑆ℓ) ≤
∑
ℓ∈[𝑘] 𝛾(𝑆ℓ). This follows by submodularity of 𝛾.

In particular,

𝛾(𝑆1) + · · · + 𝛾(𝑆𝑘) ≥ 𝛾(𝑆1 ∪ 𝑆2) + 𝛾(𝑆3) + · · · + 𝛾(𝑆𝑘)

≥ 𝛾(∪𝑘∈[3]𝑆𝑘) + 𝛾(𝑆4) + · · · + 𝛾(𝑆𝑘)
...

≥ 𝛾(∪ℓ∈[𝑘]𝑆ℓ).

Here, in every inequality, we are using, for every 𝑘′ ∈ [𝑘] and 𝑘′ ≥ 2,

𝛾(∪ℓ∈[𝑘 ′−1]𝑆
ℓ) + 𝛾(𝑆𝑘 ′) ≥ 𝛾(∪ℓ∈[𝑘 ′]𝑆ℓ) + 𝛾((∪ℓ∈[𝑘 ′−1]𝑆

ℓ) ∩ 𝑆𝑘 ′)

= 𝛾(∪ℓ∈[𝑘 ′]𝑆ℓ),

where the first inequality follows since 𝛾 is submodular, and the second inequality follows since

(∪ℓ∈[𝑘 ′−1]𝑆
ℓ) ∩ 𝑆𝑘 ′ = ∅ and 𝛾(∅) = 0.

Next, we will show that 𝛾(∪ℓ∈[𝑘]𝑆ℓ) ≥
∑
ℓ∈[𝑘] 𝛾(𝑆ℓ). For each 𝑆ℓ, by Lemma 4.2.4, there exists

𝑆ℓ,𝐼 ⊆ 𝑆ℓ such that 𝑆ℓ,𝐼 is independent and 𝛾(𝑆ℓ) = 𝛾(𝑆ℓ,𝐼) =
∑
𝑖∈𝑆ℓ,𝐼 𝑝𝑖 . Summing the equality

over all ℓ ∈ [𝑘], we have ∑︁
ℓ∈[𝑘]

𝛾(𝑆ℓ) =
∑︁
ℓ∈[𝑘]

𝛾(𝑆ℓ,𝐼). (4.4)

Next, we claim that ∪ℓ∈[𝑘]𝑆ℓ,𝐼 is also independent. To see this, by the contrapositive of

Lemma 4.2.7, if there does not exist 𝑆′ ⊆ ∪ℓ∈[𝑘]𝑆ℓ,𝐼 such that 𝑆′ is dependent and all elements

in 𝑆′ have equal profits, then ∪ℓ∈[𝑘]𝑆ℓ,𝐼 must be independent. If such an 𝑆′ exist, 𝑆′ ⊆ 𝑆ℓ,𝐼 for

some ℓ ∈ [𝑘], else 𝑆′ contains elements of distinct profits. By construction, 𝑆ℓ,𝐼 is independent.

Therefore, all subsets of 𝑆ℓ,𝐼 must be independent by Lemma 4.2.3. Thus, 𝑆′ does not exist and we

conclude ∪ℓ∈[𝑘]𝑆ℓ,𝐼 is independent. Hence, we have

87

𝛾(∪ℓ∈[𝑘]𝑆ℓ,𝐼) =
∑︁

𝑖∈∪ℓ∈[𝑘]𝑆ℓ,𝐼
𝑝𝑖

=
∑︁
ℓ∈[𝑘]

∑︁
𝑖∈𝑆ℓ,𝐼

𝑝𝑖

=
∑︁
ℓ∈[𝑘]

𝛾(𝑆ℓ,𝐼)

=
∑︁
ℓ∈[𝑘]

𝛾(𝑆ℓ),

where the first equality follows from the independence of ∪ℓ∈[𝑘]𝑆ℓ,𝐼 , the second equality follows

since 𝑆1,𝐼 , . . . 𝑆𝑘,𝐼 are pairwise disjoint, the third equality follows since 𝑆ℓ,𝐼 is independent for

ℓ ∈ [𝑘], and the final equality follows from (4.4). Finally, note that since ∪ℓ∈[𝑘]𝑆ℓ,𝐼 ⊆ ∪ℓ∈[𝑘]𝑆ℓ, we

have 𝛾(∪ℓ∈[𝑘]𝑆ℓ) ≥ 𝛾(∪ℓ∈[𝑘]𝑆ℓ,𝐼) by monotonicity. We conclude that 𝛾(∪ℓ∈[𝑘]𝑆ℓ) ≥
∑
ℓ∈[𝑘] 𝛾(𝑆ℓ).

As a direct consequence of 𝛾(∪ℓ∈[𝑘]𝑆ℓ) =
∑
ℓ∈[𝑘] 𝛾(𝑆ℓ), if 𝑆1, . . . , 𝑆𝑘 are independent, then

𝛾(∪ℓ∈[𝑘]𝑆ℓ) =
∑︁
ℓ∈[𝑘]

𝛾(𝑆ℓ)

=
∑︁
ℓ∈[𝑘]

∑︁
𝑖∈𝑆ℓ

𝑝𝑖

=
∑︁

𝑖∈∪ℓ∈[𝑘]𝑆ℓ
𝑝𝑖,

where the second equality follows since 𝑆ℓ is independent and the final equality follows since

𝑆1, . . . , 𝑆𝑘 are pairwise disjoint. We conclude that ∪ℓ∈[𝑘]𝑆ℓ is also independent. □

4.2.3 Independent sets in single profit classes

Slicing by profit. Let [𝑛] be the ground set of an IK-AoN instance. We partition [𝑛] into sets

P1, . . . ,P𝑘 by profit. That is, for any ℓ ∈ [𝑘] and for any 𝑖, 𝑗 ∈ Pℓ, we have 𝑝𝑖 = 𝑝 𝑗 ; for any

ℓ ≠ ℓ′ ∈ [𝑘] and any 𝑖 ∈ Pℓ, 𝑗 ∈ Pℓ′, we have 𝑝𝑖 ≠ 𝑝 𝑗 .

Lemma 4.2.9. For any ℓ ∈ [𝑘], let Mℓ ⊆ 2Pℓ denote the family of independent sets of Pℓ. Then

88

(Pℓ,Mℓ) forms a matroid.

Proof. Trivially, ∅ ∈ Mℓ. For any set 𝑆 ∈ Mℓ and any 𝑆′ ⊆ 𝑆, if 𝑆 is independent, so is 𝑆′ by

Lemma 4.2.3.

It remains to verify that given any 𝐴 ⊆ Pℓ and inclusionwise maximal independent sets 𝑆, 𝑆′ ⊆

𝐴, we have |𝑆 | = |𝑆′|. By way of contradiction, without loss of generality, assume |𝑆 | > |𝑆′|. Let

{𝑒1, . . . , 𝑒𝑘 } = 𝑆 \ 𝑆′, which we know to be nonempty since |𝑆 | > |𝑆′|. Let 𝑝 (ℓ) denote the unique

profit of every item 𝑖 ∈ Pℓ. Since we know that both 𝑆 and 𝑆′ are independent, by monotonicity

𝛾(𝑆 ∪ 𝑆′) ≥ 𝛾(𝑆) = |𝑆 | · 𝑝 (ℓ) > |𝑆′| · 𝑝 (ℓ) = 𝛾(𝑆′). (4.5)

Since 𝑆′∪(𝑆\𝑆′) = 𝑆∪𝑆′ and 𝛾(𝑆∪𝑆′) > 𝛾(𝑆′), we claim that there must exist item 𝑒 ∈ 𝑆\𝑆′ ⊆ 𝐴

such that 𝛾(𝑆′ ∪ {𝑒}) = 𝛾(𝑆′) + 𝑝 (ℓ) , a contradiction since we assumed 𝑆′ to be maximal in 𝐴.

Indeed, if 𝛾(𝑆′ ∪ {𝑒}) = 𝛾(𝑆′) for all 𝑒 ∈ 𝑆 \ 𝑆′, we have by submodularity that, for 𝑖 ∈ [𝑘],

0 = 𝛾(𝑆′ ∪ {𝑒}) − 𝛾(𝑆′) ≥ 𝛾(𝑆′ ∪ {𝑒1, . . . , 𝑒𝑖}) − 𝛾(𝑆′ ∪ {𝑒1, . . . , 𝑒𝑖−1}).

Hence by telescoping sum

𝛾(𝑆 ∪ 𝑆′) − 𝛾(𝑆′) = 𝛾(𝑆′ ∪ {𝑒1, . . . , 𝑒𝑘 }) − 𝛾(𝑆′) ≤ 0,

contradicting (4.5). □

Restriction to independent sets of minimum weight. Let P1, . . . ,P𝑘 be the partition of [𝑛]

into profit classes and let P 𝐼
1 , . . . ,P

𝐼
𝑘

be the corresponding independent sets as defined by the al-

gorithm in Section 4.2.1. Note that the set P 𝐼
ℓ

output by the algorithm is an inclusionwise maximal

independent set of Pℓ. We create a sub-instance of I, which we denote Iℓ by restricting to items

in Pℓ with the same profit, weight and feasibility constraints as the original instance, I. Similarly,

we create a sub-instance of Iℓ, which we denote by I 𝐼
ℓ

, restricted to the items in P 𝐼
ℓ
, with the same

89

profit, weight, and feasibility constraints. Note that since P 𝐼
ℓ

is an independent set, all subsets of

P 𝐼
ℓ

are also independent by Lemma 4.2.3. Therefore, by Observation 4.2.5, I 𝐼
ℓ

is an instance of

the incremental knapsack problem.

Lemma 4.2.10. Given any independent chain S for Iℓ, there exists an independent chain S′ for

I 𝐼
ℓ

such that 𝛾(𝑆𝑡) = 𝛾(𝑆′𝑡) and 𝑤(𝑆′𝑡) ≤ 𝑤(𝑆𝑡) for all 𝑡 ∈ [𝑇].

Proof. We construct S′ as follows. For every 𝑡 ∈ [𝑇], let 𝑆′𝑡 be the |𝑆𝑡 | items of minimum weight

in P 𝐼
ℓ
, breaking ties following the order of the items in Pℓ. Since S is a chain, |𝑆1 | ≤ · · · ≤ |𝑆𝑇 |.

Therefore 𝑆′1 ⊆ · · · ⊆ 𝑆′
𝑇

, that is, S′ is a chain.

By Lemma 4.2.9, (Pℓ,Mℓ) forms a matroid. Since P 𝐼
ℓ

is an inclusionwise maximal indepen-

dent set in Pℓ and since 𝑆𝑇 is also an independent set in Pℓ, we have |𝑆𝑇 | ≤ |P 𝐼
ℓ
|. Thus, S′ is well

defined. Since, for all 𝑡 ∈ [𝑇], 𝑆′𝑡 is an independent set and all items in Pℓ have equal profit, clearly

𝛾(𝑆𝑡) = 𝛾(𝑆′𝑡) .

Suppose by contradiction there exists 𝑡 ∈ [𝑇] such that 𝑤(𝑆′𝑡) > 𝑤(𝑆𝑡). Let 𝑆′𝑡 = {𝑒1, . . . , 𝑒𝑚}

such that 𝑤𝑒1 ≤ · · · ≤ 𝑤𝑒𝑚 . Similarly, let 𝑆𝑡 = {𝑞1, . . . , 𝑞𝑚} such that 𝑤𝑞1 ≤ · · · ≤ 𝑤𝑞𝑚 . Let 𝑘

be the smallest index such that 𝑤𝑞𝑘 < 𝑤𝑒𝑘 . The existence of such an index follows from 𝑤(𝑆𝑡) <

𝑤(𝑆′𝑡) and |𝑆𝑡 | = |𝑆′𝑡 |. Take 𝐴 = {𝑒1, . . . , 𝑒𝑘−1, 𝑞1, . . . , 𝑞𝑘 } ⊆ Pℓ. We claim that {𝑒1, . . . , 𝑒𝑘−1} is

a maximal independent set in 𝐴. By definition, 𝑤𝑞1 ≤ 𝑤𝑞2 ≤ · · · ≤ 𝑤𝑞𝑘 < 𝑤𝑒𝑘 . Since 𝑒𝑘 ∈ 𝑆′𝑡 , for

any item 𝑞𝑠 ∈ {𝑞1, . . . , 𝑞𝑘 } \ {𝑒1, . . . , 𝑒𝑘−1}, we must have 𝑞𝑠 ∉ P 𝐼
ℓ
. In constructing P 𝐼

ℓ
, since 𝑒𝑘 is

added but 𝑞𝑠 is not, we must have that {𝑒1, . . . , 𝑒𝑘−1}∪{𝑞𝑠} is dependent. Hence, {𝑒1, . . . , 𝑒𝑘−1} is

an inclusionwise maximal independent set of 𝐴. Now, clearly {𝑞1, . . . , 𝑞𝑘 } ⊆ 𝐴 is an independent

set with larger cardinality, a contradiction since (Pℓ,Mℓ) forms a matroid by Lemma 4.2.9. Hence,

it must be that 𝑤(𝑆′𝑡) ≤ 𝑤(𝑆𝑡) for all 𝑡 ∈ [𝑇], concluding the proof. □

4.2.4 A decomposition theorem for monotone submodular all-or-nothing functions

The previous results imply a decomposition theorem for monotone submodular all-or-nothing

functions. Although not strictly needed for our purposes, we present it nevertheless, since it could

be of interest for further applications of those functions.

90

Theorem 4.2.11. Let 𝛾 : 2[𝑛] → N be a function, and let P1, . . . , P𝑘 be its profit classes, corre-

sponding to profits 𝑝 (1) < · · · < 𝑝 (𝑘) . 𝛾 is a monotone submodular all-or-nothing function if and

only if there exist matroid rank functions {𝑟ℓ}ℓ∈[𝑘] such that, for each 𝑆 ⊆ [𝑛], we have:

𝛾(𝑆) =
∑︁
ℓ∈[𝑘]

𝑝 (ℓ) · 𝑟ℓ (𝑆 ∩ Pℓ).

Proof. First, we prove the “only if” direction. By Lemma 4.2.9, (Pℓ,Mℓ) forms a matroid where

Mℓ is the family of independent sets of Pℓ. Let 𝑟ℓ be the rank function of the associated matroid.

For every ℓ ∈ [𝑘], let 𝑆ℓ = 𝑆 ∩ Pℓ. Observe that since P1, . . . ,P𝑘 is a partition of [𝑛], we have

𝑆 = ∪ℓ∈[𝑘]𝑆ℓ. By Lemma 4.2.8, 𝛾(𝑆) = ∑
ℓ∈𝑘 𝛾(𝑆ℓ).

For each ℓ ∈ [𝑘], by definition of the rank function 𝑟ℓ, the independent set of maximum

cardinality 𝑆ℓ,𝐼 ⊆ 𝑆ℓ has |𝑆ℓ,𝐼 | = 𝑟ℓ (𝑆ℓ). Thus, by Lemma 4.2.4 and monotonicity of 𝛾, for

ℓ ∈ [𝑘],

𝛾(𝑆ℓ) = 𝛾(𝑆ℓ,𝐼) =
∑︁
𝑖∈𝑆ℓ,𝐼

𝑝𝑖 = 𝑝
(ℓ) · 𝑟ℓ (𝑆ℓ).

Summing the above equality over all ℓ ∈ [𝑘], we obtain:

𝛾(𝑆) =
∑︁
ℓ∈𝑘

𝑝 (ℓ) · 𝑟ℓ (𝑆ℓ) =
∑︁
ℓ∈𝑘

𝑝 (ℓ) · 𝑟ℓ (𝑆 ∩ Pℓ).

In the reverse direction, let (P1,M1), . . . , (P𝑘 ,M𝑘) be 𝑘 matroids with rank functions

𝑟1, . . . , 𝑟𝑘 where P1, . . .P𝑘 form a partition of [𝑛]. We will show that if

𝛾(𝑆) =
∑︁
ℓ∈[𝑘]

𝑝 (ℓ) · 𝑟ℓ (𝑆 ∩ Pℓ),

for all 𝑆 ⊆ [𝑛], then 𝛾 : 2[𝑛] → N is a monotone submodular all-or-nothing function. By defi-

nition of monotone submodular all-or-nothing function, it is sufficient to show that 𝛾 satisfies the

following properties:

• All or nothing profits: Let 𝑖 ∈ Pℓ∗ for some arbitrary ℓ∗ ∈ [𝑘]. Let 𝑆 ⊆ [𝑛]. We consider

91

two cases:

1. If 𝑟ℓ∗ ((𝑆 ∪ {𝑖}) ∩ Pℓ∗) = 𝑟ℓ∗ (𝑆 ∩ Pℓ∗), then

𝛾(𝑆 ∪ {𝑖}) =
∑︁
ℓ∈[𝑘]

𝑝 (ℓ) · 𝑟ℓ ((𝑆 ∪ {𝑖}) ∩ Pℓ)

=
∑︁
ℓ∈[𝑘]

𝑝 (ℓ) · 𝑟ℓ (𝑆 ∩ Pℓ)

= 𝛾(𝑆),

where the first and final equality are by definition of 𝛾, the second equality is by noting

(𝑆 ∪ {𝑖}) ∩ Pℓ = 𝑆 ∩ Pℓ for all ℓ ∈ [𝑘] \ {ℓ∗} and 𝑟ℓ∗ ((𝑆 ∪ {𝑖}) ∩ Pℓ∗) = 𝑟 (𝑆 ∩ Pℓ∗) by

assumption.

2. If 𝑟ℓ∗ ((𝑆 ∪ {𝑖}) ∩ Pℓ∗) = 𝑟ℓ∗ (𝑆 ∩ Pℓ∗) + 1, then

𝛾(𝑆 ∪ {𝑖}) =
∑︁
ℓ∈[𝑘]

𝑝 (ℓ) · 𝑟ℓ ((𝑆 ∪ {𝑖}) ∩ Pℓ)

=
∑︁

ℓ∈[𝑘]\ℓ∗
𝑝 (ℓ) · 𝑟ℓ (𝑆 ∩ Pℓ) + 𝑝 (ℓ

∗) · 𝑟ℓ∗ ((𝑆 ∪ {𝑖}) ∩ Pℓ∗)

=
∑︁

ℓ∈[𝑘]\ℓ∗
𝑝 (ℓ) · 𝑟ℓ (𝑆 ∩ Pℓ) + 𝑝 (ℓ

∗) · 𝑟ℓ∗ (𝑆 ∪ Pℓ∗) + 𝑝 (ℓ
∗)

= 𝛾(𝑆) + 𝑝 (ℓ∗) ,

where the first and final equality is by definition of 𝛾, the second equality is by noting

(𝑆 ∪ {𝑖}) ∩ Pℓ = 𝑆 ∩ Pℓ for all ℓ ∈ [𝑘] \ {ℓ∗}, the third equality is by assumption.

• Monotonicity: Since each rank function is monotone, 𝛾 is clearly monotone.

• Submodularity: Since each rank function is submodular, 𝑝 (ℓ) · 𝑟ℓ (·) is submodular. Sum of

submodular functions is submodular, hence 𝛾 is submodular.

□

92

4.2.5 Proof of Theorem 1.3.4

Let I be an IK-AoN instance in the input of the algorithm from Section 4.2.1 and let IIK

be obtained from I following the algorithm. Notice that IIK belongs to the linearization of {I}.

Given any chain S, let Φ(S) =
∑
𝑡∈𝑇 Δ𝑡 · 𝛾(𝑆𝑡) denote the profit of the chain S in the instance

I. Similarly, let ΦIK(S) denote the profit chain S earns in the instance IIK. Since IIK is an

instance of the incremental knapsack problem, for any chain S feasible in IIK, its profit is given

by ΦIK(S) =
∑
𝑡∈𝑇 Δ𝑡

∑
𝑖∈𝑆𝑡 𝑝𝑖. Note that S, as output by the algorithm, is a feasible chain of both

IIK (by construction) and I (since linearization does not affect feasibility).

The next lemma shows that in order to solve I, it is sufficient to solve IIK.

Lemma 4.2.12. Let S∗ be the optimal solution of I and let S∗
IK be the optimal solution of IIK.

Then ΦIK(S∗
IK) ≥ Φ(S∗). Furthermore, given any solution SIK feasible for IIK, SIK is feasible

for I with Φ(SIK) = ΦIK(SIK).

Proof. By Lemma 4.2.6, we can assume that S∗ is independent. We decompose S∗ = (𝑆∗1, . . . , 𝑆
∗
𝑇
)

into 𝑘 separate chains, each chain containing only items in Pℓ for some ℓ ∈ [𝑘]. More precisely,

for each ℓ ∈ [𝑘], let S∗ |Pℓ = (𝑆∗1∩Pℓ, . . . , 𝑆∗𝑇 ∩Pℓ). One easily verifies that S∗ |Pℓ is indeed a chain

for each ℓ ∈ [𝑘]. Moreover, since S∗ is independent, S∗ |Pℓ is also independent by Lemma 4.2.3.

It follows that

Φ(S∗) =
∑︁
𝑡∈[𝑇]

Δ𝑡 · 𝛾(𝑆∗𝑡) =
∑︁
𝑡∈[𝑇]

Δ𝑡 ·
∑︁
ℓ∈[𝑘]

𝛾((𝑆∗ |Pℓ)𝑡), (4.6)

where the second equality is by Lemma 4.2.8.

By Lemma 4.2.10, for each independent chain S∗ |Pℓ , there exists an independent chain S′|P 𝐼
ℓ

restricted to the items in P 𝐼
ℓ

such that 𝛾((𝑆′|P 𝐼
ℓ
)𝑡) = 𝛾((𝑆∗ |Pℓ)𝑡) and 𝑤((𝑆′|P 𝐼

ℓ
)𝑡) ≤ 𝑤((𝑆∗ |Pℓ)𝑡).

Let S′ = ∪ℓ∈[𝑘]S′|P 𝐼
ℓ
. It is easy to see that S′ is a well defined chain for the instance IIK, since

93

it only consists of items in ∪ℓ∈[𝑘]P 𝐼
ℓ
. To see that S′ is feasible for IIK, note that for each 𝑡 ∈ [𝑇],

𝑤(𝑆′𝑡) =
∑︁
ℓ∈[𝑘]

𝑤((𝑆′|P 𝐼
ℓ
)𝑡)) ≤

∑︁
ℓ∈[𝑘]

𝑤((𝑆∗ |Pℓ)𝑡) = 𝑤(𝑆∗𝑡) ≤ 𝑊𝑡 ,

where the first inequality follows by Lemma 4.2.10, and the final inequality follows by feasibility

of S∗ in I. To compute the profit of S′, note that

ΦIK(S′) =
∑︁
𝑡∈[𝑇]

Δ𝑡

∑︁
ℓ∈[𝑘]

∑︁
𝑖∈𝑆′𝑡∩P 𝐼ℓ

𝑝𝑖

=
∑︁
𝑡∈[𝑇]

Δ𝑡

∑︁
ℓ∈[𝑘]

𝛾((𝑆′|P 𝐼
ℓ
)𝑡))

=
∑︁
𝑡∈[𝑇]

Δ𝑡

∑︁
ℓ∈[𝑘]

𝛾((𝑆∗ |Pℓ)𝑡)

= Φ(S∗),

where the first equality follows by definition, the second equality follows since for every ℓ ∈ [𝑘],

S′|P 𝐼
ℓ

is independent in I, the third equality follows again by Lemma 4.2.10, and the final equality

follows by (4.6). Following the analysis above, S′ is feasible in IIK with ΦIK(S′) = Φ(S∗). It

follows that the optimal chain S∗
IK has ΦIK(S∗

IK) ≥ Φ(S∗). This concludes the proof of the first

part of the lemma. To prove the second part of the lemma, let S∗
IK be feasible for IIK. Then it

is clearly feasible for I. To show that Φ(SIK) = ΦIK(SIK), it suffices to show that SIK is an

independent chain in I. We again decompose SIK into 𝑘 separate chains. For each ℓ ∈ [𝑘], let

SIK |P 𝐼
ℓ
= ((𝑆IK)1 ∩ P 𝐼

ℓ
, . . . , (𝑆IK)𝑇 ∩ P 𝐼

ℓ
). (𝑆IK)𝑇 ∩ P 𝐼

ℓ
is independent by Lemma 4.2.3 since

P 𝐼
ℓ

is independent by construction. Then ∪ℓ∈[𝑘] ((𝑆IK)𝑇 ∩ P 𝐼
ℓ
) is independent by Lemma 4.2.8.

Equivalently, SIK is independent in I. □

Finally, we conclude this section by showing the algorithm given in Section 4.2.1 implies

Theorem 1.3.4.

Proof of Theorem 1.3.4. Correctness follows immediately from Lemma 4.2.12.

To see the statement on running time, notice that in additional to implementing the 𝛼-

94

approximated algorithm, the procedure requires constructing IIK. This construction can clearly

be done in 𝑂 (𝑛𝑇) time, as it consists of constructing up to 𝑛 disjoint independent sets, with all

other parameters identical to I. □

4.3 A PTAS for the generalized incremental knapsack problem with a bounded number of

times

In this section, we give a PTAS to the generalized incremental knapsack problem when 𝑇 is

assumed to be a constant. The idea of the PTAS is to “guess” the 𝑂 (𝑇3

𝜖
) most profitable items

that are inserted into the knapsack and their insertion times, and then solve the linear relaxation

of the residual problem with the remaining less profitable items. In Section 4.3.1, we give the

algorithm in detail. In Section 4.3.2, we introduce a rounding procedure that guarantees that the

optimal solution of the linear relaxation has at most 𝑂 (𝑇3) fractional elements. This solution is

then rounded down to an integer solution, proven to be near optimal in Section 4.3.3.

The formal statement, presented in Section 1.3, is reprinted here for convenience.

Theorem 1.3.5. For any 𝜖 > 0, the generalized incremental knapsack problem can be approxi-

mated within a factor of (1 − 𝜖) in time 𝑂 ((𝑛𝑇)𝑂 (𝑇3
𝜖
)). Therefore, it admits a PTAS when 𝑇 is a

constant.

4.3.1 Preliminaries and algorithm

Preliminaries. Extending notations from Section 3.3.1, given a feasible chain G = (𝐺1, . . . , 𝐺𝑇)

for an instance of the generalized incremental knapsack problem I = (N ,𝑊), we define the

reduced residual generalized incremental knapsack instance I−G
𝑝− = (N−G ,𝑊−G) as follows:

• The new set of items is N−G = N \ 𝐺𝑇 .

• The residual capacity of every time 𝑡 ∈ [𝑇] is set to𝑊−G
𝑡 = min𝑡≤𝜏≤𝑇 (𝑊𝜏 − 𝑤(𝐺𝜏)).

• All item weights remain unchanged.

95

• Let 𝑝− = min{𝑝𝑖,𝑡 : 𝑖 ∈ 𝐺 𝑡 \ 𝐺 𝑡−1, 𝑡 ∈ [𝑇]}, so 𝑝− is the profit the least profitable item earns

among all items in 𝐺𝑇 . For all 𝑖 ∈ N−G , let its profit 𝑝−
𝑖,𝑡

= 𝑝𝑖,𝑡 if 𝑝𝑖,𝑡 ≤ 𝑝−. Otherwise, let

𝑝−
𝑖,𝑡
= 0.

Given any feasible chain S of I−G
𝑝− , we let Φ𝑝− (S) denote the profit S earns in the instance I−G

𝑝− .

Notice that the above definition differs from the definition of I−G = (N−G ,𝑊−G) given in Sec-

tion 3.3.1, where profits remain unchanged for all items. Other than the difference in definitions

on the profit of items, these two definitions are identical. Therefore, since I−G is well defined, so

is I−G
𝑝− . Furthermore, observe that since profits can only decrease from I to I−G+

𝑝− , given any chain

S feasible in I−G+

𝑝− , we have the following inequality:

Φ(S) ≥ Φ𝑝− (S). (4.7)

The algorithm. Given a generalized incremental knapsack instance I = (N ,W) and any 𝜖 > 0

where we assume without loss of generality 1
𝜖

is an integer, the algorithm is as follows:

1. For every feasible chain G = (𝐺1, . . . , 𝐺𝑇) with |𝐺𝑇 | ≤ 𝑇2 (𝑇+1)
2𝜖 ,

(a) Construct the residual instance I−G
𝑝− .

(b) Solve the linear relaxation of (GIK-IP) for the instance I−G
𝑝− as to obtain 𝑥∗.

(c) Round 𝑥∗ to 𝑥 as described by Lemma 4.3.1.

(d) Let 𝑥′ = ⌊𝑥⌋ and construct S−G where for all 𝑡 ∈ [𝑇], 𝑆−G𝑡 = {𝑖 ∈ N−G : 𝑥′
𝑖,𝑡
= 1}.

2. Return the chain G∗ ∪ S−G∗
of maximum profit among those constructed in Step 1 .

Analysis: feasibility and running time. For any feasible chain G constructed in step 1 above,

𝑥′ is feasible for (GIK-IP) since 𝑥∗ is feasible for its linear relaxation. Feasibility of S−G in I−G
𝑝−

follows by construction. Feasibility of G ∪ S−G in I follows by Lemma 3.3.3. Since we only

consider chains that introduce at most 𝑇
2 (𝑇+1)

2𝜖 , the number of chains being enumerated over in step

1 is 𝑂 ((𝑛𝑇)𝑂 (𝑇3
𝜖
)). The remaining procedure is dominated by solving a linear program, which can

96

be done in 𝑂 (|I|𝑂 (1)) time. As seen in Lemma 4.3.1, the rounding procedure can be done in time

𝑂 ((𝑛𝑇)𝑂 (1)). All in all, this algorithm incurs a running time of 𝑂 ((𝑛𝑇)𝑂 (𝑇3
𝜖
)).

4.3.2 The LP rounding procedure

Before proving the correctness of the algorithm, we first give the rounding procedure to obtain

𝑥 in step 1(c). Since the rounding procedure relies on the formulation of (GIK-IP) extensively, we

reprint it here for convenience. We let (GIK-LP) denote the linear relaxation of (GIK-IP) where

the binary constraints of 𝑥𝑖,𝑡 are replaced by 0 ≤ 𝑥𝑖,𝑡 ≤ 1.

max
∑︁
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

𝑝𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1)

s.t.
∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 ∀ 𝑡 ∈ [𝑇]

𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 ∀ 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇 − 1]

𝑥𝑖,𝑡 ∈ {0, 1} ∀ 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇]

(GIK-IP)

Lemma 4.3.1. Given an optimal solution 𝑥∗ to (GIK-LP), we can obtain in time 𝑂 ((𝑛𝑇)𝑂 (1)) a

solution 𝑥 of equal profit such that the number of fractional variables is no more than 𝑇2 (𝑇+1)
2 .

Proof. For an item 𝑖, we define its starting time 𝑠(𝑖) as the first time 𝑡 such that 0 < 𝑥∗
𝑖,𝑡
< 1 and its

ending time 𝑒(𝑖) the last time 𝑡 such that 0 < 𝑥∗
𝑖,𝑡
< 1. Notice that if 𝑠(𝑖) does not exist, then for all

𝑡 ∈ [𝑇], we have 𝑥∗
𝑖,𝑡

∈ {0, 1}. On the other hand, if 𝑠(𝑖) exists, so does 𝑒(𝑖). If 0 < 𝑥∗
𝑖,𝑇
< 1, by

definition, we let 𝑒(𝑖) = 𝑇 .

Now restrict the attention to items 𝑖 for which both 𝑠(𝑖) and 𝑒(𝑖) exist – we call them frac-

tionally inserted. For a fractionally inserted item 𝑖, we call the pair (𝑠(𝑖), 𝑒(𝑖)) the signature of

𝑖.

We claim that there exists an optimal solution to (GIK-LP) such that no two fractionally in-

serted items have the same signature. We construct it by suitably modifying 𝑥∗ as follows. Sup-

pose there exists 𝑠(𝑗) = 𝑠(𝑘) = 𝑡′ and 𝑒(𝑗) = 𝑒(𝑘) = 𝑡′′ for some 𝑗 ≠ 𝑘 . Assume without loss of

97

generality that
𝑝 𝑗 ,𝑡 ′ − 𝑝 𝑗 ,𝑡 ′′+1

𝑤 𝑗

≤ 𝑝𝑘,𝑡 ′ − 𝑝𝑘,𝑡 ′′+1

𝑤𝑘
, (4.8)

where by convention we let 𝑝𝑖,𝑇+1 = 0 for all 𝑖 ∈ [𝑛]. Let 𝜖 = min{1 − 𝑥∗
𝑘,𝑡 ′′ ; 𝑥∗

𝑗 ,𝑡 ′
𝑤 𝑗
𝑤𝑘

}. Notice

that by construction 𝜖 > 0. Let 𝑥𝑘,𝑡 = 𝑥∗
𝑘,𝑡

+ 𝜖 and 𝑥 𝑗 ,𝑡 = 𝑥∗
𝑗 ,𝑡

− 𝜖𝑤𝑘
𝑤 𝑗

, for all 𝑡′ ≤ 𝑡 ≤ 𝑡′′. For all

other pairs (𝑖, 𝑡) ∈ [𝑛] × [𝑇], let 𝑥𝑖,𝑡 = 𝑥∗𝑖,𝑡 . The next two claims establish that 𝑥 is feasible, has less

fractional components, while still maintaining optimality. We defer the proofs to Appendices D.2.1

and D.2.2 respectively.

Claim 4.3.2. 𝑥 is a feasible solution to (GIK-LP), and and has at least one fractional component

less than 𝑥∗.

Claim 4.3.3. 𝑥 is an optimal solution to (GIK-LP).

Hence, starting from 𝑥∗, while there are two items with the same signature, we can construct

another optimal solution with at least one fractional component less. As this process clearly never

loops, it terminates after at most 𝑛𝑇 steps with an optimal solution where no two items have the

same signature. Since each step can be executed in constant time, the running time follows. Any

item without a signature is never fractional. There are at most 𝑇 (𝑇+1)
2 distinct signatures. Each item

with a signature has at most 𝑇 fractional components. Thus, there are at most 𝑇
2 (𝑇+1)

2 fractional

components. □

4.3.3 Proof of Theorem 1.3.5

Finally, in this section, we prove the following lemma lower bounding the profit of the chain

G∗ ∪S−G∗
, which, along with the feasibility and running time analysis in Section 4.3.1, concludes

the proof for Theorem 1.3.5.

Lemma 4.3.4. Let S∗ denote the optimal chain for the generalized incremental knapsack problem,

Φ(G∗ ∪ S−G∗) ≥ (1 − 𝜖)Φ(S∗).

98

Proof. We assume that |𝑆∗
𝑇
| > 𝑇2 (𝑇+1)

2𝜖 , else the problem can be solved optimally through enu-

meration. For all 𝑖 ∈ 𝑆∗
𝑇

, let 𝑡∗(𝑖) denote its insertion time. Rank 𝑆∗
𝑇

by 𝑝𝑖,𝑡∗ (𝑖) in non-increasing

order and let 𝐺 be the first 𝑇2 (𝑇+1)
2𝜖 items in 𝑆∗

𝑇
, breaking ties arbitrarily. Following the notation

from Section 3.3.1, we let G = S∗ |𝐺 = (𝑆∗1 ∩ 𝐺, . . . , 𝑆𝑇 ∩ 𝐺). Since |𝐺 | = 𝑇2 (𝑇+1)
2𝜖 , G is one

of the chains considered in Step 1 of the algorithm. Let R = S∗ |N\G . Since the set of avail-

able items and capacity are identical between I−G
𝑝− and I−G , feasibility of R in I−G

𝑝− is guaranteed

by Lemma 3.3.4. The following claim gives the profit of R in I−G
𝑝− . Its straightforward proof is

deferred until Appendix D.2.3.

Claim 4.3.5.

Φ𝑝− (R) = Φ(R).

The next equality is an immediate result of the above claim and Lemma 3.3.4.

Φ(S∗) = Φ𝑝− (R) +Φ(G) (4.9)

Let R′ be the chain returned by Step 1(d) of the algorithm for the instance I−G
𝑝− . The next claim

gives a lower bound on the profit of R′ in terms of the profit of R and G. Its proof is given in

Appendix D.2.4.

Claim 4.3.6.

Φ𝑝− (R′) ≥ Φ𝑝− (R) − 𝜖Φ(G).

Putting the above analysis together, we conclude:

Φ(G∗ ∪ S−G∗) ≥ Φ(G ∪ R′)

= Φ(G) +Φ(R′)

≥ Φ(G) +Φ𝑝− (R′)

≥ Φ(G) +Φ𝑝− (R) − 𝜖Φ(G)

= Φ(S∗) − 𝜖Φ(G)

99

≥ (1 − 𝜖)Φ(S∗).

Here, the first inequality follows by Step 2 of the algorithm. The first equality follows since 𝐺𝑇

and 𝑅′
𝑇

are disjoint. The second inequality follows by (4.7). The third inequality follows from

Claim 4.3.6. The final equality follows by (4.9) and the final inequality follows since Φ(G) ≤

Φ(S∗). □

4.4 An FPTAS for the generalized incremental knapsack - single profit problem

We consider the generalized incremental knapsack single profit problem (GIK-SP), where, for

each item 𝑖, 𝑝𝑖,𝑡 > 0 for exactly one time 𝑡, that we denote by 𝑡 (𝑖). For all other times 𝑡 ≠ 𝑡 (𝑖),

𝑝𝑖,𝑡 = 0. Since there is a unique nonzero profit for every item, we abbreviate 𝑝𝑖 = 𝑝𝑖,𝑡 (𝑖) . Thus, we

can assume that, for each item 𝑖, we either insert it at time 𝑡 (𝑖) or not at all. Notice that if we assume

𝑇 = 1, the GIK-SP problem is exactly the classical knapsack problem, and hence the former is

also NP-hard. We provide the following FPTAS based on a dynamic programming approach. The

formal result from Section 1.3 is reprinted below.

Theorem 1.3.6. For any 𝜖 > 0, the generalized incremental knapsack single profit problem can be

approximated within a factor of 1 − 𝜖 in time 𝑂 (𝑛3

𝜖
).

4.4.1 Continuous dynamic program

We order the items such that for items 𝑖 = 1, 2, . . . , 𝑛1 we have 𝑡 (𝑖) = 1, for items 𝑖 = 𝑛1 +

1, . . . 𝑛2 we have 𝑡 (𝑖) = 2, and so on.

States and value function. Each state (𝑖, 𝑝) of our dynamic programming consists of the fol-

lowing parameters:

• The index of the current item 𝑖, consisting of values 𝑖 ∈ [𝑛].

• The total profit 𝑝 collected thus far. Similarly to the dynamic programs presented in Sec-

tions 3.2.3.2 and 3.4.4, we initially treat 𝑝 as a continuous parameter taking values in

100

[0, 𝑛𝑝max] where 𝑝max = max{𝑝𝑖𝑡 : 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇]}.

For each state (𝑖, 𝑝), we let the value function 𝐹 (𝑖, 𝑝) denote the minimum weight 𝑤(𝑆) that

can be attained with items 𝑆 ⊆ [𝑖] satisfying:

1. Total profit:
∑
𝑗∈𝑆 𝑝 𝑗 ≥ 𝑝.

2. Feasibility:
∑
𝑗∈𝑆∩[𝑛𝑡] 𝑤 𝑗 ≤ 𝑊𝑡 for all 𝑡 ∈ [𝑇].

For every set 𝑆 ⊆ [𝑖] that satisfies conditions 1 and 2 above, we call 𝑆 a candidate to 𝐹 (𝑖, 𝑝).

When such a set 𝑆 does not exist, we let 𝐹 (𝑆) = ∞. The next lemma shows that any candidate to

𝐹 (𝑖, 𝑝) can be converted to a feasible chain to the generalized incremental knapsack problem with

total profit of at least 𝑝. Its straightforward proof is deferred to Appendix D.3.1.

Lemma 4.4.1. Given 𝑆 that is a candidate to 𝐹 (𝑖, 𝑝), we can obtain feasible chain S such that

Φ(S) ≥ 𝑝 in time 𝑂 (𝑛𝑇).

Optimal substructure. Let 𝑆 be the set that minimizes 𝐹 (𝑖, 𝑝). Let 𝑆 = 𝑆 \ {𝑖} and let

𝑝 =

[𝑝 − 𝑝𝑖]+ if 𝑖 ∈ 𝑆

𝑝 otherwise.

Since 𝑆 ⊆ [𝑖], 𝑆 = 𝑆 \ {𝑖} ⊆ [𝑖 − 1] . Notice that the definition of 𝑝 ensures that
∑
𝑗∈𝑆 𝑝 𝑗 ≥ 𝑝 and

feasibility of 𝑆 follows from feasibility of 𝑆. Thus, 𝑆 satisfies conditions 1 and 2 above. The next

lemma shows that 𝑆 is the set that minimizes 𝐹 (𝑖 − 1, 𝑝).

Lemma 4.4.2. 𝐹 (𝑖 − 1, 𝑝) = 𝑤(𝑆).

Proof. Suppose by contradiction there exists 𝑆 that satisfies conditions 1 and 2 above such that

𝑤(𝑆) < 𝑤(𝑆). First, suppose 𝑖 ∉ 𝑆. Then we claim 𝑆 is a candidate to 𝐹 (𝑖, 𝑝). Clearly, 𝑆 ⊆ [𝑖]. 𝑆

satisfies
∑
𝑗∈𝑆 𝑝 𝑗 ≥ 𝑝 = 𝑝 and

∑
𝑗∈𝑆∩[𝑛𝑡] 𝑤 𝑗 ≤ 𝑊𝑡 since 𝑆 is a candidate to 𝐹 (𝑖 − 1, 𝑝). We have

reached a contradiction since 𝑤(𝑆) < 𝑤(𝑆) = 𝑤(𝑆).

101

Finally, assume 𝑖 ∈ 𝑆. Then we claim 𝑆 ∪ {𝑖} is a candidate to 𝐹 (𝑖, 𝑝). Clearly 𝑆 ∪ {𝑖} ⊆ [𝑖].

For the profit requirement, 𝑝(𝑆 ∪ {𝑖}) = ∑
𝑗∈𝑆 𝑝 𝑗 + 𝑝𝑖 ≥ 𝑝 − 𝑝𝑖 + 𝑝𝑖 = 𝑝. For feasibility, for all

𝑡 < 𝑡 (𝑖), ∑︁
𝑗∈(𝑆∪{𝑖})∩[𝑛𝑡]

𝑤 𝑗 =
∑︁

𝑗∈𝑆∩[𝑛𝑡]

𝑤 𝑗 ≤ 𝑊𝑡 ,

where the first equality is by noting that 𝑖 > 𝑛𝑡 and the inequality is by noting that 𝑆 is a

candidate to 𝐹 (𝑖 − 1, 𝑝). For 𝑡 ≥ 𝑡 (𝑖), note that

∑︁
𝑗∈𝑆∪{𝑖}∩[𝑛𝑡]

𝑤𝑖 =
∑︁

𝑗∈𝑆∪{𝑖}

𝑤 𝑗 <
∑︁

𝑗∈𝑆∪{𝑖}

𝑤 𝑗 ≤ 𝑊𝑡 ,

where the equality is by noting 𝑆 ∪ {𝑖} ⊆ [𝑖] and 𝑖 ≤ 𝑛𝑡 , the first inequality follows by assumption

and the final inequality follows since 𝑆 ∪ {𝑖} = 𝑆 is a candidate to 𝐹 (𝑖, 𝑝). We have again arrived

at a contradiction since 𝑤(𝑆) + 𝑤𝑖 < 𝑤(𝑆) + 𝑤𝑖 = 𝑤(𝑆). □

Recursive equations. For states (𝑖, 0) for any 𝑖 ∈ [𝑛], clearly the empty set achieves a profit of

0, so we initialize 𝐹 (𝑖, 0) = 0. For any 𝑝 > 0, clearly there is no state that is a candidate to 𝐹 (0, 𝑝),

thus we initialize 𝐹 (0, 𝑝) = ∞. Given the optimal substructure unveiled above, for any other set

(𝑖 + 1, 𝑝), we have the following recursion:

𝐹 (𝑖 + 1, 𝑝) =

min{𝐹 (𝑖, 𝑝), 𝑤𝑖+1 + 𝐹 (𝑖, [𝑝 − 𝑝𝑖+1]+)}, if 𝑤𝑖+1 +𝑊 (𝑖, 𝑝 − 𝑝𝑖+1) ≤ 𝑊𝑡 (𝑖)

𝐹 (𝑖, 𝑝), otherwise.
(4.10)

Obtaining the maximal value 𝑝 and the associated 𝑆 for which 𝐹 (𝑛, 𝑝) < ∞ gives the optimal

solution to GIK-SP.

4.4.2 Discretization and analysis

As previously explained, due to the continuity of 𝑝, the above dynamic program is not

algorithmic in nature. Similar to Sections 3.2.3.3 and 3.4.4, we restrict 𝑝 to the finite set

102

D𝑝 = {𝑑 · 𝜖 𝑝max
2𝑛 : 𝑑 ∈ [2𝑛2

𝜖
]0}. We let �̃� (𝑖, 𝑝) to denote the dynamic program over the dis-

cretized set of states, whose recursive equations are identical to those of 𝐹. Let 𝑝∗ be the maximal

value satisfying 𝐹 (𝑛, 𝑝∗) < ∞. The next lemma shows that by restricting ourselves to values in

D𝑝, there exists state �̃� (𝑛, 𝑝) < ∞ achieving profit at least (1 − 𝜖)𝑝∗. We omit the proof, as it is

analogous to that of Lemma 3.2.6.

Lemma 4.4.3. There exists 𝑝 ∈ D𝑝 such that 𝑝 ≥ (1 − 𝜖) · 𝑝∗ and such that �̃� (𝑛, 𝑝) < ∞.

By the above discretization, �̃� needs to be evaluated over 𝑛 · |D𝑝 | = 𝑂 (𝑛3

𝜖
) number of states.

Through the recursion of (4.10), each state can be evaluated in𝑂 (1) time. Thus, the overall running

time is 𝑂 (𝑛3

𝜖
), concluding the proof of Theorem 1.3.6.

103

Chapter 5: Single-machine algorithms for incremental packing problems

5.1 Introduction

In this chapter, we show how formulating incremental packing problems as sequencing prob-

lems allows us to leverage on algorithms for single-bin problems to produce algorithms for general

(multi-bin) packing problems. Recall in Section 3.2.1 we showed that the generalized incremental

knapsack problem can be formulated as a single-machine sequencing problem. In this chapter,

we extend the result to show that (multi-bin) incremental packing problems can be formulated as

multi-machine sequencing problems. We will formally define multi-machine sequencing problems

in Section 5.3. Broadly speaking, a multi-machine sequencing problem is a sequencing problem

where multiple machines share the same ground set of items. The goal is to find a item-to-machine

assignment and an optimal permutation for each machine on the the subset of items for which

it is assigned. We explain how if there exists a constant-factor approximation for each single-

machine sequencing problem, we can leverage it to also obtain a constant factor approximation

for the multi-machine variant. Since such an algorithm uses as a black box the algorithm for the

single-machine case, we call it a single-machine algorithm.

The remainder of the chapter is organized as follows. In Section 5.2 we give a general definition

of incremental packing problems, and argue that the generalized incremental knapsack and the

incremental generalized assignment problem can be seen as special cases of it. We then show

how to formulate incremental packing problems as sequencing problems (see Section 5.3), and

how to obtain approximate solution of the latter under certain conditions (see Theorem 5.3.1 and

Section 5.4). We then apply this procedure to the incremental generalized assignment problem in

Section 5.4.5 and prove Theorem 1.3.7, which we restate here for convenience.

Theorem 1.3.7. For any 𝜖 > 0, there exists a polynomial-time algorithm that in expectation gives

104

a (1
4 − 𝜖)-approximation to the incremental generalized assignment problem.

Our approach to translate algorithms from single- to multi-machines is inspired by the algo-

rithm by [30] to obtain approximation algorithms for separable assignment problems. Our algo-

rithm employs a different rounding scheme and applies to a more general class of problems, at

the cost of worsening the guarantee on the approximation ratio. A comparison between the two

approaches is discussed in Section 5.5.

5.2 Incremental packing problems

In this section, we give a formal definition of incremental packing problems. Starting from

“static” packing problems, we first distinguish between single-bin and multi-bin problems. We

then generalize them to incremental packing problems.

In a single-bin packing problem, we are given a ground set [𝑛] of items and a set of feasibility

sets F ⊆ 2[𝑛] . We say a set 𝑆 ⊆ [𝑛] is feasible if 𝑆 ∈ F . We further assume that F is an

independence set: ∅ ∈ F and for 𝑆 ∈ F , we have that 𝑋 ⊆ 𝑆 implies 𝑋 ∈ F . For each item

𝑖 ∈ [𝑛], we are given a profit 𝑝𝑖 ∈ N. The goal is to find a feasible set 𝑆 ∈ F that maximizes

𝑝(𝑆). We let the tuple (𝑛, F , 𝑝) describe an instance of a single-bin packing problem. It is easy to

see that the classical knapsack problem is an example of a single-bin packing problem, as well as

other standard problems like matching, independent set, etc.

(Multi-bin) packing problems are a generalization of single-bin packing problems. In this

context, we are given 𝑚 single-bin packing problems (𝑛, F1, 𝑝1), (𝑛, F2, 𝑝2), . . . , (𝑛, F𝑚, 𝑝𝑚)

sharing the same ground set [𝑛] of items. A feasible solution is a collection of pairwise-

disjoint sets 𝑆1, . . . , 𝑆𝑚 with 𝑆ℓ ∈ Fℓ for each ℓ ∈ [𝑚]. The goal is to find a feasible solu-

tion that maximizes
∑
ℓ∈[𝑚] 𝑝ℓ (𝑆ℓ). We denote an instance of a packing problem by the tuple

(𝑚, 𝑛, {Fℓ}ℓ=1,...,𝑚, {𝑝ℓ}ℓ=1,...,𝑚). It is easy to see that the generalized assignment problem is an

example of a packing problem. To distinguish between “static” packing problems and their incre-

mental extensions – to be described next – we call the former classical packing problems.

In an incremental packing problem, we are given a collection of 𝑇 time periods, a ground

105

set [𝑛] of items, and a set [𝑚] of bins. For each 𝑡 ∈ [𝑇] and ℓ ∈ [𝑚], we are given a

set of feasible sets Fℓ,𝑡 ∈ 2[𝑛] . For each 𝑖 ∈ [𝑛], ℓ ∈ [𝑚] and 𝑡 ∈ [𝑇], we are given a

profit 𝑝𝑖,ℓ,𝑡 ∈ N. A solution is in the form of 𝑚 ordered families, one for each ℓ ∈ [𝑚]:

Sℓ = (𝑆ℓ,1, . . . , 𝑆ℓ,𝑇). Sℓ is required to satisfy the following properties. First, it is a chain, that

is, 𝑆ℓ,1 ⊆ 𝑆ℓ,2 ⊆ · · · ⊆ 𝑆ℓ,𝑇 ⊆ [𝑛]. Second, it is feasible, i.e., 𝑆ℓ,𝑡 ∈ Fℓ,𝑡 for every ℓ ∈ [𝑚]

and 𝑡 ∈ [𝑇]. Finally, different chains consist of sets of items that are pairwise-disjoint, i.e., for any

distinct pair ℓ1, ℓ2 ∈ [𝑚] we have 𝑆ℓ1,𝑇 ∩𝑆ℓ2,𝑇 = ∅. The goal is to find 𝑚 feasible chains S1, . . . ,S𝑚

that maximizes
∑
ℓ∈[𝑚] Φℓ (Sℓ) =

∑
ℓ∈[𝑚]

∑
𝑡∈𝑇 𝑝ℓ,𝑡 (𝑆ℓ,𝑡 \ 𝑆ℓ,𝑡−1),where again we assume 𝑆ℓ,0 = ∅

for all 𝑡 ∈ [𝑇]. An incremental packing problem is therefore succinctly described by a tuple

I = (𝑚, 𝑛, 𝑇, {Fℓ,𝑡}ℓ∈[𝑚],𝑡∈[𝑇] , {𝑝ℓ,𝑡}ℓ∈[𝑚],𝑡∈[𝑇]).

Note that the incremental packing problem I can be “sliced” across periods or across

bins. In the former case, we obtain 𝑇 classical packing problems: for each 𝑡 ∈ [𝑇], we

say that (𝑚, 𝑛, {Fℓ,𝑡}ℓ∈[𝑚] , {𝑝ℓ,𝑡}ℓ∈[𝑚]) is a classical packing problem time-underlying I. In

the latter case, we obtain 𝑚 incremental packing problems, each defined over a single bin:

(1, 𝑛, 𝑇, {Fℓ,𝑡}𝑡∈[𝑇] , {𝑝ℓ,𝑡}𝑡∈[𝑇]) for ℓ ∈ [𝑚]. We say that each of those problems is bin-underlying

I.

It is easily observed that the generalized incremental knapsack problem is an incremental pack-

ing problem, where each time-underlying classical packing problem is an instance of the classical

knapsack problem. By its definition in Section 1.2.3, one readily observes that the incremental gen-

eralized assignment problem is also an incremental packing problem, where each time-underlying

classical packing problem is an instance of the generalized assignment problem.

5.3 Sequencing reformulation of incremental packing problems

Single-machine sequencing. A (single-machine) sequencing problem with inclusionwise non-

increasing profit profile is defined by a set [𝑛] of feasible items, a number 𝑅 ∈ N, and, for each 𝑆 ⊆

[𝑛] and 𝜋 from the set Π𝑆 of all permutations of 𝑆, a profit function 𝜑𝜋 (𝑖) : [𝑛] → {0, 1, . . . , 𝑅}

such that, for every 𝜋, 𝜋′ ∈ Π𝑆, the following holds:

106

1. For any 𝑆 ⊆ [𝑛], 𝜋 ∈ Π𝑆, and 𝑖 ∈ [𝑛] \ 𝑆, we have 𝜑𝜋 (𝑖) = 0.

2. If for some 𝑆, 𝑆′ ⊆ [𝑛], 𝑖 ∈ 𝑆 ∩ 𝑆′, 𝜋 ∈ Π𝑆, 𝜋
′ ∈ Π𝑆′, we have { 𝑗 : 𝜋(𝑗) ≤ 𝜋(𝑖)} ⊆ { 𝑗 :

𝜋′(𝑗) ≤ 𝜋′(𝑖)}, then 𝜑𝜋 (𝑖) ≥ 𝜑𝜋′ (𝑖).

We assume that 𝜑 is given via an oracle, i.e., given 𝑆 ⊆ [𝑛], 𝜋 ∈ Π𝑆 and 𝑖 ∈ [𝑛] we can compute

𝜑𝜋 (𝑖) in polynomial time. The profit function Ψ : ∪𝑆Π𝑆 → Q is given by Ψ(𝜋) =
∑
𝑖∈[𝑛] 𝜑𝜋 (𝑖),

and the goal is to find 𝑆 ⊆ [𝑛], 𝜋 ∈ Π𝑆 maximizing Ψ(𝜋).

Notice that, in particular, from Section 3.2.1, the generalized incremental knapsack problem

can be reformulated as a sequencing problem that satisfies the inclusionwise non-increasing profit

profile. Indeed, all the sequencing problems considered in this chapter have inclusionwise non-

increasing profit profile, so for the sake of readability we will refer to them simply as sequencing

problems.

Let C be a family of sequencing problems. We call C closed under profit shifting (or, in short,

closed) if, for every instance I ∈ C with 𝑛 items and every _ ∈ R𝑛, the sequencing problem

obtained by replacing, for each 𝑆 ⊆ [𝑛], 𝜋 ∈ Π𝑆, and 𝑖 ∈ [𝑛], 𝜑𝜋 (𝑖) by max{0, 𝜑𝜋 (𝑖) − _𝑖} also

belongs to C.

Multi-machine sequencing. A multi-machine sequencing problem I is defined by a family

I1, . . . ,I𝑚 of 𝑚 sequencing problems with profit functions Ψ1, . . . ,Ψ𝑚 respectively, each defined

over the same set [𝑛] of items and bound 𝑅. Let P be the family of ordered 𝑚-tuples of pairwise

non-intersecting subsets of [𝑛]. The goal is to compute

max
(𝑆1,...,𝑆𝑚)∈P

𝑚∑︁
𝑗=1

max
𝜋∈Π𝑆 𝑗

Ψ 𝑗 (𝜋). (5.1)

We call I1, . . . ,I𝑚 the single-machine sequencing problems underlying I. The main technical

tool of the section is the following result, proved in Section 5.4.

Theorem 5.3.1. Consider a family C of multi-machine sequencing problems. Assume that, for each

I ∈ C, the following happens: there is a closed family C′ of single-machine sequencing problems

107

containing all single-machine problems underlying I and a polynomial-time 𝛽-approximation al-

gorithm for problems in C′, for some 𝛽 ∈ (0, 1]. Then, for any 𝛿 > 0, there is a polynomial-time

algorithm that in expectation gives a 1
2 (𝛽 − 𝛿)-approximation to instances from C.

From packing to sequencing. We argue next that sequencing (resp., multi-machine sequencing)

problems subsume single-bin incremental packing (resp., incremental packing) problems. These

results extend (following the same proof idea) those from Lemma 3.2.1, where the generalized

incremental knapsack is formulated as a sequencing problem. Moreover, under this transforma-

tion, packing problems with the same feasibility set are mapped to closed families of sequencing

problems. The proof of the following lemma is given in Appendix E.1.

Lemma 5.3.2. Let I = (𝑚, 𝑛, 𝑇, {Fℓ,𝑡}ℓ∈[𝑚],𝑡∈[𝑇] , {𝑝ℓ,𝑡}ℓ∈[𝑚],𝑡∈[𝑇]) be an instance of an incremental

packing problem.

1. The problem can be reformulated as an instance I′ of a multi-machine sequencing prob-

lem in time polynomial in the size of I with the following features: any feasible chains

S1, . . . ,S𝑚 to the incremental packing problem can be mapped to feasible permuta-

tions 𝜋1, . . . , 𝜋𝑚 to the multi-machine sequencing problem such that
∑
𝑗∈[𝑚] Ψ 𝑗 (𝜋 𝑗) ≥∑

𝑗∈[𝑚] Φ 𝑗 (S 𝑗); conversely, any feasible permutations 𝜋1, . . . , 𝜋𝑚 to the multi-machine se-

quencing problem can be mapped to feasible chains S1, . . . ,S𝑚 such that
∑
𝑗∈[𝑚] Φ 𝑗 (S 𝑗) =∑

𝑗∈[𝑚] Ψ 𝑗 (𝜋 𝑗). Moreover, from an optimal solution to I′ we can obtain in time polynomial

in the size of I an optimal solution to I.

2. In particular, if 𝑚 = 1, then I′ is a single-machine sequencing problem.

3. Let 𝑛 ∈ N and (F1, . . . , F𝑇) be a feasibility set for a single-bin packing problem on 𝑛 items.

The family of single-machine scheduling problems obtained from all single-bin packing prob-

lems with feasibility set (F1, . . . , F𝑇) via the reduction from Point 1 above is closed.

In the lemma below, we illustrate an application of Lemma 5.3.2 by showing, in particular,

how the incremental generalized assignment problem can be reformulated as a multi-machine se-

108

quencing problem. Its proof can be found in Appendix E.2. We then give an example of the

reformulation.

Lemma 5.3.3. An incremental generalized assignment problem I can be reformulated as a multi-

machine sequencing problem I′, where each single-machine sequencing problem underlying I′

is obtained from a generalized incremental knapsack problem bin-underlying I via the reduction

from Lemma 5.3.2. Moreover, the family of single-machine sequencing problems obtained as above

is closed.

5.3.1 Example

Consider the following incremental generalized assignment problem instance I consisting of

5 items, 2 bins, and 2 time periods. Bin 1 has capacities [10, 15]𝑇 , where the first component

denotes the capacity at time 1 and the second component denotes the capacity at time 2. Bin 2 has

capacities [5, 8]𝑇 . Items have weights given by the matrix 𝑤 below, where each entry 𝑤𝑖,ℓ is the

weight of item 𝑖 when assigned to bin ℓ. Items have profits given by matrices 𝑀 (𝑝)1 and 𝑀 (𝑝)2,

where in the first matrix (resp. second matrix), each entry 𝑀 (𝑝)1
𝑖,𝑡

(resp. 𝑀 (𝑝)2
𝑖,𝑡

) gives the profit

of item 𝑖 when it is first inserted into bin 1 (resp. bin 2) at time 𝑡.

𝑤 =

5 3

6 5

3 4

10 3

10 5

; 𝑀 (𝑝)1 =

10 5

8 15

2 5

5 2

2 5

; 𝑀 (𝑝)2 =

3 6

5 10

1 3

5 1

1 5

.

We next discuss the generalized incremental knapsack problems I1 and I2 bin-underlying I.

Namely, I1 has capacities 𝑊1 = [10, 15]𝑇 , matching the capacities of bin 1 in the incremental

generalized assignment problem. Similarly, I2 has capacities𝑊2 = [5, 8]𝑇 , matching the capacities

of bin 1 in the incremental generalized assignment problem. Both instances I1 and I2 are defined

over the same set of 5 items. Assigning item 𝑖 to instance I𝑗 at time 𝑡 takes up capacity 𝑤𝑖, 𝑗 and

109

earns profit 𝑝𝑖, 𝑗 ,𝑡 .

Consider the feasible solution to the incremental generalized assignment problem

𝑆1,1 = {1}, 𝑆1,2 = {1, 2, 3}; 𝑆2,1 = {4}, 𝑆2,2 = {4, 5}.

One easily observes that this translates to feasible solutions (𝑆1,1, 𝑆1,2) for I1 and (𝑆2,1, 𝑆2,2) for

I2. Moreover, the combined profit of these two solutions is equivalent to the profit of the solution

to the incremental generalized assignment problem.

We next demonstrate how to convert some solution to each of the generalized incremental

knapsack problems I1,I2 to solutions to the a single-machine sequencing problems obtained

using Lemma 5.3.3. For I1, the solution S1 = ({1}, {1, 2, 3}) translates to the permutation

𝜋1 = [1, 2, 3], where 𝜑1,𝜋1 (1) = max{10, 5} = 10, 𝜑1,𝜋1 (2) = 15 and 𝜑1,𝜋1 (3) = 5. There-

fore, Ψ1(𝜋1) =
∑3
𝑖=1 𝜑1,𝜋1 (𝑖) = 30. For I2, the solution S2 = ({4}, {4, 5}) translates to the

permutation 𝜋2 = [4, 5], where 𝜑2,𝜋2 (4) = max{5, 1} = 5 and 𝜑2,𝜋2 (5) = 5. Similarly,

Ψ2(𝜋2) =
∑5
𝑖=4 𝜑2,𝜋2 (𝑖) = 10.

Finally, observe that

Φ1(S1) +Φ2(S2) = 𝑝1,1(𝑆1,1) + 𝑝1,2(𝑆1,2) + 𝑝2,1(𝑆2,1) + 𝑝2,2(𝑆2,2)

= 10 + 20 + 5 + 5

= 30 + 10

= Ψ1(𝜋1) + Ψ2(𝜋2).

5.4 Ex uno plures: approximation algorithms to multi-machine problems

In this section, we prove Theorem 5.3.1. The proof proceeds as follows. In Section 5.4.1,

we give an IP formulation for a multi-machine sequencing problem with exponentially many vari-

ables, and show how to obtain an approximate separation algorithm for the dual of its LP relaxation

from an approximation algorithm for the single machine sequencing problem. This is used then in

110

Section 5.4.2 to produce an approximate solution to the LP relaxation, which is rounded in Sec-

tion 5.4.3 to a feasible solution to our multi-machine sequencing problem. Finally, Section 5.4.4

ties together these results to prove Theorem 5.3.1.

5.4.1 LP relaxation and approximate dual separation

Suppose we are given a multi-machine sequencing problem I over a set of 𝑛 items,

whose underlying 𝑚 single-machine sequencing problems I1, . . . ,I𝑚 have objective functions

Ψ1(·), . . . ,Ψ𝑚 (·), respectively. For every 𝑗 ∈ [𝑚], 𝑆 ∈ 2[𝑛] , 𝜋 ∈ Π𝑆, let 𝑋𝜋
𝑗

be the indicator

variable that denotes if we assign set 𝑆 to machine 𝑗 with the permutation 𝜋. The following is an

integer programming formulation for the multi-machine sequencing problem:

max
∑︁
𝑗∈[𝑚]

∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

Ψ 𝑗 (𝜋)𝑋𝜋𝑗

s.t.
∑︁
𝑗∈[𝑚]

∑︁
𝑆∈2[𝑛] :𝑖∈𝑆

∑︁
𝜋∈Π𝑆

𝑋𝜋𝑗 ≤ 1 ∀ 𝑖 ∈ [𝑛]∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

𝑋𝜋
𝑗

= 1 ∀ 𝑗 ∈ [𝑚]

𝑋𝜋
𝑗
∈ {0, 1} ∀ 𝑗 ∈ [𝑚], 𝑆 ∈ 2[𝑛] , 𝜋 ∈ Π𝑆

(MMS-IP)

We denote by (MMS-LP) the linear programming relaxation of (MMS-IP) obtained by replac-

ing the binary constraints with nonnegativity constraints. (MMS-LP) has the following associated

dual program:

min
∑︁
𝑗∈[𝑚]

𝑞 𝑗 +
∑︁
𝑖∈[𝑛]

_𝑖

s.t. 𝑞 𝑗 +
∑︁
𝑖∈𝑆

_𝑖 ≥ Ψ 𝑗 (𝜋) ∀ 𝑗 ∈ [𝑚], 𝑆 ∈ 2[𝑛] , 𝜋 ∈ Π𝑆

_𝑖 ≥ 0 ∀ 𝑖 ∈ [𝑛] .

(MMS-DP)

111

Rewriting the dual program as a fractional covering problem, we obtain:

min
∑︁
𝑗∈[𝑚]

𝑞 𝑗 +
∑︁
𝑖∈[𝑛]

_𝑖

s.t. (𝑞 𝑗 , _) ∈ P 𝑗 ∀ 𝑗 ∈ [𝑚]

_𝑖 ≥ 0 ∀ 𝑖 ∈ [𝑛],

where _ = (_1, _2, . . . , _𝑛)𝑇 and P 𝑗 is the polyhedron defined by constraints 𝑞 𝑗 ≥ Ψ 𝑗 (𝜋) −
∑
𝑖∈𝑆 _𝑖

for all 𝑆 ∈ 2[𝑛] and 𝜋 ∈ Π𝑆.

A 𝛽-approximate separation for P 𝑗 is an algorithm that takes as input a point (𝑞 𝑗 , _) ∈ Q1+𝑛

and either returns a violated constraint or guarantees that (𝑞 𝑗
𝛽
, _) ∈ P 𝑗 . In the remainder of the

section, we prove the following:

Lemma 5.4.1. Let 𝑗 ∈ [𝑚]. Suppose there is a polynomial-time algorithm that gives a 𝛽-

approximation to a closed class C of single-machine sequencing problems containing I𝑗 . Then,

there exists a 𝛽-approximate separation for P 𝑗 that runs in polynomial time.

Proof. We employ the 𝛽-approximation algorithm for the sequencing problem as follows. First,

we define a sequencing problem instance I′
𝑗

that is obtained from I𝑗 by setting 𝜑′
𝑗 ,𝜋
(𝑖) =

max{0, 𝜑 𝑗 ,𝜋 (𝑖) − _𝑖}, and then normalizing vector {𝜑′
𝑗 ,𝜋
(𝑖)} 𝑗 ,𝜋 so that it is integral. Clearly, 𝜑′

𝑗

satisfies Property 1 from the definition of sequencing problems. Moreover, 𝜑′
𝑗

also satisfies Prop-

erty 2. Indeed, let 𝑖 ∈ [𝑛] and 𝜋, 𝜋′ be permutations of subsets of [𝑛] so that 𝑖 is in the domain

of both 𝜋 and 𝜋′, and {ℓ : 𝜋(ℓ) ≤ 𝜋(𝑖)} ⊆ {ℓ : 𝜋′(ℓ) ≤ 𝜋′(𝑖)}. If 𝜑 𝑗 ,𝜋′ (𝑖) − _𝑖 ≤ 0, then

𝜑′
𝑗 ,𝜋
(𝑖) ≥ 0 = 𝜑′

𝑗 ,𝜋′ (𝑖). Else,

𝜑′𝑗 ,𝜋 (𝑖) ≥ 𝜑 𝑗 ,𝜋 (𝑖) − _𝑖 ≥ 𝜑 𝑗 ,𝜋′ (𝑖) − _𝑖 = 𝜑′𝑗 ,𝜋′ (𝑖).

Picking an appropriate 𝑅′ whose encoding length is polynomial in the encoding length of 𝑅 and

_, we deduce that I′
𝑗

is a well-defined single-machine scheduling problem whose input is of size

polynomial in the original input size. Finally, notice that since C is a closed class of sequencing

112

problems and we have a 𝛽-approximate algorithm for I𝑗 , we also have a 𝛽-approximate algorithm

for I′
𝑗
.

For every 𝑆 ⊆ [𝑛] and permutation 𝜋 ∈ Π𝑆, let Ψ′
𝑗
(𝜋) = ∑

𝑖∈𝑆 𝜑
′
𝑗 ,𝜋
(𝑖). Let 𝜋 be the permutation

output by the 𝛽-approximated algorithm on I′
𝑗
. We create 𝑆 by removing from [𝑛] all items 𝑖 such

that 𝜑′
𝑗 ,𝜋
(𝑖) = 0. Let 𝜋𝑆 be the permutation for the items in 𝑆 following their internal ordering in

𝜋. Observe that, by Property 2, we have 𝜑′
𝑗 ,𝜋𝑆

(𝑖) ≥ 𝜑′
𝑗 ,𝜋
(𝑖) for every 𝑖 ∈ 𝑆. Let 𝑞∗

𝑗
= Ψ′

𝑗
(𝜋𝑆).

For any 𝑆′ ⊆ [𝑛] and any possible permutation 𝜋′ ∈ Π𝑆′, we have:

𝑞∗𝑗 = Ψ′
𝑗 (𝜋𝑆)

≥ Ψ′
𝑗 (𝜋)

≥ 𝛽Ψ′
𝑗 (𝜋′)

≥ 𝛽
∑︁
𝑖∈𝑆′

(𝜑 𝑗 ,𝜋′(𝑖) − _𝑖)

= 𝛽(Ψ 𝑗 (𝜋′) −
∑︁
𝑖∈𝑆′

_𝑖).

where the first equality follows from the definition of 𝑞∗
𝑗
, the first inequality follows since we only

remove 𝑖 such that Ψ′
𝑗 ,�̄�

= 0 and by Property 2. The second inequality follows since �̄� is obtained

by the 𝛽-approximated algorithm, the final inequality follows by definition of Ψ′
𝑗
, and the final

equality follows by definition of Ψ 𝑗 . Thus, if 𝑞∗
𝑗
≤ 𝑞 𝑗 , we have:

𝑞 𝑗 ≥ 𝑞∗𝑗 ≥ 𝛽(Ψ 𝑗 (𝜋′) −
∑︁
𝑖∈𝑆′

_𝑖)

for all 𝑆′ ⊆ [𝑛] and permutations 𝜋′ ∈ Π𝑆′. Therefore 𝑞 𝑗
𝛽

≥ Ψ 𝑗 (𝜋𝑆′) −
∑
𝑖∈𝑆′ _𝑖, and we conclude

that (𝑞 𝑗
𝛽
, _) ∈ P 𝑗 . Else, we have:

𝑞 𝑗 < 𝑞∗𝑗

=
∑︁
𝑖∈𝑆

(𝜑 𝑗 ,𝜋𝑆 (𝑖) − _𝑖)

113

= Ψ 𝑗 (𝜋𝑆) −
∑︁
𝑖∈𝑆

_𝑖,

where the first equality follows from the assumption that 𝜑′
𝑗 ,𝜋𝑆

(𝑖) > 0 for all 𝑖 ∈ 𝑆. Thus we have

a violated inequality, as desired. □

5.4.2 Approximate primal solution from approximate dual separation

In this section, we build upon the 𝛽-approximate dual separation routine from the previous

section and show how it can be employed to obtain a (𝛽 − 𝛿)-approximate primal solution to

(MMS-LP), for every 𝛿 > 0. The proof is similar to the analogous statement in [30], hence we

defer it to Appendix E.3.

Lemma 5.4.2. Given a 𝛽-approximate separation algorithm for P1, . . . ,P𝑚, we can obtain a

(𝛽 − 𝛿)-approximate primal solution to (MMS-LP) in polynomial time for any 𝛿 > 0.

5.4.3 The rounding procedure

We next illustrate how to round a primal solution for (MMS-LP) to a feasible integer solution

by losing at most 1
2 of the profit in expectation.

Lemma 5.4.3. Let �̂� be a feasible solution to (MMS-LP). �̂� can be rounded in polynomial time

to a feasible solution 𝑋 to (MMS-IP) such that

∑︁
𝑗∈[𝑚]

∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

Ψ 𝑗 (𝜋)E[𝑋
𝜋

𝑗] ≥
1
2

∑︁
𝑗∈[𝑚]

∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

Ψ 𝑗 (𝜋) �̂�𝜋𝑗 .

Proof. First round �̂� independently for every 𝑗 ∈ [𝑚]. We assign to I𝑗 at most one 𝑆 ⊆ 2[𝑛] and

𝜋𝑆 ∈ Π𝑆, by sampling each 𝜋𝑆 with probability 𝑝𝜋𝑆 = �̂�
𝜋𝑆
𝑗

, and to the empty set with the remaining

probability. Because of the second constraint of (MMS-LP), this procedure is well-defined. Let 𝑋

be the binary vector corresponding to this integer assignment. 𝑋 may be infeasible for (MMS-IP),

since there may exist 𝑗1 ≠ 𝑗2 ∈ [𝑚] such that 𝑋
𝜋𝑆1
𝑗1

= 1, 𝑋
𝜋𝑆2
𝑗2

= 1 and 𝑆1 ∩ 𝑆2 ≠ ∅.

114

To fix this feasibility issue, for every 𝑖 ∈ [𝑛], let

𝑀 (𝑖) = { 𝑗 ∈ [𝑚] : 𝑋𝜋𝑆
𝑗

= 1, for some 𝑆 ⊆ [𝑛] such that 𝑖 ∈ 𝑆},

so that 𝑀 (𝑖) denotes the set of machines that are assigned to some set 𝑆 that contains item 𝑖. For

every item 𝑖 ∈ [𝑛], assign item 𝑖 uniformly at random to one set 𝑗 ∈ 𝑀 (𝑖), and remove item 𝑖 from

the remaining sets. Let 𝑀 (𝑖) denote the machine 𝑗 to which item 𝑖 is assigned, and 𝑋 denote the

binary vector corresponding to this integer assignment. Note that 𝑋 is feasible for (MMS-IP).

Let us compare the objective function values of 𝑋 and �̂� . For every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝑆 ⊆ [𝑛],

and 𝜋 ∈ Π𝑆,

E
[
𝑋
𝜋

𝑗

]
≥ E

[
𝑋
𝜋𝑆
𝑗

· 1[𝑀 (𝑖) = 𝑗]
]

= P[𝑋𝜋𝑗 = 1] · P[𝑀 (𝑖) = 𝑗 |𝑋𝜋𝑗 = 1]

= �̂�𝜋𝑗 · P[𝑀 (𝑖) = 𝑗 |𝑋𝜋𝑗 = 1] . (5.2)

For every 𝑗 ∈ [𝑚] and 𝑖 ∈ [𝑛], let 𝐾 𝑖
𝑗
= |𝑀 (𝑖) \ { 𝑗}|. Following this definition,

P[𝑀 (𝑖) = 𝑗 |𝑋𝜋𝑗 = 1] =

𝑚−1∑︁
𝑘=0
P[𝐾 𝑖𝑗 = 𝑘 |𝑋𝜋𝑗 = 1]P[𝑀 (𝑖) = 𝑗 |𝑋𝜋𝑗 = 1 ∧ 𝐾 𝑖𝑗 = 𝑘]

=

𝑚−1∑︁
𝑘=0
P[𝐾 𝑖𝑗 = 𝑘] ·

1
𝑘 + 1

= E

[
1

𝐾 𝑖
𝑗
+ 1

]
≥ 1
E[𝐾 𝑖

𝑗
] + 1

≥ 1
2
, (5.3)

where, in the second equality, we used that P[𝐾 𝑖
𝑗
= 𝑘 |𝑋𝜋

𝑗
= 1] = P[𝐾 𝑖

𝑗
= 𝑘] since the number of

machines to which item 𝑖 is assigned not counting machine 𝑗 is independent with the event that

115

item 𝑖 is assigned to machine 𝑗 , and P[𝑀 (𝑖) = 𝑗 |𝑋𝜋
𝑗
= 1 ∧ 𝐾 𝑖

𝑗
= 𝑘] = 1

𝑘+1 since item 𝑖 is assigned

to machine 𝑗 uniformly at random among 𝑘 + 1 machines; the first inequality follows by applying

Jensen’s inequality and by noting that 1
𝐾 𝑖
𝑗
+1 is a convex function for 𝐾 𝑖

𝑗
≥ 0; the final inequality

follows since

E[𝐾 𝑖𝑗] =
∑︁
𝑗 ′∈[𝑚]

∑︁
𝑆∈2[𝑛] :𝑖∈𝑆

∑︁
𝜋∈Π𝑆

�̂�𝜋𝑗 ′ −
∑︁

𝑆∈2[𝑛] :𝑖∈𝑆

∑︁
𝜋∈Π𝑆

�̂�𝜋𝑗 ≤ 1 −
∑︁

𝑆∈2[𝑛] :𝑖∈𝑆

∑︁
𝜋∈Π𝑆

�̂�𝜋𝑗 ≤ 1.

Plugging (5.3) into (5.2), we get

E
[
𝑋
𝜋

𝑗

]
≥ 1

2
· �̂�𝜋𝑗 .

Finally, summing over all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] and permutations 𝜋 ∈ Π𝑆 where 𝑆 ∈ 2[𝑛] , we have:

∑︁
𝑗∈[𝑚]

∑︁
𝑖∈[𝑛]

∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

𝜑 𝑗 ,𝜋 (𝑖)E
[
𝑋
𝜋

𝑗

]
≥ 1

2

∑︁
𝑗∈[𝑚]

∑︁
𝑖∈[𝑛]

∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

𝜑 𝑗 ,𝜋 (𝑖) �̂�𝜋𝑗 .

Noting that
∑
𝑖∈[𝑛] 𝜑 𝑗 ,𝜋 (𝑖) = Ψ 𝑗 (𝜋) for all 𝜋 ∈ Π𝑆, 𝑆 ∈ 2[𝑛] completes the proof. □

5.4.4 Proof of Theorem 5.3.1

Using the results proved thus far, we can deduce the proof of Theorem 5.3.1. Let �̂� be the

(𝛽 − 𝛿)-approximate primal solution obtained via Lemma 5.4.2. �̂� can be rounded to a feasible

integer solution 𝑋 as guaranteed by Lemma 5.4.3. Let OPT(MMS-LP) and OPT(MMS-IP) denote

the optimal objective function value of (MMS-LP) and (MMS-IP) respectively. We have:

∑︁
𝑗∈[𝑚]

∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

Ψ 𝑗 (𝜋)E[𝑋
𝜋

𝑗] ≥ 1
2

∑︁
𝑗∈[𝑚]

∑︁
𝑆∈2[𝑛]

∑︁
𝜋∈Π𝑆

Ψ 𝑗 (𝜋) �̂�𝜋𝑗

≥ 1
2
· (𝛽 − 𝛿) · OPT(MMS-LP)

≥ 1
2
· (𝛽 − 𝛿) · OPT(MMS-IP).

116

Here, the first inequality follows from Lemma 5.4.3, the second inequality follows from

Lemma 5.4.2. The final inequality follows since (MMS-LP) is the linear relaxation of (MMS-IP).

Observing that (MMS-IP) is an integer programming formulation of the multi-machine sequencing

problem concludes the proof.

5.4.5 Proof of Theorem 1.3.7

By Lemma 5.3.3, the incremental generalized assignment problem can be reformulated as a

multi-machine sequencing problem, where each single-machine sequencing problem is a reformu-

lation of a generalized incremental knapsack problem, and moreover, the family of single-machine

sequencing problems one obtains is closed. Section 3.2 gives a 1
2 − 𝜖 approximated algorithm

for the generalized incremental knapsack problem in polynomial time. Thus, Theorem 1.3.7 is a

direct result of applying Theorem 5.3.1, together with the 1
2 − 𝜖 approximated algorithm for the

generalized incremental knapsack problem.

5.5 Comparison with the approach by Fleischer et al.

As previously mentioned, our techniques to solve the multi-machine sequencing problem are

inspired by [30]. In this section, we discuss the extent of the similarities, as well as the differences

in the two problems and the techniques employed.

Separable assignment vs. multi-machine sequencing. [30] consider the separable assignment

problem, where we are given 𝑛 items and 𝑚 machines. Assigning item 𝑖 to machine 𝑗 earns profit

𝑝𝑖, 𝑗 . Each machine 𝑗 has a feasibility set F𝑗 ⊆ 2[𝑛] that is an independence system. The goal is to

find a feasible item to machine assignment that earns maximum profit.

Notice that the generalized assignment problem can be formulated as a separable assignment

problem. In turn, the separable assignment problem can be formulated as a multi-machine se-

quencing problem over the same set [𝑛] of items. In particular, given a set 𝑆 ⊆ [𝑛] and 𝜋 ∈ Π𝑆,

let 𝜑 𝑗 ,𝜋 (𝑖) = 𝑝𝑖, 𝑗 if {ℓ : 𝜋(ℓ) ≤ 𝜋(𝑖)} ⊆ F𝑗 . That is, if the set of all items that come before item

117

𝑖, including item 𝑖 itself, are feasible for machine 𝑗 , we let 𝜑 𝑗 ,𝜋 (𝑖) = 𝑝𝑖, 𝑗 . Else, let 𝜑 𝑗 ,𝜋 (𝑖) = 0.

One easily checks that, since F𝑗 is an independence system, the properties of inclusionwise non-

increasing profit profile are satisfied. Furthermore, since the separable assignment problem is a

packing problem, by Point 3 of Lemma 5.3.2, the family of single-machine sequencing problems

obtained from separation assignment problems via this reduction is closed.

Let 𝑆1, . . . , 𝑆𝑚 be a feasible solution to the separable assignment problem, where 𝑆 𝑗 denotes

the set of items assigned to machine 𝑗 . Since 𝑆 𝑗 ∈ F𝑗 , for any permutation 𝜋 𝑗 ∈ Π𝑆 𝑗 , clearly

Ψ 𝑗 (𝜋 𝑗) =
∑
𝑖∈𝑆 𝑗 𝑝𝑖, 𝑗 . On the other hand, let 𝜋1, . . . , 𝜋𝑚 be a feasible solution to the multi-machine

sequencing problem. Removing all items 𝑖 from 𝑆 𝑗 such that 𝜑 𝑗 ,𝜋 𝑗 (𝑖) = 0 gives a feasible solution

to the separable assignment problem with equivalent profit.

The key difference between the separable assignment problem and the multi-machine sequenc-

ing problem lies in the fact that in the latter setting, the profit an item earns depends not only on

the item and the machine it is assigned to, but also on other items assigned to the same machine

as well as their internal permutation; whereas in the separable assignment problem, the profit an

item earns is only dependent on the machine to which it is assigned (as long as the set of assigned

item is feasible). Hence, the multi-machine sequencing problem is strictly more general than the

separable assignment problem.

As such, to solve the multi-machine sequencing problem, we need to develop a new IP formu-

lation and a new rounding procedure to obtain a feasible integer solution from a feasible fractional

solution. The IP formulation in [30] consists of indicator variables 𝑋𝑆
𝑗

to indicate if machine 𝑗 is

assigned set 𝑆. Alternatively, in our IP formulation, we use indicator variables 𝑋𝜋𝑆
𝑗

to denote if

machine 𝑗 is assigned set 𝑆 with permutation 𝜋𝑆. With this added granularity of the permutation

of the item set, the profit Ψ 𝑗 (𝜋𝑆) becomes well-defined and obtainable in polynomial time.

Comparison of the rounding procedures. It is also worthwhile to highlight the differences

between the rounding procedures. Given a feasible LP solution �̂�𝑆
𝑗
, [30] obtain a feasible integral

solution 𝑋
𝑆

𝑗 as follows: first, it assigns each machine 𝑗 set 𝑆 with probability 𝑋
𝑆

𝑗 . Then, following

118

this rounding, if an item is assigned to multiple machines, the item is assigned to the most profitable

machine. Similar to [30], in our rounding procedure, we assign a machine 𝑗 permutation 𝜋𝑆 with

probability �̂�𝜋𝑆
𝑗

. As a second step, to address the same infeasibility issue of an item being assigned

to multiple machines, we instead assign an item to one of these machines uniformly at random. To

bound the expected profit of the feasible IP solution against the profit of the feasible LP solution,

the proof proposed by [30] relies on the fact that for every item 𝑖, there is a well-defined ordering

of machines in non-decreasing profit order, independent of other items that are assigned to that

machine. Using this order, they explicitly calculate the probability an item 𝑖 is assigned to machine

𝑗 in their procedure and achieve a lower bound of 1 − 1
𝑒
. As previously mentioned, this ordering

does not exist in our setting. Thus, it is unclear if similar techniques can be utilized in our setting

to achieve a similar lower bound. Instead, we use our different rounding procedure that allows us

to calculate the probability an item 𝑖 is assigned to machine 𝑗 , and achieve a worse lower bound of

1
2 .

119

Chapter 6: On the facets of the incremental knapsack polytope

6.1 Introduction

In this chapter, we present polyhedral results for the incremental knapsack polytope. In particu-

lar, we build upon the ideas of cover inequalities for the classical knapsack polytope and strengthen

these inequalities to define valid inequalities for the incremental knapsack polytope. Our main con-

tribution is the extension of the incremental knapsack polytope of one direction of an “if and only

if” result by Balas [6] on facet-defining inequalities of the knapsack polytope with coefficients 0

and 1.

The remainder of the chapter is organized as follows. In Section 6.2, we give a brief summary

of cover inequalities for the classical knapsack polytope and necessary and sufficient conditions

for when they define a facet. In Section 6.3, we show how, starting with a classic knapsack cover

inequality, we can strengthen it to obtain a stronger valid inequality for the incremental knapsack

polytope. We dub this class of inequalities the lift and push cover inequalities. We show that,

interestingly, under the same conditions in which cover inequalities define a facet for the classical

knapsack polytope, the inequalities our procedure obtains define a facet for the incremental knap-

sack polytope. These conditions, however, are not necessary. In Section 6.4, we give separation

algorithms for lift and push cover inequalities. We provide two algorithms, the first of which is an

exact separation procedure that runs in pseudo-polynomial time. Finally, for any 𝜖 > 0, we present

a polynomial time, (1 − 𝜖)-approximate separation algorithm.

120

6.2 Cover inequalities for the classical knapsack polytope

In this section, we give an overview of 0/1 facets of the knapsack polytope [6]. Given the

standard integer programming formulation of the classical knapsack problem

max
∑︁
𝑖∈[𝑛]

𝑝𝑖𝑥𝑖

s.t.
∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖 ≤ 𝑊

𝑥𝑖 ∈ {0, 1} ∀ 𝑖 ∈ [𝑛],

(KP)

the knapsack polytope is defined as the convex hull of the feasible points satisfying the constraints

given above. Let 𝑆 ⊆ [𝑛]. Let 𝑗1, 𝑗2, . . . , 𝑗 |𝑆 | be an order of distinct indices such that 𝑗𝑘 ∈ 𝑆 for

each 𝑘 ∈ [|𝑆 |] and 𝑤 𝑗1 ≥ 𝑤 𝑗2 ≥ · · · ≥ 𝑤 𝑗 |𝑆 | . We say a set 𝑆 is a cover of the knapsack polytope

if
∑
𝑖∈𝑆 𝑤𝑖 > 𝑊. Let 𝐸 (𝑆) denote the extension of 𝑆 where 𝐸 (𝑆) = 𝑆 ∪ {𝑖 : 𝑖 ∈ [𝑛], 𝑤𝑖 ≥ 𝑤 𝑗1}, so

𝐸 (𝑆) contains all items in the cover along with all items with weights greater than or equal to the

maximal weighted item in the cover. We let the cover inequality be defined as

∑︁
𝑖∈𝑆

𝑥𝑖 ≤ |𝑆 | − 1 (6.1)

and the extended cover inequality be defined as

∑︁
𝑖∈𝐸 (𝑆)

𝑥𝑖 ≤ |𝑆 | − 1. (6.2)

It is straightforward to verify that both (6.1) and (6.2) are valid inequalities for the knapsack poly-

tope.

We call 𝑆 a strong cover if 𝑆 is a cover and satisfies the following conditions:

C1. For every 𝑖 ∈ 𝑆, we have
∑
𝑗∈𝑆\{𝑖} 𝑤 𝑗 ≤ 𝑊 .

C2. For every 𝑖 ∈ [𝑛] \ 𝐸 (𝑆), we have
∑
𝑗∈𝑆\{ 𝑗1} 𝑤 𝑗 + 𝑤𝑖 ≤ 𝑊 .

121

Balas showed in [6] the following characterization of facet defining 0/1-inequalities of the

knapsack polytope:

Theorem 6.2.1. Let 𝑄 ⊆ [𝑛] and 𝑘 ≥ 0. An inequality of the form

∑︁
𝑖∈𝑄

𝑥𝑖 ≤ 𝑘

is a facet-defining inequality of the knapsack polytope if and only if 𝑄 = 𝐸 (𝑆) for some strong

cover 𝑆, 𝑘 = |𝑆 | − 1 and ∑︁
𝑗∈𝑆\{ 𝑗1, 𝑗2}

𝑤 𝑗 + 𝑤max ≤ 𝑊,

where 𝑤max = max{𝑤𝑖 : 𝑖 ∈ [𝑛]}.

6.3 Lift and push cover inequalities for the incremental knapsack polytope

In this section, we show, starting with a cover inequality for the knapsack polytope presented

in the last section, how to obtain the stronger lift and push cover inequality for the incremental

knapsack polytope. This procedure is formalized in Section 6.3.1. In Section 6.3.2, we extend one

direction of Balas’s result in Theorem 6.2.1 and give sufficient conditions for when life and push

cover inequalities define facets for the incremental knapsack polytope. Finally, we show that these

conditions are not necessary.

122

6.3.1 The lift and push procedure

Recall that the generalized incremental knapsack problem has the following integer program-

ming formulation:

max
∑︁
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

𝑝𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1)

s.t.
∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 ∀ 𝑡 ∈ [𝑇]

𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 ∀ 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇 − 1]

𝑥𝑖,𝑡 ∈ {0, 1} ∀ 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇]

(GIK-IP)

Let the incremental knapsack polytope be the convex hull of the feasible points satisfying the

constraints of (GIK-IP).

We say 𝑆 is a cover of the incremental knapsack polytope at time 𝑡 if for some 𝑡 ∈ [𝑇], we have∑
𝑖∈𝑆 𝑥𝑖 > 𝑊𝑡 . We say 𝑆 is a strong cover of the incremental knapsack polytope at time 𝑡 if 𝑆 is a

cover that satisfies,

C1. For every 𝑖 ∈ 𝑆, we have
∑
𝑗∈𝑆\{𝑖} 𝑤 𝑗 ≤ 𝑊𝑡 .

C2. For every 𝑖 ∈ [𝑛] \ 𝐸 (𝑆), we have
∑
𝑗∈𝑆\{ 𝑗1} 𝑤 𝑗 + 𝑤𝑖 ≤ 𝑊𝑡 .

We remark that these definitions are identical to those for the knapsack polytope, with the added

specification of a time parameter 𝑡. It is easy to verify that, analogous to their knapsack counter-

parts given in (6.1) and (6.2), the cover inequality and extended cover inequality at time 𝑡, given

respectively in (6.3) and (6.4) below, are both valid inequalities for the knapsack polytope.

∑︁
𝑖∈𝑆

𝑤𝑖𝑥𝑖,𝑡 ≤ |𝑆 | − 1 (6.3)

∑︁
𝑖∈𝐸 (𝑆)

𝑤𝑖𝑥𝑖,𝑡 ≤ |𝑆 | − 1. (6.4)

We can further strengthen the above inequalities as follows. Starting with a cover 𝑆 in some

123

time 𝑡 ∈ [𝑇], The lift and push cover inequality is defined as

∑︁
𝑖∈𝐸 (𝑆)

𝑥𝑖,𝑡𝑖,𝑆 ≤ |𝑆 | − 1, (6.5)

where for 𝑖 ∈ 𝑆

𝑡𝑖,𝑆 = 𝑡𝑆 = max
𝑡 :

∑︁
𝑗∈𝑆

𝑤 𝑗 > 𝑊𝑡

 , (6.6)

and for 𝑖 ∉ 𝑆

𝑡𝑖,𝑆 = max
𝑡 :

∑︁
𝑗∈𝑆\{ 𝑗1}

𝑤 𝑗 + 𝑤𝑖 > 𝑊𝑡

 . (6.7)

Note that every cover 𝑆 uniquely determines a lift and push cover inequality. Therefore, for

each cover 𝑆, we call the associated lift and push cover inequality the LPCI of 𝑆. Note that 𝑡𝑖,𝑆 = 𝑡 𝑗 ,𝑆

for any 𝑖, 𝑗 ∈ 𝑆. Therefore, we denote 𝑡𝑆 = 𝑡𝑖,𝑆 for every 𝑖 ∈ 𝑆. When it is clear from context what

the cover 𝑆 is in the definition of (6.7), we simply denote 𝑡𝑖,𝑆 as 𝑡𝑖. The next lemma shows that this

procedure gives a valid inequality.

Lemma 6.3.1. Given a cover 𝑆 for some time 𝑡 ∈ [𝑇], the lift and push cover inequality of 𝑆 as

given by (6.5) is valid.

Proof. If 𝐸 (𝑆) = 𝑆, validity of (6.5) is trivial since 𝑆 is a cover in time 𝑡𝑆. Thus we assume 𝐸 (𝑆) \𝑆

is nonempty. Suppose (6.5) is not valid, then there exists 𝑥 feasible for (GIK-IP) that violates (6.5).

Let 𝐾1 = {𝑖 ∈ 𝑆 : 𝑥𝑖,𝑡𝑆 = 1} and 𝐾2 = {𝑖 ∈ 𝐸 (𝑆) \ 𝑆 : 𝑥𝑖,𝑡𝑖 = 1}. Since 𝑥 violates (6.5), we know

that |𝐾1 | + |𝐾2 | ≥ |𝑆 |. Since 𝑥 satisfies the constraints of (GIK-IP) and 𝑆 is a cover in 𝑡𝑆, we have

|𝐾1 | ≤ |𝑆 | − 1. Therefore, |𝐾2 | ≥ 1. Let 𝑘′ ∈ 𝐾2 so that 𝑡′
𝑘 ′ = max{𝑡𝑖 : 𝑖 ∈ 𝐾2}, then

∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 ′
𝑘′

≥
∑︁
𝑖∈𝐾1

𝑤𝑖 +
∑︁
𝑖∈𝐾2

𝑤𝑖

≥
∑︁
𝑖∈𝐾1

𝑤𝑖 + (|𝐾2 | − 1)𝑤 𝑗1 + 𝑤𝑘 ′

≥
∑︁

𝑖∈𝑆\{ 𝑗1}
𝑤𝑖 + 𝑤𝑘 ′

124

> 𝑊𝑡 ′
𝑘′
,

where the first inequality is by definition of 𝐾1 and 𝐾2, the second inequality is by noting for each

𝑖 ∈ 𝐾2, 𝑤𝑖 ≥ 𝑤 𝑗1 , the third inequality is by noting |𝐾1 | + |𝐾2 | − 1 ≥ |𝑆 | − 1 by assumption, and the

final inequality is by (6.7). We have reached a contradiction since 𝑥 satisfies
∑
𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ′

𝑘′
≤ 𝑊𝑡 ′

𝑘′

by feasibility of 𝑥. □

6.3.2 Facet defining lift and push cover inequalities

In this section, we give sufficient conditions for when the lift and push procedure from Sec-

tion 6.3.1 defines a facet for the incremental knapsack polytope. The main result is given in the

following theorem.

Theorem 6.3.2. The inequality

∑︁
𝑖∈𝑆

𝑥𝑖,𝑡𝑆 +
∑︁

𝑖∈𝐸 (𝑆)\𝑆
𝑥𝑖,𝑡𝑖 ≤ |𝑆 | − 1, (6.8)

with 𝑡𝑆 and 𝑡𝑖 defined by (6.6) and (6.7) respectively, defines a facet of the incremental knapsack

polytope if 𝑆 is a strong cover at time 𝑡𝑆, |𝑆 | ≥ 2, and

∑︁
𝑖∈𝑆\{ 𝑗1, 𝑗2}

𝑤𝑖 + 𝑤max ≤ 𝑊𝑡𝑆 .

Before proceeding with the proof, we remark that the conditions in Theorem 6.3.2 are identical

to Balas’s result in Theorem 6.2.1. However, while Balas’s result holds as an if and only if, the

converse of Theorem 6.3.2 is not true. In particular, as shown in the example below, there exists 0/1

facet-defining inequalities of the incremental knapsack polytope that can be lifted from non-strong

covers.

Example 6.3.3. Consider the following constraints of an instance of the incremental knapsack

125

problem with 𝑛 = 5 and 𝑇 = 2,

4𝑥1,1 + 3𝑥2,1 + 2𝑥3,1 + 2𝑥4,1 + 2𝑥5,1 ≤ 6

4𝑥1,2 + 3𝑥2,2 + 2𝑥3,2 + 2𝑥4,2 + 2𝑥5,2 ≤ 9

𝑥𝑖,1 ≤ 𝑥𝑖,2 ∀ 𝑖 ∈ [5]

𝑥𝑖,𝑡 ∈ {0, 1} ∀ 𝑖 ∈ [5], 𝑡 ∈ [2] .

(6.9)

We show in Appendix F.1.1 that the following inequality defines a facet for the corresponding

incremental knapsack polytope:

𝑥1,2 + 𝑥2,1 + 𝑥3,1 + 𝑥4,1 + 𝑥5,2 ≤ 3 (6.10)

Notice that this inequality can be obtained starting with the cover 𝑆 = {2, 3, 4, 5} in time 1 with

the corresponding extended cover inequality of 𝑆,

𝑥1,1 + 𝑥2,1 + 𝑥3,1 + 𝑥4,1 + 𝑥5,1 ≤ 3.

However, {2, 3, 4, 5} is not a strong cover in time 1, as it violates Condition C1. In addition,

in (6.10), the definition of 𝑡5 does not match the definition given in (6.6).

Proof of Theorem 6.3.2. For ease of notation, let 𝑃 denote the incremental knapsack polytope. Let

𝐷 = {(𝑖, 𝑡) : 𝑤𝑖 ≤ 𝑊𝑡 , 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇]}. It is easy to see that dim(𝑃) ≤ |𝐷 |. To show that (6.8) is a

facet, we will define |𝐷 | linearly independent feasible solutions of 𝑃 that satisfy (6.8) at equality.

To this end, we partition [𝑛] into 3 sets: 𝑆, 𝑆1 = 𝐸 (𝑆) \ 𝑆, and 𝑆2 = [𝑛] \ 𝐸 (𝑆). We assume

without loss of generality that 𝑆 = {1, 2, . . . , |𝑆 |}. For each 𝑖 ∈ [𝑛], we let 𝑡′
𝑖

denote the first time

𝑡 in which 𝑤𝑖 is feasible, i.e., 𝑡′
𝑖
= min{𝑡 : 𝑤𝑖 ≤ 𝑊𝑡}. For each (𝚤, 𝑡) ∈ 𝐷, we will define a solution

generated by (𝚤, 𝑡). In the solution generated by (𝚤, 𝑡), we let 𝑥𝚤,𝜏 = 1 for all 𝜏 ≥ 𝑡 and 𝑥𝚤,𝜏 = 0 for

all 𝜏 < 𝑡. For any 𝑗 ∈ [𝑛] and 𝑗 ≠ 𝚤, 𝑥 𝑗 ,𝑡 will be defined differently for different cases in what

follows.

126

First, assume 𝚤 ∈ 𝑆 and 𝑡′
𝚤
≤ 𝑡 ≤ 𝑡𝑆. For 𝚤 ≠ |𝑆 | and 𝑗 ≠ 𝚤, define:

𝑥 𝑗 ,𝑡 =

1, if 𝑡𝑆 ≤ 𝑡 ≤ 𝑇, 𝑗 ∈ 𝑆 \ {𝚤, 𝚤 + 1}

0, otherwise
(6.11)

For 𝚤 = |𝑆 | and 𝑗 ≠ 𝚤, define:

𝑥 𝑗 ,𝑡 =

1, if 𝑡𝑆 ≤ 𝑡 ≤ 𝑇, 𝑗 ∈ 𝑆 \ {𝚤, 1}

0, otherwise
(6.12)

Definitions (6.11) and (6.12) together generate
∑
𝑖∈𝑆 (𝑡𝑆 − 𝑡′𝑖 + 1) solution assignments. The next

claim shows that the solutions as defined above are indeed feasible and satisfy (6.8) at equality.

For readability, its straightforward proof is provided in Appendix F.1.2.

Claim 6.3.4. The solutions generated by (𝚤, 𝑡) for 𝚤 ∈ 𝑆 and 𝑡′
𝚤
≤ 𝑡 ≤ 𝑡𝑆 are feasible and satisfy (6.8)

at equality.

Again assume 𝚤 ∈ 𝑆, and fix 𝑡 > 𝑡𝑆, for any 𝑗 ≠ 𝚤, define:

𝑥 𝑗 ,𝑡 =

1, if 𝑡𝑆 ≤ 𝑡 ≤ 𝑇, 𝑗 ∈ 𝑆 \ {𝚤}

0, otherwise
(6.13)

Definition (6.13) generates the remaining |𝑆 | · (𝑇 − 𝑡𝑆) solution assignments for 𝚤 ∈ 𝑆. The next

claim shows that the solutions are feasible and satisfy (6.8) at equality; its proof is deferred to

Appendix F.1.3.

Claim 6.3.5. The solutions generated by (𝚤, 𝑡) for 𝚤 ∈ 𝑆 and 𝑡𝑆 < 𝑡 ≤ 𝑇 are feasible and satisfy (6.8)

at equality.

127

Now assume 𝚤 ∈ 𝑆1, fix any 𝑡′
𝚤
≤ 𝑡 ≤ 𝑡𝚤, where 𝑡𝚤 is defined by (6.7). For any 𝑗 ≠ 𝚤, define:

𝑥 𝑗 ,𝑡 =

1, if 𝑡𝑆 ≤ 𝑡 ≤ 𝑇, 𝑗 ∈ 𝑆 \ { 𝑗1, 𝑗2}

0, otherwise
(6.14)

For 𝚤 ∈ 𝑆1, fix any 𝑡 > 𝑡𝚤. For any 𝑗 ≠ 𝚤, define:

𝑥 𝑗 ,𝑡 =

1, if 𝑡𝑆 ≤ 𝑡 ≤ 𝑇, 𝑗 ∈ 𝑆 \ { 𝑗1}

0, otherwise
(6.15)

Definitions (6.14) and (6.15) together generate
∑
𝑖∈𝑆1 (𝑇−𝑡′𝑖+1) solution assignments. The following

two claims show the solutions as defined above are feasible and satisfy (6.8) at equality. Their

proofs can be found in Appendices F.1.4 and F.1.5 respectively.

Claim 6.3.6. The solutions generated by (𝚤, 𝑡) for 𝚤 ∈ 𝑆1 and 𝑡′
𝚤
≤ 𝑡 ≤ 𝑡𝚤 are feasible and sat-

isfy (6.8) at equality.

Claim 6.3.7. The solutions generated by (𝚤, 𝑡) for 𝚤 ∈ 𝑆1 and 𝑡 > 𝑡𝚤 are feasible and satisfy (6.8) at

equality.

Finally, for 𝚤 ∈ 𝑆2, fix any 𝑡 ≥ 𝑡′
𝚤
, for any 𝑗 ≠ 𝚤, define:

𝑥 𝑗 ,𝑡 =

1, if 𝑡𝑆 ≤ 𝑡 ≤ 𝑇, 𝑗 ∈ 𝑆 \ { 𝑗1}

0, otherwise
(6.16)

Definition (6.16) generates the remaining
∑
𝑖∈𝑆2 (𝑇 − 𝑡′𝑖 +1) solution assignments. The following

claim shows that the solutions as defined above are feasible and satisfy (6.8) at equality. Its proof

is provided in Appendix F.1.6.

Claim 6.3.8. The solutions generated by (𝚤, 𝑡) for 𝚤 ∈ 𝑆2 and 𝑡 ≥ 𝑡′
𝚤

are feasible and satisfy (6.8) at

equality.

128

Thus far, we have given |𝐷 | feasible solutions that satisfy (6.8) at equality. Finally, in the next

claim, we show that all |𝐷 | solutions are linearly independent, which concludes the proof that (6.8)

defines a facet.

Claim 6.3.9. All solution assignments generated by (𝚤, 𝑡) ∈ 𝐷 are linearly independent.

Proof. To show that all solution assignments are linearly independent, consider a |𝐷 | × 𝑛𝑇 matrix

where each row is a solution assignment. We want to show the matrix is full rank. If there exists

a column with only 1 nonzero element, we can eliminate the row that contains the unique nonzero

element for that column, since it cannot be linearly dependent to other rows. For any 𝑖 ∈ 𝑆1∪𝑆2 and

any 𝑡 ∈ [𝑇], 𝑥𝑖,𝑡 = 1 for solutions generated by (𝑖, 𝑡) for 𝑡 ≤ 𝑡, and 𝑥𝑖,𝑡 = 0 for all other solutions.

In particular, for any 𝑖 ∈ 𝑆1 ∪ 𝑆2, 𝑥𝑖,1 = 1 only for the solution generated by (𝑖, 1), allowing us

to eliminate the row corresponding to the solution generated by (𝑖, 1). After this elimination, now

𝑥𝑖,2 = 1 only for the solution generated by (𝑖, 2), allowing us to eliminate the corresponding row

as well. We can do this sequentially followed by 𝑡 = 3, . . . , 𝑇 until we have eliminated all rows

corresponding to solutions generated by (𝑖, 𝑡) for any 𝑖 ∈ 𝑆1 ∪ 𝑆2 and any 𝑡 ≥ 𝑡′
𝑖
.

Similarly, for any 𝑖 ∈ 𝑆 and 𝑡 < 𝑡𝑆, 𝑥𝑖,𝑡 = 1 only for solutions generated by (𝑖, 𝑡) for 𝑡 ≤ 𝑡.

Hence, we can do the same elimination as above for rows corresponding to the solutions generated

by (𝑖, 𝑡) sequentially for 𝑡 = 1, 2, . . . , 𝑡𝑆 − 1.

We are left with solution assignments generated by (𝑖, 𝑡) for 𝑖 ∈ 𝑆 and 𝑡 ≥ 𝑡𝑆 and the columns

corresponding to variables 𝑥𝑖,𝑡 for 𝑖 ∈ 𝑆 and 𝑡 ≥ 𝑡𝑆. We denote the corresponding sub-matrix as 𝑋 .

If 𝑋 is full rank, the entire solution matrix is full rank. For all 𝑖 ∈ 𝑆 and 𝑖 ≥ 2, 𝑥𝑖,𝑇 = 0 only for

the solution assignment generated by (𝑖 − 1, 𝑡𝑆). If 𝑖 ∈ 𝑆 and 𝑖 = 1, 𝑥𝑖,𝑇 = 0 only for the solution

assignment generated by (|𝑆 |, 𝑡𝑆). Thus, we can eliminate rows corresponding to the solutions

generated by (𝑖, 𝑡𝑆) for any 𝑖 ∈ 𝑆. With these rows eliminated, for any 𝑖 ∈ 𝑆 and 𝑡𝑆 ≤ 𝑡 < 𝑇 , 𝑥𝑖,𝑡 = 0

only for the solution assignment generated by (𝑖, 𝑡) for 𝑡 > 𝑡. Thus, for 𝑖 ∈ 𝑆, we can eliminate

rows corresponding to the solutions generated by (𝑖, 𝑡) sequentially for 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 𝑡𝑆 and

conclude 𝑋 is full rank.

To justify the above operation, in a binary matrix, columns with only 1 zero element cannot

129

be linearly dependent to any other column as long as exchanging 0’s and 1’s does not change

the rank of 𝑋; or equivalently, since 𝑋 does not contain the 0 vector, the vectors of 𝑋 are affinely

independent implies that vectors of 1−𝑋 are affinely independent. Suppose vectors of 1−𝑋 are not

affinely independent. Let ®𝑥1, . . . , ®𝑥𝑟 be the columns of 𝑋 . There exists 𝛼 such that
∑𝑟
𝑖=1 𝛼𝑖 (1−®𝑥𝑖) =

0,
∑𝑟
𝑖=1 𝛼𝑖 = 0, 𝛼𝑖 ≠ 0 for some 𝑖. Therefore,

𝑟∑︁
𝑖=1

𝛼𝑖 (1 − ®𝑥𝑖) =
𝑟∑︁
𝑖=1

𝛼𝑖 −
𝑟∑︁
𝑖=1

𝛼𝑖®𝑥𝑖 = 0 −
𝑟∑︁
𝑖=1

𝛼𝑖®𝑥𝑖 = 0.

Thus, we have
∑𝑟
𝑖=1 𝛼𝑖®𝑥𝑖 = 0, hence vectors of 𝑋 are affinely independent. Hence the sub-matrix X

is full rank. □

□

6.4 Separation algorithms

In this section, we propose separation algorithms for lift and push cover inequalities. These

ideas build upon cover inequality separation algorithms for the classical knapsack polytope given

in [45]. In Section 6.4.1, we give an exact separation algorithm in pseudo-polynomial time. In

Section 6.4.2, we give an approximate separation algorithm in polynomial time.

6.4.1 Exact separation

Consider a fractional point 𝑥 ∈ [0, 1]𝑛𝑇 that satisfies the constraints of the linear relaxation

of (GIK-IP). The lift and push cover inequality separation problem is to either find a lift and push

cover inequality that 𝑥 violates, or to conclude that 𝑥 satisfies all such inequalities. In the remainder

of this section, we provide the exact separation algorithm that proves the following theorem.

Theorem 1.3.8. Given a fractional point 𝑥 ∈ [0, 1]𝑛𝑇 that satisfies the linear relaxation

of (GIK-IP), the lift and push cover inequality separation problem can be solved in time

𝑂 (𝑇𝑛4 | |𝑤 | |∞).

130

Notice that since the running time depends on the input parameter 𝑤, it is pseudo-polynomial

in nature. Even in the knapsack setting, both cover inequality separation and extended cover in-

equality separation are NP-hard [48, 20]. Thus, a polynomial time separation algorithm is not

possible unless P = NP. To prove this result, we first give a reformulation of the separation prob-

lem in Section 6.4.1.1. Using this reformulation, we develop a dynamic programming approach in

Section 6.4.1.2 that gives the result of Theorem 1.3.8.

6.4.1.1 Separation problem reformulation

In this section, we give a reformulation for the lift and push cover inequalities separation prob-

lem. Let 𝑥 be a fractional point that satisfies the constraints of (GIK-IP). Suppose items are sorted

in non-decreasing weight order so that 𝑤1 ≤ · · · ≤ 𝑤𝑛, with ties broken arbitrarily. For each

𝑡 ∈ [𝑇], 𝑘 ∈ [𝑛] and 𝑟 = 0, . . . ,
∑
𝑖∈[𝑛] 𝑤𝑖, we define:

𝑓𝑡 (𝑘, 𝑟) = min

𝑘∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡)𝑦 𝑗 ,𝑡 :
𝑘∑︁
𝑗=1
𝑤 𝑗 𝑦 𝑗 ,𝑡 = 𝑟, 𝑦𝑘,𝑡 = 1, 𝑦 ∈ {0, 1}𝑘

 . (6.17)

For each 𝑘 ∈ [𝑛], 𝑟 = 0, . . . ,
∑
𝑖∈[𝑛] 𝑤𝑖 and 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, we define:

𝑡(𝑘,𝑟) (𝑖) = max {𝑡 : 𝑟 − 𝑤𝑘 + 𝑤𝑖 > 𝑊𝑡} . (6.18)

The next lemma shows that in order to solve the lift and push cover inequality separation problem,

it is sufficient to solve for 𝑓𝑡 (𝑘, 𝑟) for all possible values of 𝑡, 𝑘 and 𝑟.

Lemma 6.4.1. 𝑥 can be separated by a lift and push cover inequality given in (6.5) if and only if

there exist 𝑡 ∈ [𝑇], 𝑘 ∈ [𝑛] and 𝑟 ≥ 𝑊𝑡 + 1 such that

𝑓𝑡 (𝑘, 𝑟) −
𝑛∑︁

𝑗=𝑘+1
𝑥 𝑗 ,𝑡 (𝑘,𝑟) (𝑗) < 1, (6.19)

where 𝑡(𝑘,𝑟) (𝑗) is as defined in (6.18).

In particular, if (6.19) is satisfied, let 𝑦∗ be the solution that gives 𝑓𝑡 (𝑘, 𝑟). Then 𝑥 violates the

131

LPCI of 𝑆∗ where 𝑆∗ = {𝑖 ∈ [𝑘] : 𝑦∗
𝑖,𝑡
= 1}.

Proof. First, we prove the forward direction. Suppose there exists LPCI of 𝑆 for some cover 𝑆

that separates 𝑥. Let 𝑘 = max{𝑖 : 𝑖 ∈ 𝑆}. First, we will show we can assume that 𝐸 (𝑆) \ 𝑆 =

{𝑘 + 1, . . . , 𝑛}. Clearly 𝐸 (𝑆) \ 𝑆 ⊇ {𝑘 + 1, . . . , 𝑛}. Suppose 𝐸 (𝑆) \ 𝑆 ≠ {𝑘 + 1, . . . , 𝑛}, then there

must exists 𝑗 ∉ 𝑆 such that 𝑤 𝑗 = 𝑤𝑘 and 𝑗 < 𝑘 , let 𝑆 = 𝑆 \ {𝑘} ∪ { 𝑗}. We claim that if 𝑥 violates

the LPCI of 𝑆, it also violates the LPCI of 𝑆. Notice that by definition, we have 𝐸 (𝑆) = 𝐸 (𝑆). It is

also straightforward to verify through the definitions of (6.6) and (6.7) that for each 𝑖 ∈ 𝐸 (𝑆), we

have 𝑡𝑖,𝑆 = 𝑡𝑖,𝑆.

Therefore, ∑︁
𝑖∈𝐸 (𝑆)

𝑥𝑖,𝑡𝑖,�̄� =
∑︁
𝑖∈𝐸 (𝑆)

𝑥𝑖,𝑡𝑖,𝑆 > |𝑆 | − 1 = |𝑆 | − 1.

Thus, 𝑆 also separates 𝑥. We can repeat the above procedure until no such element 𝑗 exists.

Hence, we let 𝑆 denote a cover where the LPCI of 𝑆 separates 𝑥 and 𝐸 (𝑆) \ 𝑆 = {𝑘 + 1, . . . , 𝑛}.

Additionally, we let 𝑡 = 𝑡𝑆 and 𝑟 = 𝑤(𝑆). Note that 𝑟 indeed satisfies 𝑟 ≥ 𝑊𝑡 + 1 since 𝑆 is a cover

at time 𝑡. Furthermore, for every 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, we have:

𝑡(𝑘,𝑟) (𝑖) = max {𝑡 : 𝑤(𝑆) − 𝑤𝑘 + 𝑤𝑖 > 𝑊𝑡} = 𝑡𝑖,𝑆, (6.20)

where 𝑡𝑖,𝑆 is defined by (6.7).

Let �̄� 𝑗 ,𝑡 = 1 if 𝑗 ∈ 𝑆, �̄� 𝑗 ,𝑡 = 0 otherwise. Notice that
∑𝑘
𝑗=1 𝑤 𝑗 �̄� 𝑗 ,𝑡 = 𝑤(𝑆) = 𝑟 and since 𝑘 ∈ 𝑆,

we have �̄�𝑘,𝑡 = 1. Thus, �̄� satisfies the constraints of (6.17). Given these definitions, we have:

𝑓𝑡 (𝑘, 𝑟) −
𝑛∑︁

𝑗=𝑘+1
𝑥 𝑗 ,𝑡 (𝑘,𝑟) (𝑗) ≤

𝑘∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡) �̄� 𝑗 ,𝑡 −
𝑛∑︁

𝑗=𝑘+1
𝑥 𝑗 ,𝑡 (𝑘,𝑟) (𝑗)

= |𝑆 | −
∑︁
𝑗∈𝑆
𝑥 𝑗 ,𝑡 −

∑︁
𝑗∈𝐸 (𝑆)\𝑆

𝑥 𝑗 ,𝑡 𝑗

< |𝑆 | − (|𝑆 | − 1)

= 1,

132

where the first inequality follows since as explained above, �̄� satisfies the constraints of (6.17). The

first equality follows by definition of �̄� and by (6.20). The final inequality follows since we know

𝑥 violates the LPCI of 𝑆.

For the reverse direction, let 𝑦∗ be the minimizer of (6.17) that gives 𝑓𝑡 (𝑘, 𝑟) for some 𝑡 ∈ [𝑇],

𝑘 ∈ [𝑛] and 𝑟 ≥ 𝑊𝑡 + 1 such that (6.19) is satisfied. Let 𝑆∗ = {𝑖 ∈ [𝑘] : 𝑦∗
𝑖,𝑡

= 1}. We will

show that 𝑥 violates the LPCI of 𝑆∗. Notice that since 𝑡𝑆∗ = max{𝜏 :
∑
𝑗∈𝑆 𝑤 𝑗 > 𝑊𝜏} where∑

𝑗∈𝑆 𝑤 𝑗 =
∑𝑘
𝑗=1 𝑤 𝑗 𝑦

∗
𝑗 ,𝑡

= 𝑟 ≥ 𝑊𝑡 + 1, we necessarily have 𝑡𝑆∗ ≥ 𝑡. Furthermore, by definition, we

have 𝐸 (𝑆∗) \ 𝑆∗ ⊇ {𝑘 + 1, . . . , 𝑛} and for every 𝑗 ∈ {𝑘 + 1, . . . , 𝑛}, we have

𝑡 𝑗 = max{𝜏 :
∑︁
𝑖∈𝑆

𝑤𝑖 − 𝑤𝑘 + 𝑤 𝑗 > 𝑊𝜏}

= max{𝜏 : 𝑟 − 𝑤𝑘 + 𝑤 𝑗 > 𝑊𝜏}

= 𝑡(𝑘,𝑟) (𝑗).

It follows that

|𝑆∗ | −
∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡𝑆∗ −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆∗ | −

∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡 −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗

=

𝑘∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡)𝑦∗𝑗 ,𝑡 −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗

≤ 𝑓𝑡 (𝑘, 𝑟) −
𝑛∑︁

𝑗=𝑘+1
𝑥 𝑗 ,𝑡 (𝑘,𝑟) (𝑗)

< 1,

where the first inequality follows since by feasibility of 𝑥, we have 𝑥 𝑗 ,𝑡𝑆∗ ≥ 𝑥 𝑗 ,𝑡 for all 𝑗 ∈ [𝑛],

𝑡𝑆∗ ≥ 𝑡. The first equality follows by definition of 𝑆∗. The second inequality follows by definition

of 𝑦∗ and by noting that for 𝑗 ∈ {𝑘 + 1, . . . , 𝑛} ⊆ 𝐸 (𝑆) \ 𝑆, we have 𝑡 𝑗 = 𝑡(𝑘,𝑟) (𝑗) as explained

above. The final inequality by assumption.

Rearranging the inequality, we have
∑
𝑗∈𝑆 𝑥 𝑗 ,𝑡𝑆∗ +

∑
𝑗∈𝐸 (𝑆∗)\𝑆∗ 𝑥 𝑗 ,𝑡 𝑗 > |𝑆 | − 1. We conclude that

𝑥 can be separated by the LPCI of 𝑆∗. □

133

6.4.1.2 Dynamic programming Approach

Given Lemma 6.4.1, to find a lift and push cover equality that separates 𝑥, it suffices to obtain

𝑓𝑡 (𝑘, 𝑟) for every 𝑡 ∈ [𝑇], 𝑘 ∈ [𝑛] and 𝑟 = 0, . . . ,
∑
𝑖∈[𝑛] 𝑤𝑖 and to find such 𝑓𝑡 (𝑘, 𝑟) where (6.19)

is satisfied. If no such 𝑓𝑡 (𝑘, 𝑟) exists, we can conclude that 𝑥 satisfies all lift and push cover

inequalities. In the remainder of the section, we give a dynamic programming approach to solve

for 𝑓𝑡 (𝑘, 𝑟).

Recursive equations. For all 𝑡 ∈ [𝑇], we initialize 𝑓𝑡 (0, 0) = 0. In cases where 𝑤𝑘 > 𝑟, no point

𝑦 satisfies the constraints of (6.17), in which case we set 𝑓𝑡 (𝑘, 𝑟) = ∞. By noting the constraint of

𝑦𝑘,𝑡 = 1 in (6.17), we develop the following recursive equations to solve for 𝑓𝑡 (𝑘, 𝑟):

𝑓𝑡 (𝑘, 𝑟) = min

𝑘∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡)𝑦 𝑗 ,𝑡 :
𝑘∑︁
𝑗=1
𝑤 𝑗 𝑦 𝑗 ,𝑡 = 𝑟, 𝑦𝑘,𝑡 = 1, 𝑦 ∈ {0, 1}𝑘

= min

𝑘−1∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡)𝑦 𝑗 ,𝑡 + (1 − 𝑥𝑘,𝑡) :
𝑘−1∑︁
𝑗=1
𝑤 𝑗 𝑦 𝑗 ,𝑡 = 𝑟 − 𝑤𝑘 , 𝑦 ∈ {0, 1}𝑘−1

= min

ℓ<𝑘
𝑓𝑡 (ℓ, 𝑟 − 𝑤𝑘) + (1 − 𝑥𝑘,𝑡).

Here, the first equality is by definition of 𝑓𝑡 (𝑘, 𝑟), the second equality follows by noting we hold

𝑦𝑘,𝑡 = 1, the final equality follows by definition of 𝑓𝑡 (ℓ, 𝑟 − 𝑤𝑘).

From dynamic programming to separation. Notice that in (6.19), the term
∑𝑛
𝑗=𝑘+1 𝑥 𝑗 ,𝑡 (𝑘,𝑟) (𝑗)

can be calculated in linear time, independent of the value of 𝑓𝑡 (𝑘, 𝑟). Thus, after computing 𝑓𝑡 (𝑘, 𝑟)

for all 𝑡 ∈ [𝑇], 𝑘 ∈ [𝑛] and 𝑟 ∈ [∑𝑖∈[𝑛] 𝑤𝑖]0, it is straight forward to enumerate through all states

and find ones that satisfy (6.19). Let 𝑓𝑡 (𝑘, 𝑟) be such a value, let 𝑦∗ be the solution that achieves

𝑓𝑡 (𝑘, 𝑟) and let 𝑆∗ = {𝑖 : 𝑦∗
𝑖,𝑡

= 1}. By Lemma 6.4.1, the lift and push cover inequality of

𝑆∗ separates 𝑥. On the other hand, if no such state satisfies (6.19), we can conclude, again by

Lemma 6.4.1, that 𝑥 satisfies all lift and push cover inequalities of (6.5).

134

Running time. Given the recursive equation of 𝑓𝑡 (𝑘, 𝑟), each state takes 𝑂 (𝑛) time to solve. We

incur another 𝑂 (𝑛) time to check if (6.19) is satisfied. There are 𝑂 (𝑇𝑛2 | |𝑤 | |∞) number of states,

giving a total running time of 𝑂 (𝑇𝑛4 | |𝑤 | |∞), concluding Theorem 1.3.8.

6.4.2 Approximate separation

As discussed in the previous section, we can solve the separation problem in pseudo-

polynomial time. In this section, we show that we can improve the running time to be polynomial

in the problem’s input size by relaxing the definition of the separation problem.

Theorem 1.3.9. Given a fractional point 𝑥 ∈ [0, 1]𝑛𝑇 that satisfies the constraints of the linear

relaxation of (GIK-IP). For any 𝜖 > 0, there exists an algorithm that, in time 𝑂 (𝑇 𝑛7

𝜖
), gives a lift

and push cover inequality that 𝑥 violates, or concludes that (1 − 𝜖)𝑥 satisfies all such inequalities.

For ease of notation, for every 𝑗 ∈ [𝑛] and 𝑡 ∈ [𝑇], we let 𝑝 𝑗 ,𝑡 = 1 − 𝑥 𝑗 ,𝑡 . Notice that since

0 ≤ 𝑥 𝑗 ,𝑡 ≤ 1, we have 𝑝 𝑗 ,𝑡 ≥ 0. Without loss of generality we assume 𝑝 is scaled so that for each

𝑗 ∈ [𝑛] and 𝑡 ∈ [𝑇], 𝑝 𝑗 ,𝑡 is a non-negative integer. As is the case in Section 6.4.1, we assume items

are sorted in non-decreasing weight order so that 𝑤1 ≤ · · · ≤ 𝑤𝑛. We define

𝑔𝑡 (𝑘, 𝑞) = max

𝑘∑︁
𝑗=1
𝑤 𝑗 𝑦 𝑗 ,𝑡 :

𝑘∑︁
𝑗=1

𝑝 𝑗 ,𝑡𝑦 𝑗 ,𝑡 = 𝑞, 𝑦𝑘,𝑡 = 1, 𝑦 ∈ {0, 1}𝑘
 .

For each 𝑡 ∈ [𝑇], let 𝑣𝑡1, 𝑣
𝑡
2, . . . , 𝑣

𝑡
𝑛 be the ordering of distinct indices such that 𝑝𝑣𝑡1,𝑡 ≤ 𝑝𝑣𝑡2,𝑡

≤

· · · ≤ 𝑝𝑣𝑡𝑛,𝑡 . Let 𝑣𝑡 (𝑗) = {ℓ : 𝑣𝑡
ℓ
= 𝑗}. For all 𝑖 ∈ [𝑛], we define subproblems:

𝑔𝑡,𝑖 (𝑘, 𝑞) = max

𝑘∑︁
𝑗=1
𝑤 𝑗 𝑦 𝑗 ,𝑡 :

𝑘∑︁
𝑗=1

𝑝 𝑗 ,𝑡𝑦 𝑗 ,𝑡 = 𝑞, 𝑦𝑘,𝑡 = 1, 𝑦 ∈ {0, 1}𝑘 , 𝑦 𝑗 ,𝑡 = 0∀ 𝑣𝑡 (𝑗) > 𝑖
 . (6.21)

Recursive equations. Similar to our approach to solve for 𝑓𝑡 (𝑘, 𝑟) in the previous section, we

give the following recursive equations to solve for 𝑔𝑡,𝑖 (𝑘, 𝑞). We initialize 𝑔𝑡,𝑖 (0, 0) = 0 for all

𝑡 ∈ [𝑇] and 𝑖 ∈ [𝑛]. If 𝑣𝑡 (𝑘) > 𝑖 or if 𝑞 < 𝑝𝑘,𝑡 , then no point satisfies the constraints of (6.21) and

we let 𝑔𝑡,𝑖 (𝑘, 𝑞) = −∞. Else, by noting that 𝑦𝑘,𝑡 = 1 for each 𝑔𝑡,𝑖 (𝑘, 𝑞), for 𝑣𝑡 (𝑘) ≤ 𝑖, we rewrite

135

𝑔𝑡,𝑖 (𝑘, 𝑞) as follows:

𝑔𝑡,𝑖 (𝑘, 𝑞) = max

{
𝑘−1∑︁
𝑗=1
𝑤 𝑗 𝑦 𝑗 ,𝑡 + 𝑤𝑘 :

𝑘−1∑︁
𝑗=1
𝑝 𝑗 ,𝑡𝑦 𝑗 ,𝑡 = 𝑞 − 𝑝𝑘,𝑡 ,

𝑦 ∈ {0, 1}𝑘−1, 𝑦 𝑗 ,𝑡 = 0∀ 𝑣𝑡 (𝑗) > 𝑖
}
.

Thus, we obtain,

𝑔𝑡,𝑖 (𝑘, 𝑞) =

max
ℓ<𝑘

𝑔𝑡,𝑖 (ℓ, 𝑞 − 𝑝𝑘,𝑡) + 𝑤𝑘 , if 𝑣𝑡 (𝑘) ≤ 𝑖 and 𝑞 ≥ 𝑝𝑘,𝑡

−∞, otherwise.
(6.22)

6.4.2.1 Approximate dynamic programming

If we were to solve every value of 𝑔𝑡,𝑖 (𝑘, 𝑞) for 𝑡 ∈ [𝑇], 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑛] and 𝑞 =
∑𝑘
𝑗=1 𝑝 𝑗 ,𝑡

given the recursive equations above, the running time is still pseudo-polynomial due to the number

of possible values of 𝑞. We limit the state space of 𝑞 by rounding down 𝑝 as follows:

Let 𝜖 = 𝜖
𝑛
. For each 𝑡 ∈ [𝑇], and 𝑖 ∈ [𝑛]:

• Let 𝑐𝑖 =
𝜖 𝑝
𝑣𝑡
𝑖
,𝑡

𝑖
.

• Let 𝑝 𝑗 ,𝑡 = ⌊ 𝑝 𝑗 ,𝑡
𝑐𝑖
⌋ for all 𝑣𝑡 (𝑗) ≤ 𝑖.

For each 𝑡 ∈ [𝑇], 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑛] and 𝑞 = 0, . . . ,
∑
𝑗∈[𝑘]:𝑣𝑡 (𝑗)≤𝑖 𝑝 𝑗 ,𝑡 . Let �̃�𝑡,𝑖 (𝑘, 𝑞) be defined as

�̃�𝑡,𝑖 (𝑘, 𝑞) = max

𝑘∑︁
𝑗=1
𝑤 𝑗 𝑦 𝑗 ,𝑡 :

𝑘∑︁
𝑗=1

𝑝 𝑗 ,𝑡𝑦 𝑗 ,𝑡 = 𝑞, 𝑦𝑘,𝑡 = 1, 𝑦 ∈ {0, 1}𝑘 , 𝑦 𝑗 ,𝑡 = 0∀ 𝑣𝑡 (𝑗) > 𝑖
 .

Note that this definition is identical to that of �̃�𝑡,𝑖 (𝑘, 𝑞), except with profits 𝑝 instead of 𝑝. We

also remark that limiting the values of 𝑞 to non-negative integers between 0 and
∑
𝑗∈[𝑘]:𝑣𝑡 (𝑗)≤𝑖 𝑝 𝑗 ,𝑡

is without loss of generality since we have the constraint 𝑦 𝑗 ,𝑡 = 0 for all 𝑗 such that 𝑣𝑡 (𝑗) > 𝑖. The

recursion to solve for �̃� is therefore identical to that of 𝑔, except with 𝑝 replacing 𝑝.

136

6.4.2.2 Proof of Theorem 1.3.9

In this section, we give a proof of Theorem 1.3.9. We first discuss how evaluating �̃�𝑡,𝑖 (𝑘, 𝑞) for

all possible states could give a lift and push cover inequality that 𝑥 violates, if one exists. Then, we

prove that if our prescribed procedure fails to return a lift and push cover inequality, then (1 − 𝜖)𝑥

satisfies all lift and push cover inequalities (see Lemma 6.4.2). Finally, we conclude the section by

discussing the overall running time.

From approximate dynamic programming to approximate separation. First, for any cover

𝑆 such that |𝑆 | = 1, the inequality of (6.5) reduces to
∑
𝑖∈𝐸 (𝑆) 𝑥𝑖,𝑡𝑖 ≤ 0. If there exists such an

inequality that separates 𝑥, we can find it in polynomial time through enumeration, or conclude

that 𝑥 satisfies all such inequalities. Thus, going forward, we assume 𝑥 satisfies all lift an push

cover inequalities for covers of cardinality 1.

Let �̄� be the solution that gives �̃�𝑡,𝑖 (𝑘, 𝑞). If �̃�𝑡,𝑖 (𝑘, 𝑞) ≥ 𝑊𝑡 + 1, let 𝑆 = {𝑖 ∈ [𝑘] : �̄�𝑖,𝑡 = 1}. By

definition, 𝑤(𝑆) = �̃�𝑡 (𝑘, 𝑞) so 𝑆 is a cover at time 𝑡. Given 𝑆, we can obtain the LPCI of 𝑆 given

by (6.5).

If
∑
𝑗∈𝐸 (𝑆) 𝑥 𝑗 ,𝑡 𝑗 > |𝑆 | − 1, we have found a lift and push cover inequality that separates 𝑥.

Otherwise, suppose no such inequality exists among all states 𝑡 ∈ [𝑇], 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑛] and

𝑞 ∈ [∑ 𝑗∈[𝑘]:𝑣𝑡 (𝑗)≤𝑖 𝑝 𝑗 ,𝑡]0. In this case, in the lemma that follows, we show that (1− 𝜖)𝑥 satisfies all

lift and push cover inequalities of 𝑆 for |𝑆 | ≥ 2.

Lemma 6.4.2. If for all states 𝑡 ∈ [𝑇], 𝑖, 𝑘 ∈ [𝑛], 𝑞 ∈ {0, . . . ,∑𝑛
𝑗=1 𝑝 𝑗 ,𝑡}, with associated cover 𝑆

of �̃�𝑡,𝑖 (𝑘, 𝑞) as defined above, we have
∑
𝑗∈𝐸 (𝑆) 𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆 | − 1, then for all covers 𝑆 ⊆ 2[𝑛] where

|𝑆 | ≥ 2, 𝑥 satisfies

(1 − 𝜖)
∑︁
𝑗∈𝐸 (𝑆)

𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆 | − 1,

as defined in (6.5).

Proof. Hold fixed some integer 𝑠 where 2 ≤ 𝑠 ≤ 𝑛. For any cover 𝑆 ⊆ 2[𝑛] such that |𝑆 | = 𝑠, let

𝑦 𝑗 ,𝑡𝑆 = 1 for all 𝑗 ∈ 𝑆, 𝑦 𝑗 ,𝑡𝑆 = 0 otherwise. Among all covers 𝑆 and 𝑦 as defined above, let 𝑆∗ and

137

𝑦∗ be one that minimizes the expression below,

𝑛∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡𝑆)𝑦 𝑗 ,𝑡𝑆 −
∑︁

𝑗∈𝐸 (𝑆)\𝑆
𝑥 𝑗 ,𝑡 𝑗 . (6.23)

We first show that 𝑆∗ satisfies the property given in Claim 6.4.3. Then we show that to prove

that (1 − 𝜖)𝑥 satisfies all lift and push cover inequalities of cardinality 𝑠, it is sufficient to prove

that (1 − 𝜖)𝑥 satisfies the LPCI of 𝑆∗. Their proofs can be found in Appendices F.2.1 and F.2.2

respectively.

Claim 6.4.3. There exists 𝑆∗ that minimizes (6.23) such that 𝐸 (𝑆∗) \ 𝑆∗ = {𝑘∗ + 1, . . . , 𝑛}, where

𝑘∗ = max{𝑖 : 𝑖 ∈ 𝑆∗}.

Claim 6.4.4. If (1− 𝜖)∑ 𝑗∈𝐸 (𝑆∗) 𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆∗ | − 1, then for all other covers 𝑆 such that |𝑆 | = |𝑆∗ |, we

also have

(1 − 𝜖)
∑︁
𝑗∈𝐸 (𝑆)

𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆 | − 1.

Let 𝑘∗ = max{𝑖 : 𝑖 ∈ 𝑆∗}; let 𝑡∗ = 𝑡 |𝑆∗ |; let 𝑖∗ = max{𝑖 : 𝑦∗
𝑣𝑡

∗
𝑖
,𝑡∗

= 1}; let 𝑞∗ =
∑
𝑖∈𝑆∗ 𝑝𝑖,𝑡∗ . Notice

that by definition of 𝑖∗, for all 𝑗 such that 𝑣𝑡 (𝑗) > 𝑖, we have 𝑦∗
𝑗 ,𝑡

= 0. Therefore, 𝑦∗ is a feasible

solution for �̃�𝑡∗,𝑖∗ (𝑘∗, 𝑞∗). Let �̄� be the solution that achieves �̃�𝑡∗,𝑖∗ (𝑘∗, 𝑞∗). The next claim gives an

upper bound for
∑𝑘∗

𝑗=1 𝑝 𝑗 ,𝑡∗ �̄� 𝑗 ,𝑡∗ in terms of
∑𝑘∗

𝑗=1 𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ . Its proof is provided in Appendix F.2.3.

Claim 6.4.5.
𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗ �̄� 𝑗 ,𝑡∗ ≤ (1 + 𝜖)
𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ .

Recall that 𝑆∗ = {𝑖 : 𝑦∗
𝑖,𝑡∗ = 1}. Similarly, we let 𝑆 = {𝑖 : �̄�𝑖,𝑡∗ = 1}. Since �̄� is the solution that

achieves �̃�𝑡∗,𝑖∗ (𝑘∗, 𝑞∗) where 𝑦∗ is feasible, we have that 𝑤(𝑆) =
∑𝑘∗

𝑗=1 𝑤 𝑗 �̄� 𝑗 ,𝑡∗ ≥ ∑𝑘∗

𝑗=1 𝑤 𝑗 𝑦
∗
𝑗 ,𝑡∗ =

𝑤(𝑆∗). Therefore, clearly 𝑆 is a cover. Furthermore, following the definition given in (6.7), for

every 𝑖 ∈ (𝐸 (𝑆∗) \ 𝑆∗) ∩ (𝐸 (𝑆) \ 𝑆), we have 𝑡𝑖,𝑆∗ ≤ 𝑡𝑖,𝑆.

By Claim 6.4.3 we have 𝐸 (𝑆∗)\𝑆∗ = {𝑘∗+1, . . . , 𝑛}; whereas by definition, we have 𝐸 (𝑆)\𝑆 ⊇

{𝑘∗ + 1, . . . , 𝑛}. Thus, 𝐸 (𝑆∗) \ 𝑆∗ ⊆ 𝐸 (𝑆) \ 𝑆. Additionally, by definition, 𝑘∗ = max{𝑖 : 𝑖 ∈ 𝑆∗} =

max{𝑖 : 𝑖 ∈ 𝑆}. Therefore, by (6.7), for all 𝑗 ∈ 𝐸 (𝑆∗) \ 𝑆∗, we have 𝑡 𝑗 ,𝑆∗ ≤ 𝑡 𝑗 ,𝑆, which implies

138

𝑥 𝑗 ,𝑡 𝑗 ,𝑆∗ ≤ 𝑥 𝑗 ,𝑡 𝑗 ,�̄� . We conclude

∑︁
𝑗∈𝐸 (𝑆∗)\𝑆∗

𝑥 𝑗 ,𝑡 𝑗 ,𝑆∗ ≤
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 ,�̄� ≤

∑︁
𝑗∈𝐸 (𝑆)\𝑆

𝑥 𝑗 ,𝑡 𝑗 ,�̄� (6.24)

Recall that for all 𝑗 ∈ [𝑛] and 𝑡 ∈ [𝑇], we have 𝑝 𝑗 ,𝑡 = 1−𝑥 𝑗 ,𝑡 . Therefore, combining Claim 6.4.5

and (6.24), we conclude

𝑘∗∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡∗) �̄� 𝑗 ,𝑡∗ −
∑︁

𝑗∈𝐸 (𝑆)\𝑆
𝑥 𝑗 ,𝑡 𝑗 ,�̄� ≤ (1 + 𝜖)

𝑘∗∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡∗)𝑦∗𝑗 ,𝑡∗ −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 ,𝑆∗

= (1 + 𝜖) (|𝑆∗ | −
∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡∗) −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 ,𝑆∗ (6.25)

Taking the left hand side of the above inequality, we have

𝑘∗∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡∗) �̄� 𝑗 ,𝑡∗ −
∑︁

𝑗∈𝐸 (𝑆)\𝑆
𝑥 𝑗 ,𝑡 𝑗 ,�̄� = |𝑆 | −

∑︁
𝑗∈𝑆
𝑥 𝑗 ,𝑡∗ −

∑︁
𝑗∈𝐸 (𝑆)\𝑆

𝑥 𝑗 ,𝑡 𝑗

≥ |𝑆 | −
∑︁
𝑗∈𝑆
𝑥 𝑗 ,𝑡�̄� −

∑︁
𝑗∈𝐸 (𝑆)\𝑆

𝑥 𝑗 ,𝑡 𝑗

≥ 1,

where the equality follows by definition of 𝑆, the first inequality follows by again noting 𝑡𝑆 ≥ 𝑡∗

since 𝑤(𝑆) ≥ 𝑤(𝑆∗), and the final inequality follows since we know that 𝑥 satisfies the LPCI of 𝑆.

Combining the above inequality with the right hand side of (6.25), we have

1 ≤ (1 + 𝜖) (|𝑆∗ | −
∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡∗) −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 .

Using this inequality, the next claim concludes the lemma. We present the algebraic details in

Appendix F.2.4.

139

Claim 6.4.6. For any 𝑆∗ such that

1 ≤ (1 + 𝜖) (|𝑆∗ | −
∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡∗) −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 ,

we have

(1 − 𝜖) (
∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡∗ +
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗) ≤ |𝑆∗ | − 1.

□

Running time. Finally, we conclude the proof of Theorem 1.3.9 by analyzing the running time

of the procedure above. For each 𝑡 ∈ [𝑇] and 𝑖, 𝑘 ∈ [𝑛], for 𝑣𝑡 (𝑗) ≤ 𝑖, we have

𝑝 𝑗 ,𝑡 ≤ 𝑝𝑣𝑡
𝑖
,𝑡 ≤

𝑝𝑣𝑡
𝑖
,𝑡

𝑐𝑖
=
𝑖

𝜖
≤ 𝑛

𝜖
=
𝑛2

𝜖
.

The number of possible states is therefore 𝑂 (𝑇 · 𝑛2 · 𝑛3

𝜖
). The value function of �̃� can be solved

in 𝑂 (𝑛) time for each state. From the optimal solution of each value function, the associated LPCI

can be computed in 𝑂 (𝑛) time. Overall, the total running time is 𝑂 (𝑇 𝑛7

𝜖
).

140

Conclusion

In this thesis, we present and study many incremental packing problems. We believe this thesis

has made significant contributions to address these problems, including algorithmic ideas that

could have impacts beyond the problems we discuss in this thesis. The results of this thesis also

naturally lead to more open questions related to the problems and techniques explored here,

which we will discuss below.

Single-time policies: extensions and limits. In Chapter 2, we present single-time policies that

can easily be adapted to other incremental packing problems beyond the generalized incremental

knapsack problem. Algorithms of this nature are tractable in practice as long as the

time-underlying classical packing problem can be solved efficiently. However, many theoretical

questions remain.

When do single-time policies lead to constant-factor approximations for incremental packing

problems? The proof techniques we use for the generalized incremental knapsack problem

exploits explicitly the fact that the classical knapsack problem admits an FTPAS. In particular,

given that the knapsack problem can be approximated to a factor of 1 − 𝜖 , using the 𝑐-flexible

single-time algorithm, the generalized incremental knapsack problem can be approximated to a

factor of 𝑓 (𝑐, 𝑇𝜖). We are then able to give a factor dependent on only 𝑐 and 𝜖 by scaling down 𝜖

by a function of 𝑇 . However, if the time-underlying packing problem only admits a PTAS or if it

is already APX-hard (for example, in the case of the incremental generalized assignment problem)

141

and only admits an 𝛼-approximation for some fixed 𝛼 ∈ (0, 1), it is an open question if we can

still obtain a constant factor approximation ratio independent of 𝑇 using single-time policies.

Limits of single-time policies? Because of the challenges described above, presumably, there are

cases where a classical packing problem can be approximated by a constant factor efficiently but

single-time policies would still not give a constant factor approximation for the incremental

version of the problem. If this is indeed true, what are the limits to single-time policies?

Generalized incremental knapsack problem. In Chapter 3, we give a (1
2 − 𝜖)-approximation

for the generalized incremental knapsack problem and show that it admits a QPTAS. This leads to

a number of natural open questions, which we elaborate upon below.

Improved constant-factor approximation? A natural direction for future research would be to

investigate whether the (1
2 − 𝜖)-approximation we obtained in Section 3.2 can be improved. One

possible approach to achieve such improvements lies in proposing an efficient way to combine

𝑘-light and 𝑘-heavy items within a single solution, rather than constructing separate solutions that

compete against each of these contributions by themselves. Our efforts along these lines have not

been successful to date, perhaps since significantly different methods appear to be required.

Obstacles toward obtaining a PTAS? A particularly challenging direction to pursue is whether the

quasi-PTAS we devised in Section 3.4 can be enhanced to admit a truly polynomial running time.

In fact, we are unaware of any inapproximability result that rules out the existence of a PTAS for

generalized incremental knapsack. To this end, the first bottleneck resides in the guessing step for

bounded weight ratio instances in Section 3.3.2. The second bottleneck emerges from our

𝑂 (log𝑀
𝜖

) bound on the number of items crossing each cluster in a near-optimal permutation,

formally established in Lemma 3.4.3. Bypassing these two sources for quasi-polynomial running

time would result in a polynomial-time implementation of our overall approach.

Monotone submodular all-or-nothing incremental knapsack problem. In Chapter 4, we give

a PTAS for IK-AoN by showing that it is no harder than its linearized variant, IK. This settles the

hardness of the problem as strongly NP-hard, making it substantially different from many other

142

submodular maximization problems, which are all known to be APX-hard. To bridge the gap

between IK-AoN and submodular function maximization, we raise the following open questions.

Good approximations for more general monotone submodular functions? IK-AoN has a very

specific profit assumption. Namely, the inclusion of each item in a set either earns the full profit

or no profit at all. This is a profit structure that we exploit throughout Section 4.2 in order to

reduce it to IK. Suppose we were to relax the profit structure, and say that we associate with each

item 𝑖 some profit set P𝑖 such that |P𝑖 | is bounded. The inclusion of each item in a set earns some

𝑝𝑖 ∈ P𝑖. In a monotone submodular function of this nature, under the incremental knapsack

setting, we do not yet have any non-trivial approximation results. If this question can be answered

in the positive, the next natural step is to extend the problem to monotone submodular functions

in an incremental knapsack setting, without any additional mitigating assumptions on the profit

function.

When does the problem become APX-hard? We know that IK-AoN is strongly NP-hard. On the

other hand, if the profit function is a monotone submodular function, even if 𝑇 = 1, we know that

the problem cannot be approximated better than a factor of 1 − 1
𝑒

unless P = NP [28]. Under the

setting we mention in the previous paragraph, where an item may take on only a bounded number

of profit, the question remains whether the problem is strongly NP-hard or APX-hard.

Single-machine algorithms. In Chapter 5, we showed that if the single-machine sequencing

problem has a polynomial time 𝛽-approximation, then for any 𝛿 > 0, the multi-machine

sequencing problem has, in expectation, a polynomial time 1
2 (𝛽 − 𝛿)-approximation.

Is the 1
2 (𝛽 − 𝛿)-approximation tight? In [30], Fleischer et al. gave a (1 − 1

𝑒
)𝛽-approximation for

the separable assignment problem if the single-bin problem has a 𝛽-approximation. They also

showed that the 1 − 1
𝑒

lower bound is tight unless NP ⊆ DTIME(𝑛𝑂 (log log 𝑛)). In Section 5.5, we

discuss the extent to which our approach is inspired by [30]. We also explain why the

multi-machine sequencing problem is more general than the separable assignment problem

that [30] solved and why a new rounding procedure is required. The question remains if the 1
2

143

lower bound is tight for our model, or, if with with a different approach, a better approximation

ratio can be achieved.

On the facets of the incremental knapsack polytope. In Chapter 6, we provide a class of facet

defining inequalities for the incremental knapsack polytope, which we call the lift and push cover

inequalities. Given that there are exponentially many of them, we also give separation algorithms

for these inequalties so that they can be generated efficiently.

Complete characterization of facets with 0/1-coefficients? We show in Theorem 6.3.2 that only

one direction of Balas’s result is extendable to the incremental knapsack polytope. Specifically,

we show that extended cover inequalities of strong covers define facets of the incremental

knapsack polytope through the lift and push technique. However, we also show in Example 6.3.3

that there exists facets with 0/1-coefficients that cannot be lifted from strong covers. Due to these

results, clearly, a complete classification of facets with 0/1-coefficients for the incremental

knapsack polytope will require further research, possibly needing different lifting techniques.

Integrality gap of the generalized incremental knapsack problem with lift and push cover

inequalities added? Bienstock et al. showed that even with an IK objective, the IP formulation

of (GIK-IP) has an unbounded integrality gap compared to its LP relaxation [7]. In particular, the

integrality gap goes to infinity as 𝑇 goes to infinity. This suggests that without

strengthening (GIK-IP) with valid inequalities, classical LP rounding techniques, such as the one

we use in Section 4.3.1, cannot produce a constant factor approximation when we let 𝑇 be

arbitrarily large. We remark that the instance with unbounded integrality gap shown in [7] has an

integrality gap of 1 if we add all lift and push cover inequalities defined in Section 6.3. Thus, it

remains an open question of what is the integrality gap when all lift and push cover inequalities

are added. If there is a bounded integrality gap, can the lift and push cover inequalities and the

approximate separation algorithm given in Section 6.4.2, combined with LP-rounding techniques,

give an algorithm that either leads to a PTAS or improve upon the (1
2 − 𝜖)-approximation we give

in Section 3.2?

144

References

[1] D. Adjiashvili, S. Bosio, R. Weismantel, and R. Zenklusen, “Time-expanded packings,” in
International Colloquium of Automata, Languages and Programming, 2014, pp. 64–76.

[2] E. C. Akrida, J. Czyzowicz, L. Gasieniec, L. Kuszner, and P. G. Spirakis, “Temporal flows in
temporal networks,” Journal of Computer and System Sciences, vol. 103, pp. 46–60, 2019.

[3] A. Anagnostopoulos, F. Grandoni, S. Leonardi, and A. Wiese, “A mazing 2 + 𝜖 approxi-
mation for unsplittable flow on a path,” ACM Transactions on Algorithms, vol. 14, no. 4,
2018.

[4] A. Aouad and D. Segev, “Technical note-an approximate dynamic programming approach
to the incremental knapsack problem,” Operations Research, 2022.

[5] B. S. Baker, “Approximation algorithms for NP-complete problems on planar graphs,” Jour-
nal of the ACM, vol. 41, no. 1, pp. 153–180, 1994.

[6] E. Balas, “Facets of the knapsack polytope,” Mathematical Programming, vol. 8, pp. 146–
164, 1975.

[7] D. Bienstock, J. Sethuraman, and C. Ye, Approximation algorithms for the incremental
knapsack problem via disjunctive programming, arXiv preprint arXiv:1311.4563, 2013.

[8] N. Boland, T. Kalinowski, H. Waterer, and L. Zheng, “Scheduling arc maintenance jobs in
a network to maximize total flow over time,” Discrete Applied Mathematics, vol. 163, no. 1,
pp. 34–52, 2014.

[9] P. Bonsma, J. Schulz, and A. Wiese, “A constant-factor approximation algorithm for un-
splittable flow on paths,” SIAM Journal on Computing, vol. 43, no. 2, pp. 767–799, 2014.

[10] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz, “A tight linear time (1/2)-
approximation for unconstrained submodular maximization,” SIAM Journal on Computing,
vol. 44, no. 5, pp. 1384–1402, 2015.

[11] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz, “Submodular maximization with
cardinality constraints,” ser. SODA ’14, Portland, Oregon: Society for Industrial and Ap-
plied Mathematics, 2014, 1433–1452, ISBN: 9781611973389.

[12] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani, “An improved approximation al-
gorithm for resource allocation,” ACM Transactions on Algorithms, vol. 7, no. 4, 2011.

145

[13] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a monotone submodu-
lar function subject to a matroid constraint,” SIAM Journal on Computing, vol. 40, no. 6,
pp. 1740–1766, 2011.

[14] A. Caprara, “Packing 2-dimensional bins in harmony,” in Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002, pp. 490–499.

[15] V. T. Chakaravarthy, A. R. Choudhury, S. Gupta, S. Roy, and Y. Sabharwal, “Improved
algorithms for resource allocation under varying capacity,” in Proceedings for the 22nd
Annual European Symposium on Algorithms, 2014, pp. 222–234.

[16] C. Chekuri and S. Khanna, “A polynomial time approximation scheme for the multiple
knapsack problem,” SIAM Journal on Computing, vol. 35, no. 3, pp. 713–728, 2005.

[17] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the generalized assignment
problem,” Information Processing Letters, vol. 100, no. 4, pp. 162–166, 2006.

[18] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver, Combinatorial Optimiza-
tion, ser. Wiley Series in Discrete Mathematics and Optimization. Wiley, 2011, ISBN:
9781118031391.

[19] H. Crowder, E. L. Johnson, and M. Padberg, “Solving large-scale zero-one linear program-
ming problems,” Operations Research, vol. 31, no. 5, pp. 803–834, 1983.

[20] A. Del Pia, J. Linderoth, and H. Zhu, “On the complexity of separation from the knapsack
polytope,” in Integer Programming and Combinatorial Optimization, 2022, 168–180.

[21] F. Della Croce, U. Pferschy, and R. Scatamacchia, “Approximating the 3-period incremental
knapsack problem,” Journal of Discrete Algorithms, vol. 52, pp. 55–69, 2018.

[22] ——, “On approximating the incremental knapsack problem,” Discrete Applied Mathemat-
ics, vol. 264, pp. 26–42, 2019.

[23] K. A. Dowsland and W. B. Dowsland, “Packing problems,” European Journal of Opera-
tional Research, vol. 56, no. 1, pp. 2–14, 1992.

[24] L. Epstein, “On bin packing with clustering and bin packing with delays,” Discrete Opti-
mization, vol. 41, Article 100647, 2021.

[25] Y. Faenza and I. Malinovic, “A PTAS for the time-invariant incremental knapsack problem,”
in Proceedings of the 5th International Symposium on Combinatorial Optimization, 2018,
pp. 157–169.

[26] Y. Faenza, D. Segev, and L. Zhang, “Approximation algorithms for the generalized incre-
mental knapsack problem,” Mathematical Programming, 2022.

146

[27] R. Z. Farahani, Z. Drezner, and N. Asgari, “Single facility location and relocation prob-
lem with time dependent weights and discrete planning horizon,” Annals of Operations Re-
search, vol. 167, pp. 353–368, 2009.

[28] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM, vol. 45, no. 4, 634–652,
1998.

[29] U. Feige and J. Vondrák, “The submodular welfare problem with demand queries,” Theory
of Computing, vol. 6, pp. 247–290, 2010.

[30] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight approximation
algorithms for maximum separable assignment problems,” Mathematics of Operations Re-
search, vol. 36, no. 3, pp. 416–431, 2011.

[31] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian Journal of
Mathematics, vol. 8, pp. 399–404, 1956.

[32] A. M. Frieze, “A cost function property for plant location problems,” Mathematical Pro-
gramming, vol. 7, pp. 245–248, 1974.

[33] L. Graf, T. Harks, and L. Sering, “Dynamic flows with adaptive route choice,” Mathematical
Programming, vol. 183, 309–335, 2020.

[34] F. Grandoni, S. Ingala, and S. Uniyal, “Improved approximation algorithms for unsplittable
flow on a path with time windows,” in Proceedings of the 13th International Workshop on
Approximation and Online Algorithms, 2015, pp. 13–24.

[35] F. Grandoni, T. Mömke, and A. Wiese, “A ptas for unsplittable flow on a path,” in Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, ser. STOC
2022, 2022, 289–302.

[36] F. Grandoni, T. Mömke, A. Wiese, and H. Zhou, “A (5/3+𝜖)-approximation for unsplittable
flow on a path: Placing small tasks into boxes,” in Proceedings of the 50th Annual ACM
Symposium on Theory of Computing, 2018, pp. 607–619.

[37] M. Groß, J.-P. W. Kappmeier, D. R. Schmidt, and M. Schmidt, “Approximating earliest
arrival flows in arbitrary networks,” in Proceedings of the 20th Annual European Symposium
on Algorithms, 2012, pp. 551–562.

[38] M. Grotschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-
mization. Springer, 1993.

[39] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh, “Lifted cover inequalities for 0-1 integer
programs: Computation,” INFORMS Journal on Computing, vol. 10, no. 4, pp. 427–437,
1998.

147

[40] J. R. K. Hartline, “Incremental optimization,” Ph.D. dissertation, Department of Computer
Science, Cornell University, 2008.

[41] D. S. Hochbaum and W. Maass, “Approximation schemes for covering and packing prob-
lems in image processing and VLSI,” Journal of the ACM, vol. 32, no. 1, pp. 130–136,
1985.

[42] C. Hojny et al., “Knapsack polytopes: A survey,” Annals of Operations Research, vol. 292,
pp. 469–517, 2020.

[43] A. Ismaili, “Routing games over time with FIFO policy,” in Proceedings of the 13th Con-
ference on Web and Internet Economics, 2017, pp. 266–280.

[44] C. Jin, “An improved FPTAS for 0-1 knapsack,” in Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming, 2019, 76:1–76:14.

[45] K. Kaparis and A. N. Letchford, “Separation algorithms for 0-1 knapsack polytopes,” Math-
ematical Programming, vol. 124, pp. 69–91, 2010.

[46] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence through a social
network,” in Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ser. KDD ’03, Association for Computing Machinery,
2003, 137–146, ISBN: 1581137370.

[47] G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade, “Distributed cosegmentation via submodu-
lar optimization on anisotropic diffusion,” in 2011 International Conference on Computer
Vision, 2011, pp. 169–176.

[48] D Klabjan, G. Nemhauser, and C Tovey, “The complexity of cover inequality separation,”
Operations Research Letters, vol. 23, no. 1, pp. 35–40, 1998.

[49] F. Kojima, “Recent developments in matching theory and their practical applications,” in
Advances in Economics and Econometrics: Eleventh World Congress, ser. Econometric So-
ciety Monographs. Cambridge University Press, 2017, vol. 1, 138–175.

[50] A. Krause and D. Golovin, “Submodular function maximization.,” Tractability, vol. 3,
pp. 71–104, 2014.

[51] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko, “Maximizing nonmonotone sub-
modular functions under matroid or knapsack constraints,” SIAM Journal on Discrete Math-
ematics, vol. 23, no. 4, pp. 2053–2078, 2010.

[52] M. Lin and P. Jaillet, “On the quickest flow problem in dynamic networks - A parametric
min-cost flow approach,” in Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2015, pp. 1343–1356.

148

[53] S. Liu, “A review for submodular optimization on machine scheduling problems,” in Com-
plexity and Approximation, D.-Z. Du and J. Wang, Eds. Springer International Publishing,
2020, pp. 252–267, ISBN: 978-3-030-41672-0.

[54] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing problems: A survey,” Eu-
ropean Journal of Operational Research, vol. 141, no. 2, pp. 241–252, 2002.

[55] S. Nickel and F. Saldanha-da Gama, “Multi-period facility location,” in Location Science,
G. Laporte, S. Nickel, and F. Saldanha da Gama, Eds., Springer International Publishing,
2019, pp. 303–326.

[56] Z. Nutov, I. Beniaminy, and R. Yuster, “A (1 − 1/𝑒)-approximation algorithm for the gen-
eralized assignment problem,” Operations Research Letters, vol. 34, no. 3, pp. 283–288,
2006.

[57] T. Öncan, “A survey of the generalized assignment problem and its applications,” INFOR:
Information Systems and Operational Research, vol. 45, no. 3, pp. 123–141, 2007.

[58] M. Padberg, “(1,k)-configurations and facets for packing problems,” Mathematical Pro-
gramming, vol. 18, pp. 94–99, 1980.

[59] A. M. Sharp, “Incremental algorithms: Solving problems in a changing world,” Ph.D. dis-
sertation, Department of Computer Science, Cornell University, 2007.

[60] D. B. Shmoys and É. Tardos, “An approximation algorithm for the generalized assignment
problem,” Mathematical Programming, vol. 62, pp. 461–474, 1993.

[61] M. Skutella, “An introduction to network flows over time,” in Research Trends in Combi-
natorial Optimization, W. Cook, L. Lovász, and J. Vygen, Eds., Springer, 2009, pp. 451–
482.

[62] M. Sviridenko, “A note on maximizing a submodular set function subject to a knapsack
constraint,” Operations Research Letters, vol. 32, no. 1, pp. 41–43, 2004.

[63] T. J. Van Roy and L. A. Wolsey, “Solving mixed integer programming problems using au-
tomatic reformulation,” Operations Research, vol. 35, no. 1, pp. 45–57, 1987.

[64] C. Ye, “On the trade-offs between modeling power and algorithmic complexity,” Ph.D. dis-
sertation, Columbia University, 2016.

[65] E. Zemel, “Easily computable facets of the knapsack polytope,” Mathematics of Operations
Research, vol. 14, no. 4, pp. 760–764, 1989.

149

Appendix A: Incremental packing problems

A.1 Reduction to Unsplittable Flow on a Path with Bag Constraints

As a first attempt of reducing the generalized incremental knapsack problem to unsplittable

flow on a path (see Section 1.4.4), we could construct a path over the sequence of vertices 0, . . . , 𝑇 ,

where each edge (𝑡, 𝑡+1) has a capacity of𝑊𝑡 . Then, for each item-time pair (𝑖, 𝑡), one could create

a corresponding task to capture the decision of inserting item 𝑖 at time period 𝑡; this task would

extend across the subpath ⟨𝑡, . . . , 𝑇⟩, with a profit of 𝑝𝑖𝑡 and a demand of 𝑤𝑖. However, as each

item 𝑖 may be inserted into the knapsack only once, we are lacking an additional constraint, stating

that at most one of the tasks corresponding to {(𝑖, 𝑡)}𝑡∈[𝑇] can be picked, which makes the resulting

problem fundamentally different.

To capture this additional constraint, consider a generalization of the unsplittable flow on a

path problem with “bag constraints”, first studied by Chakaravarthy et al. [15]. In this setting,

tasks are further partitioned into a set of bags B1, . . . ,B𝑘 , and we are allowed to pick at most

one task from each bag. This way, we can model the generalized incremental knapsack problem

by having a separate bag B𝑖 for each item 𝑖 ∈ [𝑛], which contains all tasks corresponding to

{(𝑖, 𝑡)}𝑡∈[𝑇] , thereby capturing the extra feature that each item may be inserted only once. For this

generalization, Grandoni et al. [34] proposed an 𝑂 (log log 𝑛
log 𝑛)-approximation through an LP-based

rounding approach, which is currently the best known performance guarantee.

150

Appendix B: Single-time policies for the generalized incremental knapsack

problem

B.1 Proof of Lemma 2.1.1

Given an instance I of the generalized incremental knapsack problem, we construct another

instance I′ defined over the same set of items with profit 𝑝′ as follows: for every 𝑖 ∈ [𝑛] and

𝑡 ∈ [𝑇], let 𝑝′
𝑖,𝑡
= max𝜏∈[𝑇],𝜏≥𝑡 𝑝𝑖,𝜏. Capacity and weight parameters remain unchanged. The profit

of any feasible chain of S′ in I′ is therefore given by Φ′(S′) = ∑
𝑡∈[𝑇]

∑
𝑖∈𝑆𝑡\𝑆𝑡−1 𝑝

′
𝑖,𝑡

. Clearly profit

𝑝′ satisfies the property that 𝑝′
𝑖,𝑡

≥ 𝑝′
𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1].

Let S be a feasible chain of I. Clearly S is feasible in I′. To see Φ′(S) ≥ Φ(S), note that

Φ′(S) =
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝑆𝑡\𝑆𝑡−1

𝑝′𝑖,𝑡

≥
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝑆𝑡\𝑆𝑡−1

𝑝𝑖,𝑡

= Φ(S).

In the formulas above, the only inequality follows since 𝑝′
𝑖,𝑡
= max𝜏∈[𝑇],𝜏≥𝑡 𝑝𝑖,𝜏.

Conversely, take any feasible chain S′ of I′. For any 𝑖 ∈ 𝑆′
𝑇

, let 𝑡′(𝑖) denote the insertion time

of item 𝑖 with respect to the chain S′. For any 𝑖 ∈ 𝑆′
𝑇

, we construct S by setting the insertion time

of 𝑖 to be 𝑡 (𝑖) ∈ argmax𝜏∈[𝑇],𝜏≥𝑡 ′(𝑖) 𝑝𝑖,𝜏.

In the above construction, 𝑆𝑡 ⊆ 𝑆′𝑡 for every 𝑡 ∈ [𝑇]. Therefore

𝑤(𝑆𝑡) ≤ 𝑤(𝑆′𝑡) ≤ 𝑊𝑡 .

Hence S is feasible in I. By construction, for every item 𝑖 ∈ 𝑆′
𝑇

, item 𝑖 earns the exact same

151

profit in I′ and I, therefore Φ(S) = Φ′(S′).

B.2 The fully rigid algorithm may output a solution with an arbitrarily bad approximation

ratio

Consider a generalized incremental knapsack instance with 𝑇 = 2 and 𝑛 = 2. Let 𝑊1 = 1 and

𝑊2 = 2. For item 𝑖 = 1 and for 𝑡 ∈ [𝑇], let 𝑝𝑖,𝑡 = 1. For item 𝑖 = 2 and for 𝑡 ∈ [𝑇], let 𝑝𝑖,𝑡 = 𝑀 for

an arbitrarily large integer 𝑀 . Let 𝑤1 = 1 and 𝑤2 = 2. It is easy to see the optimal solution outputs

S∗ = (∅, {2}), earning a total profit of 𝑀 .

In 𝑡 = 1, the fully rigid algorithm sets 𝑆1 = {1}, since item 1 is the only item that is feasible.

In 𝑡 = 2, the fully rigid algorithm solves the knapsack problem with item 2 and capacity 𝑊2 −

𝑤(𝑆1) = 1. Since item 2 is infeasible, it returns back solution 𝑄2 = ∅ and outputs final solution

S = ({1}, {1}), with a profit of 1, giving an arbitrarily bad approximation ratio.

B.3 The fully flexible algorithm may output an 𝑂 (1
𝑇
)-approximated solution

Consider a genearlized incremental knapsack instance with 𝑇 times and 𝑛 = 2𝑇 items. Let

𝑊𝑡 =
∑𝑡
𝜏=1 𝑇

𝜏 + 𝑇𝜖 for all 𝑡 ∈ [𝑇]. For 𝑖 ∈ [𝑇], item 𝑖 has profit 𝑝𝑖,𝑡 = 1 if 𝑡 ≤ 𝑖 and profit 𝑝𝑖,𝑡 = 0

otherwise. Each item 𝑖 ∈ [𝑇] has weight 𝑤𝑖 = 𝑇 𝑖 +𝜖 . For 𝑖 ∈ [𝑇], item 𝑇 +𝑖 has profit 𝑝𝑇+𝑖,𝑡 = 1+𝑖𝜖

if 𝑡 ≤ 𝑖 and profit 𝑝𝑇+𝑖,𝑡 = 0 otherwise. Each item 𝑇 + 𝑖 has weight 𝑤𝑇+𝑖 = 𝑊𝑖.

A feasible chain to this instance is S∗ = (𝑆∗1, . . . , 𝑆
∗
𝑇
) where 𝑆∗𝑡 = {𝑖 : 𝑖 ≤ 𝑡} for all 𝑡 ∈ [𝑇],

with an optimal profit of 𝑇 . We will show by induction on 𝑡 ∈ [𝑇] that, at the end of round 𝑡, the

fully flexible algorithm gives the solution S = (𝑆1, . . . , 𝑆𝑇) where 𝑆𝜏 = ∅ for all 𝜏 ≤ 𝑡 − 1 and

𝑆𝜏 = {𝑇 + 𝑡} for all 𝑡 ≤ 𝜏 ≤ 𝑇 . That is, in any round 𝑡, the algorithm inserts item 𝑇 + 𝑡 starting in

time 𝑡 and inserts no item otherwise. This statement implies that at the end of the algorithm, we

get the solution S = (𝑆1, . . . , 𝑆𝑇) where 𝑆𝑡 = ∅ for 𝑡 ≤ 𝑇 − 1 and 𝑆𝑇 = {2𝑇}, with a total profit of

1 + 𝑇𝜖 . Taking 𝜖 sufficiently small, this gives an 𝑂 (1
𝑇
)-approximated solution.

For the base case 𝑡 = 1, notice that only items 1 and 𝑇 + 1 are (individually) feasible in the

knapsack problem. Since item 𝑇 +1 has strictly more profit than item 1, the fully flexible algorithm

152

may take item 𝑇 + 1.

Now for the general case 𝑡 ≥ 2, assume by inductive hypothesis that at the end of round 𝑡 − 1,

the algorithm gives the chain (𝑆1, . . . , 𝑆𝑇) where 𝑆𝜏 = ∅ for 𝜏 ≤ 𝑡 − 2 and 𝑆𝜏 = {𝑇 + 𝑡 − 1} for

𝜏 ≥ 𝑡 − 1. Thus, in the knapsack problem in round 𝑡, for any 𝑖 ∈ [𝑡 − 1], item 𝑖 has profit 0; for

any 𝑖 ∈ [𝑡 − 2], item 𝑇 + 𝑖 has profit 0; item 𝑇 + 𝑡 − 1 has profit 1 + (𝑡 − 1)𝜖 , item 𝑡 has profit 1

and item 𝑇 + 𝑡 has profit 1 + 𝑡𝜖 . All other items are infeasible. Thus, the optimal solution to the

knapsack problem must be a subset of items {𝑡, 𝑇 + 𝑡 − 1, 𝑇 + 𝑡}. It is easy to check that no subset

of cardinality 2 is feasible. Thus, since item 𝑇 + 𝑡 is the most profitable item in the set, the optimal

is to simply take item 𝑇 + 𝑡. Therefore, at the end of round 𝑡, we have 𝑆𝜏 = ∅ for 𝜏 ≤ 𝑡 − 1 and

𝑆𝜏 = {𝑇 + 𝑡} for 𝜏 ≥ 𝑡. This concludes the proof.

B.4 Additional proofs from Chapter 2

B.4.1 Proof of Lemma 2.3.1

We will prove the statement by induction on 𝑡. For the base case 𝑡 = 1, from Step 1c, notice

that ALG(1)
𝜏 = ALG(1)

𝜏+1 for all 𝜏 ∈ [𝑇 − 1]. Thus, ALG(1) is a chain. Furthermore, by the capacity

constraint of Π (𝑡) , 𝑤(𝑆) ≤ 𝑊1 ≤ 𝑊𝜏 for every 𝜏 ∈ [𝑇]. Thus, ALG(1) is feasible.

For the general case of 𝑡 ≥ 2, we can assume without loss of generality 𝑝′(𝑆) ≥ 𝑝′(ALG(𝑡−1)
𝑡−1),

else ALG(𝑡) = ALG(𝑡−1) and the statement is true by inductive hypothesis. In this case ALG(𝑡) =

(ALG(𝑡−1)
1 ∩ 𝑆, . . . ,ALG(𝑡−1)

𝑡−1 ∩ 𝑆, 𝑆, . . . , 𝑆︸ ︷︷ ︸
𝑇−𝑡+1 times

) and

(ALG(𝑡−1)
1 ∩ 𝑆) ⊆ · · · ⊆ (ALG(𝑡−1)

𝑡−1 ∩ 𝑆) ⊆ 𝑆 ⊆ · · · ⊆ 𝑆︸ ︷︷ ︸
𝑇−𝑡+1 times

,

where the first 𝑡 − 1 inclusions follow from the inductive hypothesis, and the remaining inclusions

follow by construction. Thus ALG(𝑡) is a chain. To prove feasibility, for 𝜏 ∈ [𝑡 − 1], notice

that 𝑤(ALG(𝑡−1)
𝜏 ∩ 𝑆) ≤ 𝑤(ALG(𝑡−1)

𝜏) ≤ 𝑊𝜏, where the second inequality follows from inductive

hypothesis. For 𝜏 ≥ 𝑡, feasibility follows since 𝑤(𝑆) ≤ 𝑊𝑡 ≤ 𝑊𝜏. Thus, ALG(𝑡) is feasible.

153

B.4.2 Proof of Lemma 2.4.4

Notice that, for any 𝑡 ∈ [𝑇] with 𝑡 ≥ 2 and 𝑗 = 0, since ALG(𝑡)
𝑗

= ∅, the statement is trivial.

For 𝑗 ∈ [𝑡 − 1], this follows immediately from Step 1d. Notice that either ALG(𝑡)
𝑗

= ALG(𝑡−1)
𝑗

, or

ALG(𝑡)
𝑗

= ALG(𝑡−1)
𝑗

∩ 𝑆, where 𝑆 is the solution to Π (𝑡) . Then clearly ALG(𝑡)
𝑗

⊆ ALG(𝑡−1)
𝑗

.

B.4.3 Proof of Lemma 2.4.5

For any 𝑗 , 𝑡 ∈ [𝑇] and 𝑡 ≥ 2, let 𝑖 ∈ 𝑅(𝑡)
𝑗

. We will show that 𝑖 ∈ 𝑅(𝑡)
𝑗+1. If 𝑗 + 1 ≥ 𝑡, the proof is

trivial since 𝑅(𝑡)
𝑗+1 = 𝑅

(𝑡)
𝑗

by definition. Thus, we consider 𝑗 + 1 < 𝑡.

By definition, 𝑖 ∈ ALG(𝑡−1)
𝑗

\ ALG(𝑡)
𝑗

. Recall that ALG(𝑡−1) is a chain by Lemma 2.3.1. Then

𝑖 ∈ ALG(𝑡−1)
𝑗

implies 𝑖 ∈ ALG(𝑡−1)
𝑗+1 . If 𝑖 ∉ ALG(𝑡)

𝑗+1, then 𝑖 ∈ ALG(𝑡−1)
𝑗+1 \ALG(𝑡)

𝑗+1 = 𝑅
(𝑡)
𝑗+1 and we are

done.

Thus, assume 𝑖 ∈ ALG(𝑡)
𝑗+1. We show that this case leads to a contradiction, concluding the

proof. We first claim that 𝑖 ∉ ALG(𝑗+1)
𝑗

. By Lemma 2.4.4, since 𝑗 + 1 < 𝑡, we have ALG(𝑡)
𝑗+1 ⊆

ALG(𝑡−1)
𝑗+1 ⊆ · · · ⊆ ALG(𝑗+1)

𝑗+1 . Hence, 𝑖 ∈ ALG(𝑡)
𝑗+1 implies 𝑖 ∈ ALG(𝑗+1)

𝑗+1 . Furthermore, 𝑖 ∉ ALG(𝑡)
𝑗

.

Thus, if 𝑖 ∈ ALG(𝑗+1)
𝑗

, this means 𝑖 ∉ ALG(𝜏)
𝑗

for at some round 𝑗 + 1 < 𝜏 ≤ 𝑡, so by Step 1d of

the algorithm, 𝑖 ∉ ALG(𝜏)
𝑗+1 as well. Thus 𝑖 ∉ ALG(𝑗+1)

𝑗+1 , a contradiction.

Hence, 𝑖 ∉ ALG(𝑗+1)
𝑗

. Again, by Lemma 2.4.4, since ALG(𝑡−1)
𝑗

⊆ · · · ⊆ ALG(𝑗+1)
𝑗

,

𝑖 ∉ ALG(𝑗+1)
𝑗

implies 𝑖 ∉ ALG(𝑡−1)
𝑗

. We have arrived at a contradiction since by definition

𝑖 ∈ ALG(𝑡−1)
𝑗

.

B.4.4 Auxiliary lemmas

Before proceeding with the remaining proofs, we provide some useful lemmas, which will be

used throughout the proofs in the remainder of this section. The following lemma gives a formula

for the profit R (𝑡) earns at every time as a function of the profit earned by the solutions produced

by the algorithm.

154

Lemma B.4.1. For every 𝑡 ∈ [𝑇], 𝑡 ≥ 2 and 𝑗 ∈ [𝑡 − 1],

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1) = 𝑝 𝑗 (ALG(𝑡−1)

𝑗
\ ALG(𝑡−1)

𝑗−1) − 𝑝 𝑗 (ALG(𝑡)
𝑗

\ ALG(𝑡)
𝑗−1).

Proof. First consider the case where 𝑡 ∈ [𝑇], 𝑡 ≥ 2, 𝑗 = 1. Recalling that 𝑅(𝑡)
0 = ALG(𝑡−1)

0 =

ALG(𝑡)
0 = ∅ by definition, the statement reduces to 𝑝1(𝑅(𝑡)

1) = 𝑝1(ALG(𝑡−1)
1) − 𝑝1(ALG(𝑡)

1). To see

this equality holds, note

𝑝1(𝑅(𝑡)
1) = 𝑝1(ALG(𝑡−1)

1 \ ALG(𝑡)
1) = 𝑝1(ALG(𝑡−1)

1) − 𝑝1(ALG(𝑡)
1),

where the first equality holds by definition and the second equality holds by noting that ALG(𝑡)
1 ⊆

ALG(𝑡−1)
1 by Lemma 2.4.4.

Now, assume 2 ≤ 𝑗 ≤ 𝑡 − 1. Let

𝐴 = ALG(𝑡−1)
𝑗

, 𝐵 = ALG(𝑡−1)
𝑗−1 , 𝐶 = ALG(𝑡)

𝑗
, 𝐷 = ALG(𝑡)

𝑗−1,

we have, by definition:

𝑅
(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1 = (𝐴 \ 𝐶) \ (𝐵 \ 𝐷), 𝐴𝐿𝐺

(𝑡−1)
𝑗

\ ALG(𝑡−1)
𝑗−1 = 𝐴 \ 𝐵, ALG(𝑡)

𝑗
\ ALG(𝑡)

𝑗−1 = 𝐶 \ 𝐷.

𝐷 ⊆ 𝐵 follows by Lemma 2.4.4 since 𝑗 ≤ 𝑡 − 1. Let 𝑖 ∈ ALG(𝑡−1)
𝑗

\ ALG(𝑡−1)
𝑗−1 . Since 𝑗 ≤ 𝑡 − 1,

following Step 1d of the algorithm, we have ALG(𝑡)
𝑗

= ALG(𝑡−1)
𝑗

∩ 𝑆 and ALG(𝑡)
𝑗−1 = ALG(𝑡−1)

𝑗−1 ∩ 𝑆

for some 𝑆 ⊆ [𝑛]. Hence,

𝐶\𝐷 = ALG(𝑡)
𝑗
\ALG(𝑡)

𝑗−1 = (ALG(𝑡−1)
𝑗

∩𝑆)\(ALG(𝑡−1)
𝑗−1 ∩𝑆) ⊆ ALG(𝑡−1)

𝑗
\ALG(𝑡−1)

𝑗−1 = 𝐴\𝐵. (B.1)

Moreover, since by Lemma 2.3.1, ALG(𝑡) is a chain, we have

𝐴 ∩ 𝐷 = ALG(𝑡−1)
𝑗

∩ ALG(𝑡)
𝑗−1 ⊆ ALG(𝑡−1)

𝑗
∩ ALG(𝑡)

𝑗
⊆ ALG(𝑡)

𝑗
= 𝐶. (B.2)

155

We deduce:
(𝐴 \ 𝐶) \ (𝐵 \ 𝐷) = (𝐴 \ 𝐶) \ 𝐵

= (𝐴 \ 𝐵) \ 𝐶

= (𝐴 \ 𝐵) \ (𝐶 \ 𝐷),

where the first equality follows from (B.2) and the last equality follows from 𝐷 ⊆ 𝐵. We conclude

𝑝 𝑗 ((𝐴 \ 𝐶) \ (𝐵 \ 𝐷)) = 𝑝 𝑗 ((𝐴 \ 𝐵) \ (𝐶 \ 𝐷)) = 𝑝 𝑗 (𝐴 \ 𝐵) − 𝑝 𝑗 (𝐶 \ 𝐷),

where the last equality follows from (B.1). □

The next lemma bounds the differences Φ(HB(𝑡−1)) − Φ(HB(𝑡)) in terms of the profits of

ALG(𝑡) ,OPT, and R (𝑡) .

Lemma B.4.2. For 𝑡 ∈ [𝑇], 𝑡 ≥ 2, we have Φ(HB(𝑡−1)) − Φ(HB(𝑡)) ≤ −𝑎𝑡 + 𝑏𝑡 + 𝑑𝑡 + ℓ𝑡 , where

ℓ𝑡 = 𝑝𝑡 (OPT𝑡\(OPT𝑡−1 ∪ ALG(𝑡−1)
𝑡−1)).

Proof. Fix 𝑡 ∈ [𝑇], 𝑡 ≥ 2. By defining, for the appropriate indices 𝑗 , 𝛾 𝑗 , 𝛽 𝑗 , 𝛼 𝑗 , _ 𝑗 as in the

equation below, using the definition of HB(𝑡−1) and HB(𝑡) we have:

Φ(HB(𝑡−1)) −Φ(HB(𝑡))

=

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡−1)
𝑗

\ ALG(𝑡−1)
𝑗−1)︸ ︷︷ ︸

𝛾 𝑗

+
𝑇∑︁
𝑗=𝑡

𝑝 𝑗 (OPT 𝑗 \ (OPT 𝑗−1 ∪ ALG(𝑡−1)
𝑡−1)︸ ︷︷ ︸

𝛽 𝑗

)

−
©«

𝑡∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗

\ ALG(𝑡)
𝑗−1)︸ ︷︷ ︸

𝛼 𝑗

+
𝑇∑︁

𝑗=𝑡+1
𝑝 𝑗 (OPT 𝑗 \ (OPT 𝑗−1 ∪ ALG(𝑡)

𝑡)︸ ︷︷ ︸
_ 𝑗

)
ª®®®®¬

(B.3)

We now relate the right-hand side of (B.3) to 𝑎𝑡 , 𝑏𝑡 , 𝑑𝑡 , ℓ𝑡 . First note that 𝛼𝑡 = 𝑎𝑡 and that by

Lemma B.4.1, for 𝑗 ∈ [𝑡 − 1], we have 𝛾 𝑗 − 𝛼 𝑗 = 𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1). Hence,

𝑡−1∑︁
𝑗=1
𝛾 𝑗 −

𝑡∑︁
𝑗=1
𝛼 𝑗 =

𝑡−1∑︁
𝑗=1

(𝛾 𝑗 − 𝛼 𝑗) − 𝛼𝑡 =
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1) − 𝑎𝑡 = 𝑏𝑡 − 𝑎𝑡 . (B.4)

156

Further note that

ALG(𝑡−1)
𝑡−1 \ ALG(𝑡)

𝑡 = (ALG(𝑡−1)
𝑡−1 \ ALG(𝑡)

𝑡−1) \ (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1)

= 𝑅
(𝑡)
𝑡−1, (B.5)

where the first equality follows by recalling that ALG(𝑡) is a chain, and the second equality follows

by definition of 𝑅(𝑡)
𝑡−1 and by noting that (ALG(𝑡−1)

𝑡−1 \ ALG(𝑡)
𝑡−1) ∩ (ALG(𝑡)

𝑡 \ ALG(𝑡)
𝑡−1) = ∅ from

Step 1d of the algorithm.

On the other hand, observe that

ALG(𝑡)
𝑡 \ ALG(𝑡−1)

𝑡−1 = (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1) \ (ALG(𝑡−1)
𝑡−1 \ ALG(𝑡)

𝑡−1)

= ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1, (B.6)

where the first equality follows by observing that by Lemma 2.4.4, ALG(𝑡)
𝑡−1 ⊆ ALG(𝑡−1)

𝑡−1 . The

second equality follows again since (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1) ∩ (ALG(𝑡−1)
𝑡−1 \ ALG(𝑡)

𝑡−1) = ∅.

Therefore, for 𝑗 ∈ {𝑡 + 1, . . . , 𝑇}, defining 𝑒 𝑗 and 𝑓 𝑗 as below, we have

𝛽 𝑗 − _ 𝑗 = 𝑝 𝑗 (OPT 𝑗 \ (OPT 𝑗−1 ∪ ALG(𝑡−1)
𝑡−1)) − 𝑝 𝑗 (OPT 𝑗 \ (OPT 𝑗−1 ∪ ALG(𝑡)

𝑡))

= − 𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ ALG(𝑡−1)
𝑡−1) + 𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ ALG(𝑡)

𝑡)

= − 𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(𝑡−1)
𝑡−1 \ ALG(𝑡)

𝑡))

+ 𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(𝑡)
𝑡 \ ALG(𝑡−1)

𝑡−1))

= − 𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ 𝑅(𝑡)
𝑡−1)︸ ︷︷ ︸

𝑒 𝑗

+ 𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1))︸ ︷︷ ︸
𝑓 𝑗

,

where the first two equalities follow from set arithmetics, and the third equality follows by apply-

ing (B.5) and (B.6). Therefore, for 𝑗 ∈ {𝑡 + 1, . . . , 𝑇}, we have 𝛽 𝑗 − _ 𝑗 = −𝑒 𝑗 + 𝑓 𝑗 . By observing

157

𝛽𝑡 = ℓ𝑡 , we have
𝑇∑︁
𝑗=𝑡

𝛽 𝑗 −
𝑇∑︁

𝑗=𝑡+1
_ 𝑗 = ℓ𝑡 +

𝑇∑︁
𝑗=𝑡+1

(−𝑒 𝑗 + 𝑓 𝑗). (B.7)

Lastly, observe
𝑇∑︁

𝑗=𝑡+1
𝑓 𝑗 = 𝑑𝑡 . (B.8)

The lemma then follows by plugging (B.4), (B.7), (B.8) into (B.3) and dropping −∑𝑇
𝑗=𝑡+1 𝑒 𝑗 ≤

0. □

Finally, we provide the following equivalent interpretation of 𝛿𝑡 :

Lemma B.4.3. For all 𝑡 ∈ [𝑇], 𝑡 ≥ 2, we have:

𝛿𝑡 = 𝑎𝑡 + 𝑐
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗

\ ALG(𝑡)
𝑗−1) − 𝑐

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡−1)
𝑗

\ ALG(𝑡−1)
𝑗−1).

Proof. Recall, that, in the 𝑡-th iteration of Step 1d, the algorithm decides whether to set ALG(𝑡) =

ALG(𝑡−1) , or to update ALG(𝑡) with the solution to Π (𝑡) . If the former holds, then both the left- and

right-hand side of the equality from the thesis of the lemma are equal to 0. So suppose this is not

the case. With respect to the objective function of Π (𝑡) , the profit of ALG(𝑡−1)
𝑡−1 is

∑︁
𝑖∈ALG(𝑡−1)

𝑡 \ALG(𝑡−1)
𝑡−1

𝑝𝑖,𝑡 + 𝑐
𝑡−1∑︁
𝑗=1

∑︁
𝑖∈ALG(𝑡−1)

𝑗
\ALG(𝑡−1)

𝑗−1

𝑝𝑖, 𝑗 = 𝑐

𝑡−1∑︁
𝑗=1

∑︁
𝑖∈ALG(𝑡−1)

𝑗
\ALG(𝑡−1)

𝑗−1

𝑝𝑖, 𝑗

= 𝑐

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡−1)
𝑗

\ ALG(𝑡−1)
𝑗−1), (B.9)

where the first equality is due to that ALG(𝑡−1)
𝑡 \ ALG(𝑡−1)

𝑡−1 = ∅ by construction, and the second

follows by the definition. Similarly, with respect to the objective function of Π (𝑡) , the profit of

158

ALG(𝑡)
𝑡 is

∑︁
𝑖∈ALG(𝑡)

𝑡 \ALG(𝑡)
𝑡−1

𝑝𝑖,𝑡+𝑐
𝑡−1∑︁
𝑗=1

∑︁
𝑖∈ALG(𝑡)

𝑗
\ALG(𝑡)

𝑗−1

𝑝𝑖, 𝑗 = 𝑝𝑡 (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1)︸ ︷︷ ︸
𝑎𝑡

+𝑐
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗
\ALG(𝑡)

𝑗−1).

(B.10)

Taking the difference between (B.10) and (B.9) and applying Lemma B.4.1,

𝑎𝑡 + 𝑐
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗
\ALG(𝑡)

𝑗−1) − 𝑐
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡−1)
𝑗

\ALG(𝑡−1)
𝑗−1) = 𝑎𝑡 − 𝑐

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1)︸ ︷︷ ︸

𝑏𝑡

= 𝛿𝑡 .

□

From Lemma B.4.3 and Step 1d of the algorithm, for 𝑡 ∈ [𝑇], 𝑡 ≥ 2, we have that 𝛿𝑡 is the

maximum of 0 and the difference between the profits of ALG(𝑡)
𝑡 and ALG(𝑡−1)

𝑡−1 in Π (𝑡) . Recalling

that 𝛿1 = 𝑎1 − 𝑐𝑏1 = 𝑎1, we deducing the following.

Observation B.4.4. For all 𝑡 ∈ [𝑇], we have 𝛿𝑡 ≥ 0.

B.4.5 Proof of Lemma 2.4.6

Recall that by definition OPT0 = ALG(1)
0 = ∅, we have:

Φ(HB(0)) −Φ(HB(1)) =

𝑇∑︁
𝑗=1

𝑝 𝑗 (OPT 𝑗 \ OPT 𝑗−1) − 𝑝1(ALG(1)
1 \ ALG(1)

0)

−
𝑇∑︁
𝑗=2

𝑝 𝑗 (OPT 𝑗 \ (OPT 𝑗−1 ∪ ALG(1)
1))

= 𝑝1(OPT1) − 𝑝1(ALG(1)
1 \ ALG(1)

0)

+
𝑇∑︁
𝑗=2

𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(1)
1 \ ALG(1)

0))

≤ (1 + 𝜖)𝑝1(ALG(1)
1 \ ALG(1)

0) − 𝑝1(ALG(1)
1 \ ALG(1)

0)

+
𝑇∑︁
𝑗=2

𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(1)
1 \ ALG(1)

0))

159

= 𝜖 𝑝1(ALG(1)
1 \ ALG(1)

0)︸ ︷︷ ︸
𝑎1

+
𝑇∑︁
𝑗=2

𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(1)
1 \ ALG(1)

0))︸ ︷︷ ︸
𝑑1

,

where the first equality follows by definition and the other two by simple algebraic calculations.

The inequality follows since OPT1 is clearly feasible in Π (1) , and since Π (1) is solved to (1− 𝜖
1+𝜖)-

optimality, we have 𝑝1(OPT1) ≤ (1 + 𝜖)𝑝1(ALG(1)
1) = (1 + 𝜖)𝑝1(ALG(1)

1 \ ALG(1)
0).

B.4.6 Proof of Lemma 2.4.7

Φ(HB(𝑡−1)) −Φ(HB(𝑡)) ≤ 𝑏𝑡 − 𝑎𝑡 + 𝑑𝑡 + 𝑝𝑡 (OPT𝑡\(OPT𝑡−1 ∪ ALG(𝑡−1)
𝑡−1))︸ ︷︷ ︸

ℓ𝑡

≤ 𝑏𝑡 − 𝑎𝑡 + 𝑑𝑡 + (1 + 𝜖) (𝑎𝑡 − 𝑐𝑏𝑡)

= 𝜖𝑎𝑡 − (𝑐 − 1)𝑏𝑡 + 𝑑𝑡 − 𝜖𝑐𝑏𝑡

≤ 𝜖𝑎𝑡 − (𝑐 − 1)𝑏𝑡 + 𝑑𝑡 ,

where the first inequality follows from Lemma B.4.2 and the last from 𝑏𝑡 ≥ 0. As for the second,

notice that, since 𝑡 ∉ B, 𝑡 ≥ 2, we have:

ℓ𝑡 = 𝑝𝑡 (OPT𝑡\(OPT𝑡−1 ∪ ALG(𝑡−1)
𝑡−1))

≤ 𝑝𝑡 (OPT𝑡 \ OPT𝑡−1)

≤ (1 + 𝜖)𝛿𝑡

= (1 + 𝜖) (𝑎𝑡 − 𝑐𝑏𝑡).

160

B.4.7 Proof of Lemma 2.4.8

To prove Lemma 2.4.8, we first need the following auxiliary lemma. Roughly speaking, the

lemma gives an upper bound to the profit of certain items first inserted by OPT at time 𝑡𝑖 ∈ B

(the term ℓ𝑡𝑖 below) in terms of the profit of items inserted or removed by the algorithm in certain

previous times.

Lemma B.4.5. For all 𝑖 ∈ [𝑘], 𝑡𝑖 ∈ B, we have:

(1 + 𝜖) (𝑐
𝑡𝑖−1∑︁
𝑗=𝑡𝑖−1

𝑎 𝑗 + 𝑎𝑡𝑖) + 𝑐𝜖Φ(ALG(𝑡𝑖)) − 𝑐𝑏𝑡𝑖 ≥ 𝑝𝑡𝑖 (OPT𝑡𝑖\(OPT𝑡𝑖−1 ∪ ALG(𝑡𝑖−1)
𝑡𝑖−1))︸ ︷︷ ︸

ℓ𝑡𝑖

.

Proof. We first investigate the case 𝑖 ≥ 2. Hence, fix such an 𝑖 and abbreviate 𝑡′ = 𝑡𝑖−1. Since

𝑡′ ∈ B, by Observation B.4.4 we have

𝑝𝑡 ′ (OPT𝑡 ′ \ OPT𝑡 ′−1) > (1 + 𝜖)𝛿𝑡 ′ ≥ 0.

Hence 𝑤(OPT𝑡 ′) > 𝑊𝑡 ′−1, else OPT𝑡 ′ is feasible in time 𝑡′ − 1, a contradiction since OPT

is inclusionwise maximal among the optimal solutions. Then by feasibility of ALG, we have

𝑤(ALG(𝑡 ′−1)
𝑡 ′−1) ≤ 𝑊𝑡 ′−1 < 𝑤(OPT𝑡 ′). Then by defining 𝐴 as in the inequality below, we have:

𝑤(ALG(𝑡 ′−1)
𝑡 ′−1 ∪ (OPT𝑡𝑖 \ OPT𝑡𝑖−1)︸ ︷︷ ︸

𝐴

) ≤ 𝑤(ALG(𝑡 ′−1)
𝑡 ′−1) + 𝑤(OPT𝑡𝑖 \ OPT𝑡𝑖−1)

< 𝑤(OPT𝑡 ′) + 𝑤(OPT𝑡𝑖 \ OPT𝑡𝑖−1)

≤ 𝑤(OPT𝑡𝑖−1) + 𝑤(OPT𝑡𝑖 \ OPT𝑡𝑖−1)

≤ 𝑊𝑡𝑖 ,

by feasibility of OPT and 𝑡′ = 𝑡𝑖−1 ≤ 𝑡𝑖 − 1. Said otherwise, the weight of 𝐴 satisfies the knapsack

constraint at time 𝑡𝑖. Since 𝑡𝑖 − 1 ≥ 𝑡′ ≥ 𝑡1 ≥ 2, we can repeatedly apply Lemma 2.4.4 and deduce

161

ALG(𝑡𝑖−1)
𝑗

⊆ ALG(𝑡 ′−1)
𝑗

for all 𝑗 ∈ [𝑡′ − 1]. Therefore, defining 𝐵 as in the inequality below,

𝑤(ALG(𝑡𝑖−1)
𝑡 ′−1 ∪ (OPT𝑡𝑖 \ OPT𝑡𝑖−1)︸ ︷︷ ︸

𝐵

) ≤ 𝑤(ALG(𝑡 ′−1)
𝑡 ′−1 ∪ (OPT𝑡𝑖 \ OPT𝑡𝑖−1)︸ ︷︷ ︸

𝐴

) < 𝑊𝑡𝑖 ,

hence 𝐵 also satisfies the knapsack constraint at time 𝑡𝑖. Therefore, 𝐵 is a feasible solution for

algorithm Π (𝑡𝑖) . Recalling that Π (𝑡𝑖) chooses solution ALG(𝑡𝑖) and that the profit of ALG(𝑡𝑖) in Π (𝑡𝑖)

is

𝐷 = 𝑐

𝑡𝑖−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1) + 𝑝𝑡𝑖 (ALG(𝑡𝑖)

𝑡𝑖
\ ALG(𝑡𝑖)

𝑡𝑖−1),

we define 𝐹 as below and deduce

(1 + 𝜖)𝐷 ≥ 𝑝(𝐵)

= 𝑐

𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖−1)
𝑗

\ ALG(𝑡𝑖−1)
𝑗−1)

+𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑝 𝑗 ((ALG(𝑡𝑖−1)
𝑗

\ ALG(𝑡𝑖−1)
𝑗−1) ∩ (OPT𝑡𝑖 \ OPT𝑡𝑖−1))

+𝑝𝑡𝑖 (OPT𝑡𝑖\(OPT𝑡𝑖−1 ∪ ALG(𝑡𝑖−1)
𝑡𝑖−1))

≥ 𝑐

𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖−1)
𝑗

\ ALG(𝑡𝑖−1)
𝑗−1)︸ ︷︷ ︸

𝐹

+ 𝑝𝑡𝑖 (OPT𝑡𝑖\(OPT𝑡𝑖−1 ∪ ALG(𝑡𝑖−1)
𝑡𝑖−1))︸ ︷︷ ︸

ℓ𝑡𝑖

,(B.11)

where the first inequality follows since we solve Π (𝑡𝑖) with an FPTAS for knapsack, and the equality

holds by recalling that Π (𝑡𝑖) multiplies by a factor 𝑐 items that are in ALG(𝑡𝑖−1)
𝑗

for any 𝑗 ∈ [𝑡𝑖 −1].

In this case, those are the items first introduced by ALG(𝑡𝑖−1) in times 1, . . . , 𝑡′ − 1, plus items

introduced by ALG(𝑡𝑖−1) in times 𝑡′, . . . , 𝑡𝑖 − 1 that are also in OPT𝑡𝑖 \ OPT𝑡𝑖−1.

Using Lemma B.4.1 and defining 𝐺 and 𝐻,

𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖−1)
𝑗

\ ALG(𝑡𝑖−1)
𝑗−1)︸ ︷︷ ︸

𝐹

=

𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1)︸ ︷︷ ︸

𝐺

+
𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡𝑖)
𝑗

\𝑅(𝑡𝑖)
𝑗−1)︸ ︷︷ ︸

𝐻

. (B.12)

162

Subtracting 𝑐𝐹 from the left-hand side of (B.11), using (B.12), and defining 𝐼 as below gives:

(1 + 𝜖)𝐷 − 𝑐𝐹 = (1 + 𝜖) (𝑐
𝑡𝑖−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1) + 𝑝𝑡𝑖 (ALG(𝑡𝑖)

𝑡𝑖
\ ALG(𝑡𝑖)

𝑡𝑖−1)) − 𝑐𝐹

= (1 + 𝜖)𝑐
𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1)︸ ︷︷ ︸

𝐺

+(1 + 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1)︸ ︷︷ ︸

𝐼

+(1 + 𝜖) 𝑝𝑡𝑖 (ALG(𝑡𝑖)
𝑡𝑖

\ ALG(𝑡𝑖)
𝑡𝑖−1)︸ ︷︷ ︸

𝑎𝑡𝑖

−𝑐𝐺 − 𝑐𝐻

= 𝑐𝜖𝐺 + (1 + 𝜖)𝑐𝐼 + (1 + 𝜖)𝑎𝑡𝑖 − 𝑐𝐻,

while subtracting 𝑐𝐹 from the right-hand side of (B.11) gives 𝑐𝐹 + ℓ𝑡𝑖 − 𝑐𝐹 = ℓ𝑡𝑖 . Hence,

𝑐𝜖𝐺 + (1 + 𝜖)𝑐𝐼 + (1 + 𝜖)𝑎𝑡𝑖 − 𝑐𝐻 ≥ ℓ𝑡𝑖 . (B.13)

We need some more intermediate steps to manipulate the left-hand side of (B.13). By repeat-

edly applying Lemma B.4.1 for 𝑡′ ≤ 𝑗 ≤ 𝑡𝑖 − 1, we have:

𝑝 𝑗 (ALG(𝑗)
𝑗

\ ALG(𝑗)
𝑗−1) = 𝑝 𝑗 (ALG(𝑗+1)

𝑗
\ ALG(𝑗+1)

𝑗−1) + 𝑝 𝑗 (𝑅(𝑗+1)
𝑗

\ 𝑅(𝑗+1)
𝑗−1)

= 𝑝 𝑗 (ALG(𝑗+2)
𝑗

\ ALG(𝑗+2)
𝑗−1) + 𝑝 𝑗 (𝑅(𝑗+2)

𝑗
\ 𝑅(𝑗+2)

𝑗−1) + 𝑝 𝑗 (𝑅(𝑗+1)
𝑗

\ 𝑅(𝑗+1)
𝑗−1)

...

= 𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1) +

𝑡𝑖∑︁
𝑡= 𝑗+1

𝑝 𝑗 (𝑅(𝑡)
𝑗
\𝑅(𝑡)

𝑗−1). (B.14)

(B.14) allows us to write (introducing 𝑁 and 𝐽 as defined below)

(1 + 𝜖)𝑐𝐼 − 𝑐𝐻 = (1 + 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1) − 𝑐

𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡𝑖)
𝑗

\𝑅(𝑡𝑖)
𝑗−1)

= (1 + 𝜖)
(
𝑐

𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑝 𝑗 (ALG(𝑗)
𝑗

\ ALG(𝑗)
𝑗−1)︸ ︷︷ ︸

𝑎 𝑗

−𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑡𝑖∑︁
𝑡= 𝑗+1

𝑝 𝑗 (𝑅(𝑡)
𝑗
\𝑅(𝑡)

𝑗−1)
)

163

−𝑐
𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡𝑖)
𝑗

\𝑅(𝑡𝑖)
𝑗−1)

= (1 + 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑎 𝑗 − 𝜖𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑡𝑖∑︁
𝑡= 𝑗+1

𝑝 𝑗 (𝑅(𝑡)
𝑗
\𝑅(𝑡)

𝑗−1)︸ ︷︷ ︸
𝑁

−𝑐(
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑡𝑖∑︁
𝑡= 𝑗+1

𝑝 𝑗 (𝑅(𝑡)
𝑗
\𝑅(𝑡)

𝑗−1) +
𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡𝑖)
𝑗

\𝑅(𝑡𝑖)
𝑗−1)︸ ︷︷ ︸

𝐽

)
.

Observing that

𝐽 ≥
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑝 𝑗 (𝑅(𝑡𝑖)
𝑗

\𝑅(𝑡𝑖)
𝑗−1) +

𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡𝑖)
𝑗

\𝑅(𝑡𝑖)
𝑗−1) =

𝑡𝑖−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡𝑖)
𝑗

\𝑅(𝑡𝑖)
𝑗−1)︸ ︷︷ ︸

𝑏𝑡𝑖

,

(where the inequality comes from holding 𝑡 = 𝑡𝑖 in the internal summation of the first term), we

deduce

(1+ 𝜖)𝑐𝐼 − 𝑐𝐻 = (1+ 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑎 𝑗 − 𝜖𝑐𝑁 − 𝑐𝐽 ≤ (1+ 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑎 𝑗 − 𝜖𝑐𝑁 − 𝑐𝑏𝑡𝑖 ≤ (1+ 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑎 𝑗 − 𝑐𝑏𝑡𝑖 .

(B.15)

Plugging (B.15) into (B.13), we have:

𝑐𝜖𝐺 + (1 + 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡 ′

𝑎 𝑗 − 𝑐𝑏𝑡𝑖 + (1 + 𝜖)𝑎𝑡𝑖 ≥ ℓ𝑡𝑖

and the thesis follows since

𝐺 =

𝑡 ′−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1) ≤

𝑡𝑖∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡𝑖)
𝑗

\ ALG(𝑡𝑖)
𝑗−1) = Φ(ALG(𝑡𝑖)).

To settle the statement for 𝑡1, observe that 𝑡1 ≥ 2 by definition of B and recall that we set 𝑡0 = 1.

164

Then

𝑤(OPT𝑡1 \ OPT𝑡1−1︸ ︷︷ ︸
𝐵′

) ≤ 𝑤(OPT𝑡1) ≤ 𝑊𝑡1 ,

by feasibility of OPT. Thus 𝐵′ is a feasible solution for algorithm Π (𝑡1) . Similarly to the case for 𝑡𝑖

with 𝑖 ≥ 2, Π (𝑡1) chooses ALG(𝑡1) , whose profit in Π (𝑡1) is

𝐷′ = 𝑐
𝑡1−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡1)
𝑗

\ ALG(𝑡1)
𝑗−1) + 𝑝𝑡1 (ALG(𝑡1)

𝑡1
\ ALG(𝑡1)

𝑡1−1),

we have

(1 + 𝜖)𝐷′ ≥ 𝑝(𝐵′)

= 𝑐

𝑡1−1∑︁
𝑗=1

𝑝 𝑗 ((ALG(𝑡1−1)
𝑗

\ ALG(𝑡1−1)
𝑗−1) ∩ (OPT𝑡1 \ OPT𝑡1−1))

+ 𝑝𝑡1 (OPT𝑡1 \ (OPT𝑡1−1 ∪ ALG(𝑡1−1)
𝑡1−1))︸ ︷︷ ︸

ℓ𝑡1

≥ ℓ𝑡1 . (B.16)

Note that (B.14) holds for all 𝑗 ∈ [𝑡1 − 1], therefore we have:

(1 + 𝜖)𝐷′ = (1 + 𝜖) (𝑐
𝑡1−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑗)
𝑗

\ ALG(𝑗)
𝑗−1)︸ ︷︷ ︸

𝑎 𝑗

−𝑐
𝑡1−1∑︁
𝑗=1

𝑡1∑︁
𝑡= 𝑗+1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1)

+ 𝑝𝑡1 (ALG(𝑡1)
𝑡1

\ ALG(𝑡1)
𝑡1−1)︸ ︷︷ ︸

𝑎𝑡1

)

≤ (1 + 𝜖) (𝑐
𝑡1−1∑︁
𝑗=1

𝑎 𝑗 − 𝑐
𝑡1−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡1)
𝑗

\ 𝑅(𝑡1)
𝑗−1)︸ ︷︷ ︸

𝑏𝑡1

+𝑎𝑡1)

≤ (1 + 𝜖) (𝑐
𝑡1−1∑︁
𝑗=1

𝑎 𝑗 + 𝑎𝑡1) − 𝑐𝑏𝑡1

165

≤ (1 + 𝜖) (𝑐
𝑡1−1∑︁
𝑗=1

𝑎 𝑗 + 𝑎𝑡1) + 𝑐𝜖Φ(ALG(𝑡1)) − 𝑐𝑏𝑡1 ,

where the first equality uses (B.14) and the first inequality comes from holding 𝑡 = 𝑡1 in the internal

summation of the second term. The second and third inequality follow since 𝑏𝑡1 and Φ(ALG(𝑡1))

are both non-negative. Finally, combining the above inequality with (B.16) gives the result. □

Proof of Lemma 2.4.8. Recall that by Lemma B.4.5 we have for 𝑡𝑖 ∈ B,

ℓ𝑡𝑖 ≤ (1 + 𝜖) (𝑐
𝑡𝑖−1∑︁
𝑗=𝑡𝑖−1

𝑎 𝑗 + 𝑎𝑡𝑖) + 𝑐𝜖Φ(ALG(𝑡𝑖)) − 𝑐𝑏𝑡𝑖 ,

Plugging the above in Lemma B.4.2, we have

Φ(HB(𝑡𝑖−1)) −Φ(HB(𝑡𝑖)) ≤ 𝑏𝑡𝑖 − 𝑎𝑡𝑖 + ℓ𝑡𝑖 + 𝑑𝑡𝑖

≤ 𝑏𝑡𝑖 − 𝑎𝑡𝑖 + (1 + 𝜖) (𝑐
𝑡𝑖−1∑︁
𝑗=𝑡𝑖−1

𝑎 𝑗 + 𝑎𝑡𝑖) + 𝑐𝜖Φ(ALG(𝑡𝑖)) − 𝑐𝑏𝑡𝑖 + 𝑑𝑡𝑖

= (1 + 𝜖)𝑐
𝑡𝑖−1∑︁
𝑗=𝑡𝑖−1

𝑎 𝑗 + 𝜖𝑎𝑡𝑖 − (𝑐 − 1)𝑏𝑡𝑖 + 𝑐𝜖Φ(ALG(𝑡𝑖)) + 𝑑𝑡𝑖 .

□

B.4.8 Proof of Lemma 2.4.9

Let 𝑡 ∈ [𝑇], 𝑡 ≥ 2. From Observation B.4.4 and the definition of 𝛿𝑡 , we have:

𝑝𝑡 (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1)︸ ︷︷ ︸
𝑎𝑡

≥ 𝑐
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1)︸ ︷︷ ︸

𝑏𝑡

,

166

and therefore

𝑡∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗

\ ALG(𝑡)
𝑗−1)︸ ︷︷ ︸

Φ(ALG(𝑡))

= 𝑝𝑡 (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1)︸ ︷︷ ︸
𝑎𝑡

+
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗

\ ALG(𝑡)
𝑗−1)

≥ 𝑐

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1)︸ ︷︷ ︸

𝑏𝑡

+
𝑡−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑡)
𝑗

\ ALG(𝑡)
𝑗−1).

Repeatedly applying the above inequality and Lemma B.4.1, we derive:

𝑇∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇)
𝑗

\ ALG(𝑇)
𝑗−1)︸ ︷︷ ︸

Φ(ALG)=Φ(ALG(𝑇))

≥ 𝑐
𝑇−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇)
𝑗

\ 𝑅(𝑇)
𝑗−1) +

𝑇−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇)
𝑗

\ ALG(𝑇)
𝑗−1)

= (𝑐 − 1)
𝑇−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇)
𝑗

\ 𝑅(𝑇)
𝑗−1) +

𝑇−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇−1)
𝑗

\ ALG(𝑇−1)
𝑗−1)︸ ︷︷ ︸

Φ(ALG(𝑇−1))

≥ (𝑐 − 1)
𝑇−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇)
𝑗

\ 𝑅(𝑇)
𝑗−1) + 𝑐

𝑇−2∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇−1)
𝑗

\𝑅(𝑇−1)
𝑗−1)

+
𝑇−2∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇−1)
𝑗

\ ALG(𝑇−1)
𝑗−1)

= (𝑐 − 1)
𝑇−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇)
𝑗

\ 𝑅(𝑇)
𝑗−1) + (𝑐 − 1)

𝑇−2∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇−1)
𝑗

\𝑅(𝑇−1)
𝑗−1)

+
𝑇−2∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇−2)
𝑗

\ ALG(𝑇−2)
𝑗−1)︸ ︷︷ ︸

Φ(ALG(𝑇−2))

...

≥ (𝑐 − 1)
𝑇∑︁
𝑡=2

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗
\𝑅(𝑡)

𝑗−1) + 𝑝1(ALG(1)
1 \ ALG(1)

0)

167

≥ (𝑐 − 1)
𝑇∑︁
𝑡=2

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗
\𝑅(𝑡)

𝑗−1)︸ ︷︷ ︸
𝑏𝑡

.

Thus,
𝑇∑︁
𝑡=2

𝑏𝑡 ≤
1

𝑐 − 1
Φ(ALG).

B.4.9 Proof of Claim 2.4.10

By Lemma 2.4.6, Lemma 2.4.7 and Lemma 2.4.8, summing differences Φ(HB𝑡−1) − Φ(HB𝑡)

over all 𝑡 ∈ [𝑇],

𝑇∑︁
𝑡=1

(Φ(HB(𝑡−1)) − Φ(HB(𝑡)))

≤ 𝜖

𝑇∑︁
𝑡=1

𝑎𝑡 − (𝑐 − 1)
𝑇∑︁
𝑡=2

𝑏𝑡 +
𝑇∑︁
𝑡=1

𝑑𝑡 + (1 + 𝜖) (𝑐
𝑇∑︁
𝑡=1

𝑎𝑡) + 𝑐𝜖
𝑇∑︁
𝑡=1

Φ(ALG(𝑡))

= (𝑐 + (𝑐 + 1)𝜖)
𝑇∑︁
𝑡=1

𝑎𝑡 − (𝑐 − 1)
𝑇∑︁
𝑡=2

𝑏𝑡 +
𝑇∑︁
𝑡=1

𝑑𝑡 + 𝑐𝜖
𝑇∑︁
𝑡=1

Φ(ALG(𝑡))

(B.17)

We now bound the right-hand side of (B.17). By Lemma B.4.1, for 𝑡 ∈ [𝑇], 𝑡 ≥ 2,∑𝑡−1
𝑗=1 𝑝 𝑗 (ALG(𝑡)

𝑗
\ ALG(𝑡)

𝑗−1) =
∑𝑡−1
𝑗=1 𝑝 𝑗 (ALG(𝑡−1)

𝑗
\ ALG(𝑡−1)

𝑗−1) − ∑𝑡−1
𝑗=1 𝑝 𝑗 (𝑅

(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1). Thus, by

repeatedly applying Lemma B.4.1,

𝑇∑︁
𝑡=1

𝑝𝑡 (ALG(𝑇)
𝑡 \ ALG(𝑇)

𝑡−1)︸ ︷︷ ︸
Φ(ALG)

= 𝑝𝑇 (ALG(𝑇)
𝑇

\ ALG(𝑇)
𝑇−1) +

𝑇−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇)
𝑗

\ ALG(𝑇)
𝑗−1)

= 𝑝𝑇 (ALG(𝑇)
𝑇

\ ALG(𝑇)
𝑇−1) +

𝑇−1∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇−1)
𝑗

\ ALG(𝑇−1)
𝑗−1)

168

−
𝑇−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇)
𝑗

\ 𝑅(𝑇)
𝑗−1)

= 𝑝𝑇 (ALG(𝑇)
𝑇

\ ALG(𝑇)
𝑇−1) + 𝑝𝑇−1(ALG(𝑇−1)

𝑇−1 \ ALG(𝑇−1)
𝑇−2)

+
𝑇−2∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇−1)
𝑗

\ ALG(𝑇−1)
𝑗−1) −

𝑇−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑇)
𝑗

\ 𝑅(𝑇)
𝑗−1)

=

𝑇∑︁
𝑡=𝑇−1

𝑝𝑡 (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1) +
𝑇−2∑︁
𝑗=1

𝑝 𝑗 (ALG(𝑇−2)
𝑗

\ ALG(𝑇−2)
𝑗−1)

−
𝑇∑︁

𝑡=𝑇−1

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1)

...

=

𝑇∑︁
𝑡=1

𝑝𝑡 (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1)︸ ︷︷ ︸
𝑎𝑡

−
𝑇∑︁
𝑡=2

𝑡−1∑︁
𝑗=1

𝑝 𝑗 (𝑅(𝑡)
𝑗

\ 𝑅(𝑡)
𝑗−1)︸ ︷︷ ︸

𝑏𝑡

Therefore,
𝑇∑︁
𝑡=1

𝑎𝑡 = Φ(ALG) +
𝑇∑︁
𝑡=2

𝑏𝑡 . (B.18)

Moreover, for every 𝑡 ∈ [𝑇],

𝑑𝑡 =

𝑇∑︁
𝑗=𝑡+1

𝑝 𝑗 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1))

≤
𝑇∑︁

𝑗=𝑡+1
𝑝𝑡 ((OPT 𝑗 \ OPT 𝑗−1) ∩ (ALG(𝑡)

𝑡 \ ALG(𝑡)
𝑡−1))

= 𝑝𝑡 ((∪𝑇𝑗=𝑡+1(OPT 𝑗 \ OPT 𝑗−1)) ∩ (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1))

≤ 𝑝𝑡 (ALG(𝑡)
𝑡 \ ALG(𝑡)

𝑡−1)

= 𝑎𝑡 , (B.19)

where the first inequality follows since the function 𝑝𝑡 is non-increasing in 𝑡, and the second

equality follows since OPT 𝑗 \ OPT 𝑗−1 are disjoint sets for all 𝑗 ∈ [𝑇]. Plugging (B.18) and (B.19)

169

into (B.17), we deduce:

𝑇∑︁
𝑡=1

(Φ(HB(𝑡−1)) −Φ(HB(𝑡))) ≤ (𝑐 + (𝑐 + 1)𝜖) (Φ(ALG) +
𝑇∑︁
𝑡=2

𝑏𝑡) − (𝑐 − 1)
𝑇∑︁
𝑡=2

𝑏𝑡 +
𝑇∑︁
𝑡=1

𝑑𝑡

+𝑐𝜖
𝑇∑︁
𝑡=1

Φ(ALG(𝑡))

≤ (𝑐 + (𝑐 + 1)𝜖) (Φ(ALG) +
𝑇∑︁
𝑡=2

𝑏𝑡) − (𝑐 − 1)
𝑇∑︁
𝑡=2

𝑏𝑡

+𝑐𝜖
𝑇∑︁
𝑡=1

Φ(ALG(𝑡)) +Φ(ALG) +
𝑇∑︁
𝑡=2

𝑏𝑡

= (𝑐 + 1 + (𝑐 + 1)𝜖)Φ(ALG) + (2 + (𝑐 + 1)𝜖)
𝑇∑︁
𝑡=2

𝑏𝑡

+𝑐𝜖
𝑇∑︁
𝑡=1

Φ(ALG(𝑡)).

B.4.10 Proof of Claim 2.4.11

𝑈 = (𝑐 + 1 + (𝑐 + 1)𝜖) Φ(ALG) + (2 + (𝑐 + 1)𝜖)
𝑇∑︁
𝑡=2

𝑏𝑡 + 𝑐𝜖
𝑇∑︁
𝑡=1

Φ(ALG(𝑡))

≤ (𝑐 + 1 + (𝑐 + 1)𝜖) Φ(ALG) + (2 + (𝑐 + 1)𝜖) (1
𝑐 − 1

) Φ(ALG) + 𝑐𝜖𝑇 Φ(ALG)

= (𝑐 + 1 + 2
𝑐 − 1

) Φ(ALG) + (𝑐 + 1 + 𝑐 + 1
𝑐 − 1

+ 𝑐𝑇)𝜖 Φ(ALG)

= (𝑐 + 1 + 2
𝑐 − 1

+ 𝜖′) Φ(ALG)

where the first inequality follows from plugging in (2.2) and Lemma 2.4.9, and the final equality

follows by the definition of 𝜖′.

B.4.11 Proof of Theorem 2.4.2

Consider the following instance of the generalized incremental knapsack problem where 𝑛 =

2𝑇 − 1. Here 𝑇 is taken to be a large enough integer, and 𝜖 > 0 a small enough real number. There

170

are 2 sets of items: 𝑖 ∈ [𝑇] and 𝑖 ∈ [2𝑇 − 1]\[𝑇]. For the first set,

𝑝𝑖,𝑡 =

𝑐𝑡 if 𝑡 ≤ 𝑖

0 otherwise
, 𝑤𝑖 = 𝑇

𝑖 + 𝜖 .

For the second set,

𝑝𝑇+𝑖,𝑡 =

𝑐𝑡 + (𝑐𝑡 − 1)𝜖 if 𝑡 ≤ 𝑖

0 otherwise
, 𝑤𝑇+𝑖 =

𝑖∑︁
𝑡=1
𝑇 𝑡 + 𝑇𝜖.

Additionally, let𝑊𝑡 =
∑𝑡
𝜏=1 𝑇

𝜏 + 𝑇𝜖 .

A feasible solution is to insert item 𝑡 (hence, from the first set) in time 𝑡. The profit of this solution

is:
𝑇∑︁
𝑖=1

𝑐𝑖 =
𝑐𝑇+1 − 𝑐
𝑐 − 1

.

In Π (1) , only items 1 and 𝑇 + 1 are feasible, thus the algorithm will insert item 𝑇 + 1 since it earns

(𝑐 − 1)𝜖 more profit.

We claim that, at each round 2 ≤ 𝑡 ≤ 𝑇 − 1, the solution constructed by Π (𝑡−1) contains exactly

item 𝑇 + 𝑡 − 1, and Π (𝑡) removes item 𝑇 + 𝑡 − 1 and adds item 𝑇 + 𝑡. We prove this claim by

induction. For the basic case, first observe that, in Π (2) , items 𝑇 + 𝑖 and 𝑖 for any 𝑖 > 2 are not

feasible. Also observe that inserting item 1 at this time gives a profit of 0. Neither item 2 nor 𝑇 + 2

are feasible without removing item 𝑇 + 1. So all choices of the algorithm are dominated by the

following options:

a) Remove item 𝑇 + 1 to insert item 2, leading to a profit of 𝑐2;

b) Removing item 𝑇 + 1 to insert item 𝑇 + 2, leading to a profit of 𝑐2 + (𝑐2 − 1)𝜖 ;

c) Keeping item 𝑇 + 1, leading to a profit of

𝑐(𝑐 + (𝑐 − 1)𝜖) = 𝑐2 + (𝑐2 − 𝑐)𝜖 < 𝑐2 + (𝑐2 − 1)𝜖 .

171

Thus Π (2) removes item 𝑇 + 1 to insert item 𝑇 + 2, as required.

For the inductive step, suppose that the solution constructed by Π (𝑡) is given by item 𝑇 + 𝑡 only.

In Π (𝑡+1) , the knapsack capacity increases by 𝑇 𝑡+1. Thus again neither item 𝑡 + 1 nor 𝑇 + 𝑡 + 1 is

feasible without removing item 𝑇 + 𝑡. Moreover, by construction, none of the items 𝑗 and 𝑇 + 𝑗

with 1 ≤ 𝑗 ≤ 𝑡 gives any profit, while none of the items 𝑗 and 𝑇 + 𝑗 with 𝑡 + 2 ≤ 𝑗 ≤ 𝑇 can be

inserted because of each of them alone violates the capacity constraint. Hence, all choices of the

algorithm are dominated by the following options:

a) Remove item 𝑇 + 𝑡 to insert item 𝑡 + 1, leading to a profit of 𝑐𝑡+1;

b) Removing item 𝑇 + 𝑡 to insert item 𝑇 + 𝑡 + 1, leading to a profit of 𝑐𝑡+1 + (𝑐𝑡+1 − 1)𝜖 ;

c) Keeping item 𝑇 + 𝑡, leading to a profit of

𝑐(𝑐𝑡 + (𝑐𝑡 − 1)𝜖) = 𝑐𝑡+1 + (𝑐𝑡+1 − 𝑐)𝜖 < 𝑐𝑡+1 + (𝑐𝑡+1 − 1)𝜖 .

Thus Π (𝑡+1) removes item 𝑇 + 𝑡 to insert item 𝑇 + 𝑡 + 1 and the claim follows.

It is easy to check that Π (𝑇) will keep item 𝑇 −1 and not add any item; hence, ALG earns profit

𝑐𝑇−1 + (𝑐𝑇−1 − 1)𝜖 .

We finally compare the profit of the optimal chain OPT against the profit of the chain produced

by the fully flexible algorithm ALG:

Φ(ALG)
Φ(OPT) ≤ (𝑐 − 1) (𝑐𝑇−1 + (𝑐𝑇−1 − 1)𝜖)

𝑐𝑇+1 − 𝑐
≤ (1 + 𝜖) 𝑐 − 1

𝑐2 − 1
𝑐𝑇−2

−−−−→
𝑇→∞

(1 + 𝜖) 𝑐 − 1
𝑐2 ,

and the thesis follows by taking 𝜖 arbitrarily small.

172

Appendix C: Algorithms for the generalized incremental knapsack problem

through a sequencing reformulation

C.1 Additional proofs from Section 3.2

C.1.1 Proof of Claim 3.2.5

We first show that (𝑆+, �̃�+) is indeed a bulky pair. For this purpose, since (𝑆, �̃�) is bulky, it

suffices to explain why each item 𝑖 ∈ 𝑄 is necessarily 𝑘𝑖-heavy, where 𝑘𝑖 is the unique index

for which 𝐶�̃�+ (𝑖) ∈ I𝑘𝑖 . This claim follows by noting that, for such items, the way we construct

(𝑆+, �̃�+) leads to a completion time of

𝐶�̃�+ (𝑖) = 𝑤(𝑆) +
∑︁

𝑗∈𝑄:𝜋(𝑗)≤𝜋(𝑖)
𝑤 𝑗

< 𝑤(𝑆) +
∑︁

𝑗∈𝑄:𝜋(𝑗)≤𝜋(𝑖)
𝑤 𝑗

= 𝐶𝜋 (𝑖) . (C.1)

Recalling that 𝑄 = {𝑖 ∈ 𝑆 : 𝐶𝜋 (𝑖) ∈ I𝑘 }, we have just shown that 𝑘𝑖 ≤ 𝑘 , and since item 𝑖 is

𝑘-heavy due to the bulkiness of (𝑆, 𝜋), it is 𝑘𝑖-heavy as well.

We proceed by showing that (𝑆+, �̃�+) satisfies conditions 1-3:

1. Top index: top(𝑆+, �̃�+) ≤ 𝑘 . To verify this property, note that when 𝑄 = ∅, we clearly have

𝑤(𝑆+) = 𝑤(𝑆) < 𝑤(𝑆) = 𝑤(𝑆), and therefore, top(𝑆+, �̃�+) ≤ top(𝑆, 𝜋) ≤ 𝑘 . In the opposite

case, where𝑄 ≠ ∅, the makespans of both 𝑆+ and 𝑆 are attained by the respective completion

times of precisely the same item in𝑄. However, by inequality (C.1), we have𝐶�̃�+ (𝑖) ≤ 𝐶𝜋 (𝑖)

for every 𝑖 ∈ 𝑄, and it follows that top(𝑆+, �̃�+) ≤ top(𝑆, 𝜋) ≤ 𝑘 .

2. Total profit: Ψ(�̃�+) ≥ 𝜓𝑘 . Along the same lines, since 𝐶�̃�+ (𝑖) ≤ 𝐶𝜋 (𝑖) for every 𝑖 ∈ 𝑄, it

173

follows that 𝜑�̃�+ (𝑖) ≥ 𝜑𝜋 (𝑖) for such items. Thus,

Ψ
(
�̃�+

)
=

∑︁
𝑖∈𝑆

𝜑�̃�+ (𝑖) +
∑︁
𝑖∈𝑄

𝜑�̃�+ (𝑖)

=
∑︁
𝑖∈𝑆

𝜑�̃� (𝑖) +
∑︁
𝑖∈𝑄

𝜑�̃�+ (𝑖)

≥ 𝜓𝑘−1 +
∑︁
𝑖∈𝑄

𝜑𝜋 (𝑖)

=

[
𝜓𝑘 −

∑︁
𝑖∈𝑄

𝜑𝜋 (𝑖)
]+

+
∑︁
𝑖∈𝑄

𝜑𝜋 (𝑖)

≥ 𝜓𝑘 .

Here, the second equality holds since the permutations �̃�+ and �̃� are identical when restricted

to items in 𝑆. The first inequality follows by recalling that (𝑆, �̃�) ∈ Bulky(𝑘−1, 𝜓𝑘−1,Q𝑘−1),

meaning in particular that
∑
𝑖∈𝑆 𝜑�̃� (𝑖) = Ψ(�̃�) ≥ 𝜓𝑘−1.

3. Core: core(𝑆+) = Q𝑘 . One can easily verify that, for any pair of disjoint sets of items, 𝑆1

and 𝑆2, we have core(𝑆1 ∪ 𝑆2) = core(core(𝑆1) ∪ core(𝑆2)). Therefore,

core(𝑆+) = core(𝑆 ∪𝑄)

= core(core(𝑆) ∪ core(𝑄))

= core(core(𝑆 \𝑄) ∪ core(𝑄))

= core(𝑆)

= Q𝑘 ,

where the second equality follows by noting that 𝑆 and 𝑄 are disjoint, and similarly, the

fourth equality holds since 𝑆 \𝑄 and 𝑄 are clearly disjoint.

174

C.1.2 Proof of Lemma 3.2.6

Let us consider the sequence of states traversed by the dynamic program 𝐹, as it arrives to the

optimal state (𝐾, 𝜓∗
𝐾
,Q∗

𝐾
); the latter is “optimal” in the sense that 𝜓∗

𝐾
= 𝜓∗ and 𝐹 (𝐾, 𝜓∗

𝐾
,Q∗

𝐾
) < ∞.

This sequence, along with the specific parameters and the bulky pair corresponding to each state

will be designated by:

(0, 𝜓∗
0,Q

∗
0)

(𝑆∗0, 𝜋𝑆∗0)
−−−−−→
𝑄∗

1,𝜋𝑄∗
1

(1, 𝜓∗
1,Q

∗
1)

(𝑆∗1, 𝜋𝑆∗1)
−−−−−→
𝑄∗

2,𝜋𝑄∗
2

(2, 𝜓∗
2,Q

∗
2)

(𝑆∗2, 𝜋𝑆∗2)
−−−→
······

· · · −−−−−−→
𝑄∗
𝑘
,𝜋𝑄∗

𝑘

(𝑘, 𝜓∗
𝑘
,Q∗

𝑘
)

(𝑆∗
𝑘
, 𝜋𝑆∗

𝑘
)

−−−→
······

· · · −−−−−−→
𝑄∗
𝐾
,𝜋𝑄∗

𝐾

(𝐾, 𝜓∗
𝐾
,Q∗

𝐾
)

(𝑆∗
𝐾
, 𝜋𝑆∗

𝐾
)
.

To better understand this illustration, we note that for every 𝑘 ∈ [𝐾], the collection of items 𝑄∗
𝑘

and their internal permutation 𝜋𝑄∗
𝑘

are precisely those by which the dynamic program 𝐹 transitions

from state (𝑘 − 1, 𝜓∗
𝑘−1,Q

∗
𝑘−1) to state (𝑘, 𝜓∗

𝑘
,Q∗

𝑘
). Consequently, the resulting item set is 𝑆∗

𝑘
=

𝑆∗
𝑘−1⊎𝑄

∗
𝑘
, whereas the resulting permutation 𝜋𝑆∗

𝑘
is obtained by appending 𝜋𝑄∗

𝑘
to 𝜋𝑆∗

𝑘−1
. In addition,

for the starting state, we have 𝜓∗
0 = 0 and Q∗

0 = ∅.

To prove the desired claim, we argue that one feasible sequence of states that can be traversed

by the approximate program �̃� is obtained when each profit parameter 𝜓∗
𝑘

is substituted by �̃�𝑘 =

⌈𝜓∗
𝑘
−min{𝑘, |𝑆∗

𝑘
|} · 𝜖 𝑝max

𝑛
⌉D𝜓

. Here, the operator ⌈·⌉D𝜓
rounds its argument up to the nearest value

in D𝜓 . In other words, as shown in Claim C.1.1 below, we prove that

(0, �̃�0,Q∗
0)

(𝑆∗0, 𝜋𝑆∗0)
−−−−−→
𝑄∗

1,𝜋𝑄∗
1

(1, �̃�1,Q∗
1)

(𝑆∗1, 𝜋𝑆∗1)
−−−−−→
𝑄∗

2,𝜋𝑄∗
2

(2, �̃�2,Q∗
2)

(𝑆∗2, 𝜋𝑆∗2)
−−−→
······

· · · −−−−−−→
𝑄∗
𝑘
,𝜋𝑄∗

𝑘

(𝑘, �̃�𝑘 ,Q∗
𝑘
)

(𝑆∗
𝑘
, 𝜋𝑆∗

𝑘
)

−−−→
······

· · · −−−−−−→
𝑄∗
𝐾
,𝜋𝑄∗

𝐾

(𝐾, �̃�𝐾 ,Q∗
𝐾
)

(𝑆∗
𝐾
, 𝜋𝑆∗

𝐾
)

forms a feasible sequence of states, action parameters, and bulky pairs for �̃�. That is, we have

(𝑆∗
𝑘
, 𝜋𝑆∗

𝑘
) ∈ �Bulky(𝑘, �̃�𝑘 ,Q∗

𝑘
), for every 𝑘 ∈ [𝐾]0. In light of this result, we conclude in particular

175

that �̃� (𝐾, �̃�𝐾 ,Q∗
𝐾
) < ∞ with

�̃�𝐾 =

⌈
𝜓∗
𝐾 − min{𝐾, |𝑆∗𝐾 |} ·

𝜖 𝑝max
𝑛

⌉
D𝜓

≥ 𝜓∗ − 𝜖 𝑝max

≥ (1 − 𝜖) · 𝜓∗ .

Here, the first inequality holds since 𝜓∗
𝐾
= 𝜓∗ and |𝑆∗

𝐾
| ≤ 𝑛. To understand the second inequality,

note that for every item 𝑖 ∈ [𝑛], the pair that consists of introducing this item and nothing more is

necessarily bulky. Indeed, as a result, the completion time of item 𝑖 would fall within the interval

I𝑘𝑖 , where 𝑘𝑖 is the unique integer for which (1 + 𝜖)𝑘𝑖−1 < 𝑤𝑖 ≤ (1 + 𝜖)𝑘𝑖 . However, since 𝑤𝑖 >

(1+𝜖)𝑘𝑖−1 ≥ 𝜖2 · (1+𝜖)𝑘𝑖 for 𝜖 ≤ 1
2 , it follows that item 𝑖 is 𝑘-heavy, implying in turn that the pair in

question is bulky. Now, noting that this pair guarantees a profit of max{𝑝𝑖𝑡 : 𝑡 ∈ [𝑇] and 𝑤𝑖 ≤ 𝑊𝑡},

any such expression provides a lower bound on 𝜓∗, meaning that 𝜓∗ ≥ max{𝑝𝑖𝑡 : 𝑖 ∈ [𝑛], 𝑡 ∈

[𝑇], and 𝑤𝑖 ≤ 𝑊𝑡} = 𝑝max.

Claim C.1.1. (𝑆∗
𝑘
, 𝜋𝑆∗

𝑘
) ∈ �Bulky(𝑘, �̃�𝑘 ,Q∗

𝑘
), for every 𝑘 ∈ [𝐾]0.

Proof. We first note that the parameter �̃�𝑘 is indeed well-defined for all 𝑘 ∈ [𝐾]0, since �̃�𝑘 ≤

⌈𝜓∗
𝐾
⌉D𝜓

≤ 𝑛𝑝max = maxD𝜓 . Given this observation, we proceed to prove the claim by induction

on 𝑘 .

In the base case of 𝑘 = 0, the claim trivially holds since �̃�0 = 0, Q∗
0 = ∅, 𝑆∗0 = ∅, and 𝜋𝑆∗0 is

the empty permutation. In the general case of 𝑘 ≥ 1, to argue that (𝑆∗
𝑘
, 𝜋𝑆∗

𝑘
) ∈ �̃�(𝑘, �̃�𝑘 ,Q∗

𝑘
), we

consider two scenarios, depending on whether 𝑄∗
𝑘

is empty or not:

• Case 1: 𝑄∗
𝑘
= ∅. We first observe that, since 𝑆∗

𝑘
= 𝑆∗

𝑘−1 ∪𝑄
∗
𝑘
, we have 𝑆∗

𝑘
= 𝑆∗

𝑘−1 by the case

hypothesis, implying in turn that 𝜓∗
𝑘
= 𝜓∗

𝑘−1 and Q∗
𝑘
= Q∗

𝑘−1. Consequently,

�̃�𝑘 =

⌈
𝜓∗
𝑘 − min{𝑘, |𝑆∗𝑘 |} ·

𝜖 𝑝max
𝑛

⌉
D𝜓

≤
⌈
𝜓∗
𝑘−1 − min{𝑘 − 1, |𝑆∗𝑘−1 |} ·

𝜖 𝑝max
𝑛

⌉
D𝜓

176

= �̃�𝑘−1 .

and it follows that �Bulky(𝑘, �̃�𝑘 ,Q∗
𝑘
) ⊇ �Bulky(𝑘, �̃�𝑘−1,Q∗

𝑘−1) ⊇ �Bulky(𝑘 − 1, �̃�𝑘−1,Q∗
𝑘−1),

where the first inclusion holds since �̃�𝑘 ≤ �̃�𝑘−1 and Q∗
𝑘

= Q∗
𝑘−1. Thus, (𝑆∗

𝑘
, 𝜋𝑆∗

𝑘
) =

(𝑆∗
𝑘−1, 𝜋𝑆∗𝑘−1

) ∈ �Bulky(𝑘 − 1, �̃�𝑘−1,Q∗
𝑘−1) ⊆ �Bulky(𝑘, �̃�𝑘 ,Q∗

𝑘
), where the middle transition

is precisely our induction hypothesis.

• Case 2: 𝑄∗
𝑘
≠ ∅. In this case, |𝑆∗

𝑘
| = |𝑆∗

𝑘−1 | + |𝑄∗
𝑘
| ≥ |𝑆∗

𝑘−1 | + 1, as 𝑆∗
𝑘

is the disjoint union

of 𝑆∗
𝑘−1 and 𝑄∗

𝑘
. By the inductive hypothesis, (𝑆∗

𝑘−1, 𝜋𝑆∗𝑘−1
) ∈ �Bulky(𝑘 − 1, �̃�𝑘−1,Q∗

𝑘−1),

meaning that for the purpose of proving (𝑆∗
𝑘
, 𝜋𝑆∗

𝑘
) ∈ �Bulky(𝑘, �̃�𝑘 ,Q∗

𝑘
), it suffices to show

that �̃�𝑘−1 +
∑
𝑖∈𝑄∗

𝑘
𝜑𝜋𝑆∗

𝑘

(𝑖) ≥ �̃�𝑘 . We establish the latter inequality by noting that

�̃�𝑘−1 +
∑︁
𝑖∈𝑄∗

𝑘

𝜑𝜋𝑆∗
𝑘

(𝑖) = �̃�𝑘−1 + 𝜓∗
𝑘 − 𝜓

∗
𝑘−1

≥
(
𝜓∗
𝑘−1 − min{𝑘 − 1, |𝑆∗𝑘−1 |} ·

𝜖 𝑝max
𝑛

)
+ 𝜓∗

𝑘 − 𝜓
∗
𝑘−1

≥
⌈
𝜓∗
𝑘 − min{𝑘, |𝑆∗𝑘 |} ·

𝜖 𝑝max
𝑛

⌉
D𝜓

= �̃�𝑘 ,

where the first equality holds since 𝜓∗
𝑘
= 𝜓∗

𝑘−1 +
∑
𝑖∈𝑄∗

𝑘
𝜑𝜋𝑆∗

𝑘

(𝑖), by the optimality of 𝜓∗
𝑘
.

□

C.1.3 Proof of Lemma 3.2.8

In order to construct the required permutation, for every 𝑘 ∈ [𝐾 − 1], let 𝜋𝑘 be an arbitrary

permutation of the items that were assigned by 𝑥 to bucket B𝑘 , i.e., {𝑖 ∈ [𝑛] : 𝑥𝑖𝑘 = 1}. In addition,

let 𝜋− be an arbitrary permutation of the remaining items, i.e., those that were not to assigned to

any bucket. The permutation 𝜋𝑥 is now defined by concatenating these permutations in order of

increasing index, with 𝜋− appended at the end, namely, 𝜋𝑥 = ⟨𝜋1, . . . , 𝜋𝐾−1, 𝜋−⟩. It is easy to verify

that this construction can be implemented in 𝑂 (𝑛𝐾) time.

177

To obtain a lower bound of
∑
𝑖∈[𝑛]

∑
𝑘∈[𝐾−1]:𝑖∈𝐿𝑘+1 𝑞𝑖𝑘𝑥𝑖𝑘 on the profit of this permutation,

Ψ(𝜋𝑥) =
∑
𝑖∈[𝑛] 𝜑𝜋𝑥 (𝑖), note that since each item is assigned to at most one bucket, it suffices

to show that for every 𝑖 ∈ [𝑛] and 𝑘 ∈ [𝐾 − 1] with 𝑥𝑖𝑘 = 1, we necessarily have 𝜑𝜋𝑥 (𝑖) ≥ 𝑞𝑖𝑘 . For

this purpose, we observe that

𝜑𝜋𝑥 (𝑖) = max
{
𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ 𝐶𝜋𝑥 (𝑖)

}
≥ max

{
𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 ≥ (1 + 𝜖)𝑘

}
= 𝑞𝑖𝑘 ,

where the inequality above holds since𝐶𝜋𝑥 (𝑖) ≤ (1+𝜖)𝑘 . Indeed, this bound on the completion time

of item 𝑖 can be derived by observing that every item 𝑗 that appears before 𝑖 in the permutation 𝜋𝑥

(i.e., 𝜋𝑥 (𝑗) < 𝜋𝑥 (𝑖)) was assigned by the solution 𝑥 to one of the buckets B1, . . . ,B𝑘 , and therefore,

𝐶𝜋𝑥 (𝑖) =
∑︁

𝑗∈[𝑛]:𝜋𝑥 (𝑗)≤𝜋𝑥 (𝑖)
𝑤 𝑗

≤
∑︁
^∈[𝑘]

∑︁
𝑗∈𝐿^+1

𝑤 𝑗𝑥 𝑗 ^

≤
∑︁
^∈[𝑘]

capacity(B^)

=
∑︁
^∈[𝑘]

(
(1 + 𝜖)^ − (1 + 𝜖)^−1

)
≤ (1 + 𝜖)𝑘 ,

where the second inequality follows from the second constraint of (GAP-IP).

178

C.2 Additional proofs from Section 3.3

C.2.1 Proof of Lemma 3.3.3

Clearly, R ∪ G is a chain for I, as each of R and G is such a chain by itself. To verify the

feasibility of R ∪ G, note that for any time period 𝑡 ∈ [𝑇], since R is feasible for I−G we have

𝑤(𝑅𝑡) ≤ 𝑊
−G
𝑡

= min
𝑡≤𝜏≤𝑇

(𝑊𝜏 − 𝑤(𝐺𝜏))

≤ 𝑊𝑡 − 𝑤(𝐺 𝑡) .

By recalling that 𝐺1 ⊆ · · · ⊆ 𝐺𝑇 and 𝑅1 ⊆ · · · ⊆ 𝑅𝑇 ⊆ N−G = N \ 𝐺𝑇 , it follows in particular

that 𝐺 𝑡 and 𝑅𝑡 are disjoint, implying in turn that 𝑤(𝑅𝑡 ∪ 𝐺 𝑡) = 𝑤(𝑅𝑡) + 𝑤(𝐺 𝑡) ≤ 𝑊𝑡 as required.

Now, to account for the profit of R ∪ G, we conclude that

Φ(R ∪ G) =
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈(𝑅𝑡∪𝐺𝑡)\(𝑅𝑡−1∪𝐺𝑡−1)

𝑝𝑖𝑡

=
∑︁
𝑡∈[𝑇]

©«
∑︁

𝑖∈𝑅𝑡\𝑅𝑡−1

𝑝𝑖𝑡 +
∑︁

𝑖∈𝐺𝑡\𝐺𝑡−1

𝑝𝑖𝑡
ª®¬

= Φ(R) +Φ(G) .

Here, the second equality holds again due to the observation above, since having both 𝐺1 ⊆ · · · ⊆

𝐺𝑇 and 𝑅1 ⊆ · · · ⊆ 𝑅𝑇 ⊆ N \ 𝐺𝑇 means that (𝑅𝑡 ∪ 𝐺 𝑡) \ (𝑅𝑡−1 ∪ 𝐺 𝑡−1) can be written as the

disjoint union of 𝑅𝑡 \ 𝑅𝑡−1 and 𝐺 𝑡 \ 𝐺 𝑡−1.

C.2.2 Proof of Lemma 3.3.4

For convenience, let us denote the chain in question by R = S|N\𝐺 . By observing that 𝑅𝑇 =

(𝑆𝑇 ∩ (N \ 𝐺)) = (𝑆𝑇 \ 𝐺𝑇) ⊆ N \ 𝐺𝑇 , it follows that R is also a chain for I−G . We proceed by

179

arguing that R is in fact feasible for the latter instance. To this end, note that for every 𝑡 ≤ 𝜏,

𝑤(𝑅𝑡) ≤ 𝑤(𝑅𝜏)

= 𝑤(𝑆𝜏) − 𝑤(𝐺𝜏)

≤ 𝑊𝜏 − 𝑤(𝐺𝜏) ,

where the middle equality follows by recalling that 𝑆𝑡 is the disjoint union of𝐺 𝑡 and 𝑅𝑡 , and the last

inequality is implied by the feasibility of S for I. As a result, 𝑤(𝑅𝑡) ≤ min𝑡≤𝜏≤𝑇 (𝑊𝜏 − 𝑤(𝐺𝜏)) =

𝑊
−G
𝑡 , which proves that R is a feasible chain for I−G .

We now turn our attention to showing that Φ(R) = Φ(S) − Φ(G). Again, based on the

observation that 𝑆𝑡 is the disjoint union of 𝐺 𝑡 and 𝑅𝑡 for every 𝑡 ∈ [𝑇], we conclude that

Φ(R) +Φ(G) =
∑︁
𝑡∈[𝑇]

©«
∑︁

𝑖∈𝑅𝑡\𝑅𝑡−1

𝑝𝑖𝑡 +
∑︁

𝑖∈𝐺𝑡\𝐺𝑡−1

𝑝𝑖𝑡
ª®¬

=
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈(𝑅𝑡∪𝐺𝑡)\(𝑅𝑡−1∪𝐺𝑡−1)

𝑝𝑖𝑡

=
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝑆𝑡\𝑆𝑡−1

𝑝𝑖𝑡

= Φ(S) .

Finally, suppose that S is optimal for I, but on the other hand, R is not optimal for I−G , meaning

that there exists a feasible chain R′ for I−G with profit Φ(R′) > Φ(R). Then, by Lemma 3.3.3, we

infer that R′∪G is a feasible chain for I, with profit Φ(R′∪G) = Φ(G)+Φ(R′) > Φ(G)+Φ(R) =

Φ(S), contradicting the optimality of S.

C.2.3 Proof of Lemma 3.3.6

We say that an interval I𝑘 is non-empty with respect to the permutation 𝜋S∗ if it contains

the completion time of at least one item. Note that, since the latter completion time is within

[𝑤min, 𝑛𝑤max] and we assume that 𝑤min = 3 (see Section 3.2.2), the interval I0 = [0, 1] is

180

clearly empty. Furthermore, any non-empty interval I𝑘 = ((1 + 𝜖)𝑘−1, (1 + 𝜖)𝑘] necessarily has

⌊log1+𝜖 (𝑤min)⌋ ≤ 𝑘 ≤ ⌈log1+𝜖 (𝑛𝑤max)⌉. Therefore, the number of non-empty intervals with re-

spect to 𝜋S∗ is at most ⌈log1+𝜖 (𝑛𝑤max)⌉ − ⌊log1+𝜖 (𝑤min)⌋ + 1 ≤ 2 · ⌈log1+𝜖 (𝑛𝜌)⌉. Now, any such

interval I𝑘 is of length (1 + 𝜖)𝑘 − (1 + 𝜖)𝑘−1, meaning that the number of 𝑘-heavy items with a

completion time in this interval is at most (1+𝜖)𝑘−(1+𝜖)𝑘−1

𝜖2·(1+𝜖)𝑘 ≤ 1
𝜖
, as every 𝑘-heavy item has a weight

of at least 𝜖2 · (1 + 𝜖)𝑘 . All in all, we have just shown that |𝐺∗heavy | ≤ 2·⌈log1+𝜖 (𝑛𝜌)⌉
𝜖

≤ 3 log(𝑛𝜌)
𝜖2 .

C.2.4 Proof of Lemma 3.3.7

For every item 𝑖 ∈ N , let 𝑡𝑖 be its insertion time with respect to the optimal chain S∗. By

convention, for non-inserted items (i.e., those in N \𝑆∗
𝑇

), we say that their “insertion time” is 𝑇 +1,

with a profit of 𝑝𝑖,𝑇+1 = 0. As explained during the proof of Lemma 3.2.1, our construction of the

permutation 𝜋S∗ guarantees that 𝜑𝜋S∗ (𝑖) ≥ 𝑝𝑖,𝑡𝑖 for every item 𝑖 ∈ N . While this inequality was

established for any chain-to-permutation mapping, one can easily notice that, due to the optimality

of S∗, we actually have 𝜑𝜋S∗ (𝑖) = 𝑝𝑖,𝑡𝑖 for every 𝑖 ∈ N . Otherwise, there would have been at least

one item with 𝜑𝜋S∗ (𝑖) > 𝑝𝑖,𝑡𝑖 , implying that Ψ(𝜋S∗) > Φ(S∗). By Lemma 3.2.1, the permutation

𝜋S∗ can then be mapped to a feasible chain S with Φ(S) = Ψ(𝜋S∗) > Φ(S∗), contradicting the

optimality of S∗. Thus, Φ(H ∗) = ∑
𝑖∈𝐺∗heavy 𝑝𝑖,𝑡𝑖 =

∑
𝑖∈𝐺∗heavy 𝜑𝜋S∗ (𝑖) = Ψheavy(𝜋S∗).

C.2.5 Proof of Lemma 3.3.10

We prove the lower bound 𝛼𝑟 ≥ 𝑟
𝑟+1 − 𝑟𝛿 by induction on 𝑟. For 𝑟 = 0, we have 𝛼0 = 0 and the

claim clearly holds. Now, for 𝑟 ≥ 1,

𝛼𝑟 =
1 − 𝛿

2 − 𝛼𝑟−1

≥ 1 − 𝛿
2 − (𝑟−1

𝑟
− (𝑟 − 1)𝛿)

=
𝑟 (1 − 𝛿)

𝑟 + 1 + 𝑟 (𝑟 − 1)𝛿

≥ 𝑟 (1 − 𝛿)
(𝑟 + 1) (1 + (𝑟 − 1)𝛿)

181

=
𝑟

𝑟 + 1
·
(
1 − 𝑟𝛿

1 + (𝑟 − 1)𝛿

)
≥ 𝑟

𝑟 + 1
− 𝑟𝛿 .

C.3 Additional proofs from Section 3.4

C.3.1 Proof of Lemma 3.4.4

Sparse (M−,M+)-crossing. On the one hand, our construction guarantees that the last item in

CM− appears in position 𝜋(𝑖M−,M+) −1+ |A− | of the permutation �̄�. On the other hand, every item

in CM+ that appears before this position necessarily belongs to XM−,M+ (𝜋). It follows that there

are at most |XM−,M+ (𝜋) | = 1
𝜖

such items, and therefore, crossM−,M+ (�̄�) ≤ 1
𝜖
.

Completion times. We establish this property by considering three cases, depending on whether

the item in question appears before 𝑖M−,M+ , belongs to A−, or belongs to Ā−.

• Before 𝑖M−,M+: For every item 𝑖 ∈ N with 𝜋(𝑖) ≤ 𝜋(𝑖M−,M+) − 1 we clearly have 𝐶�̄� (𝑖) =

𝐶𝜋 (𝑖), since the permutations �̄� and 𝜋 are identical up to position 𝜋(𝑖M−,M+) − 1.

• Items in A−: For every item 𝑖 ∈ A−, we have 𝐶�̄� (𝑖) ≤ 𝐶𝜋 (𝑖), since the collection of items

appearing before 𝑖 in �̄� is a subset of those appearing before 𝑖 in 𝜋.

• Items in Ā−: For every item 𝑖 ∈ Ā−, the important observation is that the collection of items

appearing before 𝑖 in �̄� consists of: (1) The same items appearing before 𝑖 in 𝜋, except for

the eliminated item 𝑖M−,M+; as well as (2) All items in A− appearing after 𝑖 in 𝜋. Therefore,

𝐶�̄� (𝑖) ≤ 𝐶𝜋 (𝑖) − 𝑤𝑖M− ,M+ + 𝑤(A−) ≤ 𝐶𝜋 (𝑖) .

To understand the last inequality, recall that 𝑖M−,M+ ∈ XM−,M+ (𝜋), meaning in particular that

this item resides within CM+ . Since I = (N ,𝑊) is well-spaced, property 2 of such instances

implies that 𝑤𝑖M− ,M+ is greater than the weight of any item in CM− by a multiplicative factor

182

of at least 𝑛1+(minM+−maxM−−1)/𝜖 ≥ 𝑛, as maxM− < minM+. Consequently, since all items

in A− reside within CM− , we indeed have 𝑤𝑖M− ,M+ ≥ 𝑛 · max 𝑗∈CM− 𝑤 𝑗 ≥ 𝑤(A−).

Difference. This property is straightforward, by construction of �̄�.

C.3.2 Proof of Claim 3.4.7

For simplicity of notation, let D = {𝑖M−,M+ : (M−,M+) ∈ Ω,XM−,M+ ≠ ∅} be the collection

of items that were removed throughout all recursive calls to our fixing procedure. Then, the profit

of the resulting permutation 𝜋sparse can be lower-bounded by observing that

Ψ(𝜋sparse) =
∑︁

𝑖∈N\D
𝜑𝜋sparse (𝑖)

≥
∑︁

𝑖∈N\D
𝜑𝜋∗ (𝑖)

= Ψ(𝜋∗) −
∑︁
𝑖∈D

𝜑𝜋∗ (𝑖)

≥ Ψ(𝜋∗) − 𝜖 ·
∑︁

(M−,M+)∈Ω
𝜑𝜋∗

(
XM−,M+

(
𝜋[minM−,maxM+]

))
.

Here, the first inequality holds since, for any remaining item 𝑖 ∈ N \ D, it is not difficult to verify

(by induction on the recursion level) that property (P2) of the fixing procedure implies 𝐶𝜋sparse (𝑖) ≤

𝐶𝜋∗ (𝑖), and we therefore have 𝜑𝜋sparse (𝑖) ≥ 𝜑𝜋∗ (𝑖). The second inequality is obtained by recalling

that any item 𝑖M−,M+ ∈ D was chosen as the least profitable item in XM−,M+ (𝜋[minM−,maxM+])

with respect to 𝜋∗, thus

𝜑𝜋∗ (𝑖M−,M+) ≤
𝜑𝜋∗ (XM−,M+ (𝜋[minM−,maxM+]))
|XM−,M+ (𝜋[minM−,maxM+]) |

= 𝜖 · 𝜑𝜋∗
(
XM−,M+

(
𝜋[minM−,maxM+]

))
.

183

C.3.3 Proof of Claim 3.4.8

By definition, XM−
1 ,M

+
1
(𝜋[minM−

1 ,maxM+
1]) and XM−

2 ,M
+
2
(𝜋[minM−

2 ,maxM+
2]) contain only items in

M+
1 -indexed clusters and M+

2 -indexed clusters, respectively. Thus, when M+
1 and M+

2 are dis-

joint, XM−
1 ,M

+
1
(𝜋[minM−

1 ,maxM+
1]) and XM−

2 ,M
+
2
(𝜋[minM−

2 ,maxM+
2]) must be disjoint as well. Hence,

it remains to consider the scenario where M+
1 and M+

2 are not disjoint. In this case, the per-

mutations 𝜋[minM−
1 ,maxM+

1] and 𝜋[minM−
2 ,maxM+

2] must have been created at different levels of the

recursive construction; we assume without loss of generality that 𝜋[minM−
1 ,maxM+

1] was created

at a lower-index level. Therefore, M+
2 ⊆ M+

1 , and XM−
2 ,M

+
2
(𝜋[minM−

2 ,maxM+
2]) consists of only

items in the right permutation, 𝜋[minM+
1 ,maxM+

1] . On the other hand, by construction, any item in

XM−
1 ,M

+
1
(𝜋[minM−

1 ,maxM+
1]) ends up in the left permutation, 𝜋[minM−

1 ,maxM−
1] , implying the disjoint-

ness of XM−
1 ,M

+
1
(𝜋[minM−

1 ,maxM+
1]) and XM−

2 ,M
+
2
(𝜋[minM−

2 ,maxM+
2]).

C.3.4 Proof of Lemma 3.4.9

We first observe that the pair (𝑆, �̂�) is indeed thin. To this end, note that since the permutation

�̂� is a prefix of 𝜋, for every 𝑚 ∈ [𝑀] we clearly have cross𝑚 (�̂�) ≤ cross𝑚 (𝜋) ≤ ⌈log2 𝑀⌉
𝜖

, where the

last inequality holds since (𝑆, 𝜋) is thin. Next, we show that (𝑆, �̂�) satisfies conditions 1-3:

1. Allowed items: By construction, 𝑆 = 𝑆 ∩ (C[1,𝑚−1] ⊎ Q>𝑚−1), implying that 𝑆 forms a subset

of C[1,𝑚−1] ⊎ Q>𝑚−1.

2. Required crossing items: An additional implication of our definition of 𝑆 is that Q>𝑚−1 ⊆ 𝑆,

since Q>𝑚−1 ⊆ 𝑆 by (3.8).

3. Total profit: To obtain a lower bound on the profit of �̂�, we observe that

Ψ(�̂�) =
∑︁
𝑖∈𝑆

𝜑�̂� (𝑖)

=
∑︁
𝑖∈𝑆

𝜑𝜋 (𝑖)

= Ψ(𝜋) −
∑︁

𝑖∈𝑆\(C[1,𝑚−1]⊎Q>𝑚−1)
𝜑𝜋 (𝑖)

184

≥
𝜓𝑚 −

∑︁
𝑖∈𝑆\(C[1,𝑚−1]⊎Q>𝑚−1)

𝜑𝜋 (𝑖)

+

= 𝜓𝑚−1 .

Here, the second equality holds since �̂� is a prefix of 𝜋, as previously mentioned. The third

equality follows by noting that 𝑆 \ 𝑆 = 𝑆 \ (C[1,𝑚−1] ⊎ Q>𝑚−1). The inequality above is

obtained by observing that its left-hand-side is non-negative, and by recalling that (𝑆, 𝜋) ∈

Thin(𝑚, 𝜓𝑚,Q>𝑚), implying that Ψ(𝜋) ≥ 𝜓𝑚. The last equality is precisely the definition of

𝜓𝑚−1.

C.3.5 Proof of Lemma 3.4.10

By way of contradiction, suppose there exists a pair (𝑆, �̃�) ∈ Thin(𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) whose

makespan is smaller than that of 𝑆, namely, 𝑤(𝑆) < 𝑤(𝑆). We begin by noticing that the item

sets 𝑆 \ 𝑆 and 𝑆 are disjoint, since 𝑆 \ 𝑆 ⊆ (C𝑚 ⊎ Q>𝑚) \ Q>𝑚−1 ⊆ C[𝑚,𝑀] \ Q>𝑚−1 whereas

𝑆 ⊆ C[1,𝑚−1]⊎Q>𝑚−1, as (𝑆, �̃�) ∈ Thin(𝑚−1, 𝜓𝑚−1,Q>𝑚−1). Taking advantage of this observation,

we define a new pair (𝑆+, �̃�+) as follows:

• The underlying set of items is given by 𝑆+ = 𝑆 ⊎ (𝑆 \ 𝑆).

• The permutation �̃�+ : 𝑆+ → [|𝑆+ |] is constructed by appending the items in 𝑆 \ 𝑆 to �̃�,

following their internal order in 𝜋.

The next claim shows that the resulting pair is a feasible solution to exactly the same subproblem

for which (𝑆, 𝜋) is optimal.

Claim C.3.1. (𝑆+, �̃�+) ∈ Thin(𝑚, 𝜓𝑚,Q>𝑚).

Proof. First, we show that (𝑆+, �̃�+) is a thin pair. To this end, for every ` ∈ [𝑀] with C` ∩ 𝑆+ ≠ ∅,

let 𝑖` ∈ C` be the item that appears last in �̃�+ out of this cluster, i.e., 𝑖` = argmax𝑖∈𝑆+∩C` �̃�
+(𝑖). We

proceed by considering two cases:

185

• Item 𝑖` appears in �̃�: By construction, �̃� is a prefix of �̃�+, and therefore cross` (�̃�+) =

cross` (�̃�) ≤ ⌈log2 𝑀⌉
𝜖

, where the last inequality holds since (𝑆, �̃�) is a thin pair.

• Item 𝑖` does not appear in �̃�: In this case, 𝑖` ∈ 𝑆 \ 𝑆 ⊆ C[𝑚,𝑀] \ Q>𝑚−1, implying that

` ≥ 𝑚. Thus, all items in clusters C`+1, . . . , C𝑀 that appear before 𝑖` in the permutation �̃�+

necessarily belong to Q>𝑚, and we conclude that cross` (�̃�+) ≤ |Q>𝑚 | ≤ ⌈log2 𝑀⌉
𝜖

.

Next, we show that (𝑆+, �̃�+) satisfies conditions 1-3:

1. Allowed items: First note that 𝑆 ⊆ C[1,𝑚−1]⊎Q>𝑚−1 ⊆ C[1,𝑚]⊎Q>𝑚, where the first inclusion

holds since (𝑆, �̃�) ∈ Thin(𝑚−1, 𝜓𝑚−1,Q>𝑚−1) and the second follows by definition of Q>𝑚−1

in (3.8). In addition, 𝑆 ⊆ C[1,𝑚] ⊎ Q>𝑚, since (𝑆, 𝜋) ∈ Thin(𝑚, 𝜓𝑚,Q>𝑚). Combining these

two observations, we have 𝑆+ = 𝑆 ⊎ (𝑆 \ 𝑆) ⊆ C[1,𝑚] ⊎ Q>𝑚 as required.

2. Required crossing items: To prove Q>𝑚 ⊆ 𝑆+, we observe that

Q>𝑚 ⊆ Q>𝑚−1 ⊎ (Q>𝑚 \ Q>𝑚−1)

⊆ 𝑆 ∪ (𝑆 \ 𝑆)

= 𝑆+ .

To better understand the second inclusion, note that Q>𝑚−1 ⊆ 𝑆, since (𝑆, �̃�) ∈ Thin(𝑚 −

1, 𝜓𝑚−1,Q>𝑚−1). In addition, Q>𝑚 \ Q>𝑚−1 ⊆ 𝑆 \ 𝑆, since Q>𝑚 ⊆ 𝑆 due to having (𝑆, 𝜋) ∈

Thin(𝑚, 𝜓𝑚,Q>𝑚), and since (Q>𝑚 \ Q>𝑚−1) ∩ 𝑆 = ∅, due to having Q>𝑚 ⊆ C[𝑚+1,𝑀] and

𝑆 ⊆ C[1,𝑚−1] ⊎Q>𝑚−1, where the latter inclusion holds since 𝑆 ∈ Thin(𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1).

3. Total profit: By construction, any item 𝑖 ∈ 𝑆 \ 𝑆 appears in the permutation �̃�+ after all items

in 𝑆, and moreover, the internal order between the items in 𝑆 \ 𝑆 is determined according to

𝜋. Hence, we can bound the completion time of any item 𝑖 ∈ 𝑆 \ 𝑆 by noting that

𝐶�̃�+ (𝑖) = 𝑤(𝑆) +
∑︁
𝑗∈𝑆\�̂�:

𝜋 (𝑗)<𝜋 (𝑖)

𝑤 𝑗

186

< 𝑤(𝑆) +
∑︁
𝑗∈𝑆\�̂�:

𝜋 (𝑗)<𝜋 (𝑖)

𝑤 𝑗

= 𝐶𝜋 (𝑖) ,

where the inequality above follows from our initial assumption that 𝑤(𝑆) < 𝑤(𝑆). Conse-

quently, 𝜑�̃�+ (𝑖) ≥ 𝜑𝜋 (𝑖) for such items, and we have

Ψ
(
�̃�+

)
= Ψ (�̃�) +

∑︁
𝑖∈𝑆\𝑆

𝜑�̃�+ (𝑖) (C.2)

≥ 𝜓𝑚−1 +
∑︁
𝑖∈𝑆\𝑆

𝜑𝜋 (𝑖) (C.3)

=

𝜓𝑚 −
∑︁

𝑖∈𝑆\(C[1,𝑚−1]⊎Q>𝑚−1)
𝜑𝜋 (𝑖)

+

+
∑︁
𝑖∈𝑆\𝑆

𝜑𝜋 (𝑖) (C.4)

≥ 𝜓𝑚 − ©«
∑︁

𝑖∈𝑆\(C[1,𝑚−1]⊎Q>𝑚−1)
𝜑𝜋 (𝑖) −

∑︁
𝑖∈𝑆\𝑆

𝜑𝜋 (𝑖)ª®¬
= 𝜓𝑚 . (C.5)

Here, equality (C.2) holds since �̃� is a prefix of �̃�+, with the items in 𝑆 \ 𝑆 forming the

remaining suffix. Inequality (C.3) holds since (𝑆, �̃�) ∈ Thin(𝑚 − 1, 𝜓𝑚−1,Q𝑚−1), meaning

that Ψ(�̃�) ≥ 𝜓𝑚−1, and since 𝜑�̃�+ (𝑖) ≥ 𝜑𝜋 (𝑖) for all 𝑖 ∈ 𝑆 \ 𝑆, as shown above. Equality (C.4)

follows from the definition of 𝜓𝑚−1. Equality (C.5) is obtained by noting that 𝑆 \ (C[1,𝑚−1] ⊎

Q>𝑚−1) = 𝑆 \ 𝑆.

□

Consequently, by combining our initial assumption that 𝑤(𝑆) < 𝑤(𝑆) along with Claim C.3.1,

we have just identified a pair (𝑆+, �̃�+) ∈ Thin(𝑚, 𝜓𝑚,Q>𝑚) with a makespan of

𝑤(𝑆+) = 𝑤(𝑆) + 𝑤(𝑆 \ 𝑆)

< 𝑤(𝑆) + 𝑤(𝑆 \ 𝑆)

= 𝑤(𝑆) ,

187

contradicting the fact that (𝑆, 𝜋) minimizes 𝑤(𝑆) over the set Thin(𝑚, 𝜓𝑚,Q>𝑚).

C.3.6 Proof of Lemma 3.4.11

Overview. Prior to delving into the nuts-and-bolts of our approach, we provide a high-level

overview of its main ideas. For this purpose, to make sure condition 2 of Lemma 3.4.11 is satisfied,

meaning that the item set Ê we compute has a total weight of at most 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) − 𝐹 (𝑚 −

1, 𝜓𝑚−1,Q>𝑚−1), our algorithm relies on “knowing” the latter difference, which will be justified

through binary search. With this limitation, restricting ourselves to the item set (C𝑚⊎Q>𝑚)\Q>𝑚−1,

we aim to identify a feasible chain whose associated permutation (𝜖,Δ)-satisfies constraint 2. To

this end, our algorithm “guesses” the insertion time of every item in Q>𝑚 \ Q>𝑚−1 by enumerating

over all feasible chains G = (𝐺1, . . . , 𝐺𝑇) whose set of introduced items is 𝐺𝑇 = Q>𝑚 \ Q>𝑚−1.

Since there are at most ⌈log2 𝑀⌉
𝜖

such items, the number of required guesses is only 𝑂 (𝑇𝑂 (log𝑀
𝜖

)).

For each guess, we construct the residual generalized incremental knapsack instance, as explained

in Section 3.3.1, which will be solved to near-optimality via the approximation scheme proposed

in Theorem 3.3.1.

Algorithm. For ease of presentation, on top of all input ingredients mentioned in Lemma 3.4.11,

we feed into the upcoming algorithm an additional parameter 𝜔 ≥ 0, whose role will be explained

later on. With this parameter, our algorithm operates as follows:

1. We define the generalized incremental knapsack instance Î𝜔 = (N̂ , �̂�𝜔), where:

• The set of items N̂ is comprised of those allowed by constraint 1, namely, N̂ = (C𝑚 ⊎

Q>𝑚) \ Q>𝑚−1.

• Additionally, we reduce the capacity 𝑊𝑡 of each period 𝑡 ∈ [𝑇] by Δ, while ensuring

that the maximum resulting capacity does not exceed 𝜔, meaning that �̂�𝜔
𝑡 = min{[𝑊𝑡−

Δ]+, 𝜔}.

2. For every feasible chain G = (𝐺1, . . . , 𝐺𝑇) for the instance Î𝜔 with 𝐺𝑇 = Q>𝑚 \ Q>𝑚−1,

we construct the residual instance Î𝜔,−G = (N̂−G , �̂�𝜔,−G). The approximation scheme we

188

proposed in Section 3.3 is now applied to this instance, thereby obtaining a feasible chain

RG whose profit is within factor 1 − 𝜖 of the residual optimum (see Theorem 3.3.1). When

there are no feasible chains with 𝐺𝑇 = Q>𝑚 \ Q>𝑚−1, we abort and report this finding.

3. Out of all chains G considered in step 2, let G𝜔 be the one for which the sum of profits

Φ(G𝜔) + Φ(RG𝜔) is maximized. The item set we return is E𝜔 = 𝑅
G𝜔
𝑇

⊎ (Q>𝑚 \ Q>𝑚−1),

i.e., all items inserted by the chain RG𝜔 along with those in Q>𝑚 \ Q>𝑚−1. We define the

corresponding permutation 𝜋E𝜔 : E𝜔 → [|E𝜔 |] as the one constructed by Lemma 3.2.1 for

the chain G𝜔 ∪ RG𝜔 .

The binary search. We assume without loss of generality that all item weights take integer

values. This property can easily be enforced by uniform scaling, which produces an equivalent in-

stance whose input length is polynomial in that of the original instance. Now, knowing in advance

that the total weight of any item set is an integer within [0, 𝑤(N)], we employ our𝜔-parameterized

algorithm to conduct a binary search over this interval, with the objective of identifying the smallest

integer 𝜔min such that:

• For 𝜔min, the algorithm returns a permutation 𝜋E𝜔min
that satisfies

∑
𝑖∈E𝜔min

𝜑+Δ𝜋E𝜔min
(𝑖) ≥

(1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1).

• In contrast, for 𝜔min − 1/2, the algorithm either aborts at step 2, or returns a permutation

𝜋E𝜔min−1/2 satisfying
∑
𝑖∈E𝜔min−1/2 𝜑

+Δ
𝜋E𝜔min−1/2

(𝑖) < (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1).

To verify that this search procedure is well-defined, let us examine the endpoints of [0, 𝑤(N)].

For 𝜔 = 0, if we obtain a permutation 𝜋E0 that satisfies
∑
𝑖∈E0 𝜑

+Δ
𝜋E0

(𝑖) ≥ (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1), our

immediate conclusion is that 𝜔min = 0. For 𝜔 = 𝑤(N), as shown in Lemma C.3.2 below, we are

guaranteed to obtain a permutation 𝜋E𝑤 (N) that satisfies
∑
𝑖∈E𝑤 (N) 𝜑

+Δ
𝜋E𝑤 (N)

(𝑖) ≥ (1−𝜖) · (𝜓𝑚−𝜓𝑚−1).

Running time. Clearly, the number of binary search iterations we incur is linear in the input

size. Now, within each iteration, since there are 𝑂 (𝑇) guesses for the insertion time of every item

189

𝑖 ∈ Q>𝑚 \ Q>𝑚−1 and since |Q>𝑚 \ Q>𝑚−1 | ≤ ⌈log2 𝑀⌉
𝜖

, there are only 𝑂 (𝑇𝑂 (log𝑀
𝜖

)) chains G to

consider in step 2. The crucial observation is that, for each such chain, the residual instance Î𝜔,−G

is defined over the set of items

N̂−G = N̂ \ 𝐺𝑇

= ((C𝑚 ⊎ Q>𝑚) \ Q>𝑚−1) \ (Q>𝑚 \ Q>𝑚−1)

⊆ C𝑚 \ Q>𝑚−1

⊆ C𝑚 . (C.6)

Thus, Î𝜔,−G is in fact a single-cluster instance, where the weights of any two items differ by a

multiplicative factor of at most 𝑛1/𝜖 , by property 1 of well-spaced instances (see Section 3.4.1).

By Theorem 3.3.1, the running time of our approximation scheme for such instances is truly

quasi-polynomial, being 𝑂 ((𝑛𝑇)𝑂 (1
𝜖 6 ·log 𝑛) · |I |𝑂 (1)) . All in all, we incur a running time of

𝑂 ((𝑛𝑇)𝑂 (1
𝜖 6 ·(log 𝑛+log𝑀)) · |I |𝑂 (1)), with room to spare.

Final solution and analysis. In the remainder of this section, we argue that the item set E𝜔min

and its permutation 𝜋E𝜔min
: E𝜔min → [|E𝜔min |] satisfy the properties required by Lemma 3.4.11.

For this purpose, recalling that the latter lemma assumes 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝑊𝑇 and (𝑚 −

1, 𝜓𝑚−1,Q>𝑚−1) = Best(𝑚, 𝜓𝑚,Q>𝑚), let E∗ and 𝜋∗E∗ : E∗ → [|E∗ |] be the item set and per-

mutation attaining the minimum makespan 𝑤(E∗) over Extra[(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)], noting that by def-

inition,

𝐹 (𝑚, 𝜓𝑚,Q>𝑚) = 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) + 𝑤 (E∗) . (C.7)

At the heart of our analysis lies the following claim, showing that whenever the 𝜔-parameterized

algorithm is employed with 𝜔 ≥ 𝑤(E∗), we obtain a permutation whose Δ-shifted profit is at least

(1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1). We provide the proof in Appendix C.3.7.

Lemma C.3.2. For any 𝜔 ≥ 𝑤(E∗), the 𝜔-parameterized algorithm computes an item set E𝜔 and

a permutation 𝜋E𝜔 : E𝜔 → [|E𝜔 |] that satisfy
∑
𝑖∈E𝜔 𝜑

+Δ
𝜋E𝜔

(𝑖) ≥ (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1).

190

With this result in place, the properties required by Lemma 3.4.11 can easily be established, as

we show next.

Lemma C.3.3. The item set E𝜔min and permutation 𝜋E𝜔min
satisfy properties 1 and 2.

Proof. We begin by explaining why (E𝜔min , 𝜋E𝜔min
) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)

(𝑚−1,𝜓𝑚−1,Q>𝑚−1)], as stated in prop-

erty 1:

• Constraint 1 is satisfied: We first show that E𝜔min ⊆ (C𝑚⊎Q>𝑚) \Q>𝑚−1 and Q>𝑚 \Q>𝑚−1 ⊆

E𝜔min . Since the item set in question is defined in step 3 as E𝜔min = 𝑅
G𝜔min
𝑇

⊎ (Q>𝑚 \ Q>𝑚−1),

it suffices to explain why 𝑅G𝜔min
𝑇

⊆ C𝑚 \ Q>𝑚−1. The latter inclusion follows by noting that

RG𝜔min is a feasible chain for the instance Î𝜔min,−G𝜔min , where the set of items is N̂−G𝜔min ⊆

C𝑚 \ Q>𝑚−1, as shown in the first inclusion of (C.6).

• Constraint 2 is (𝜖,Δ)-satisfied: To argue that
∑
𝑖∈E𝜔min

𝜑+Δ𝜋E𝜔min
(𝑖) ≥ (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1),

following Lemma C.3.2, there exists a value 𝜔 ≤ 𝑤(N) for which
∑
𝑖∈E𝜔 𝜑

+Δ
𝜋E𝜔

(𝑖) ≥ (1 −

𝜖) · (𝜓𝑚 −𝜓𝑚−1), and the desired claim is implied by the termination condition of our binary

search.

We now turn our attention to proving that 𝑤(E𝜔min) ≤ 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) − 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1),

as stated in property 2. To this end, since 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) = 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) + 𝑤(E∗) by

equation (C.7), it remains to argue that 𝑤(E𝜔min) ≤ 𝑤(E∗). To verify this relation, note that

𝑤
(
E𝜔min

)
= 𝑤

(
𝑅
G𝜔min
𝑇

⊎ (Q>𝑚 \ Q>𝑚−1)
)

= 𝑤

(
𝑅
G𝜔min
𝑇

)
+ 𝑤

(
𝐺
𝜔min
𝑇

)
≤ �̂�𝑇

= min
{
[𝑊𝑇 − Δ]+, 𝜔min

}
≤ 𝜔min

≤ 𝑤 (E∗) .

191

Here, the second equality holds since 𝐺𝜔min
𝑇

= Q>𝑚 \Q>𝑚−1, as stated in step 2. The first inequality

follows by observing that the chain RG𝜔min ∪ G𝜔min is feasible for Î𝜔min , due to Lemma 3.3.3,

meaning in particular that for period 𝑇 we have 𝑤(𝑅G𝜔min
𝑇

) + 𝑤(𝐺𝜔min
𝑇

) ≤ �̂�𝑇 . The final inequality

is derived by combining Lemma C.3.2 and the termination condition of our binary search.

□

C.3.7 Proof of Lemma C.3.2

Constructing a feasible chain for Î𝜔. With respect to the item set E∗ and permutation 𝜋∗E∗ , let

us define a chain S∗ for the instance Î𝜔 as follows:

• The collection of inserted items is 𝑆∗𝑇 = E∗.

• The insertion time 𝑡𝑖 of each item 𝑖 ∈ 𝑆∗𝑇 is the one maximizing 𝑝𝑖𝑡𝑖 over {𝑡 ∈ [𝑇] : 𝑊𝑡 ≥

𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) + 𝐶𝜋∗E∗ (𝑖)}. Note that the latter set is indeed non-empty, since

𝐶𝜋∗E∗
(𝑖) ≤ 𝑤 (E∗)

= 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) − 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1)

≤ 𝑊𝑇 − 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) ,

where the equality above is exactly (C.7), and the last inequality holds since

𝐹 (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝑊𝑇 , as assumed in Lemma 3.4.11.

The next claim establishes the feasibility and profit guarantee of S∗ with respect to Î𝜔. Below,

Φ𝜔 (·) stands for the profit function with respect to this instance.

Claim C.3.4. The chain S∗ is feasible for Î𝜔, with a profit of Φ𝜔 (S∗) =
∑
𝑖∈E∗ 𝜑⇝

𝜋∗E∗
(𝑖).

Proof. To prove the feasibility of S∗, we first observe that, for every time period 𝑡 ∈ [𝑇],

𝑤 (𝑆∗𝑡) ≤ 𝑤(E∗) ≤ 𝜔 , (C.8)

192

where the first inequality holds since 𝑆∗𝑡 ⊆ 𝑆∗𝑇 = E∗, and the second inequality is precisely what

Lemma C.3.2 assumes. In addition, by definition of S∗, every item 𝑖 ∈ 𝑆∗𝑡 is associated with a

completion time of 𝐶𝜋∗E∗ (𝑖) ≤ 𝑊𝑡 − 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1). Thus, when the latter difference is

negative, we have 𝑆∗𝑡 = ∅ and therefore 𝑤(𝑆∗𝑡) = 0 ≤ [𝑊𝑡 − Δ]+. In the opposite case,

𝑤 (𝑆∗𝑡) ≤ 𝑊𝑡 − 𝐹 (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1)

≤ 𝑊𝑡 − Δ

≤ [𝑊𝑡 − Δ]+ , (C.9)

where the second inequality holds since Δ ≤ 𝐹 (𝑚−1, 𝜓𝑚−1,Q>𝑚−1), as assumed in Lemma 3.4.11.

Putting together inequalities (C.8) and (C.9), we have 𝑤(𝑆∗𝑡) ≤ min{[𝑊𝑡−Δ]+, 𝜔} = �̂�𝜔
𝑡 , meaning

that the chain S∗ is indeed feasible for Î𝜔.

Now, to derive the profit guarantee Φ𝜔 (S∗) =
∑
𝑖∈E∗ 𝜑⇝

𝜋∗E∗
(𝑖), we observe that since Φ𝜔 (S∗) =∑

𝑖∈E∗ 𝑝𝑖𝑡𝑖 , it suffices to show that 𝑝𝑖𝑡𝑖 = 𝜑⇝
𝜋∗E∗

(𝑖) for each item 𝑖 ∈ E∗. To this end, note that

our choice for the insertion time 𝑡𝑖 of each item 𝑖 ∈ E∗ exactly follows the definition of 𝜑⇝
𝜋∗E∗

(𝑖),

implying that 𝑝𝑖𝑡𝑖 = 𝜑
⇝
𝜋∗E∗

(𝑖). □

Concluding the proof. Having established this claim, we are now ready to show that the item set

E𝜔 and permutation 𝜋E𝜔 satisfy
∑
𝑖∈E𝜔 𝜑

+Δ
𝜋E𝜔

(𝑖) ≥ (1− 𝜖) · (𝜓𝑚 −𝜓𝑚−1). For this purpose, similarly

to Φ𝜔 (·), let Ψ𝜔 (·) be the profit function of a given permutation with respect to the instance Î𝜔 in

its sequencing formulation. With this notation, we obtain the required lower bound by arguing that

∑︁
𝑖∈E𝜔

𝜑+Δ𝜋E𝜔 (𝑖) = Ψ𝜔
(
𝜋E𝜔

)
≥ Φ𝜔

(
G𝜔 ∪ RG𝜔

)
≥ (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1) .

193

We prove the first equality and second inequality in Claims C.3.5 and C.3.6, respectively. To

understand the first inequality, recall that the permutation 𝜋E𝜔 is constructed in step 3 according to

Lemma 3.2.1 for the chain G𝜔 ∪ RG𝜔 , which guarantees Ψ𝜔 (𝜋E𝜔) ≥ Φ𝜔 (G𝜔 ∪ RG𝜔).

Claim C.3.5.
∑
𝑖∈E𝜔 𝜑

+Δ
𝜋E𝜔

(𝑖) = Ψ𝜔 (𝜋E𝜔).

Proof. Let us use 𝜑𝜔𝜋E𝜔 (𝑖) to denote the profit contribution of item 𝑖 with respect to the permutation

𝜋E𝜔 in the instance Î𝜔. In other words, 𝜑𝜔𝜋E𝜔 (𝑖) = max{𝑝𝑖𝑡 : 𝑡 ∈ [𝑇 + 1] and �̂�𝑡 ≥ 𝐶𝜋E𝜔 (𝑖)}. With

this notation, we have Ψ𝜔 (𝜋E𝜔) =
∑
𝑖∈E𝜔 𝜑

𝜔
𝜋E𝜔

(𝑖), meaning that to prove the desired equality, it

remains to show that 𝜑+Δ𝜋E𝜔 (𝑖) = 𝜑
𝜔
𝜋E𝜔

(𝑖) for every item 𝑖 ∈ E𝜔. To verify this claim, note that

𝜑+Δ𝜋E𝜔 (𝑖) = max
{
𝑝𝑖𝑡 : 𝑡 ∈ [𝑇 + 1] and𝑊𝑡 − Δ ≥ 𝐶𝜋E𝜔 (𝑖)

}
= max

{
𝑝𝑖𝑡 : 𝑡 ∈ [𝑇 + 1] and [𝑊𝑡 − Δ]+ ≥ 𝐶𝜋E𝜔 (𝑖)

}
= max

{
𝑝𝑖𝑡 : 𝑡 ∈ [𝑇 + 1] and min{[𝑊𝑡 − Δ]+, 𝜔} ≥ 𝐶𝜋E𝜔 (𝑖)

}
= max

{
𝑝𝑖𝑡 : 𝑡 ∈ [𝑇 + 1] and �̂�𝑡 ≥ 𝐶𝜋E𝜔 (𝑖)

}
= 𝜑𝜔𝜋E𝜔

(𝑖) .

Here, the second equality holds since 𝐶𝜋E𝜔 (𝑖) ≥ 0. The third equality is obtained by noting that

𝐶𝜋E𝜔 (𝑖) ≤ 𝑤(E𝜔) = 𝑤(𝐺𝜔
𝑇
) + 𝑤(𝑅G𝜔

𝑇
) ≤ �̂�𝑇 ≤ 𝜔, where the equality follows by definition of E𝜔

and the second inequality is implied by the feasibility of G𝜔 ∪ RG𝜔 for the instance Î𝜔. The last

two equalities follow from the definitions of �̂�𝑡 and 𝜑𝜔𝜋E𝜔 (𝑖). □

Claim C.3.6. Φ𝜔 (G𝜔 ∪ RG𝜔) ≥ (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1).

Proof. We begin by noting that since (E∗, 𝜋∗E∗) ∈ Extra[(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)], this item set and per-

mutation necessarily satisfy constraint 1, which informs us that E∗ ⊆ (C𝑚 ⊎ Q>𝑚) \ Q>𝑚−1 and

Q>𝑚 \ Q>𝑚−1 ⊆ E∗. As a result, recalling that the collection of items introduced by the chain S∗ is

precisely E∗, it follows that the latter chain can be expressed as S∗ = S∗ |Q>𝑚\Q>𝑚−1 ∪ S∗ |C𝑚\Q>𝑚−1 .

We remind the reader that, based on the terminology of Section 3.3, the first term S∗ |Q>𝑚\Q>𝑚−1

194

is the restriction of S∗ to the items in Q>𝑚 \ Q>𝑚−1, whereas the second term S∗ |C𝑚\Q>𝑚−1 is its

restriction to C𝑚 \ Q>𝑚−1.

The crucial observation is that, since the chain S∗ introduces all items in Q>𝑚 \ Q>𝑚−1, its

restriction G∗ = S∗ |Q>𝑚\Q>𝑚−1 is necessarily considered in step 2 of our algorithm; moreover,

S∗ |C𝑚\Q>𝑚−1 constitutes a feasible chain for the residual instance Î𝜔,−G∗ , by Lemma 3.3.4. As

such, the corresponding chain RG∗ we compute for the latter instance is guaranteed to have a profit

of Φ𝜔 (RG∗) ≥ (1− 𝜖) ·Φ𝜔 (S∗ |C𝑚\Q>𝑚−1). Consequently, since the chain G𝜔 is the one maximizing

Φ𝜔 (G𝜔) +Φ𝜔 (RG𝜔) over all chains considered in step 2, we conclude that G𝜔 ∪RG𝜔 is a feasible

chain for Î𝜔 with a profit of

Φ𝜔

(
G𝜔 ∪ RG𝜔

)
= Φ𝜔 (G𝜔) +Φ𝜔

(
RG𝜔

)
≥ Φ𝜔 (G∗) +Φ𝜔

(
RG∗

)
≥ Φ𝜔

(
S∗ |Q>𝑚\Q>𝑚−1

)
+ (1 − 𝜖) · Φ𝜔

(
S∗ |C𝑚\Q>𝑚−1

)
≥ (1 − 𝜖) · Φ𝜔 (S∗)

= (1 − 𝜖) ·
∑︁
𝑖∈E∗

𝜑⇝𝜋∗E∗
(𝑖)

≥ (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1) .

Here, the first and second equalities follow from Lemma 3.3.3 and Claim C.3.4, respectively.

The last inequality holds since (E∗, 𝜋∗E∗) ∈ Extra[(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)] by definition, and hence, con-

straint 2 is necessarily satisfied. □

C.3.8 Proof of Lemma 3.4.12

We prove the lemma by induction on 𝑚.

Base case: 𝑚 = 0. In this case, for any state with 𝐹 (0, 𝜓0,Q>0) ≤ 𝑊𝑇 , we actually have

�̂� (0, 𝜓0,Q>0) = 𝐹 (0, 𝜓0,Q>0), by the way terminal states of �̂� are handled. In addition, letting

�̂�𝑆0
be the permutation of 𝑆0 = Q>0 that attains �̂� (0, 𝜓0,Q>0), it follows that 𝑆0 ⊆ C[1,0] ⊎ Q>0,

195

Q>0 ⊆ 𝑆0, and Ψ(�̂�𝑆0
) ≥ 𝜓0, again by definition.

General case: 𝑚 ≥ 1. Let (𝑚, 𝜓𝑚,Q>𝑚) be a state for which 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝑊𝑇 . We

first show that �̂� (𝑚, 𝜓𝑚,Q>𝑚) ≤ 𝐹 (𝑚, 𝜓𝑚,Q>𝑚). To this end, recall that the function value

�̂� (𝑚, 𝜓𝑚,Q>𝑚) is determined by minimizing �̂� (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) + 𝑤(Ê) over all conceiv-

able states (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1), where the item set Ê and its permutation �̂�Ê : Ê → [|Ê |]

are obtained by instantiating Lemma 3.4.11 with Δ = �̂� (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) and satisfy

(Ê, �̂�Ê) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)]. Therefore, specifically for the state (𝑚 − 1, 𝜓∗

𝑚−1,Q
∗
>𝑚−1) =

Best(𝑚, 𝜓𝑚,Q>𝑚), we have Δ = �̂� (𝑚 − 1, 𝜓∗
𝑚−1,Q

∗
>𝑚−1) ≤ 𝐹 (𝑚 − 1, 𝜓∗

𝑚−1,Q
∗
>𝑚−1) by the induc-

tion hypothesis. In turn, our auxiliary procedure computes a corresponding item set and permu-

tation (Ê∗, �̂�∗
Ê
) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)

(𝑚−1,𝜓∗
𝑚−1,Q

∗
>𝑚−1)

] with total weight 𝑤(Ê∗) ≤ 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) − 𝐹 (𝑚 −

1, 𝜓∗
𝑚−1,Q

∗
>𝑚−1), as guaranteed by Lemma 3.4.11. Consequently,

�̂� (𝑚, 𝜓𝑚,Q>𝑚) ≤ �̂�
(
𝑚 − 1, 𝜓∗

𝑚−1,Q
∗
>𝑚−1

)
+ 𝑤

(
Ê∗

)
≤ 𝐹

(
𝑚 − 1, 𝜓∗

𝑚−1,Q
∗
>𝑚−1

)
+
(
𝐹 (𝑚, 𝜓𝑚,Q>𝑚) − 𝐹

(
𝑚 − 1, 𝜓∗

𝑚−1,Q
∗
>𝑚−1

))
= 𝐹 (𝑚, 𝜓𝑚,Q>𝑚) ,

which is precisely the required upper bound on �̂� (𝑚, 𝜓𝑚,Q>𝑚).

Next, we show that �̂� (𝑚, 𝜓𝑚,Q>𝑚) is attained by an item set 𝑆𝑚 and a permutation �̂�𝑆𝑚 sat-

isfying 𝑆𝑚 ⊆ C[1,𝑚] ⊎ Q>𝑚, Q>𝑚 ⊆ 𝑆𝑚, and Ψ(�̂�𝑆𝑚) ≥ (1 − 𝜖) · 𝜓𝑚. For this purpose, let

(𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1), Ê, and �̂�Ê be the conceivable state, item set, and permutation at which

�̂� (𝑚, 𝜓𝑚,Q>𝑚) = �̂� (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) + 𝑤(Ê) is attained, meaning in particular that Q>𝑚−1 \

C𝑚 ⊆ Q>𝑚 by definition of conceivable states, and that (Ê, �̂�Ê) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)] by

the way general states of �̂� are handled. We proceed by observing that, by the induction hypoth-

esis, �̂� (𝑚 − 1, 𝜓𝑚−1,Q>𝑚−1) is attained by an item set 𝑆𝑚−1 and a permutation �̂�𝑆𝑚−1
satisfying

𝑆𝑚−1 ⊆ C[1,𝑚−1] ⊎ Q>𝑚−1, Q>𝑚−1 ⊆ 𝑆𝑚−1, and Ψ(�̂�𝑆𝑚−1
) ≥ (1 − 𝜖) · 𝜓𝑚−1. With these ingredients,

196

let us define the item set 𝑆𝑚 and permutation �̂�𝑆𝑚 as follows:

• The item set 𝑆𝑚 is given by 𝑆𝑚 = 𝑆𝑚−1 ⊎ Ê. To understand why 𝑆𝑚−1 and Ê are disjoint,

recall that (Ê, �̂�Ê) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)
(𝑚−1,𝜓𝑚−1,Q>𝑚−1)], which implies by constraint 1 that Ê ⊆

(C𝑚 ⊎Q>𝑚) \ Q>𝑚−1 ⊆ C[𝑚,𝑀] \Q>𝑚−1; however, 𝑆𝑚−1 ⊆ C[1,𝑚−1] ⊎Q>𝑚−1 by the induction

hypothesis. These observations allow us to concurrently argue that 𝑆𝑚 ⊆ C[1,𝑚] ⊎ Q>𝑚 as

required, since Ê ⊆ (C𝑚 ⊎ Q>𝑚) \ Q>𝑚−1 ⊆ C[1,𝑚] ⊎ Q>𝑚 and since

𝑆𝑚−1 ⊆ C[1,𝑚−1] ⊎ Q>𝑚−1

⊆ C[1,𝑚] ⊎ (Q>𝑚−1 \ C𝑚)

⊆ C[1,𝑚] ⊎ Q>𝑚 ,

where the last inclusion follows by noting that Q>𝑚−1 \ C𝑚 ⊆ Q>𝑚 due to state (𝑚 −

1, 𝜓𝑚−1,Q>𝑚−1) being conceivable. In addition,

Q>𝑚 ⊆ Q>𝑚−1 ⊎ (Q>𝑚 \ Q>𝑚−1)

⊆ 𝑆𝑚−1 ⊎ Ê

= 𝑆𝑚 ,

where the second inclusion holds since Q>𝑚−1 ⊆ 𝑆𝑚−1 by the induction hypothesis and since

Q>𝑚 \ Q>𝑚−1 ⊆ Ê, again by constraint 1.

• To define the permutation �̂�𝑆𝑚 : 𝑆𝑚 → [|𝑆𝑚 |], we simply append �̂�Ê to �̂�𝑆𝑚−1
. As a result,

we obtain a profit of

Ψ

(
�̂�𝑆𝑚

)
= Ψ

(
�̂�𝑆𝑚−1

)
+
∑︁
𝑖∈Ê

𝜑
+𝑤(𝑆𝑚−1)
�̂� Ê

(𝑖)

= Ψ

(
�̂�𝑆𝑚−1

)
+
∑︁
𝑖∈Ê

𝜑+Δ�̂� Ê
(𝑖)

≥ (1 − 𝜖) · 𝜓𝑚−1 + (1 − 𝜖) · (𝜓𝑚 − 𝜓𝑚−1)

197

= (1 − 𝜖) · 𝜓𝑚 .

Here, the second equality holds since 𝑤(𝑆𝑚−1) = �̂� (𝑚−1, 𝜓𝑚−1,Q>𝑚−1) = Δ. To understand

the inequality above, note that Ψ(�̂�𝑆𝑚−1
) ≥ (1 − 𝜖) · 𝜓𝑚−1 by the inductive hypothesis, and

in addition,
∑
𝑖∈Ê 𝜑

+Δ
�̂� Ê
(𝑖) ≥ (1− 𝜖) · (𝜓𝑚 − 𝜓𝑚−1), since (Ê, �̂�Ê) ∈ Extra𝜖,Δ [(𝑚,𝜓𝑚,Q>𝑚)

(𝑚−1,𝜓𝑚−1,Q>𝑚−1)]

implies that constraint 2 is (𝜖,Δ)-satisfied.

198

Appendix D: Some easier, and some not harder, incremental knapsack

problems

D.1 Additional proofs from Section 4.2

D.1.1 Proof of Lemma 4.2.2

We give the following constructive proof to find a cycle 𝐶 ⊆ 𝑆:

1. Let 𝐶 = 𝑆.

2. While there exists 𝑖 ∈ 𝐶 such that 𝐶 \ {𝑖} is dependent, let 𝐶 = 𝐶 \ {𝑖}.

3. Output 𝐶.

We claim the 𝐶 outputted by the procedure above is a cycle. By construction, each element is re-

moved from 𝐶 only if the resulting set is still dependent. So, 𝐶 is dependent. Also by construction,

at termination, 𝐶 \ {𝑖} is independent for all 𝑖 ∈ 𝐶. Finally, the procedure must terminate with

|𝐶 | ≥ 2, since we assume all singletons are independent.

D.1.2 Proof of Lemma 4.2.3

By hypothesis, 𝛾(𝑆) =
∑
𝑗∈𝑆 𝑝 𝑗 . Now let 𝑆′ ⊆ 𝑆 be dependent. Take a cycle 𝐶 ⊆ 𝑆′, whose

existence is guaranteed by Lemma 4.2.2, and let 𝑖 ∈ 𝐶. By definition of a cycle, 𝐶 \ {𝑖} is

independent and 𝐶 is dependent, hence

𝛾(𝐶) = 𝛾(𝐶 \ {𝑖}) =
∑︁

𝑗∈𝐶\{𝑖}
𝑝 𝑗 .

Thus,

0 = 𝛾(𝐶) − 𝛾(𝐶 \ {𝑖}) ≥ 𝛾(𝑆) − 𝛾(𝑆 \ {𝑖}) = 𝑝𝑖,

199

where the first equality follows from the equation above, the inequality by submodularity, and the

second equality by independence of 𝑆. Hence, 𝑝𝑖 ≤ 0, a contradiction.

D.1.3 Proof of Lemma 4.2.4

If 𝑆 is independent, take 𝑆′ = 𝑆 and the statement is trivial. Now, assume, 𝑆 is dependent. Sup-

pose by contradiction that for every independent set 𝑆′ ⊆ 𝑆, we have 𝛾(𝑆) > 𝛾(𝑆′) by monotonic-

ity. The existence of 𝑆′ is guaranteed since we assume every set of cardinality 1 is independent.

Let 𝑆 ⊆ 𝑆 be an independent set of maximum cardinality and let {𝑒1, . . . , 𝑒𝑘 } = 𝑆 \ 𝑆. For every

𝑒 ∈ 𝑆 \ 𝑆, we must have 𝛾(𝑆 ∪ {𝑒}) = 𝛾(𝑆), else 𝑆 ∪ {𝑒} is independent as well, a contradiciton to

the maximality of 𝑆.

Thus, we have by submodularity that, for 𝑖 ∈ [𝑘],

0 = 𝛾(𝑆 ∪ {𝑒}) − 𝛾(𝑆) ≥ 𝛾(𝑆 ∪ {𝑒1, . . . , 𝑒𝑖}) − 𝛾(𝑆 ∪ {𝑒1, . . . , 𝑒𝑖−1}).

Hence by telescoping sum

𝛾(𝑆) − 𝛾(𝑆) = 𝛾(𝑆 ∪ {𝑒1, . . . , 𝑒𝑘 }) − 𝛾(𝑆) ≤ 0,

contradicting 𝛾(𝑆) > 𝛾(𝑆).

D.2 Additional proofs from Section 4.3

D.2.1 Proof of Claim 4.3.2

We will first show that 𝑥 has at least one less fractional component than 𝑥∗. First note that, for all

(𝑖, 𝑡) ∈ [𝑛] × [𝑇] with 𝑥∗
𝑖,𝑡

∈ {0, 1}, we have 𝑥𝑖,𝑡 = 𝑥∗𝑖,𝑡 . Hence, the number of fractional components

in 𝑥 is at most the number of fractional components in 𝑥∗. If 𝜖 = 1−𝑥∗
𝑘,𝑡 ′′, then 𝑥𝑘,𝑡 ′′ = 1, while 𝑥∗

𝑘,𝑡 ′′

is fractional by construction. On the other hand, if 𝜖 = 𝑥∗
𝑗 ,𝑡 ′

𝑤 𝑗
𝑤𝑘

, then 𝑥 𝑗 ,𝑡 ′ = 𝑥∗𝑗 ,𝑡 ′ − 𝑥∗𝑗 ,𝑡 ′
𝑤 𝑗
𝑤𝑘

(𝑤𝑘
𝑤 𝑗
) = 0,

and again 𝑥∗
𝑗 ,𝑡 ′ is fractional by construction. This proves the statement on the number of fractional

200

components.

We now show feasibility of 𝑥. First, we check that for all (𝑖, 𝑡) ∈ [𝑛] × [𝑇], 0 ≤ 𝑥𝑖,𝑡 ≤ 1. For

𝑡 = 𝑡′, . . . , 𝑡′′, we have:

𝑥 𝑗 ,𝑡 < 𝑥
∗
𝑗 ,𝑡 < 1,

and

𝑥 𝑗 ,𝑡 = 𝑥
∗
𝑗 ,𝑡 − 𝜖

𝑤𝑘

𝑤 𝑗

≥ 𝑥∗𝑗 ,𝑡 − (𝑥∗𝑗 ,𝑡 ′
𝑤 𝑗

𝑤𝑘
)𝑤𝑘
𝑤 𝑗

= 𝑥∗𝑗 ,𝑡 − 𝑥∗𝑗 ,𝑡 ′ ≥ 0,

where the first inequality follows by definition of 𝜖 , and the second inequality follows since 𝑥∗ is

feasible so 𝑥∗
𝑗 ,𝑡

≥ 𝑥∗
𝑗 ,𝑡 ′ for all 𝑡 ≥ 𝑡′.

Similarly, we have, for 𝑡 = 𝑡′, . . . , 𝑡′′:

𝑥𝑘,𝑡 > 𝑥
∗
𝑘,𝑡 ≥ 0,

and

𝑥𝑘,𝑡 = 𝑥
∗
𝑘,𝑡 + 𝜖 ≤ 𝑥

∗
𝑘,𝑡 + 1 − 𝑥∗𝑘,𝑡 ′′ ≤ 𝑥

∗
𝑘,𝑡 ′′ + 1 − 𝑥∗𝑘,𝑡 ′′ = 1,

where the first inequality follows by definition of 𝜖 and the second inequality follows since 𝑥∗ is

feasible so 𝑥∗
𝑘,𝑡

≤ 𝑥∗
𝑘,𝑡 ′′ for all 𝑡 ≤ 𝑡′′. For all other (𝑖, 𝑡) ∈ [𝑛] × [𝑇], 𝑥𝑖,𝑡 = 𝑥∗𝑖,𝑡 . Thus 𝑥 satisfy the

constraints 0 ≤ 𝑥𝑖,𝑡 ≤ 1 for all (𝑖, 𝑡) ∈ [𝑛] × [𝑇].

Now, we check that 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 for 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1]. Let 𝑖 = 𝑗 , 𝑘 . For 𝑡 = 𝑡′, . . . , 𝑡′′ − 1

𝑥𝑖,𝑡+1 − 𝑥𝑖,𝑡 = 𝑥∗𝑖,𝑡+1 − 𝑥
∗
𝑖,𝑡 ≥ 0,

again by feasibility of 𝑥∗. Moreover, 𝑥𝑖,𝑡 = 𝑥∗𝑖,𝑡 = 0 for 𝑡 ≤ 𝑡′ − 1 and 𝑥𝑖,𝑡 = 𝑥∗𝑖,𝑡 = 1 for 𝑡 ≥ 𝑡′′ + 1,

showing that 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 is satisfied for 𝑖 = 𝑗 , 𝑘 and 𝑡 ∈ [𝑇 − 1]. For 𝑖 ∉ { 𝑗 , 𝑘}, 𝑥𝑖,𝑡 = 𝑥∗𝑖,𝑡 for all

𝑡 ∈ [𝑇]. Therefore the constraint 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 is satisfied due to feasibility of 𝑥∗.

201

Lastly,we check that
∑
𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 is satisfied for all 𝑡 ∈ [𝑇]. For 𝑡 ≤ 𝑡′ − 1 or 𝑡 ≥ 𝑡′′ + 1:

∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 =
∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 .

For 𝑡 = 𝑡′, . . . , 𝑡′′:

∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 =
∑︁

𝑖∈[𝑛]\{ 𝑗 ,𝑘}
𝑤𝑖𝑥

∗
𝑖,𝑡 + 𝑤 𝑗𝑥 𝑗 ,𝑡 + 𝑤𝑘𝑥𝑘,𝑡

=
∑︁

𝑖∈[𝑛]\{ 𝑗 ,𝑘}
𝑤𝑖𝑥

∗
𝑖,𝑡 + 𝑤 𝑗 (𝑥∗𝑗 ,𝑡 − 𝜖

𝑤𝑘

𝑤 𝑗

) + 𝑤𝑘 (𝑥∗𝑘,𝑡 + 𝜖)

=
∑︁

𝑖∈[𝑛]\{ 𝑗 ,𝑘}
𝑤𝑘𝑥

∗
𝑡,𝑘 + 𝑤𝑖𝑥

∗
𝑗 ,𝑡 + 𝑤 𝑗𝑥

∗
𝑘,𝑡 ≤ 𝑊𝑡 ,

concluding the proof.

D.2.2 Proof of Claim 4.3.3

Observe that the difference between the profit of 𝑥 and 𝑥∗ is given by

∑︁
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

𝑝𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1) −
∑︁
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

𝑝𝑖,𝑡 (𝑥∗𝑖,𝑡 − 𝑥∗𝑖,𝑡−1)

=
∑︁
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

𝑝𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1 − 𝑥∗𝑖,𝑡 + 𝑥∗𝑖,𝑡−1)

=
∑︁
𝑖= 𝑗 ,𝑘

∑︁
𝑡 ′≤𝑡≤𝑡 ′′+1

𝑝𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1 − 𝑥∗𝑖,𝑡 + 𝑥𝑖,𝑡−1)

=
∑︁
𝑖= 𝑗 ,𝑘

[
𝑝𝑖,𝑡 ′ (𝑥𝑖,𝑡 ′ − 𝑥𝑖,𝑡 ′−1 − 𝑥∗𝑖,𝑡 ′ + 𝑥∗𝑖,𝑡 ′−1) + 𝑝𝑖,𝑡 ′′+1(𝑥𝑖,𝑡 ′′+1 − 𝑥𝑖,𝑡 ′′ − 𝑥∗𝑖,𝑡 ′′+1 + 𝑥

∗
𝑖,𝑡 ′′)

]
=

∑︁
𝑖= 𝑗 ,𝑘

[
𝑝𝑖,𝑡 ′ (𝑥𝑖,𝑡 ′ − 𝑥∗𝑖,𝑡 ′) + 𝑝𝑖,𝑡 ′′+1(−𝑥𝑖,𝑡 ′′ + 𝑥∗𝑖,𝑡 ′′)

]
= 𝑝𝑘,𝑡 ′ · 𝜖 − 𝑝𝑘,𝑡 ′′+1 · 𝜖 − 𝑝 𝑗 ,𝑡 ′ · 𝜖

𝑤𝑘

𝑤 𝑗

+ 𝑝 𝑗 ,𝑡 ′′+1 · 𝜖
𝑤𝑘

𝑤 𝑗

= 𝜖 (𝑝𝑘,𝑡 ′ − 𝑝𝑘,𝑡 ′′+1) − 𝜖
𝑤𝑘

𝑤 𝑗

(𝑝 𝑗 ,𝑡 ′ − 𝑝 𝑗 ,𝑡 ′′+1)

202

≥ 0,

where the second equality follows from 𝑥𝑖,𝑡 = 𝑥
∗
𝑖,𝑡

for 𝑡 ∉ {𝑡′, . . . , 𝑡′′} or 𝑖 ≠ 𝑗 , 𝑘; the third equality

follows from 𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1 = 𝑥∗
𝑡,𝑘

− 𝑥∗
𝑡−1,𝑘 for 𝑖 = 𝑗 , 𝑘 and 𝑡 = 𝑡′ + 1, . . . , 𝑡′′; the fourth equality follows

since 𝑥𝑖,𝑡 ′−1 = 𝑥∗
𝑖,𝑡 ′−1 and 𝑥𝑖,𝑡 ′′+1 = 𝑥∗

𝑖,𝑡 ′′+1; the fifth equality from the definition of 𝑥; the inequality

follows by (4.8). Since 𝑥 gives a higher objective function value than 𝑥∗, the optimality of 𝑥 follows

from the optimality of 𝑥∗.

D.2.3 Proof of Claim 4.3.5

By definition,

Φ(R) =
∑︁
𝑖∈𝑅𝑇

𝑝𝑖,𝑡∗ (𝑖) .

By construction, since 𝐺𝑇 contains the first 𝑇
2 (𝑇+1)

2𝜖 items in 𝑆∗
𝑇

ranked by non-increasing order

of 𝑝𝑖,𝑡∗ (𝑖) . It follows that if 𝑖 ∈ 𝑅𝑇 , then 𝑝𝑖,𝑡∗ (𝑖) ≤ 𝑝−. Thus, in the residual instance I−G
𝑝− , 𝑝𝑖,𝑡∗ (𝑖)

remains unchanged, implying that

Φ𝑝− (R) = Φ(R).

D.2.4 Proof of Claim 4.3.6

Let 𝑥 be the optimal solution given by Lemma 4.3.1. Let 𝑥′ be the integer solution correspond-

ing to R′ obtained by rounding down 𝑥. Thus, Φ𝑝− (R′) = ∑
𝑖∈N−G

∑
𝑡∈[𝑇] 𝑝

−
𝑖,𝑡
(𝑥′
𝑖,𝑡
− 𝑥′

𝑖,𝑡−1).

For each 𝑡 ∈ [𝑇], let 𝐼𝑡 = {𝑖 ∈ N−G : 𝑥𝑖,𝑡 = 1} and let 𝐹𝑡 = {𝑖 ∈ N−G : 0 < 𝑥𝑖,𝑡 < 1}. We have

∑︁
𝑖∈N−G

∑︁
𝑡∈[𝑇]

𝑝−𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1) −
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝐹𝑡

𝑝−𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1) =
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝐼𝑡

𝑝−𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1)

≤
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝐼𝑡

𝑝−𝑖,𝑡 (𝑥′𝑖,𝑡 − 𝑥′𝑖,𝑡−1)

≤
∑︁
𝑖∈N−G

∑︁
𝑡∈[𝑇]

𝑝−𝑖,𝑡 (𝑥′𝑖,𝑡 − 𝑥′𝑖,𝑡−1) (D.1)

where the first equality follows by noting that for 𝑖 ∈ N−G \ (𝐼𝑡 ∪ 𝐹𝑡), 𝑥𝑖,𝑡 = 𝑥𝑖,𝑡−1 = 0. The first

203

inequality follows since for 𝑖 ∈ 𝐼𝑡 , 𝑥′𝑖,𝑡 = 𝑥𝑖,𝑡 and 𝑥′
𝑖,𝑡−1 ≤ 𝑥𝑖,𝑡−1. Furthermore, let 𝑝−max = max{𝑝−

𝑖,𝑡
:

𝑖 ∈ N−G , 𝑡 ∈ [𝑇]}, we have:

∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝐹𝑡

𝑝−𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1) ≤ 𝑇2(𝑇 + 1)
2

𝑝−max

≤ 𝑇2(𝑇 + 1)
2

𝑝−

≤ 𝜖Φ(G) (D.2)

where the first inequality follows since by Lemma 4.3.1, 𝑥 has at most 𝑇2 (𝑇+1)
2 fractional com-

ponents, thus
∑
𝑡∈[𝑇] |𝐹𝑡 | ≤

𝑇2 (𝑇+1)
2 . The final inequality follows since by definition of Φ(G) ≥

|𝐺𝑇 |𝑝− =
𝑇2 (𝑇+1)

2𝜖 𝑝−. Putting together the above results, we deduce:

Φ𝑝− (R′) =
∑︁
𝑖∈N−G

∑︁
𝑡∈[𝑇]

𝑝−𝑖,𝑡 (𝑥′𝑖,𝑡 − 𝑥′𝑖,𝑡−1)

≥
∑︁
𝑖∈N−G

∑︁
𝑡∈[𝑇]

𝑝−𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1) −
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈𝐹𝑡

𝑝−𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1)

≥
∑︁
𝑖∈N−G

∑︁
𝑡∈[𝑇]

𝑝−𝑖,𝑡 (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1) − 𝜖Φ(G)

≥ Φ𝑝− (R) − 𝜖Φ(G),

where the equality follows by construction of R′, the first inequality follows by (D.1), the second

inequality follows by (D.2), and the final inequality follows since R is a feasible solution of I−G
𝑝− .

D.3 Additional proof from Section 4.4

D.3.1 Proof of Lemma 4.4.1

For all 𝑡 ∈ [𝑇], let 𝑆𝑡 = { 𝑗 ∈ 𝑆 : 𝑡 (𝑗) ≤ 𝑡}. Clearly S can be constructed in 𝑂 (𝑛𝑇) time.

Note that by construction, for every 𝑡 ∈ [𝑇], if 𝑗 ∈ 𝑆𝑡 \ 𝑆𝑡−1, 𝑡 (𝑗) = 𝑡. It follows that Φ(S) =∑
𝑡∈[𝑇]

∑
𝑗∈𝑆𝑡\𝑆𝑡−1 𝑝 𝑗 ,𝑡 =

∑
𝑗∈𝑆 𝑝 𝑗 ≥ 𝑝. It remains to show that S is feasible. For every 𝑡 ∈ [𝑇],

204

𝑤(𝑆𝑡) =
∑︁

𝑗∈𝑆:𝑡 (𝑗)≤𝑡
𝑤 𝑗 =

∑︁
𝑗∈𝑆∩[𝑛𝑡]

𝑤 𝑗 ≤ 𝑊𝑡 ,

where the inequality is exactly condition 2.

205

Appendix E: Single-machine algorithms for incremental packing problems

E.1 Proof of Lemma 5.3.2

First, we prove Point 2, where 𝑚 = 1. Given an instance of the single-bin incremental packing

problem I, we construct a single-machine sequencing problem instance I′ as follows. For every

𝑆 ∈ 2[𝑛] , permutation 𝜋 of 𝑆 and 𝑖 ∈ 𝑆, let 𝐶𝑖𝜋 = {𝑘 ∈ 𝑆 : 𝜋(𝑘) ≤ 𝜋(𝑖)}. Let the profit of item 𝑖 with

respect to permutation 𝜋 be 𝜑𝜋 (𝑖) = max{𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and 𝐶𝑖𝜋 ∈ F𝑡}, where by convention

F𝑇+1 = 2[𝑛] and 𝑝𝑖,𝑇+1 = 0. For any 𝑖 ∉ 𝑆, let 𝜑𝜋 (𝑖) = 0.

Note that the profit function satisfies inclusionwise non-increasing profit profile. Property 1 is

satisfied by definition. To check Property 2, for some 𝜋, 𝜋′ and 𝑖 ∈ [𝑛] such that 𝑖 is in the domain

of both 𝜋 and 𝜋′, if { 𝑗 : 𝜋(𝑗) ≤ 𝜋(𝑖)} ⊆ { 𝑗 : 𝜋′(𝑗) ≤ 𝜋′(𝑖)}, then 𝐶𝑖𝜋 ⊆ 𝐶𝑖
𝜋′. Thus, for any 𝑡 ∈ [𝑇],

if 𝐶𝑖
𝜋′ ∈ F𝑡 , then 𝐶𝑖𝜋 ∈ F𝑡 . It follows that 𝜑𝜋 (𝑖) ≥ 𝜑𝜋′ (𝑖). Moreover, given I and a permutation

𝜋 of 𝑆 ⊆ [𝑛] and 𝑖 ∈ 𝑆, 𝜑𝜋 (𝑖) can be computed in polynomial time. Setting 𝑅 = | |𝑝 | |∞, the

reformulation into I′ can be done in time polynomial in the size of I. We now relate the profits of

the optimal solutions to the two problems.

Following the construction of the sequencing problem, given a feasible chain S =

(𝑆1, 𝑆2, . . . , 𝑆𝑇) (where we set 𝑆0 = ∅), we construct the permutation 𝜋 as follows:

• For each 𝑡 ∈ [𝑇], let 𝜋𝑡 be an arbitrary permutation of the items introduced in this period,

𝑆𝑡 \ 𝑆𝑡−1.

• The permutation 𝜋 is defined as the concatenation of 𝜋1, . . . , 𝜋𝑇 in this order. Namely, for

𝑖 ∈ 𝑆𝑡 \ 𝑆𝑡−1 with 𝑡 ∈ [𝑇], we have 𝜋(𝑖) = 𝜋𝑡 (𝑖) + |𝑆𝑡−1 |.

For every 𝑖 ∈ 𝑆𝑇 , let 𝑡𝑖 denote the insertion time of item 𝑖 with respect to the chain S, where

we recall from the proof of Lemma 2.1.1 that the insertion time of item 𝑖 is defined as the time 𝑡

206

when an item is first introduced in the chain S. To prove that Ψ(𝜋) ≥ Φ(S), it suffices to argue

that 𝜑𝜋 (𝑖) ≥ 𝑝𝑖,𝑡𝑖 for every item 𝑖 ∈ 𝑆𝑇 . To derive this relation, note that 𝐶𝑖𝜋 ⊆ 𝑆𝑡𝑖 for all 𝑖 ∈ 𝑆𝑇 .

Since 𝑆𝑡𝑖 ∈ F𝑡𝑖 , we have 𝐶𝑖𝜋 ∈ F𝑡𝑖 . Therefore, 𝜑𝜋 (𝑖) = max{𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and 𝐶𝑖𝜋 ∈ F𝑡} ≥ 𝑝𝑖,𝑡𝑖 .

Conversely, given a permutation 𝜋 of any subset of items, we construct a chain S =

(𝑆1, . . . , 𝑆𝑇) that contains all items 𝑖 such that 𝐶𝑖𝜋 ∈ F𝑇 . Specifically, for 𝑖 ∈ F𝑇 , let the inser-

tion time 𝑡𝑖 = argmax{𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇], 𝐶𝑖𝜋 ∈ F𝑡}. Hence, 𝑖 ∈ 𝑆𝜏 for all 𝜏 ≥ 𝑡𝑖, and S is a chain. For

𝑡 ∈ [𝑇], let 𝑖𝑡 = argmax{𝜋(𝑖) : 𝐶𝑖𝜋 ∈ F𝑡}. To show that S is feasible, note that 𝑆𝑡 ⊆ 𝐶
𝑖𝑡
𝜋 for all

𝑡 ∈ [𝑇]. Since 𝐶𝑖𝑡𝜋 ∈ F𝑡 , we have 𝑆𝑡 ∈ F𝑡 .

To show Φ(S) = Ψ(𝜋), it suffices to show 𝑝𝑖,𝑡𝑖 = 𝜑𝜋 (𝑖) for inserted items and 𝜑𝜋 (𝑖) = 0 for

non-inserted ones. To this end, note that our choice for the insertion time 𝑡𝑖 mirrors exactly the

definition of 𝜑𝜋 (𝑖), meaning that 𝑝𝑖,𝑡𝑖 = 𝜑𝜋 (𝑖). On the other hand, for any item 𝑖 we do not insert

into S, one has 𝜑𝜋 (𝑖) = 0, since 𝐶𝑖𝜋 ∉ F𝑇 . Observing that from an optimal solution of I′ we can

follow the construction above to obtain an optimal solution of I, we conclude the proof for Point 2.

To see Point 3, consider a single-bin packing problem with a feasibility set (F1, . . . , F𝑇), where

item 𝑖 has profit 𝑝𝑖,𝑡 when inserted in time 𝑡. Let 𝜑𝜋 be the profit function of the single-machine

sequencing problem to which the single-bin packing problem is mapped via the reduction above.

For any _ ∈ R𝑛, let 𝑝′
𝑖,𝑡

= max{0, 𝑝𝑖,𝑡 − _𝑖}. We claim that the single-bin packing problem with

feasibility set F and profit function 𝑝′ is mapped via the construction from Point 2 to the single-

machine sequencing problem with profit 𝜑′𝜋 (𝑖) = max{0, 𝜑𝜋 (𝑖) − _𝑖}, which would allow us to

conclude Point 3. To see this, following the construction of Point 2,

𝜑′𝜋 (𝑖) = max{0,max{𝑝𝑖,𝑡 − _𝑖 : 𝑡 ∈ [𝑇 + 1] and 𝐶𝑖𝜋 ∈ F𝑡}}

= max{0,max{𝑝𝑖,𝑡 : 𝑡 ∈ [𝑇 + 1] and 𝐶𝑖𝜋 ∈ F𝑡} − _𝑖}

= max{0, 𝜑𝜋 (𝑖) − _𝑖}.

Now, we show Point 1. Following the reduction from Point 2, we create for each single-bin in-

cremental packing problem I𝑗 (𝑗 ∈ [𝑚]) bin-underlying I, a single-machine sequencing problem

I′
𝑗
. This allows us to define the multi-machine sequencing problem I′ whose underlying single-

207

machine problems are I′
1 , . . . ,I

′
𝑚. Since each single-machine sequencing problem reformulation

can be done in time polynomial in the size of I𝑗 , this multi-machine sequencing problem refor-

mulation can be done in time polynomial in the size I. By Point 2, for 𝑗 ∈ [𝑚] any feasible

chain S 𝑗 for I𝑗 can be mapped to a permutation 𝜋 𝑗 such that, if 𝑆 𝑗 ,𝑇 and 𝑆 𝑗 ′,𝑇 are disjoint for

all 𝑗 , 𝑗 ′ ∈ [𝑚], the domains of 𝜋 𝑗 and 𝜋 𝑗 ′ are disjoint for all 𝑗 , 𝑗 ′ ∈ [𝑚] as well. This gives

the feasibility of 𝜋1, . . . , 𝜋𝑚 in the multi-machine sequencing problem. Moreover, by Point 2,∑
𝑗∈[𝑚] Ψ 𝑗 (𝜋 𝑗) ≥

∑
𝑗∈[𝑚] Φ 𝑗 (S 𝑗).

To show the reverse direction, let 𝜋1, . . . , 𝜋𝑚 be a feasible solution to the multi-machine se-

quencing problem. Again by Point 2, 𝜋1, . . . , 𝜋𝑚 can be mapped to feasible chains S1, . . . ,S𝑚

such that S 𝑗 is feasible in the instance I𝑗 and
∑
𝑗∈[𝑚] Φ 𝑗 (S 𝑗) =

∑
𝑗∈[𝑚] Ψ 𝑗 (𝜋 𝑗). Again, by Point 2,

each set 𝑆 𝑗 ,𝑇 only contains items in the domain of 𝜋 𝑗 . Thus, if the domains of 𝜋 𝑗 and 𝜋 𝑗 ′ are

disjoint for all 𝑗 , 𝑗 ′ ∈ [𝑚], so are 𝑆 𝑗 ,𝑇 and 𝑆 𝑗 ′,𝑇 for all 𝑗 , 𝑗 ′ ∈ [𝑚]. Thus, S1, . . . ,S𝑚 are feasible

chains to the incremental packing problem. Note that from Point 2 that we can obtain optimal

solutions to I′
𝑗

in polynomial time for each 𝑗 ∈ [𝑚]. Hence, we can obtain an optimal solution to

I′ in polynomial time.

E.2 Proof of Lemma 5.3.3

Let I be an instance of the incremental generalized assignment problem. Let I1, . . . ,I𝑚 be

the single-bin incremental packing problems bin-underlying I. Note that, for 𝑗 ∈ [𝑚], I𝑗 is an

instance of the generalized incremental knapsack problem.

Since the generalized incremental knapsack problem I𝑗 is a single-bin incremental packing

problem, by Point 2 of Lemma 5.3.2, it can be reformulated as a single-machine sequencing prob-

lem I′
𝑗

. By Point 3 of Lemma 5.3.2, all sequencing instances obtained from generalized incre-

mental knapsack problems with a fixed feasibility sets form a closed family. Hence, the family

given by the union of all (infinitely many) such instances is closed.

Following the proof of Lemma 5.3.2, Point 1, we deduce that the multi-machine sequencing

problem I′ whose underlying 𝑚 single-machine sequencing problems are I′
1 , . . . ,I

′
𝑚 is the image

208

under the map from Lemma 5.3.2 of I, concluding the proof.

E.3 Proof of Lemma 5.4.2

For 𝑣 ∈ Q, we can use the ellipsoid algorithm (see, for example, [38, Chapter 3]) with our

𝛽-approximate separation routine over the polyhedron defined by the dual constraints plus the

constraint
∑
𝑗∈[𝑚] 𝑞 𝑗 +

∑
𝑖∈[𝑛] _𝑖 ≤ 𝑣, to decide if there is a feasible dual solution (𝑞

𝛽
, _) that satisfies∑

𝑗∈[𝑚] 𝑞 𝑗 +
∑
𝑖∈[𝑛] _𝑖 ≤ 𝑣, or if all feasible dual solutions (𝑞, _) satisfy

∑
𝑗∈[𝑚] 𝑞 𝑗 +

∑
𝑖∈[𝑛] _𝑖 > 𝑣.

In the former case, we call 𝑣 a yes-value, else we call it a no-value. If 𝑣 is a no-value, by standard

duality theory we deduce that the optimal solution to the primal have objective function has value

at least 𝑣.

When our algorithm concludes that 𝑣 is a yes-value, it does so by constructing a problem

(MMS-DP’) with the following properties: (MMS-DP’) contains a subset of the constraints

of (MMS-DP) of size polynomial in the size of the instance I; there is a point (𝑞
𝛽
, _) with∑

𝑗∈[𝑚] 𝑞 𝑗 +
∑
𝑖∈[𝑛] _𝑖 ≤ 𝑣 that is feasible for both (MMS-DP) and (MMS-DP’). By standard duality

theory, the dual of (MMS-DP’), call it (MMS-P’), has all constraints of (MMS-LP) and a subset

of its variables (the others being removed from the constraints they are in). Hence, we can find the

optimal solution of (MMS-P’) efficiently, and note that this can be completed to a feasible solution

for (MMS-LP) by setting the missing variables to 0. Moreover, again using LP duality, the value

of an optimal solution of (MMS-LP) and (MMS-P’) is at least 𝑣 and at most 𝑣
𝛽
.

By strong duality and the definition of single-machine scheduling problems, the optimal value

of (MMS-DP) is a fractional number between 0 and 𝑅𝑛. Hence, we can run binary search to find

the smallest value 𝑣∗ ∈ [0, 𝑅𝑛] for which our algorithm guarantees that 𝑣∗ is a yes-value. If we let

𝛿 be the tolerance of the binary search, we conclude that the optimal solution of (MMS-LP) is at

most 𝑣
∗−𝛿
𝛽

≤ 𝑣∗

𝛽
, and at least 𝑣∗ − 𝛿, and a feasible solution for (MMS-LP) whose value is between

those bounds can be obtained as explained above.

209

Appendix F: On the facets of the incremental knapsack polytope

F.1 Additional proofs from Section 6.3

F.1.1 Additional details from Example 6.3.3

We first show that (6.10) is valid. Suppose not, then there exists 𝑥 feasible for (6.9) that vio-

lates (6.10). Notice that {2, 3, 4} forms a cover in time 1. Therefore, we must have 𝑥2,1+𝑥3,1+𝑥4,1 ≤

2. Thus, if (6.10) is violated, we must have 𝑥1,2 = 𝑥5,2 = 1. Without loss of generality, sup-

pose 𝑥3,1 = 𝑥4,1 = 1. By constraints 𝑥𝑖,1 ≤ 𝑥𝑖,2, we have 𝑥3,2 = 𝑥4,2 = 1. Now, notice

𝑤1 + 𝑤3 + 𝑤4 + 𝑤5 = 10 > 9, violating the constraint
∑
𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,2 ≥ 𝑊2. Hence, (6.10) must

be valid.

To see that (6.10) defines a facet, we give 10 linearly independent feasible solutions satisfy-

ing (6.10) at equality. In the matrix below, each row represents such a feasible solution. The

variable each entry corresponds to is labelled in the top row. It is straightforward to verify that the

solutions are linearly independent by verifying that the matrix below is full rank.

210

©«

𝑥1,1 𝑥1,2 𝑥2,1 𝑥2,2 𝑥3,1 𝑥3,2 𝑥4,1 𝑥4,2 𝑥5,1 𝑥5,2

0 0 1 1 0 0 1 1 0 1

0 0 1 1 1 1 0 0 0 1

0 0 0 0 1 1 1 1 0 1

0 0 0 1 1 1 1 1 0 1

0 0 1 1 0 1 1 1 0 1

0 0 1 1 1 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1

0 1 0 0 1 1 0 0 0 1

1 1 0 0 0 0 1 1 0 1

0 1 0 0 1 1 1 1 0 0

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
F.1.2 Proof of Claim 6.3.4

It is straightforward to verify that 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇−1]. Next, we verify that

for all 𝑡 ∈ [𝑇], ∑𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 . For any 𝑡 < 𝑡′
𝚤
, since 𝑥𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑛], and the constraint is

trivial. For any 𝑡 such that 𝑡′
𝚤
≤ 𝑡 < 𝑡𝑆, only 𝑥𝚤,𝑡 = 1. By definition of 𝑡′

𝚤
, we have 𝑤𝚤 ≤ 𝑊𝑡 ′

𝚤
≤ 𝑊𝑡 .

Finally, for any 𝑡 ≥ 𝑡𝑆, by construction 𝑥 𝑗 ,𝑡 = 1 for |𝑆 | − 1 items in 𝑆. Therefore, for every 𝑖 ∈ 𝑆,

∑︁
𝑗∈𝑆\{𝑖}

𝑤 𝑗 ≤ 𝑊𝑡𝑆 ≤ 𝑊𝑡 ,

where the first inequality follows from Condition C1 of a strong cover. Hence, 𝑥 is feasible.

As previously explained, 𝑥 𝑗 ,𝑡𝑆 = 1 for |𝑆 | − 1 elements in 𝑆, therefore, (6.8) is satisfied at

equality.

F.1.3 Proof of Claim 6.3.5

It is straightforward to verify that 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1]. Next, we verify

that for all 𝑡 ∈ [𝑇], ∑𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 . For any 𝑡 < 𝑡𝑆, we have 𝑥𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑛], and the

211

constraint is trivial. For 𝑡 = 𝑡𝑆 < 𝑡, we have

∑︁
𝑗∈[𝑛]

𝑤 𝑗𝑥 𝑗 ,𝑡 =
∑︁
𝑗∈𝑆\{𝚤}

𝑤 𝑗 ≤ 𝑊𝑡

by Condition C1 of a strong cover. For 𝑡𝑆 < 𝑡 ≤ 𝑇 ,

∑︁
𝑗∈[𝑛]

𝑤 𝑗𝑥 𝑗 ,𝑡 ≤
∑︁
𝑗∈𝑆

𝑤 𝑗 ≤ 𝑊𝑡

by the definition of 𝑡𝑆 given in (6.6).

Finally, (6.8) is satisfied at equality since 𝑥 𝑗 ,𝑡𝑆 = 1 for all 𝑗 ∈ 𝑆 \ {𝚤}.

F.1.4 Proof of Claim 6.3.6

It is straightforward to verify that 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1]. Next, we verify

that for all 𝑡 ∈ [𝑇], ∑𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 . For 𝑡 < 𝑡′
𝚤
, 𝑥𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑛] and the constraint is trivial.

For 𝑡′
𝚤
≤ 𝑡 < 𝑡𝑆, we have ∑︁

𝑖∈[𝑛]
𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑤𝚤 ≤ 𝑊𝑡 ′

𝚤
≤ 𝑊𝑡 ,

where the second inequality follows by definition of 𝑡′
𝚤
.

For 𝑡 ≥ 𝑡𝑆, we have

∑︁
𝑗∈[𝑛]

𝑤 𝑗𝑥 𝑗 ,𝑡 ≤
∑︁

𝑗∈𝑆\{ 𝑗1, 𝑗2}
𝑤 𝑗 + 𝑤𝚤 ≤ 𝑊𝑡𝑆 ≤ 𝑊𝑡 ,

where the second inequality follows from the assumption that

∑︁
𝑗∈𝑆\{ 𝑗1, 𝑗2}

𝑤 𝑗 + 𝑤max ≤ 𝑊𝑡𝑆 .

Finally, (6.8) is satisfied at equality since 𝑥 𝑗 ,𝑡𝑆 = 1 for |𝑆 | − 2 items in the cover and 𝑥𝚤,𝑡𝚤 = 1.

212

F.1.5 Proof of Claim 6.3.7

It is straightforward to verify that 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1]. Next, we verify

that for all 𝑡 ∈ [𝑇], ∑𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 . For 𝑡 < 𝑡𝑆, we have 𝑥𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑛] and the constraint

is trivial. For 𝑡𝑆 ≤ 𝑡 < 𝑡, we have

∑︁
𝑗∈[𝑛]

𝑤 𝑗𝑥 𝑗 ,𝑡 =
∑︁

𝑗∈𝑆\{ 𝑗1}
𝑤 𝑗 ≤ 𝑊𝑡 ,

by Condition C1 of a strong cover. For 𝑡 ≥ 𝑡 > 𝑡𝚤, we have

∑︁
𝑗∈[𝑛]

𝑤 𝑗𝑥 𝑗 ,𝑡 =
∑︁

𝑗∈𝑆\{ 𝑗1}
𝑤 𝑗 + 𝑤𝚤 ≤ 𝑊𝑡 ,

by (6.7).

Finally, (6.8) is satisfied at equality since 𝑥 𝑗 ,𝑡𝑆 = 1 for all 𝑗 ∈ 𝑆 \ { 𝑗1}.

F.1.6 Proof of Claim 6.3.8

It is straightforward to verify that 𝑥𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 − 1]. Next, we verify

that for all 𝑡 ∈ [𝑇], ∑𝑖∈[𝑛] 𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑊𝑡 . For 𝑡 < 𝑡′
𝚤
, we have 𝑥𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑛] and the constraint

is trivial. For 𝑡′
𝚤
≤ 𝑡 < 𝑡𝑆, we have

∑︁
𝑖∈[𝑛]

𝑤𝑖𝑥𝑖,𝑡 ≤ 𝑤𝚤 ≤ 𝑊𝑡 ′
𝚤
≤ 𝑊𝑡 ,

where the second inequality is by definition of 𝑡′
𝚤
. For 𝑡 ≥ 𝑡𝑆, we have

∑︁
𝑗∈[𝑛]

𝑤 𝑗𝑥 𝑗 ,𝑡 ≤
∑︁

𝑗∈𝑆\{ 𝑗1}
𝑤 𝑗 + 𝑤𝚤 ≤ 𝑊𝑡𝑆 ≤ 𝑊𝑡 ,

where the second inequality is by Condition C2 of a strong cover.

Finally, (6.8) is satisfied at equality since 𝑥 𝑗 ,𝑡𝑆 = 1 for all 𝑗 ∈ 𝑆 \ { 𝑗1}.

213

F.2 Additional proofs from Section 6.4

F.2.1 Proof of Claim 6.4.3

Let 𝑦∗ be a minimizer of (6.23) and let 𝑆∗ be the associated cover. By definition, 𝐸 (𝑆∗) \ 𝑆∗ ⊆

{𝑘∗ + 1, . . . , 𝑛}. Now suppose 𝐸 (𝑆∗) \ 𝑆∗ ≠ {𝑘∗ + 1, . . . , 𝑛}, that is, there exists 𝑖 < 𝑘∗ with 𝑖 ∉ 𝑆∗

such that 𝑤𝑖 = 𝑤𝑘∗ . Let 𝑦′
𝑖,𝑡

= 1 and 𝑦′
𝑘∗,𝑡 = 0. For all other 𝑗 ∉ {𝑖, 𝑘∗}, let 𝑦′

𝑗 ,𝑡
= 𝑦∗

𝑗 ,𝑡
It is straight

forward to check that the associated cover 𝑆′ satisfies the following properties:

1. 𝑆′ = 𝑆∗ \ {𝑘∗} ∪ {𝑖};

2. 𝐸 (𝑆′) = 𝐸 (𝑆∗) and 𝐸 (𝑆′) \ 𝑆′ = (𝐸 (𝑆∗) \ 𝑆∗) ∪ {𝑘∗} \ {𝑖};

3. for all 𝑗 ∈ 𝐸 (𝑆′) = 𝐸 (𝑆∗), we have 𝑡 𝑗 ,𝑆′ = 𝑡 𝑗 ,𝑆∗ , where the definitions are given by (6.6)

and (6.7). Due to this equivalence, for the rest of the proof, with a slight abuse of notation,

we will simply denote them as 𝑡 𝑗 .

In what follows, we show that 𝑦′ is also a minimizer of (6.23).

𝑛∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡 𝑗)𝑦′𝑗 ,𝑡︸ ︷︷ ︸
𝐴

−
∑︁

𝑗∈𝐸 (𝑆′)\𝑆′
𝑥 𝑗 ,𝑡 𝑗︸ ︷︷ ︸

𝐵

=

𝑛∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡 𝑗)𝑦∗𝑗 ,𝑡 − (1 − 𝑥𝑘∗,𝑡𝑘∗) + (1 − 𝑥𝑖,𝑡𝑖)︸ ︷︷ ︸
𝐴

−
∑︁

𝑗∈𝐸 (𝑆′)\𝑆′
𝑥 𝑗 ,𝑡 𝑗︸ ︷︷ ︸

𝐵

= 𝐴 −

∑︁
𝑗∈𝐸 (𝑆∗)\𝑆∗

𝑥 𝑗 ,𝑡 𝑗 + 𝑥𝑘∗,𝑡𝑘∗ − 𝑥𝑖,𝑡𝑖
︸ ︷︷ ︸

𝐵

=

𝑛∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡 𝑗)𝑦∗𝑗 ,𝑡 −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 ,

where the first equality follows by definition of 𝑦′, the second equality follows from Property 2

above, and the final equality follows by algebra.

We conclude that if 𝑦∗ is a minimizer of (6.23), so is 𝑦′. Thus, we can repeat the above operation

until no such 𝑖 exists and 𝐸 (𝑆∗) \ 𝑆∗ = {𝑘∗ + 1, . . . , 𝑛}, proving the claim.

214

F.2.2 Proof of Claim 6.4.4

First note that given any cover 𝑆 and associated 𝑦, (6.23) evaluates to:

𝑛∑︁
𝑗=1

(1 − 𝑥 𝑗 ,𝑡𝑆)𝑦 𝑗 ,𝑡𝑆 −
∑︁

𝑗=𝐸 (𝑆)\𝑆
𝑥 𝑗 ,𝑡 𝑗 = |𝑆 | −

∑︁
𝑗∈𝑆
𝑥 𝑗 ,𝑡𝑆 −

∑︁
𝑗=𝐸 (𝑆)\𝑆

𝑥 𝑗 ,𝑡 𝑗 = |𝑆 | −
∑︁
𝑗∈𝐸 (𝑆)

𝑥 𝑗 ,𝑡 𝑗 .

Using the equality above, since 𝑦∗ minimizes (6.23), for any other 𝑆 such that |𝑆 | = |𝑆∗ |, we

have:

|𝑆∗ | −
∑︁

𝑗∈𝐸 (𝑆∗)
𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆 | −

∑︁
𝑗∈𝐸 (𝑆)

𝑥 𝑗 ,𝑡 𝑗 ⇔
∑︁

𝑗∈𝐸 (𝑆∗)
𝑥 𝑗 ,𝑡 𝑗 ≥

∑︁
𝑗∈𝐸 (𝑆)

𝑥 𝑗 ,𝑡 𝑗

Thus, if we have (1 − 𝜖)∑ 𝑗∈𝐸 (𝑆∗) 𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆∗ | − 1, we have

(1 − 𝜖)
∑︁
𝑗∈𝐸 (𝑆)

𝑥 𝑗 ,𝑡 𝑗 ≤ (1 − 𝜖)
∑︁

𝑗∈𝐸 (𝑆∗)
𝑥 𝑗 ,𝑡 𝑗 ≤ |𝑆∗ | − 1.

The claim follows by noting |𝑆 | = |𝑆∗ |.

F.2.3 Proof of Claim 6.4.5

First note that by definition

𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗ �̄� 𝑗 ,𝑡∗ =

𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ = 𝑞

∗. (F.1)

Since 𝑝 𝑗 ,𝑡∗ = ⌊ 𝑝 𝑗 ,𝑡∗
𝑐𝑖∗

⌋, it follows that

𝑐𝑖∗ · 𝑝 𝑗 ,𝑡∗ ≤ 𝑝 𝑗 ,𝑡∗ ≤ 𝑐𝑖∗ · (𝑝 𝑗 ,𝑡∗ + 1) (F.2)

215

Hence, we deduce,

𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗ �̄� 𝑗 ,𝑡∗ ≤ 𝑐𝑖∗

𝑘∗∑︁
𝑗=1

(𝑝 𝑗 ,𝑡∗ + 1) �̄� 𝑗 ,𝑡∗

= 𝑐𝑖∗

𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ + 𝑐𝑖∗

𝑘∗∑︁
𝑗=1

�̄� 𝑗 ,𝑡∗

≤
𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ + 𝑐𝑖∗

𝑘∗∑︁
𝑗=1

�̄� 𝑗 ,𝑡∗

≤
𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ + 𝑐𝑖∗ · 𝑖∗, (F.3)

where the first inequality follows from the upper bound of 𝑝 𝑗 ,𝑡 given in (F.2), the first equality

follows from (F.1), and the second inequality follows from the lower bound of 𝑝 𝑗 ,𝑡 given in (F.2).

The final inequality uses that �̄� 𝑗 ,𝑡∗ = 0 for all 𝑣𝑡 (𝑗) > 𝑖∗, which implies
∑𝑘∗

𝑗=1 �̄� 𝑗 ,𝑡∗ ≤ 𝑖∗.

Now, by recalling that 𝑐𝑖∗ =
𝜖 𝑝
𝑣𝑡
∗
𝑖∗ ,𝑡

∗

𝑖∗ , we conclude

𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ + 𝑐𝑖∗ · 𝑖∗ =

𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ + 𝜖 𝑝𝑣𝑡∗

𝑖∗ ,𝑡∗

≤ (1 + 𝜖)
𝑘∗∑︁
𝑗=1

𝑝 𝑗 ,𝑡∗𝑦
∗
𝑗 ,𝑡∗ , (F.4)

where the equality is by definition of 𝑐𝑖∗ , and the inequality is by noting 𝑦∗
𝑣𝑡

∗
𝑖∗ ,𝑡

∗ = 1 by definition of

𝑖∗. Combining (F.3) and (F.4) concludes the proof.

F.2.4 Proof of Claim 6.4.6

Plugging in 𝜖 = 𝜖
𝑛
, we have

1 ≤ (1 + 𝜖
𝑛
) (|𝑆∗ | −

∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡∗) −
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 .

216

Equivalently, by rearranging the above inequality, we obtain

(1 + 𝜖
𝑛
)
∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡𝑆∗ +
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 ≤ (1 + 𝜖

𝑛
) |𝑆∗ | − 1

≤ |𝑆∗ | + 𝜖 − 1, (F.5)

where the second inequality follows since |𝑆∗ | ≤ 𝑛.

Now, we consider two cases:

1.

− ©«𝜖 (1 + 𝑛)
𝑛

∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡𝑆∗ + 𝜖
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗

ª®¬ ≤ −𝜖 .

In this case, we can simply add the inequality to (F.5) and conclude the claim.

2.

− ©«𝜖 (1 + 𝑛)
𝑛

∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡𝑆∗ + 𝜖
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗

ª®¬ > −𝜖 .

Rewriting the above inequliaty, we obtain

1
𝑛

∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡𝑆∗ +
∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡𝑆∗ +
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 < 1.

Therefore, ∑︁
𝑗∈𝑆∗

𝑥 𝑗 ,𝑡𝑆∗ +
∑︁

𝑗∈𝐸 (𝑆∗)\𝑆∗
𝑥 𝑗 ,𝑡 𝑗 < 1 ≤ |𝑆∗ | − 1,

where the final inequality follows from the assumption that |𝑆∗ | ≥ 2.

217

	Acknowledgments
	Incremental packing problems
	Introduction
	The main models
	The generalized incremental knapsack problem
	Monotone submodular all-or-nothing incremental knapsack problem
	Incremental generalized assignment problem

	Main contributions
	Related literature
	Directly related incremental knapsack settings
	The generalized assignment problem
	Submodular function maximization
	Other related packing problems
	Lifting valid inequalities

	Shared notations

	Single-time policies for the generalized incremental knapsack problem
	Introduction and preliminaries
	Rigid and fully-flexible single-time algorithms
	bold0mu mumu cccccc-flexible algorithms
	Technical overview
	Main results
	Proof overview
	Proof of Theorem 2.4.1

	Experimental results
	Algorithms tested
	Instance generation and experimental setup
	Results and discussion

	Algorithms for the generalized incremental knapsack problem through a sequencing reformulation
	Introduction
	A polynomial-Time (12 -)-approximation
	An equivalent sequencing formulation
	Profit decomposition and high-level overview
	Algorithm for heavy contributions
	Algorithm for light contributions

	QPTAS for bounded weight ratio
	Residual instances and their properties
	The boosting algorithm
	The ratio improvement and final algorithm

	QPTAS for general instances
	Technical overview
	Proof of Lemma 3.4.2: Creating a well-spaced instance
	Proof of Lemma 3.4.3: The sparse-crossing property
	The external dynamic program

	Experimental results
	Algorithms tested
	Instance generation and experimental setup
	Results and discussion

	Some easier, and some not harder, incremental knapsack problems
	Introduction
	Algorithm for the monotone submodular all-or-nothing incremental knapsack problem
	The linearization algorithm
	Independent sets
	Independent sets in single profit classes
	A decomposition theorem for monotone submodular all-or-nothing functions
	Proof of Theorem 1.3.4

	A PTAS for the generalized incremental knapsack problem with a bounded number of times
	Preliminaries and algorithm
	The LP rounding procedure
	Proof of Theorem 1.3.5

	An FPTAS for the generalized incremental knapsack - single profit problem
	Continuous dynamic program
	Discretization and analysis

	Single-machine algorithms for incremental packing problems
	Introduction
	Incremental packing problems
	Sequencing reformulation of incremental packing problems
	Example

	Ex uno plures: approximation algorithms to multi-machine problems
	LP relaxation and approximate dual separation
	Approximate primal solution from approximate dual separation
	The rounding procedure
	Proof of Theorem 5.3.1
	Proof of Theorem 1.3.7

	Comparison with the approach by Fleischer et al.

	On the facets of the incremental knapsack polytope
	Introduction
	Cover inequalities for the classical knapsack polytope
	Lift and push cover inequalities for the incremental knapsack polytope
	The lift and push procedure
	Facet defining lift and push cover inequalities

	Separation algorithms
	Exact separation
	Approximate separation

	Conclusion
	References
	Incremental packing problems
	Reduction to Unsplittable Flow on a Path with Bag Constraints

	Single-time policies for the generalized incremental knapsack problem
	Proof of Lemma 2.1.1
	The fully rigid algorithm may output a solution with an arbitrarily bad approximation ratio
	The fully flexible algorithm may output an O(1T)-approximated solution
	Additional proofs from Chapter 2
	Proof of Lemma 2.3.1
	Proof of Lemma 2.4.4
	Proof of Lemma 2.4.5
	Auxiliary lemmas
	Proof of Lemma 2.4.6
	Proof of Lemma 2.4.7
	Proof of Lemma 2.4.8
	Proof of Lemma 2.4.9
	Proof of Claim 2.4.10
	Proof of Claim 2.4.11
	Proof of Theorem 2.4.2

	Algorithms for the generalized incremental knapsack problem through a sequencing reformulation
	Additional proofs from Section 3.2
	Proof of Claim 3.2.5
	Proof of Lemma 3.2.6
	Proof of Lemma 3.2.8

	Additional proofs from Section 3.3
	Proof of Lemma 3.3.3
	Proof of Lemma 3.3.4
	Proof of Lemma 3.3.6
	Proof of Lemma 3.3.7
	Proof of Lemma 3.3.10

	Additional proofs from Section 3.4
	Proof of Lemma 3.4.4
	Proof of Claim 3.4.7
	Proof of Claim 3.4.8
	Proof of Lemma 3.4.9
	Proof of Lemma 3.4.10
	Proof of Lemma 3.4.11
	Proof of Lemma C.3.2
	Proof of Lemma 3.4.12

	Some easier, and some not harder, incremental knapsack problems
	Additional proofs from Section 4.2
	Proof of Lemma 4.2.2
	Proof of Lemma 4.2.3
	Proof of Lemma 4.2.4

	Additional proofs from Section 4.3
	Proof of Claim 4.3.2
	Proof of Claim 4.3.3
	Proof of Claim 4.3.5
	Proof of Claim 4.3.6

	Additional proof from Section 4.4
	Proof of Lemma 4.4.1

	Single-machine algorithms for incremental packing problems
	Proof of Lemma 5.3.2
	Proof of Lemma 5.3.3
	Proof of Lemma 5.4.2

	On the facets of the incremental knapsack polytope
	Additional proofs from Section 6.3
	Additional details from Example 6.3.3
	Proof of Claim 6.3.4
	Proof of Claim 6.3.5
	Proof of Claim 6.3.6
	Proof of Claim 6.3.7
	Proof of Claim 6.3.8

	Additional proofs from Section 6.4
	Proof of Claim 6.4.3
	Proof of Claim 6.4.4
	Proof of Claim 6.4.5
	Proof of Claim 6.4.6

