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Abstract

Scalable Tools for Information Extraction and Causal Modeling of Neural Data

Amin Nejatbakhsh

Systems neuroscience has entered in the past 20 years into an era that one might

call "large scale systems neuroscience". From tuning curves and single neuron record-

ings there has been a conceptual shift towards a more holistic understanding of how

the neural circuits work and as a result how their representations produce neural

tunings [Kriegeskorte and Wei, 2021].

With the introduction of a plethora of datasets in various scales, modalities, animals,

and systems; we as a community have witnessed invaluable insights that can be gained

from the collective view of a neural circuit which was not possible with small scale

experimentation [Urai et al., 2022]. The concurrency of the advances in neural recordings

such as the production of wide field imaging technologies and neuropixels with the

developments in statistical machine learning and specifically deep learning has brought

system neuroscience one step closer to data science. With this abundance of data, the

need for developing computational models has become crucial. We need to make sense of

the data, and thus we need to build models that are constrained up to the acceptable

amount of biological detail and probe those models in search of neural mechanisms.

This thesis consists of sections covering a wide range of ideas from computer vision,

statistics, machine learning, and dynamical systems. But all of these ideas share a



common purpose, which is to help automate neuroscientific experimentation process

in different levels. In chapters 1, 2, and 3, I develop tools that automate the process

of extracting useful information from raw neuroscience data in the model organism C.

elegans. The goal of this is to avoid manual labor and pave the way for high throughput

data collection aiming at better quantification of variability across the population of

worms. Due to its high level of structural and functional stereotypy, and its relative sim-

plicity, the nematode C. elegans has been an attractive model organism for systems and

developmental research. With 383 neurons in males and 302 neurons in hermaphrodites,

the positions and function of neurons is remarkably conserved across individuals. Fur-

thermore, C. elegans remains the only organism for which a complete cellular, lineage,

and anatomical map of the entire nervous system has been described for both sexes. Here,

I describe the analysis pipeline that we developed for the recently proposed NeuroPAL

technique in C. elegans. Our proposed pipeline consists of atlas building (chapter 1),

registration, segmentation, neural tracking (chapter 2), and signal extraction (chapter

3). I emphasize that categorizing the analysis techniques as a pipeline consisting of the

above steps is general and can be applied to virtually every single animal model and

emerging imaging modality. I use the language of probabilistic generative modeling and

graphical models to communicate the ideas in a rigorous form, therefore some familiarity

with those concepts could help the reader navigate through the chapters of this thesis

more easily.

In chapters 4 and 5 I build models that aim to automate hypothesis testing and

causal interrogation of neural circuits. The notion of functional connectivity (FC) has

been instrumental in our understanding of how information propagates in a neural

circuit. However, an important limitation is that current techniques do not dissociate

between causal connections and purely functional connections with no mechanistic

correspondence. I start chapter 4 by introducing causal inference as a unifying language



for the following chapters. In chapter 4 I define the notion of interventional connectivity

(IC) as a way to summarize the effect of stimulation in a neural circuit providing a

more mechanistic description of the information flow. I then investigate which functional

connectivity metrics are best predictive of IC in simulations and real data. Following this

framework, I discuss how stimulations and interventions can be used to improve fitting

and generalization properties of time series models. Building on the literature of model

identification and active causal discovery I develop a switching time series model and a

method for finding stimulation patterns that help the model to generalize to the vicinity

of the observed neural trajectories. Finally in chapter 5 I develop a new FC metric that

separates the transferred information from one variable to the other into unique and

synergistic sources.

In all projects, I have abstracted out concepts that are specific to the datasets at hand

and developed the methods in the most general form. This makes the presented methods

applicable to a broad range of datasets, potentially leading to new findings. In addition,

all projects are accompanied with extensible and documented code packages, allowing

theorists to repurpose the modules for novel applications and experimentalists to run

analysis on their datasets efficiently and scalably.

In summary my main contribution in this thesis are the following:

• Building the first atlases of hermaphrodite and male C. elegans and developing a

generic statistical framework for constructing atlases for a broad range of datasets.

• Developing a semi-automated analysis pipeline for neural registration, segmenta-

tion, and tracking in C. elegans.

• Extending the framework of non-negative matrix factorization to datasets with de-



formable motion and developing algorithms for joint tracking and signal demixing

from videos of semi-immobilized C. elegans.

• Defining the notion of interventional connectivity (IC) as a way to summarize

the effect of stimulation in a neural circuit and investigating which functional

connectivity metrics are best predictive of IC in simulations and real data.

• Developing a switching time series model and a method for finding stimulation

patterns that help the model to generalize to the vicinity of the observed neural

trajectories.

• Developing a new functional connectivity metric that separates the transferred

information from one variable to the other into unique and synergistic sources.

• Implementing extensible, well documented, open source code packages for each of

the above contributions.
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Statistical Atlas: How to Build an Average Brain

1.1 Introduction

Constructing atlases of biological structures such as the brain helps summarize

normative patterns in a population and quantifies variability across individuals. An atlas

also provides a common coordinate framework to serve as a target for image registration

and normalization, which can help decouple and quantify different sources of variability

observed in the data [Greitz et al., 1991; Jones et al., 2009; Roland et al., 1994; Scheffer

and Meinertzhagen, 2019]. The sources of variability observed in images could be both

due to biological factors, such as ganglia placement, posture, and morphology, as well

as non-biological factors such as photobleaching of fluorophores, illumination artefacts,

and camera placement. With the introduction of new imaging technologies [Ahrens et al.,

2013b; Cong et al., 2017; Prevedel et al., 2014] that capture complex biological signals

such as those found in neural circuits or the musculoskeletal system, atlas building is a

valuable step before downstream analyses.

The C. elegans nervous system has been an attractive target for atlas building in

recent years due to its high level of structural and functional stereotypy, and its relative

1



simplicity [Choe and Strange, 2007,?; Kaiser and Hilgetag, 2006; Szigeti et al., 2014;

Varol et al., 2020; Yemini et al., 2021], the number, positions, and function of neurons

is remarkably conserved across individuals. The hermaphrodite has 302 neurons in

its entire nervous system, which can be simultaneously imaged using fluorescence

microscopy [Venkatachalam et al., 2016c; White et al., 1986a]. Several atlases of neural

positions in the C. elegans hermaphrodite have been introduced, utilizing a variety of

shape and pose models [Bubnis et al., 2019; Long et al., 2009; Skuhersky et al., 2021;

Toyoshima et al., 2019; Varol et al., 2020].

In contrast, construction of the male C. elegans nervous system has been more

challenging for several factors: 1) Males have roughly 30 percent more neurons than

hermaphrodites, and additional ganglia enclosing these neurons, primarily in their tail

[Sulston and Horvitz, 1977], 2) males show greater variability in their neuron positions

and perhaps even their gangliar positions [Tekieli et al., 2021], 3) the male body size is

smaller than that of hermaphrodites, resulting in a higher neuron density [Emmons and

Sternberg, 2011]. Therefore, models that normalize hermaphrodite neuron positions do

not necessarily generalize to males.

Another simple species that is known to exhibit significant stereotypy is the fruit

fly, Drosophila melanogaster. In the fly, one suitable structure for atlas building is the

wing. Although Drosophila wings can be evaluated qualitatively or by metrics such

as length and surface area, they are often measured within a geometric morphomet-

ric framework [Houle et al., 2010]. Landmarks are based on vein intersections with

semi-landmarks defining curves. Biometric facial recognition tools have succeeded in

classifying images of Drosophila wings into biological categories [Dworkin and Gibson,

2006]. However, a probabilistic atlas that quantifies the sources of structural variability

amongst wings of different phenotypes and sexes is not yet established.

2



While the above cases exemplify the scenarios in which atlases can help quantify

biological variability, atlas building so far has been hand-tailored to accommodate the

specifications of a single organism or a single experimental condition, providing an

obstacle to experimentalists that require atlases for novel biological datasets that they

curate [Heckscher et al., 2014].

This chapter provides a probabilistic framework for building atlases for various

model organisms. The chapter is organized as follows. In the first section, we describe the

development of the hermaphrodite C. elegans statistical atlas of neural positions [Varol

et al., 2020]. Next, in the second section using similar techniques we develop the male C.

elegans statistical atlas and draw comparisons with the hermaphrodite atlas [Tekieli

et al., 2021]. In the last section we extend the methodology to a broader range of

assumptions and describe how to build supervised, semi-supervised, and unsupervised

atlases of biological structures directly from their images. We then construct the fruit fly

wing atlas using images to showcase an application (unpublished).

1.2 Hermaphrodite C. elegans Neural Atlas

Imaging-based atlases of human and animal brains have enabled the principled

and standardized means of hypothesis testing in a wide variety of domains [Bubnis

et al., 2019; Dickie et al., 2017; Jones et al., 2009; Lein et al., 2007; Mazziotta et al.,

2001; Oh et al., 2014; Toyoshima et al., 2020]. Common procedures that atlases enable

are the registration of population samples to a common space [Zitova and Flusser,

2003], discriminating pattern differences across samples [Ashburner and Friston, 2000],

segmentation into regions of interest [Cabezas et al., 2011], and regularizing complex

Bayesian models [Saxena et al., 2019]. Importantly, atlases enable the formation of

large-scale population studies due to their ability to gather high-dimensional data into a

commensurate space.
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C. elegans is a widely studied model organism with a simple nervous system that

consists of 302 neurons in the adult hermaphrodite [White et al., 1986b]. Its simplicity

and stereotypy have enabled highly-reproducible experimental settings which have been

crucial in elucidating neuroscientific hypotheses. Furthermore, to date, C. elegans is the

only animal whose connectome is completely mapped [Cook et al., 2019b; Jarrell et al.,

2012b; White et al., 1986b]. Despite this atlas of connectivity, attempts at quantifying

the variability of the neuron positions therein has been limited, capturing only a partial

subset of these neurons [Toyoshima et al., 2020]. This is due to the limited number of

samples available from electron micrograph reconstructions and an inability to identify

neural identities via position alone [Yemini et al., 2019b]. The recent introduction of

NeuroPAL, a strain for complete neural identification in C. elegans, has enabled efficient

and precise annotation of neuron positions in multiple worms.

Using a NeuroPAL dataset, encompassing all head and tail neurons from 10 worms,

we propose a latent multivariate statistical model that captures the canonical positions

and covariances of C. elegans neurons. The observed neurons were captured by fluorescent

volumetric imaging. These were then modeled as a multivariate sample, drawn from a

latent distribution subjected to a random affine transformation. Given this statistical

model, we infer the canonical means and covariances of all neurons present in the

head and tail of the worm, yielding a novel positional statistical atlas. To improve our

statistical atlas with additional, incompletely annotated worms, we propose a semi-

supervised approach for cell-identification. As shown in [Yemini et al., 2019b], using

our trained atlas, we can automatically identify neurons in out-of-sample worms with

more than 86% accuracy in the head and 94% accuracy in the tail. These accuracies

represent the current state of the art, improving the accuracies reported in [Kainmueller

et al., 2014] and [Toyoshima et al., 2020]. Furthermore, we demonstrate an additional

application of our atlas to obtain a correlation analysis of neural positions, which sheds
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Figure 1.1: Example NeuroPAL image Deterministic coloring of C. elegans neurons,
in a NeuroPAL strain, enables the complete neural identification across a population of
worms. See [Yemini et al., 2019b] for details.

light on the structural organization of neurons and their potential connections to genetic

lineages.

1.2.1 Data and Pre-processing

To construct the statistical atlas of C. elegans neurons, we used volumetric images

of both heads and tails from 10 worms (strain OH15262). All worms were imaged on a

Zeiss LSM 880 confocal with 32 detector channels and the following laser lines: 405nm,

488nm, 561nm, and 633nm. Volumetric resolution was approximately (X,Y,Z): 0.2 µ m

× 0.2 µ m × 0.8 µ m. Images were acquired with four color channels, corresponding to

the NeuroPAL fluorophores: mTagBFP2, CyOFP1, mNeptune2.5, and TagRFP-T [Yemini

et al., 2019b]. See Figure 1.1 for a representative maximum intensity projection from

a head sample. The volumetric images were subsequently annotated by an expert to

denote the approximate center for each neuron and its corresponding identity. In total,

240 neurons were annotated in each worm, 195 from the head and 45 from tail. The

remaining neurons from the midbody were not imaged for this study.
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1.2.2 Method

Due to variability in illumination and the pose of the worm when imaged, observed

neuron positions and their exact color balance may vary across imaged worms. This

presents a significant challenge when attempting to obtain correspondence between

worms to infer the identities of neurons. Therefore, to normalize the random variability

that occurs across different worms, prior to identifying neurons in any given microscopy

image, we estimate a statistical atlas of neuron positions and colors.

The approach we take resembles the joint expectation-maximization alignment of

point sets technique of [Evangelidis and Horaud, 2018], with several important differ-

ences discussed below. The dataset we are modeling consists of a collection of point sets:

each worm corresponds to one point set, with each point in the set corresponding to the

position and color of a single detected neuron. We model each of these positions and

colors as samples from a statistical atlas that is common across worms. Each neuron i

has a corresponding mean and covariance in this atlas, denoted as µi and Σi, respectively.

After drawing all the positions and colors for a given worm j we apply a random affine

transformation (parametrized by a matrix β j and translation vector β0
j ). Finally, since

the order of neurons in each point set is arbitrary, we scramble the identities of the

neurons with a random permutation, parameterized by a permutation matrix P j. This

generative model is summarized in Figure 4.8. See also [Bubnis et al., 2019] for a related

model (without the alignment term, and with an inference approach that differs from

the methods we describe below).

We build on the methods in [Evangelidis and Horaud, 2018] to infer the parameters of

this generative model (i.e., the means and covariances of the statistical atlas, the random

transformations, and the random permutations), in a completely unsupervised fashion,

using a three-way expectation-maximization procedure. However, in our dataset, we
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have access to fully annotated neuron detections. We take advantage of this supervised

data to simplify the inference problem.

Now we can describe our model in detail. Neuron positions are three-dimensional, and

there are three color channels in this dataset (given our three neuron-specific fluorophore

channels, we discard the panneuronal TagRFP-T channel as uninformative); therefore, if

we use wi, j to denote the appended position and color vector of the i-th neuron in worm

j (as output by the detection step described in the previous section), then wi, j ∈R6. Each

of these observed wi, j vectors has a corresponding latent vector zi, j in the aligned atlas

space. We model this latent vector as a Gaussian,

zi, j ∼N (µi,Σi), (1.1)

with means µi ∈R6 and covariances Σi ∈S6+ that do not depend on the worm index j. We

model the covariance Σi with block structure of the form Σi =
[Σi

position 0

0 Σi
color

]
, since

position and each color are independently varying.

Now the latent vectors zi, j in the atlas space and observed data wi, j extracted from

Figure 1.2: Schematic of the generative model of neuron position and color
expression First we draw a position and color for each neuron i from a distribution
with mean µi and covariance Σi; then, to create the observed data + wi, j (the color and
position of the i-th neuron of the j-th worm) we apply a random affine transformation
and a random permutation encoded by f (·).
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the imaged worm j are connected by a worm-specific random affine transformation and

permutation. We denote the intermediate affine-transformed variables as xi, j:

xi, j = zi, jβ j +β0
j , (1.2)

with β j a 6×6 matrix (with a similar block structure as Σi) and β0
j ∈R6. then we obtain

wi, j by scrambling the labels via the permutation p j (corresponding to a permutation

matrix P j):

wi, j = xp j(i), j. (1.3)

The summary of the generative process is illustrated in Figure 4.8 by combining the

permutation operation and the transformation together as a latent function f (·). Note

that this model permits partial and variable observations of neurons across different

animals if we allow the permutation matrix to be unbalanced (not square), indicating

the existence of neurons that are not observed in individual animals.

Given these modeling assumptions, for a dataset of m worms and n j detected neurons

in each worm, we can express the likelihood as:

P(w|µ,Σ,P,β,β0)=
m∏

j=1

n j∏
i=1

e−(1/2)(wi, j−µpi, jβ j−β0
j )(β jΣpi, jβ

T
j )−1(wi, j−µpi, jβ j−β0

j )
T

(2π)d/2 det((β jΣpi, jβ
T
j ))1/2

(1.4)

Since the term
∑

j
∑

i(1/2)logdet((β jΣpi, jβ
T
j ) is permutation invariant, we can write it

as
∑

j
∑

i(1/2)logdet((β jΣiβ
T
j ) and thus the maximum likelihood estimate (MLE) for our

generative model involves optimizing the negative log-likelihood:

minimize
P,β,β0,µ,Σ

m∑
j=1

n j∑
i=1

(wi, j −µpi, jβ j −β0
j )(β jΣpi, jβ

T
j )

−1
(wi, j −µpi, jβ j −β0

j )
T)+ logdet((β jΣiβ

T
j )

(1.5)

1.2.3 Optimization

To infer the parameters of the generative model, we take an iterative block-coordinate

descent approach, similar to [Evangelidis and Horaud, 2018]: we fix (P,β,β0) (with P
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abbreviating the collection of permutations P j for all worms j, and similarly for β,β0)

and solve for (µ,Σ), then fix (µ,Σ) and solve for (P,β,β0). Below are the update steps for

each of these blocks.

1.2.3.1 Inference of the statistical atlas parameters µ,Σ:

Let P j ∈P n×n denote the permutation matrix, W j = [wT
1, j . . .wT

n, j]
T ∈Rn×d denote the

row stacked features of the neurons of the jth worm, and let µ= [µT
1 . . .µT

n ] ∈Rn×d denote

the row stacked neuron means. The generative model can be written in matrix form as:

W j = P jµβ j +1β0
j +E where E i ∼N (0,β jΣP i, jβ

T
j ) denotes the row stacked uncertainty

terms.

Since PT
j P j = I because P is a permutation matrix and assuming that β j is a non-

degenerate transformation, its inverse exists and can be used to write the system as:

PT
j W jβ

−1
j −1β0

jβ
−1
j =µ+V where V i ∼N (0,Σi) is a term to quantify uncertainty.

This equation can be used to infer µ and Σ in closed form by computing the first and

second moments of V :

µ∗ = 1
m

m∑
j=1

PT
j W jβ

−1
j −1β0

jβ
−1
j (1.6)

Σ∗
i =

1
m

m∑
j=1

(PT
j,iW jβ

−1
j −β0

jβ
−1
j −µi)

T(PT
j,iW jβ

−1
j −β0

jβ
−1
j −µi) (1.7)

1.2.3.2 Inference of the transformation terms β,β0:

We can infer the transformation and translation terms β,β0 by solving a weighted

linear regression problem with a Mahalanobis norm for each neuron quantified by the

covariance terms, Σi:

minimize
β−1

j ,β0
jβ

−1
j

n j∑
i=1

(PT
j,iW jβ

−1
j −β0

jβ
−1
j −µi)Σ

−1
i (PT

j,iW jβ
−1
j −β0

jβ
−1
j −µi)

T . (1.8)
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This system admits a fixed point iteration that yields the global minimum [Evange-

lidis and Horaud, 2018]. First, the closed form solution for β0
jβ

−1
j is given by:

β0
jβ

−1∗
j =

( n∑
i=1

(PT
j,iW jβ

−1
j −µi)Σ

−1
i

)( n∑
i=1
Σ−1

i

)−1
(1.9)

To analytically solve for β−1
j , we use the fact that vec(ABC)= (CT ⊗A)vec(B) where vec(·)

denotes the vectorization operation and ⊗ denotes Kronecker product. This yields the

following vectorized closed form update for β−1
j :

vec(β−1∗
j )=

( n∑
i=1

(Σ−1
i ⊗ (PT

j,iW j)T(PT
j,iW j))

)−1( n∑
i=1

vec((PT
j,iW j)T(β0

jβ
−1
j +µi)Σ

−1
i )

)
(1.10)

1.2.3.3 Permutation inference:

Lastly, we can solve for the doubly-stochastic matrix, P j by setting up a n× n j

transport matrix D where

Du,v = (µuWβ j +β0
j −W j,v)Σ−1

u (µuWβ j +β0
j −W j,v)T (1.11)

and obtaining P j through the solving the entropic optimal transport problem [Peyré

et al., 2019] using the Sinkhorn-Knopp algorithm [Sinkhorn and Knopp, 1967] which

minimizes the following objective:

P∗
j = argmin

p∈P

∑
u,v

pu,vDu,v −γpu,v log pu,v (1.12)

Further details of permutation inference for neuron identification can be found in [Mena

et al., 2020].

1.2.4 Results

In words, our algorithm operates in the following way. First, the targeted inference

parameters are initialized using the neuron centers and colors for a random worm. Then,
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Head (unaligned images)

Head (atlas)

Tail (unaligned images)

Tail (atlas)

Figure 1.3: Statistical atlas of C. elegans neurons The construction of the statistical
atlas of C. elegans neurons in the head and tail is demonstrated by contrasting the
superposition of unaligned images of the 10 NeuroPAL worms (top row for head, third
row for tail) with the superposition of aligned images to the converged atlas (second
row for head, fourth row for tail). The canonical neuron positions and their NeuroPAL
colors are represented as colored dots. A limited selection of neurons are annotated to
avoid overcrowding in the figure. Note that the nerve ring (the hollow space in the head,
one-third distance from the anterior) and the empty boundaries separating many of the
worm ganglia, are distinct in the aligned images while indistinguishable in the unaligned
images. See [Yemini et al., 2019b] Figure 2 for further details.
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the remaining worms are affinely aligned to the hypothetical atlas by solving the linear

system for {β j,β
0
j } in equation 1.10. The means and covariances of the aligned neurons

are then used to update the atlas parameters of µ and Σ. This procedure is iteratively

repeated until convergence. See Fig. 1.3 for an illustration.

1.3 Male C. elegans Neural Atlas

It is generally appreciated that nervous systems are sexually dimorphic on a gross

anatomical level. However, sex differences in nervous systems have been carefully

mapped out, with single-cell resolution, in only very few animals. The nematode C.

elegans is the only organism for which a complete cellular, lineage, and anatomical

map of the entire nervous system has been described for both sexes (Fig. 1.7) [Cook

et al., 2019b; Jarrell et al., 2012a; Sulston and Horvitz, 1977; Sulston et al., 1980].

With 383 neurons total, the nervous system of the male is almost 30% larger than

that of the hermaphrodite (302 neurons). Based on lineage and anatomy and molecular

profiles, 294 neurons are shared between both sexes. Hermaphrodites, which are somatic

females, contain an additional 8 hermaphrodite-specific neurons that fall into two classes:

the well characterized HSN and VC motor neuron classes, both of which control egg

laying behavior [Schafer, 2005]. The male contains an additional 93 neurons that fall

into 27 anatomically distinct classes [Cook et al., 2019a; Molina-García et al., 2020;

Sammut et al., 2015; Sulston et al., 1980]. These 27 neuron classes are extensively

interconnected and the structure of their interconnectivity displays a number of notable

features, including modular substructures regulating subsequences of male mating

behavior; multiple, parallel and short synaptic pathways directly connecting sensory

neurons to end organs and recurrent, reciprocal connectivity among the male’s many

sensory neurons [Cook et al., 2019a; Jarrell et al., 2012a].

Of the 27 male-specific neuron classes, two are the head sensory neuron classes
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CEM and MCM, two are the ventral nerve cord motor neuron classes CA and CP, and

the remaining 23 classes are located in the tail of the animal. Some of the 27 male-

specific neuron classes are composed of only a single neuron or two bilaterally symmetric

neurons. Other neuron classes are composed of multiple class members: the A- and

B-type ray sensory neurons are each composed of nine distinct bilateral pairs. With

the exception of the four CEM sensory neurons in the head, which are born in the

embryo and induced to die in hermaphrodites, all male-specific neurons are generated

during postembryonic development from blast cells that proliferate and differentiate

in a male-specific manner [Sulston et al., 1980]. Based on cell divisions patterns, the

87 postembryonically generated male-specific neurons are generated at different larval

stages. Each individual larval stage contributes to the generation of some of these

postembryonic neurons [Sulston et al., 1980]. However, when exactly these neurons

terminally differentiate is poorly understood. Moreover, in his classic lineage studies

Sulston also noted that the number of two male-specific neuron classes, DX and EF,

display a variable number of class members [Sulston et al., 1980]. Since this observation

was originally based on Nomarski optics and limited sample size, this variability has

not been well characterized and has not been observed elsewhere within or outside the

nervous system of C. elegans.

The vast majority of the sex-shared nervous system is generated in the embryo and

synaptically connected by the first larval stage. Thus, one fascinating problem presented

by the male-specific nervous system is how the many postembryonically generated,

male-specific neurons become integrated into already existing circuitry. Of the 27 male-

specific neuron classes, all but one (PCC) make synaptic contacts to sex-shared neurons.

Understanding how such integration occurs may provide interesting insights for more

complex vertebrate nervous systems, which are similarly characterized by the addition

of new neurons throughout many stages of juvenile and even adult stages.
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Despite many interesting aspects of the male nervous system, it has received little

attention over the years when compared to the nervous system of the hermaphrodite. A

number of studies have illuminated aspects of the development and function of male-

specific neurons, but those studies only dealt with a limited set of neurons [Barr et al.,

2018; Emmons, 2014, 2018; García and Portman, 2016; Garcia et al., 2001; Liu and

Sternberg, 1995; Portman, 2017]. Hence, many aspects of the development and function

of the 93 male-specific neurons remain uncharted territory. With some notable exceptions,

including the systematic mapping of neurotransmitter identities [Gendrel et al., 2016;

Pereira et al., 2015; Serrano-Saiz et al., 2017], marker analysis in the ray sensory

neurons [Lints et al., 2004] and ventral nerve cord [Kalis et al., 2014], few molecular

markers have been developed that label male-specific neurons. Single-cell transcriptome

approaches have so far exclusively focused on the hermaphrodite [Cao et al., 2017;

Packer et al., 2019; Taylor et al., 2021]. This dearth of molecular markers not only limits

the ability to assess, for example, cell fate in specific mutant backgrounds, but also

complicates the means by which cellular expression patterns in the male tail can be

unambiguously identified.

Here, we address these shortcomings by showing that NeuroPAL, a previously de-

scribed multicolor transgene that distinguishes all neuron classes in the hermaphrodites [Yem-

ini et al., 2021], can also be used to disambiguate the 93 neurons of the male nervous

system. We find that the NeuroPAL transgene, which harbors more than 40 promoters

that drive the expression of four distinct fluorophores, generates a color map that pro-

vides sufficient discriminatory power to reliably identify all male-specific neurons. We

provide proof-of-principle examples that show how to use NeuroPAL to identify gene

expression patterns in the nervous system, and use the NeuroPAL color map to provide

a number of insights into the development of the male-specific nervous system.
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1.3.1 Results

NeuroPAL provides discriminatory color barcodes for all male-specific neurons With

the exception of neurotransmitter pathway genes [Gendrel et al., 2016; Lints and Em-

mons, 1999; Pereira et al., 2015; Serrano-Saiz et al., 2017], few molecular markers

have been comprehensively described for male-specific neurons (www.wormbase.org).

For several related neuron classes, for example the ray neurons, molecular markers

are available, but they do not provide sufficient resolution to distinguish between all

individual class members [Lints and Emmons, 1999; Lints et al., 2004]. We set out to

test whether the NeuroPAL transgene that we previously described for the C. elegans

hermaphrodite [Yemini et al., 2021] would provide a similarly information rich molecular

map of the male-specific nervous system.

The NeuroPAL transgene was designed to provide color codes to all neurons of the C.

elegans hermaphrodite [Yemini et al., 2021]. This was achieved through the judicious use

of four fluorophores with separable emission spectra (mTagBFP2, CyOFP1, Tag-RFP-

T, mNeptune2.5), expressed under the control of a set of 43 different promoters with

overlapping expression profiles (39 neuron-type specific promoters + 4 distinct, but fused

panneuronal promoters) [Yemini et al., 2021]. Promoter choices were dictated by the

goal of having neighboring neurons display distinct color codes, thereby unambiguously

discriminating neighboring neuron identities from one another.

Using NeuroPAL to address stereotypy in the male-specific nervous system

We first used NeuroPAL to address questions that relate to stereotypy of the male-

specific nervous system. In his original lineage analysis of the male tail, John Sulston

reported on an unusual phenomenon, not observed anywhere else in the entire organism:

descendants of the U ectoblast produce variable numbers of DX and EF neurons, a

notion indicated by stippled lines in Sulston’s original lineage diagram. This violates
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the complete stereotypy and deterministic nature of all cell lineages, both neuronal and

non-neuronal. Moreover, according to the Sulston lineage diagram, this variability is

restricted to the EF and DX neurons that descend from the U neuroblast and that are

located in the preanal ganglion (the EF3 & 4 and DX3 & 4 neurons). In contrast, the DX

and EF neurons that are produced from the F neuroblast (EF1 & 2, DX1 & 2), located in

the dorsal rectal ganglion, were generated in an apparently invariant manner (as per

the Sulston lineage diagram). However, no quantification of this was provided. Because

the lineage analysis entirely relied on cleavage pattern alone, it was also not clear to

what extent the variably produced DX and EF neurons acquire a differentiated state.

Using NeuroPAL, we examined 22 young adult males and found variability in the

presence of fully differentiated EF and DX neurons in the preanal ganglion Fig. 1.6A

– assessed by wild-type expression of NeuroPAL colors in these neurons. Within the

F-derived dorsorectal ganglion, 22/22 animals invariably showed two fully differentiated

DX neurons (DX1 and DX2) and two EF neurons (EF1 and EF2), corroborating John

Sulston’s observations. In the U-derived preanal ganglion, 19/22 animals show one DX

and one EF neuron (= DX3 and EF3), 1/22 had one additional EF (= EF4), and 2/22 had

one additional EF (= EF4) and one additional DX (= DX4).

The EF and DX neurons are also the neurons with the greatest inter-animal variabil-

ity in their relative positioning. We arrived at this conclusion by closely considering the

overall variability of positioning of both sex-shared, as well as sex-specific neurons in the

tail of the animal. We had previously shown that in the hermaphrodite head, where the

vast majority of neurons are generated embryonically, most cells are positioned within

a small volume of variability [Yemini et al., 2021] and we observer a similar extent of

variability in the male head Fig. 1.6. However, in the tail, where the vast majority of

the postembryonically added male-specific neurons are located, there is substantially

more positional variability, both in the sex-shared neurons as well as in the sex-specific
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neurons Fig. 1.6. The EF and DX neurons stand out in the extent of variability in their

positioning. It will be interesting to investigate whether the inter-animal variability

in neuronal soma position in the male tail also translates into variability in neuronal

process adjacency, and hence connectivity, between individual animals.

1.4 Extensions to Deformable Models and Unsupervised Atlases

1.4.1 Methods

In brief, we model each observation, e.g., individual images of C. elegans brains or

fruit fly wings as a random draw from a probability distribution subjected to a random

postural transformation. We call the parameters of this latent probability distribution,

the "atlas" (Fig.1.8A). We infer the latent atlas parameters and the transformation

terms by formulating the generative process through a neural network and use spatial

transformers [Jaderberg et al., 2015] to perform differentiable optimization (Fig.1.8B).

Details of these steps can be found in the following sections.

Notation: We start by introducing the notation. We denote the atlas as a latent

variable Z ∈ RD following the distribution Pθ(Z). Both X , Z random variables can be

high-dimensional or low dimensional depending on the application. For example a

statistical atlas of C. elegans neural positions is constructed using point clouds that are

lower dimensional compared to an atlas that is constructed using pixelwise images [Varol

et al., 2020].

Generative model: Given the atlas, i.e. a distribution over the random variable Z

the observations X i are samples from the prior Zi that are transformed according to

some biological transformation fβi ∈F where F is a function family containing feasible

transformations between the atlas and observations. For example, in the C. elegans
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hermaphrodite, the feasible transformation family is the space of rigid transformations

{S,T} where S ∈S O3 and T ∈R3 and piecewise rigid transformations.

Inference and optimization: Once we specify F and the functional form of Pθ then

our goal is to solve the inverse problem and find θ,β1:n. To do this, we write a probabilistic

cost function informed by our statistical model and optimize it w.r.t. θ,β1:n:

Z i ∼ Pθ(Z) X i|Z i ∼ P(X |Z i)= fβi (Z i)+ϵi

L (θ,β1:n)= logPθ,β1:n(X1:n, Z1:n)=
n∑

i=1
logPβi (X i|Z i)+ logPθ(Z i)

We take an alternating approach for optimizing L where we iteratively optimize L

w.r.t. θ and β1:n. Given our estimate of the values β1:n denoted by β̂1:n we find the best

fit θ̂ to the data in the following way:

θ̂ =max
θ

L (θ|β̂1:n)=max
θ

n∑
i=1

logPθ( f −1
β̂i

(X i)) (1.13)

Notice that here we are trying to find the sufficient statistics of Pθ from known ob-

servations Z1:n. For the case of multivariate normal distributions where θ = {µ,Σ} the

maximum likelihood estimate (MLE) is the empirical mean and covariance. However, our

formulation allows for incorporating arbitrarily complex distributions where we solve

the MLE problem using stochastic variational inference in the parameter space. This is

facilitated by probabilistic programming where generic algorithms for MLE and MAP

estimation are provided. In the result section, we show an example of using Dirichlet as

the prior distribution over the colors in C. elegans point clouds.

On the other hand if we have a reasonable estimate of θ then in order to update our

estimates of β1:n we need to solve the following for each i:

β̂i =max
βi∈F

L (βi|θ̂)=max
βi∈F

logPθ̂( f −1
βi

(X i)) (1.14)
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Depending on the function family F analytical solutions might exist but in general

specific algorithms need to be developed for particular choices of F . We have provided

derivations for rigid and piecewise rigid function families in the appendix but here we

provide a general deep learning architecture for arbitrarily complex function families.

We consider βi to be a function of the input X i and use a neural network param-

eterized by φ to learn the transformation family. The neural network architecture is

determined based on the input data type where we use convolutional architectures for

volumetric or planar image data and fully connected for point clouds. The output of the

network provides βi, for example, rigid transformations are determined by 6 parameters

in 3 dimensions with 3 parameters for the rotation angles along different axes and 3

parameters for the translations. Hence the output dimension of the neural network

for rigid transformation family is 6. In the case of piecewise rigid transformations, the

number of parameters depend on the number of pieces with 6 parameters for each piece.

Learning the transformation family: If the transformation parameters are known

(e.g. for rigid or affine transformations), or can be driven analytically or algorithmically,

we can train the network by directly minimizing the error of transformation parameters

L (φ) = ∑n
i=1

∥∥β̄i −βi(X i;φ))
∥∥2. Otherwise, we train the neural network by optimizing

over the loss function in equation 1.14. To compute the gradients of loss w.r.t. φ we need

to apply the inverse transformation in a differentiable way w.r.t. φ. For point clouds,

this is straightforward since the transformation family is assumed differentiable. For

image inputs, differentiable transformation is made possible by the recent development

of differentiable grid sampling for spatial transformers [Jaderberg et al., 2015] where

transformation parameters are used to define a parameterized sampling grid that maps

the image to a target location.
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1.4.2 Results

1.4.2.1 Supervised atlas of hermaphrodite C. elegans neuron positions:

We used a public dataset of 10 point clouds of hermaphrodite C. elegans tail neurons

with 42 neurons per worm [Yemini et al., 2021]. Each neuron in each worm has a 3D

location and a RGB color represented by a 6D vector. We chose the prior distribution over

the positions to be multivariate normal (MVN) as suggested by prior work [Bubnis et al.,

2019; Varol et al., 2020]. However, for the color distribution we experimented with Dirich-

let and MVN distributions. We also experimented with two different transformation

family for the spatial component of the point clouds, namely rigid (R) and regularized

piecewise rigid (PR) transformations. The transformation family for the color component

is a simple softmax operator.

We used a fully connected architecture for φ and parameterized rigid and piecewise

rigid transformations using 3 angle and 3 translation parameters per piece. The opti-

mization is performed using Adam optimizer with learning rate 1e−4. The updates of

β1:N are performed by backpropagating the gradients of φ while we used Pyro SVI tool

for maximum likelihood estimation of θ. Details on the optimization and implementation

can be found in the supplementary.

In Fig. 1.9, we illustrate the atlas parameters θ and aligned point clouds Z1:N as well

as the training and testing likelihoods. Our results show that Dirichlet captures the color

distribution better than MVN evaluated by test log likelihood (5-fold cross validated)

while R and PR transformation families achieve comparable test log likelihood.
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1.4.2.2 Semi-supervised atlas of male C. elegans images and partial

annotations:

Male C. elegans images contain denser subsets of neurons in smaller regions making

it more difficult to annotate all the neurons manually. Here we showcase the flexibility

of our framework in this semi-supervised setting by applying it directly to the image

space and using the partial annotations to guide the transformation. The inputs in this

case are 12 images of male C. elegans (not point clouds), hence we used a convolutional

architecture for φ but the transformation families are chosen to be R and PR as before.

We experimented using subsets of annotations with various sizes (5, 10, 20) and observed

that the test error (in terms of the number of pixels) drops with more annotations, shown

in Fig. 1.10f,g. Furthermore, the alignment parameters lead to more biologically feasible

transformations when we include more annotations (Fig. 1.10a-d). We then applied the

transformations found in the image space to the neural point clouds and constructed a

semi-supervised atlas of male neurons shown in Fig. 1.10e. The transformations for the

semi-supervised atlas is inferred using 66 neurons.

1.4.2.3 Unsupervised atlas of transgenic D. melanogaster wings:

We used a public dataset [Sonnenschein et al., 2015] of 128 fruit fly images from 4

genotypes and 2 sexes to infer a latent atlas that represents an average wing that is

corrected for postural differences by a piecewise rigid motion model. The resulting atlas

can be seen in Fig. 1.11. Using the atlas coordinate framework, we performed pixelwise

t-test on the aligned wings of females and males to observe statistically significant

differences in the wing tip density in the medial part of the wing. Furthermore, our

results show morphological differences between genotypes, with egfr known to modulate

the morphology of veins [Roch et al., 2002].
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Figure 1.4: Neuron locations and their positional variability (A) Neuron locations
and variability, in the retrovesicular ganglion, taken from electron micrographs of three
adult hermaphrodites N2S, N2T, and N2U [White et al., 1986a]. (B) An example of
substantial positional variability. The OLL left (OLLL) and right (OLLR) neurons,
within a single animal, should share equivalent positions. Instead they show substantial
anterior-posterior displacement relative to each other. The transgenic reporters and their
pseudo colors are noted on the figure. (C,D) Canonical neuron locations (filled circles
displaying the NeuroPAL colors) and their positional variability (encircling ellipses
with matching colors) for all ganglia, as determined by NeuroPAL (otIs669). Positional
variability is shown as the 50% contour for neuronal location (measured as a Gaussian
density distribution), sliced within a 2D plane. We show both the left-right and dorsal-
ventral planes to provide a 3D estimation of positional variability. (C) Left, right, and
ventral views of the head neuron positions. OLLR exhibits over twice the positional
variability of OLLL in its anterior-posterior axis, echoing the displacement seen with the
non-NeuroPAL transgene in panel B. (D) Left, right, and ventral views of the tail neuron
positions.



Figure 1.5: Canonical neuron locations and their positional variability Canonical
neuron locations (filled circles with their NeuroPAL coloring) alongside their positional
variability (encircling ellipses with matching color) for all ganglia in the head (A) and
tail (B), as determined by NeuroPAL (otIs669). Positional variability is displayed as the
50% contour for neuronal location (measured as a Gaussian density distribution), sliced
within a 2D plane; because we are restricted to a planar view, we show both the left-
right and dorsal-ventral planes to provide a 3D estimation of the true contour bounding
positional variability. Left, right, and ventral views of neuron position variability is
shown.

23



Figure 1.6: Variability of cell generation and position in the adult male tail A-C:
The atlas of male tail neuron positional variability (based on 13 male tails) for the left
(A), right (B), and ventral (C) sided views. Dots indicate the mean position of each neuron.
Ellipses indicate the positional variability of each neuron in the given axis. Neurons
colors approximate those in NeuroPAL but have been brightened for visibility.
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Figure 1.6: (cont. from previous page) D-E: Positional variability of the individual
hermaphrodite versus male neurons in the head (E) and tail (F). Six neurons that
show maximal differences between both sexes are circled and identified. F-G: Quantifica-
tion of positional variability for the collection of all head (G) and tail (H) neurons of the
hermaphrodite (which are all sex-shared) versus the male sex-shared and sex-specific
neurons. In the head, the positional variability is nearly the same for these three neuron
groups. In the tail, the positional variability for the group of hermaphrodite neurons is
far less than that of the male sex-shared and sex-specific neurons. We report the P-value
(Mann-Whitney U test) for differences between hermaphrodites and males and the effect
size (Cohen’s D). For the head N = 10 hermaphrodites, 12 males, 182 sex-shared neurons,
and 6 male-specific neurons, with a mean of 9.6 neurons/hermaphrodite and 9.8 neu-
rons/male. For the tail N = 10 hermaphrodites, 13 males, 41 sex-shared neurons, and 69
male-specific neurons, with a mean of 9.6 neurons/hermaphrodite and 11.6 neurons/male.
Further hermaphrodite and male atlases can be found in Fig. 1.7.
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Figure 1.7: Positional variability in the male versus hermaphrodite head A:
Ventral view of the positions of the hermaphrodite (red) and male (blue) neurons (circles)
in the tail. The sex-shared neurons are linearly aligned to each other, labeled, and
corresponding pairs are connected by a line. Note that, whereas most sex-shared neurons
are positioned similarly in both sexes, the beginning of the hermaphrodite VNC is
displaced anterior to its male counterpart and, in contrast, the hermaphrodite dorsorectal
ganglion neurons are displaced posterior to their male counterparts. B-D: The atlas of
male neuron positional variability (based on 12 male heads) for the left (B), right (C), and
ventral (D) sided views. Dots indicate the mean position of each neuron. Ellipses indicate
the positional variability of each neuron in the given axis. Neurons colors approximate
those in NeuroPAL but have been brightened for visibility.
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Figure 1.8: Schematic of generative model of atlas construction A: Each observa-
tion (Z i) is modeled as a random draw from an atlas parametrized by θ and perturbed
by transformation f −1

βi
. B: We infer atlas parameters (θ) from observations (X i) by opti-

mizing a neural network loss function that penalizes the distance of each transformed
observation (Z i) to the latent atlas (θ). Through this process, we also learn the trans-
formation model parameters, (βi) that minimizes the loss. Inference is performed using
differentiable grid sampling [Jaderberg et al., 2015].
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Figure 1.9: Supervised positional and color atlas of tail neurons of
hermaphrodite C. elegansA,B: Dorsal ventral (A) and left-right view (B) of the atlas
constructed by piecewise rigid transformations. Small dots indicate individuals’ neural
positions, larger dots indicate mean positions in the atlas and ellipses indicate one stan-
dard deviation of mass. C: The training negative log-likelihood (NLL) under different
transformations and color models (PR: piecewise rigid, R: rigid, Dir: Dirichlet, Nor: nor-
mal). D: Testing error. Piecewise rigid motion model with Dirichlet color model has the
lowest NLL in both training and testing samples, indicating appropriateness of modeling
motion and color. Additional results can be found in the supplementary material.
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Figure 1.10: Semi-supervised positional and color atlas of tail neurons of male C.
elegans We show the progressive effect of including more annotated neural positions to
atlas quality.A: Superposition of unaligned NeuroPAL [Yemini et al., 2021] strain male
worms.B-D:Superposition of worms aligned to an atlas that is trained using 5,10,20
neuron annotations per worm. E: The means and covariances of neural positions and
colors inferred using semi-supervised atlas training. F: Out of sample alignment error
decreases with increasing number of neural annotations. G: Training loss is minimized
when more annotations are provided. This is because posture can be better estimated
with more information about neuron location. Additional results can be found in supple-
mentary material.
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Figure 1.11: Unsupervised atlas of fruit fly wing We infer a latent canonical atlas
wing in the pixel space without the use of any markers or annotations (B) using 128
example images of fruit fly wings in varying poses (A). C: Averaging wing images of
different genotypes and sexes enables a visual comparison of morphological differences
between these groups. B-heatmap: Pointwise t-statistics (q < 0.05) between males and
females yields a heatmap that shows that females have more mass in the the medial
part the wing than males.
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From Raw Data to Scientific Discovery in C. elegans

2.1 Introduction

Limited by technology, classical neuroscience focused on recording from single neu-

rons or hand-selected neurons responsive to specific task parameters. Small scale record-

ings led to the discovery of neural tuning curves and feature selective neurons such as

face neurons or place cells. More recently, neuroscientists have become able to record from

much larger populations of neurons. These recordings gave rise to a new understanding

of how neural circuits work in coordination, complementing previous discoveries [Urai

et al., 2022]. For example, a recent paper argues that neural tunings can be interpreted

as projections of a latent structure in the neural state space with specific geometrical

properties well suited for performing particular computations [Kriegeskorte and Wei,

2021]. This and many other examples corroborate the necessity of large scale record-

ings for a more holistic characterization of neural circuits specifically in the context of

behavior.

There has been an explosion in the experimental technologies for recording from large

neural populations. With microscopy imaging being in the front line of these techniques,

31



new imaging modalities are continuously proposed enabling us to access functional or

structural information about the underlying tissue. Some imaging techniques make the

structures visible without needing exogenous markers while others such as fluorescence

microscopy rely on labelling cells using fluorescence markers. The tissues are then im-

aged using various imaging modalities including light-sheet, light-field, wide-field or

multi-photon microscopy. The images can vary largely due to the imaging techniques

and modality, and the properties of the tissue itself. Ultimately, the collected datasets

are merely a proxy for the actual signals of interest. It is then crucial to build tools for

efficient and scalable extraction of the signals from datasets. Although deep learning

revolutionized image and video processing for biological applications in recent years, but

the vast majority of existing techniques rely on large training datasets annotated by

experts. These datasets often do not exists for novel applications and new imaging modal-

ities. Thus there is a critical need to analysis pipelines that can assist experimentalists

without requiring large training datasets.

In this chapter, we describe the analysis pipeline developed for the recently proposed

imaging modality NeuroPAL. Our proposed pipeline consists of registration [Nejatbakhsh

and Varol, 2021], segmentation [Nejatbakhsh et al., 2020b], neural tracking [Yu et al.,

2022], and signal extraction [Nejatbakhsh et al., 2020c] each of which is described in more

detail in one of the subsequent sections. Notably,our pipeline enabled computation of the

functional connectivity of C. elegans neurons and identification of neuronal differentiation

defects in C. elegans mutants [Yemini et al., 2021]. We emphasize that categorizing the

analysis techniques as a pipeline consisting of the above steps is general and can be

applied to virtually every single animal model and emerging imaging modality. All

components of our pipeline are included in an open source software with graphical user

interface allowing experimentalists to efficiently detect neurons and uniquely resolve

their identities in C. elegans (Fig. 2.1).
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Figure 2.1: NeuroPAL software: an algorithm for semi-automated neuronal
identification and an algorithm to generate optimal-coloring solutions for
cell identification See Text S1-S2 for algorithmic details and validation. (A-C) The
algorithm used for automated neural identification. (A) Raw images are filtered to remove
non-neuronal fluorescence and neurons are detected in the filtered image. Detected
neurons are identified by matching them to a statistical atlas of neuronal colors and
positions. (B,C) Automated neuronal identification accuracy begins at 86% for the head
and 94% for the tail. Manually identifying eight neurons raises the head accuracy
above 90%. Overall accuracy is displayed as a black line. Accuracy for each ganglion
is displayed as a dotted, colored line (see legend). Many of the neurons and ganglia
have high identification accuracy and confidence. The ventral ganglion is a problematic
area, likely due to the high positional variance therein. (D-E) The algorithm used to
generate optimal-coloring solutions for cell identification (for any collection of cells in any
organism). We show simulations of two theoretically-optimal alternatives to NeuroPAL,
one that permits as many reporters as NeuroPAL (D) and one that restricts the transgene
to only 3 reporters (E). With the exception of the number of reporters, both alternatives
were generated using parameters similar to NeuroPAL: three landmark fluorophores,
where each fluorophore is distinguishable at three intensities (high, medium, and low).
Reporters were chosen by the algorithm from those available in WormBase, a community-
curated database of cell-specific reporter expression. Similar databases are available
for other model organisms (e.g., fly, fish, and mouse). We evaluated the two NeuroPAL
alternatives by computing the percentage of their color violations, defined as neighboring
neuron pairs with indistinguishable colors.

2.2 C. elegans Neural Point Cloud Registration

Point set registration is one of the central problems in computer vision that involves

the optimization of a transformation that aligns two sets of point clouds [Tam et al.,

2013; Van Kaick et al., 2011]. Point set registration have been applied in numerous fields

including but not limited to robotics [Zhang and Singh, 2015], medical imaging [Audette

et al., 2000], object recognition [Drost et al., 2010], panorama stitching [Bazin et al.,
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2014] and computational neuroscience [Bubnis et al., 2019]. The types of allowable

transformations and energy functions utilized in the cost function have differentiated

varying methods [Aiger et al., 2008; Besl and McKay, 1992; Bustos et al., 2019; Enqvist

et al., 2009; Hast et al., 2013; Indyk et al., 1999; Irani and Raghavan, 1999; Maron and

Lipman, 2018; Mellado et al., 2014; Mount et al., 1999; Myronenko and Song, 2010;

Pokrass et al., 2013; Tam et al., 2013; Yang et al., 2020; Zhou et al., 2016]. In general,

point set registration methods employ an iterative strategy of solving the transformation

and updating the matching which works well in practice but there are no guarantees

for reaching the global optima [Chetverikov et al., 2002]. Only a few methods have

provided approximate globally optimal solutions [Yang et al., 2016; Zhou et al., 2016].

These methods rely on severe constraints of the transformation domains, such as the 3D

rotation group SO(3), in order to employ branch and bound techniques on discretizations.

Theoretical analysis of the recovery guarantees of point set registration has not been

performed for a general number of dimensions until recently when it was termed as

unlabelled sensing by [Unnikrishnan et al., 2015] as a problem with duality connections

with the well-known problem of compressed sensing [Donoho et al., 2006]. In this problem,

similar to linear regression, the response signal is modeled as a linear combination of

a set of covariates. However, the correspondence of the responses to the covariates is

modeled as having been shuffled by an unknown permutation matrix. For this reason, the

problem has also been termed as linear regression with shuffled labels [Abid et al., 2017],

linear regression with an unknown permutation [Pananjady et al., 2016], homomorphic

sensing [Tsakiris and Peng, 2019] or linear regression without correspondence (RWOC)

[Hsu et al., 2017], the latter of which will be used to refer to the problem herein. Although

RWOC is, in general, an NP-hard problem [Pananjady et al., 2016], there have been

several advances in recent years to propose signal to noise ratio (SNR) bounds for

recovery of the permutation matrix and the regression coefficients [Pananjady et al.,
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2016; Unnikrishnan et al., 2018]. Conversely, the same works have also analyzed the

SNR and sampling regime by which no recovery is possible.

Nevertheless, the computer vision community has attempted to solve the point set

registration problem through consideration of outliers and missing correspondences,

which are typically encountered in real-world applications. A common technique used

in point set registration to robustify the optimization against outliers is to employ

random sampling consensus (RANSAC) subroutines [Fischler and Bolles, 1981; Torr and

Zisserman, 2000; Yang and Carlone, 2019]. The main advantages of RANSAC are that

the randomization procedure employed can severely reduce the computational cost of an

otherwise combinatorial search.

Motivated by applications in computational neuroscience such as matching the

neuronal populations of Caenorhabditis elegans (C. elegans) across different nematodes,

we aim to unify the ideas presented in RWOC literature and robust point set registration

methods to provide provably approximate solutions to the RWOC problem in the presence

of outliers and missing measurements commonly encountered in fluorescence microscopy

data. Robustly and automatically matching and identifying neurons in C. elegans could

expedite the post-experimental data analysis and hypothesis testing cycle [Bubnis et al.,

2019; Kainmueller et al., 2014; Nguyen et al., 2017b; Yemini et al., 2019b].

2.2.0.1 Main contributions

The main contributions presented in this paper are the introduction of randomized

algorithms for the recovery of the regression coefficients in the RWOC problem that

takes into account noise, missing data, and outliers. Hsu et al. [Hsu et al., 2017] provide

algorithms for the noisy case without generative assumptions; their algorithm takes into

account square permutation matrices, which assumes that the entire signal is captured

in the responses and does not take into account any missing correspondences or outliers.
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Unnikrishnan et al. [Unnikrishnan et al., 2015, 2018] provide combinatorial existence

arguments. Tsakiris et al. [Tsakiris and Peng, 2019] provide an algorithm that takes

into account missing correspondences or outliers but not both. Our method is designed

for the practical purpose of matching point clouds that may have noisy measurements,

missing correspondences, and outliers. Missing data can be thought of as outliers in

the source point set, but they can have different interpretations. For example, if the

goal is to register an image onto an already existing atlas, then the parts of the atlas

that are not present in the image are called missing data. The assumption is that the

atlas contains a complete set of objects while the image could be missing some parts for

reasons such as incomplete field of view, mutant defects, individual differences, etc. This

is undoubtedly the case in the application domain of neuron tracking and matching in

biological applications where structures of interest might be missing from the field of

view or other unrelated confounding biological structures might exist and potentially

be captured by the detection algorithms. Specifically, we demonstrate the efficacy of

the proposed method in the identification and tracking of in-vivo (C. elegans) neurons

where it is possible that some neurons are missing and adversarial objects that might be

confused as neurons are present.

In summary, our contributions are four-fold:

1. We introduce the notion of "robust" regression without correspondence (rRWOC)

that models missing correspondences between responses and covariates as well

as completely missed associations in the form of outliers and missing data. In

contrast with standard point set registration methods, we further consider the case

of adversarial outliers.

2. We introduce a polynomial-time algorithm to find the exact solution for the one-

dimensional noiseless rRWOC and the approximate solution in the noisy regime.
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3. We introduce a randomized approximately correct algorithm that is more efficient

than pure-brute force approaches in multiple dimensional rRWOC.

4. We demonstrate the computational neuroscience application of our approach to

point-set registration problems in the context of automatically matching and

identification of the cellular layout of the nervous system of the nematode C.

elegans.

Figure 2.2: Demonstration of various problem settings of regression without
correspondence A: Full set of hidden correspondences between source and target
multisets. B: Missing correspondences in the target set. C: Unstructured outliers in the
target set. D: Adversarial outliers in the target set – this setting imposes a theoretical
ceiling of 50% outliers in the target set. However, in practice, more than 50% ratio of
unstructured outliers can be handled.

2.2.1 Regression model

First, we introduce notation. Let X = [x1|x2| . . . |xm]T ∈Rm×d and Y = [y1|y2| . . . |yn]T ∈
Rn×d denote two d-dimensional point sets consisting of m and n points, respectively. Let

us call X the reference or source set. Let Y denote the target set which may contain

outliers and missing correspondences. Note that the points in X that are missing corre-

spondences in Y can be seen as outliers in the source set, hence justifying our claim that

we model outliers in both the source and target sets.

37



Let the set of indices I = {i1, . . . , i|I |}⊆ [n] denote the indices of y j which are inliers.

Conversely, let O = {o1, . . . , o|O |} ⊆ [n] denote set of indices of y j which are outliers. By

construction, these sets are a disjoint partition of the entire index set of target points:

I
⋃

O = [n] and I
⋂

O = ;. Let P ∈ P n×m denote a possibly unbalanced permutation

matrix where there are at most min{n,m} ones placed such that no row or column has

more than a single one. All other entries are zeroes. Let π(i) denote the location of the

one in the ith row of the permutation matrix P. Next, let β ∈Rd×d denote the regression

coefficients and ϵ∼N (0,νI) denote zero-mean Gaussian noise. Lastly, let U[C ] denote

the uniform distribution within some closed convex set C . Given these definitions, we

can define the robust regression without correspondence (rRWOC) model as

yi j
= xπ(i j)β+ϵ for i j ∈I

yol
∼U[C ] for ol ∈O (2.1)

Note that the bias terms in the regression can be modeled by padding x with a

constant column of ones.

In contrast with linear regression, where the sole objective is to recover the coefficients

β, the two-fold objective of RWOC is to recover the correct permutation matrix P, and

the regression coefficients β. To add to the complexity of the problem, the three-fold

objective of rRWOC is to recover the inlier set I , the permutation P, and the coefficients

β.

2.2.2 Algorithms

To aid in the recovery of the solution in rRWOC, we introduce the following assump-

tion.

Assumption 1 (Maximal inlier set). For point sets X , Y , there exists a triple {I ∗,β∗,P∗}

that is maximal in the sense that n ≥ |I ∗| ≥ |I ′| such that any other triple {I ′,β′,P ′} is
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not considered to be the underlying regression model.

Assumption 1 allows the identifiability of whether a given hypothetical index set can

be considered to be the true underlying inlier set or not. In practical terms, suppose

we generate simulated data with n points in Y of which k > n/2 are outliers generated

uniformly and the remainder generated with respect to a coefficient βI such that

Y [I ] = Xπ(I )β
I +ϵI . There may be cases such that uniformly generated "outliers", Y [O ],

are structured such that there exists a coefficient βO and permutation PO such that

Y [O ] = Xπ(O )β
O + ϵO where Var(ϵI ) ≥ Var(ϵO ). In this case, βO is identifiable but not

verifiable as "correct." In practical terms, assumption 1 puts a ceiling on the maximum

proportion of outliers that any regression without correspondence algorithm can handle.

In a simplest example, if the target point set consists of two duplicate copies of rotated

and transformed source point set, it is impossible to identify the correct matching.

However, if one of the duplicates has less points, then we can invoke the principle of the

maximal inlier set to identify the correct target set. See figure 2.2 for a visualization.

Equipped with the rRWOC model and assumption 1, we now demonstrate the pro-

gressive increase in the complexity of recovery of ordinary linear regression, RWOC, and

rRWOC in one-dimension.

2.2.2.1 Optimal regression in d = 1

Linear regression in one-dimension with known correspondences, no offset term

and no outliers can be obtained in O(n) time using the univariate normal equation:

βOLS =
∑n

i yi xπ(i)∑n
i x2

πi
. On the other hand, RWOC in the one-dimensional case with no noise can

be solved in O(n log(n)) steps via the method of moments and a simple sorting operation.

Namely, first, the regressor βRWOC can be estimated using the ratio of the first moments
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Algorithm 1 One dimensional robust regression without correspondence - Exhaustive
approach
Input:Reference set: {x1, . . . , xm}, target set: {y1, . . . , yn}, outlier margin: ν
Require: k < n

2 (number of outliers)

1: for i = 1, . . . ,n do
2: for j = 1, . . . ,m do
3: Compute βi, j = yi/x j
4: Compute linear assignment [Kuhn, 1955]:

P i, j ← argmin
P∈P n×m

∥xβi, j −PT y∥2
2

5: Compute hypothetical inliers:
I i, j = {l:|xπi, j(l)β

i, j − yl | ≤ ν}
6: end for
7: end for
8: return (i∗, j∗)= argmax

(i, j)
|I i, j| , I ∗ =I i∗, j∗ , P∗ = P i∗, j∗ , β∗ ←

∑
l∈I∗ yl xπ∗(l)∑
l∈I∗ x

π∗(l)2

[1]

of the covariates to the responses:

βRWOC =
∑n

i=1 yi∑n
i=1 xi

(2.2)

and then the permutation can be recovered using the re-arrangement inequality [Beck-

enbach and Bellman, 2012],

min
P

n∑
i=1

(yi − ŷπ(i))2 =
n∑

i=1
(y(i) − ŷ(i))2 = (2.3)

∥P y y−P ŷ ŷ∥2
2 −→ PRWOC = PT

y P ŷ

where y(i) denotes sorted yi and ŷ(i) denotes sorted xiβRWOC and P y and P ŷ denote the

permutation matrices that capture the sorting operations.

In the case with outlier elements in y, the problem is non-trivial, even in one di-

mension, since sorting does not allow the identification of outliers1. To solve the one

dimensional rRWOC, we introduce algorithm 1 which recovers the triplet {I ∗,β∗,P∗} in

an exhaustive fashion.
1See supplementary material section 5 for a toy example experiment.
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Proposition 1 (Correctness of Algorithm 1). Suppose there exist n− k inliers in y

and that k < n/2. Then algorithm 1 yields the correct regression coefficient β∗ = β

with probability 1 for noiseless data and with high probability for noisy data with an

appropriately selected margin parameter ν.

Proof. (The full proof is included in supplementary material) The overview of the proof

is as follows. In the noiseless case, if j =π(i) then βi, j = yi
x j

=β∗. The projection xβi, j maps

all reference points to their exact corresponding reference points. Thus the Hungarian

algorithm will yield these as the assignments since they incur minimal cost. Therefore,

we will have |I i, j| ≥ n−k. The cardinality of inliers is lower bounded and not equal to

n−k since outlier points may by chance be transformed to points in y as well. Contrarily,

suppose the transformation βi,l for l ̸=π(i) yields a larger hypothesized inlier set I i,l ,

such that |I i,l | > |I i, j| then this means that there are more points in xβi,l that are

closer to y than xβi, j, contradicting the assumption that n−k is the maximal inlier set.

■

The time complexity of algorithm 1 can be analyzed as follows. The main computational

cost is due to linear assignment which incurs a cost of O(max{m,n}3) if [Jonker and

Volgenant, 1986] variant is used. Linear assignment is repeated mn times. If m and n

are of the same order, then algorithm 1 has complexity O(n5).

However, if the ratio of inliers to outliers is relatively high, then it is possible to use

randomization procedures like RANSAC [Fischler and Bolles, 1981; Torr and Zisserman,

2000] to speed up the algorithm to yield the correct regression coefficient with high

probability. This is demonstrated in algorithm 2.

Proposition 2 (Correctness of Algorithm 2). Suppose there are n−k inliers in x and that

k < n/2. In q ≥ log(1−δ)
log(1− n−k

mn )
iterations, algorithm 2 yields the correct regression coefficient
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Algorithm 2 One dimensional robust regression without correspondence - Randomized
approach
Input:Reference set: {x1, . . . , xm}, target set: {y1, . . . , yn}, δ (probability of success), outlier
margin: ν
Require: k < n

2 (number of outliers)

1: for t = 1, . . . , q do
2: Sample i ∼ [n] and sample j ∼ [m]
3: Compute βt = yi/x j
4: Compute linear assignment [Kuhn, 1955]:

P t ← argmin
P∈P n×m

∥xβt −PT y∥2
2

5: Compute hypothetical inliers:
I t = {l:|xπt(l)β

t − yl | ≤ ν}
6: end for
7: return t∗ = argmax

t
|I t| , I ∗ =I t∗ ,

P∗ = P t∗ , β∗ ←
∑

l∈I∗ yl xπ∗(l)∑
l∈I∗ x

π∗(l)2

β∗ =β with probability δ ∈ (0,1) for an appropriately selected margin parameter ν.

Proof. The success of algorithm 1 relies on the fact that the exhaustive search eventually

hits a tuple (i, j) such that j =π(i) which yields the correct regression coefficient. There-

fore, when randomly sampling (i, j)∼ [n]×[m], the probability of choosing a corresponding

pair is n−k
n

1
m . The probability of iterating q times such hat no correct correspondence

is selected is (1− (n−k)/(nm))q = (1−δ) where δ is the desired success rate. Taking logs

yields, q = log(1−δ)
log(1−(n−k)/(nm)) ■

The time complexity of randomized algorithm 2 is O
(

log(1−δ)
log(1−(n−k)/n2) n

3
)
.

2.2.2.2 Randomized approximation algorithm (d ≥ 2)

The exhaustive approach for the d ≥ 2 dimensional case requires
(n
d
)(m

d
)

d-subset

comparisons of X ,Y in order to guarantee hitting correct (in the noiseless case) or ap-

proximately correct (in the noisy case) regression coefficients, with complexity O(mdnd).
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Algorithm 3 Robust regression without correspondence - Randomized approach
Input: X = [x1| . . . |xm]T ∈ Rm×d (reference points), Y = [y1| . . . |yn]T ∈ Rn×d (target
points), δ (probability of success), ν (outlier margin)
Require: k < n

2 (number of outliers)

1: for t = 1, . . . , q do
2: Sample i = (i1, . . . , id)∼ [n]d w/o replacement
3: Sample j = ( j1, . . . , jd)∼ [m]d w/o replacement
4: Compute βt = argmin

β

∥X [ j]β−Y [i]∥2
F

5: Compute linear assignment via [Kuhn, 1955]:
P t ← argmin

P∈P m×n
∥Xβt −PY∥2

F

6: Compute hypothetical inliers:
I t = {l:∥xπt(l)β

t − yl∥2 ≤ ν}
7: end for
8: return t∗ = argmaxt |I t|, I ∗ =I t∗ ,

P∗ = P t∗
I ∗ ,β∗ ← argminβ ∥Xπ∗(I ∗)β−Y I ∗∥2

F

However, especially in higher dimensions, the randomized procedure enables a sub-

stantial reduction of iterations to yield a high probability correct triplet of inlier set,

permutation, and regression coefficients. The randomized algorithm for rRWOC in d ≥ 2

is demonstrated in algorithm 3. Random ordered d-tuples of reference and target point

sets are sampled and are used to align the remainder of the point set. The number

of hypothetical inliers for each hypothetical correspondence is assessed by checking

whether the transformed reference points are arbitrarily close to a target point. With

high probability, if correct a d-tuple correspondence is captured, the number of trans-

formed reference points matching a target point will be high (Figure 2.2 top), otherwise

it will result in a partial coverage (Figure 2.2 bottom).

Proposition 3. For q ≥ log(1−δ)

log
(
1− (m−k

d )
(m

d )(n
d)

) , algorithm 3 recovers β∗ and P∗ and the set of inliers

for the noiseless case with probability (1−δ) using arbibrarily small ν. For sufficiently

small noise variance and appropriately chosen ν, algorithm 3 recovers approximate β∗

with high probability.
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Figure 2.3: 2D projection of 3D fluorescence microscopy image of C. elegans
head in [Yemini et al., 2021] dataset Superimposed annotation points denote neuron
locations. Outliers are detections that do not correspond to neurons and missing data
are undetected neurons.

Proof. Analogous to the analysis of algorithm 2, the probability of drawing d inliers out

of n points with k outliers in Y is (n−k
d )

(n
d)

. The probability of matching the drawn inliers

with the d corresponding sampled reference points in X is 1
(m

d) . Probability that any

draw is not going to match is 1− (n−k
d )

(m
d)(n

d)
. The probability that q draws will be incorrect is(

1− (m−k
d )

(m
d)(n

d)

)q
. If we set this to be the probability of failure (1−δ), we then have the estimate

for the number of draws we need to make as q(δ,n,m,k)≥ log(1−δ)/ log
(
1− (m−k

d )
(m

d)(n
d)

)
■

The complexity of algorithm 3 can be analyzed as follows. In each inner loop, the

regression coefficient solution requires O(d3) time, the Hungarian algorithm requires

O(nmd) to compute the input distance matrix and then O(max{n,m}3) to optimize the

permutation matrix. The rest of the operations are O(d). Therefore, the overall time

complexity is

O
( log(1−δ)

log
(
1− (m−k

d )
(m

d)(n
d)

) (d3 +nmd+max{n,m}3)
)
. (2.4)

2.2.2.3 Margin parameter (ν) selection

Both of the proofs of the noiseless and the noisy cases of proposition 1 rely on knowl-

edge of the true regression coefficient and the noise variance in order to estimate the

margin coefficient ν and output the optimal regression coefficient with high probability.

However, in practice, as in many RANSAC-like robust regression settings, these parame-
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ters cannot be known apriori, and ν is typically determined via empirical heuristics and

or cross-validation [Fischler and Bolles, 1981].

In the noiseless case, an appropriate heuristic is choosing ν arbitrarily small since

the correct regression should yield zero residual. However, for the noisy case, if available,

supervised data should be used with known correspondences to estimate the actual

dispersion of point correspondences.

2.2.3 Numerical Results

To verify the theoretical guarantees of the proposed algorithms, simulated data in 3

dimensions was generated in both noisy and noiseless regimes. Furthermore, iterative

solutions of β and P were obtained to demonstrate the suboptimality of local minima

found using block coordinate descent for this non-convex problem.

The neuroscience application of rRWOC was demonstrated in the context of point

set matching of neurons of C. elegans worms recorded using fluorescence microscopy

imaging. The matching accuracy with respect to ground truth was assessed for rRWOC

as well as a robust variant of the iterative closest point (ICP) algorithm [Besl and McKay,

1992] known as trimmed ICP [Chetverikov et al., 2002]. We also compared to the state of

the art algorithm for regression without correspondence, termed homomorphic sensing

(HS) [Tsakiris and Peng, 2019].

Computational setup and code: All experiments were performed on an Intel i5-

7500 CPU at 3.40GHz with 32GB RAM. MATLAB code for 3D versions of algorithm 3 are

included in supplementary material along with sample C. elegans neuron point clouds.
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Figure 2.4: Comparison of rRWOC with other methods and hyperparameter
sensitivity results Left: A: Unaligned point sets of reference C. elegans neuron posi-
tions (red) and target neuron positions (green) B: Alignment with coherent point drift
algorithm [Myronenko and Song, 2010], C: Alignment with iterative closest point algo-
rithm [Chetverikov et al., 2002], D: Alignment with proposed algorithm 3. Right: Margin
parameter (ν) estimation in the C.elegans dataset.

Method TP FP FN ACC F1 PREC REC MD

C
.e

le
ga

ns
H

ea
d

rRWOC 135±28 57±23 60±28 0.53±0.15 0.69±0.13 0.70±0.12 0.69±0.14 2.63±0.27
ICP [Chetverikov et al., 2002] 41±58 151±58 153±59 0.15±0.23 0.21±0.30 0.21±0.30 0.21±0.30 4.18±1.59

CPD [Myronenko and Song, 2010] 5±2 188±4 190±2 0.01±0.01 0.03±0.01 0.03±0.01 0.03±0.01 11.13±0.34
HS [Tsakiris and Peng, 2019] 110±24 70±23 80±23 0.45±0.15 0.60±0.13 0.50±0.09 0.53±0.11 3.2±0.34

C
.e

le
ga

ns
Ta

il

rRWOC 33±6 10±6 11±6 0.61±0.17 0.75±0.14 0.76±0.14 0.74±0.13 2.14±0.31
ICP [Chetverikov et al., 2002] 2±1 42±1 43±1 0.02±0.01 0.04±0.02 0.04±0.02 0.04±0.02 7.83±1.66

CPD [Myronenko and Song, 2010] 3±1 41±1 42±1 0.03±0.02 0.04±0.02 0.04±0.02 0.04±0.02 7.43±1.32
HS [Tsakiris and Peng, 2019] 36±4 9±4 10±5 0.65±0.13 0.78±0.12 0.72±0.13 0.82±0.12 1.9±0.32

F
is

h
U

ns
tr

uc
tu

re
d rRWOC 28 ± 13 18 ± 13 27 ± 13 0.42 ± 0.21 0.61 ± 0.29 0.67 ± 0.31 0.56 ± 0.26 0.12 ± 0.01

ICP [Chetverikov et al., 2002] 2 ± 1 45 ± 1 54 ± 1 0.02 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.04 ± 0.02 0.23 ± 0.05
CPD [Myronenko and Song, 2010] 1 ± 2 46 ± 2 55 ± 2 0.01 ± 0.03 0.02 ± 0.06 0.02 ± 0.06 0.02 ± 0.05 0.12 ± 0.00

HS [Tsakiris and Peng, 2019] 14 ± 0 33 ± 0 42 ± 0 0.17 ± 0.01 0.30 ± 0.02 0.33 ± 0.02 0.28 ± 0.01 0.22 ± 0.00

F
is

h
A

dv
er

sa
ri

al rRWOC 28 ± 13 18 ± 13 26 ± 13 0.43 ± 0.28 0.62 ± 0.28 0.67 ± 0.30 0.57 ± 0.26 0.14 ± 0.07
ICP [Chetverikov et al., 2002] 0 ± 18 47 ± 18 55 ± 18 0 ± 0.34 0 ± 0.40 0 ± 0.43 0 ± 0.37 0.30 ± 0.05

CPD [Myronenko and Song, 2010] 0 ± 0 47 ± 0 55 ± 0 0 ± 0.00 0 ± 0.01 0 ± 0.01 0 ± 0.01 0.10 ± 0.02
HS [Tsakiris and Peng, 2019] 15 ± 8 32 ± 8 40 ± 8.5129 0.19 ± 0.11 0.33 ± 0.18 0.36 ± 0.19 0.31 ± 0.17 0.19 ± 0.11

Table 2.1: Transformation recovery and permutation recovery by rRWOC, ICP, CPD
and HS algorithms in the C. elegans and fish dataset. TP = true positive, FP = false
positive, TN = true negative, FN = false negative, ACC = accuracy, F1 = F1 score , PREC
= precision, REC = recall, MD = mean distance

2.2.3.1 Neuron matching of C. elegans

For this application, we have used the publicly available C. elegans fluorescence

imaging dataset of Nguyen et al. [Nguyen et al., 2017b] found at http://dx.doi.org/

10.21227/H2901H as well as the neuronal position dataset provided in [Yemini et al.,

2019b]. The worm C. elegans is a widely known model organism for studying the nervous

system due to the known structural connectome of the 302 neurons it contains. The data
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provided 3D z-stack images of the head of 14 worms that each consists of approximately

185 to 200 neurons captured under confocal microscopy using florescent tagged protein

GFP. In figure 2.3, the depth-colored 2D projection of an image frame can be seen

superimposed with annotation points delineating the locations of neurons. Figure 2.3

also highlights the need for a method of matching and aligning worm point clouds that is

robust to outliers or missing associations. Here, we define outliers as points where there

is no neuron present and define missing data as neurons with no detection present.

Of the 14 datasets of the head neurons of C.elegans worms, random pairs were

drawn to be the source and target point sets. From the remaining worms, the positional

covariance of each neuron was estimated using the supervised alignment method of

[Evangelidis and Horaud, 2018]. Since the positional variance of each neuron was

uniquely identified using training data, we used variable margin parameters for rRWOC

such that νl = max
i=1,2,3

λi(Σl) where Σl is the covariance matrix of the lth neuron and λi(·)
denotes the ith eigenvalue. Randomized RWOC (algorithm 3) was deployed with δ= 0.9.

The results were compared with iterative closest point(ICP) [Besl and McKay, 1992] as

well as coherent point drift (CPD) [Myronenko and Song, 2010] algorithms.

The demonstration of the C. elegans application of rRWOC is seen in figure 2.4. Here

the source point set is a statistical atlas neuron positions [Yemini et al., 2019b] and the

target point set is neuron detections which may be corrupted by non-neuronal outliers.

The outcome is that the detected neurons are identified correctly using the proposed

algorithm.

The recovery rates in terms of recovering the transformation β∗ as well as the

permutation P∗, are summarized in table 2.1. In general, rRWOC was able to recover

both the transformation and permutation better than ICP and CPD, which tend to be

initialization-dependent as well as HS which is a global method. In all of the experiments,

47



ICP and CPD were initialized with random rotation. rRWOC and HS are invariant to

initialization since they are not descent-based methods. HS performs slightly better in

the tail of C.elegans than rRWOC since the tail dataset tends to have fewer outliers

which HS is more sensitive to. Contrarily, rRWOC does better than HS in the head since

there are more outliers and missing correspondences.

2.3 Joint Segmentation and Labeling of C. elegans Neurons
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Figure 2.5: Segmentation and labeling of fluorescently-colored neurons, in image
volumes of NeuroPAL worms, using the proposed method Left: The graphical
model of the probabilistic inference procedure employed to identify and segment neurons.
Right: The model uses the atlas from [Yemini et al., 2019a] as a prior to assign latent
neuron identities to each observed pixel, subject to constraints on the total mass assigned
to each cell.

Whole-brain functional imaging of Caenorhabditis elegans has been recently intro-

duced to enable the measurement of neural activity at unprecedented temporal and

spatial resolution [Schrödel et al., 2013]. Obtaining a complete measurement of neuron

positioning and activity enables the study of a wide range of hypotheses including the
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identification of brainwide dynamic networks involved in action sequences and decisions,

decoding of nervous system responses to repulsive and attractive stimuli from distinct

modalities, and monitoring of neural identity to reveal neural-fate alterations in the pres-

ence of gene mutations [Yemini et al., 2019a]. However, a significant analysis bottleneck

is the segmentation and identification of all imaged neurons. Automated segmentation

and identification of C. elegans neurons would enable high-throughput experiments for

many applications.

There have been many recent works towards segmenting and labeling cells and in

particular, neurons. Several methods address the cell labeling problem directly without

segmenting their shapes [Aerni et al., 2013; Hirose et al., 2018; Tokunaga et al., 2014;

Toyoshima et al., 2019]. Broadly, current algorithms for cell labeling can be categorized

into two classes: the first and more common approach is to split the labeling problem into

multiple steps. These steps include a filtering step to eliminate background components

and non-cellular objects. The second step is to detect potential locations of the cells. This

step is prone to the false detection of non-cellular objects, depending on how accurate the

filtering and detection steps are. The final step to label the cells is to run a point matching

algorithm to find the correspondences between the cells and their features in an atlas

and the set of detected cells. A very recent work in this class of models [Chaudhary

et al., 2020] trains an atlas of the pairwise distances between the neurons, and finds

the correspondence between the points such that the pairwise distances match the atlas.

The second approach for cell labeling is to directly model the pixels as the observations

of a model with cell centers as unobserved variables. The goal in these models is to

classify pixels and to infer the unobserved cell centers simultaneously. An example of

this paradigm is demonstrated in [Qu et al., 2011], where the authors consider a subset

of well separated and large non-neuronal cells for segmentation and annotation.

A novel transgenic strain of C. elegans called “NeuroPAL” (a Neuronal Polychromatic

49



Atlas of Landmarks) has introduced differential fluorescent coloring of neurons to resolve

all unique neural identities [Yemini et al., 2019a]. This has enabled the construction

of a complete statistical atlas of neuron positions and colors. Here, we present a novel

statistical pipeline for joint segmentation and labeling of neural identities in NeuroPAL

images. We formulate the segmentation problem as a posterior inference over the latent

variables of a mixture model and show that the neural labeling arises naturally from our

formulation. We further present a novel technique to constrain the posterior distribution

in the expectation-maximization (EM) algorithm to enforce prior knowledge about cell

sizes using the Sinkhorn-Knopp algorithm [Sinkhorn and Knopp, 1967].

Our experimental results illustrate that the resulting “Sinkhorn EM" (sEM) approach

outperforms vanilla EM (vEM) both in terms of segmentation quality as well as neuron

identification accuracy. We further show that we outperform the multi-step method for

neural identification developed in [Yemini et al., 2019a].

2.3.1 Methods

2.3.1.1 Probabilistic Model

First we introduce notation. Let N represent the total number of pixel observations

in our multi-colored volumetric image. Each observed pixel in the volume is in the form

of a 4-D tensor where the first 3 dimensions are spatial coordinates x, y, z and the 4th

dimension corresponds to the different color channels. To facilitate notation within our

probabilistic model, we represent the set of pixels as N tuples X i = (l i, ci) ∈R3+C where

C is the total number of color channels. The first part of this tuple, l i = (xi, yi, zi) ∈ R3,

corresponds to the location of pixel i. The next part of this tuple, ci = (c1
i , . . . , cC

i ), is a

vector indicating the color intensity of pixel i in all channels. Next, we model these pixel

tuples as random variables drawn from a mixture model.
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Let θ denote the set of parameters of the mixture distribution that these observations

are assumed to be drawn from. Since we are trying to segment images comprising

of neurons as well as non-neuronal background components, we model this mixture

in terms of K components that correspond to neurons that we are trying to segment

and B components that capture the background. Given these N pixel observations,

X = {X1, . . . , X N } and distribution parameters, θ, we model the data using the following

joint probabilistic mixture model:

P(X ,θ)= P(θ)
N∏

i=1
P(X i|θ)= P(θ)

N∏
i=1

K+B∑
l=1

πlPl(X i|θ). (2.5)

Here πl denotes the membership weights for the lth component and Pl(X i|θ) denotes

the likelihood of the ith pixel given the lth component. Next, we explicitly model the

distributions of neurons and the background. We model pixel observations of neurons as

multivariate normal distributed in both position and color, i.e. we expect to observe pixels

corresponding to the neuron VA11 (the solo magenta neuron roughly one-third from the

left-side of Figure 4.8) in the general vicinity of where neuron VA11 is positioned and in

colors close to the stereotypical color of the neuron VA11. Furthermore, the C. elegans

nuclei imaged here are roughly ellipsoidal, which make Gaussian modeling plausible. On

the other hand, we model background components to be positioned uniformly throughout

the volume but with multivariate-normal distributed colors; i.e., lysosomes (indicated

by the green speckles in figure 4.8) could be positioned arbitrarily but usually are in a

shade of green. The likelihood of this model can be expressed as:

K+B∑
l=1

πlPl(X i|θ)= (2.6)

K∑
k=1

πn
kN ((l i, ci)|µn

k ,Σn
k)︸ ︷︷ ︸

Neurons

+
B∑

j=1
πb

j U (l i|lmin, lmax)N (ci|µb
j ,Σ

b
j )︸ ︷︷ ︸

Background components

.
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Here N (·) is a multivariate normal distribution, and U (·) is a multi-dimensional uniform

distribution defined in a hyper-cube that ranges from lmin to lmax where lmin denotes

the lower bound of pixel coordinates and lmax denotes the upper bound.

The multivariate Gaussian distributions to model neurons are parametrized by

θn = {β,µn
1:K ,Σn

1:K } where β ∈ R4×3 denotes an affine transformation of the observed

neuron positions from their stereotypical position (encoded by an atlas for example).

µn
k ∈ R3+C denotes the sterotypical position and color of the kth neuron and Σn

k ∈ S3+C++

denotes its covariance. Background components are modeled similarly with respect to

color, but are permitted to occupy any position in the volume. Namely, θb = {µb
1:B,Σb

1:B}

where µb
j ∈ RC and Σb

j ∈ SC++ denote the mean and covariance of the jth background

component color.

The prior distribution of our model is a multivariate normal distribution that encodes

the canonical locations and colors of the neurons aligned to the image using the affine

transformation term β. We use the atlas described in [Yemini et al., 2019a] and shown in

Fig. 4.8:

P(θ)=N (µ1:K |βµa
1:K ,βΣa

1:Kβ
T), (2.7)

where the super-script a denotes the atlas parameters, here the mean µa and the

covariance Σa of a Multivariate Normal distribution. Here we assume the existence of

an affine transformation matrix that roughly aligns the atlas to the image. The β is fit

using a few landmark cells and is updated further through iterations using the update

rules discussed in the supplementary.

Given the set of N pixel observations X = {X1, . . . , X N }, we seek to find the maximum

a posteriori (MAP) estimate of the parameters given the observations. In other words,
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our objective is to maximize the following log-posterior:

L (θ)= logP(θ|X )= logP(θ)+
N∑

i=1
logP(X i|θ)+C′, (2.8)

where C′ is a constant with respect to θ that can be ignored optimizing the cost with

respect the parameters.

2.3.1.2 Optimization

Vanilla EM algorithm: To find the local MAP estimate of the model parameters,

a common strategy is to introduce a latent assignment variable Z that assigns each

observation to one of the mixture components. We then maximize the expected complete

log likelihood where the expectation is taken under the posterior distribution of the

assignment variable.

P(X ,θ|Z = l)= P(X |θl)P(θ) (2.9)

Q(θ|θt)= EP(Z|X ,θt)[logP(X ,θ, Z)] (2.10)

Here θt denotes the estimate of model parameters at the tth iterate. This function lower

bounds L (θ) and maximizing it improves L (θ) in each iteration [Dempster et al., 1977],

yielding the vanilla2 Expectation-Maximization (vEM) algorithm:

vEM:


E-step: update γ by evaluating Q(θ|θt)

M-step: solve θt+1 = argmax
θ

Q(θ|θt)
(2.11)

The E-step consists of computing a term γ known as the responsibility matrix with

γl,i = P(Zi = l|X i,θ). For each pixel, this variable defines a probability space over the

mixture components and provides a soft assignment of the pixels to components. For

example, for a fixed row, γl,: denotes the distribution of the lth component across space

of pixels, roughly encoding the spatial extent and shape of the lth object. Conversely, the
2We add the term “vanilla" to disambiguate the standard EM meta-algorithm from the proposed

variant described later in the text.
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ith column of γ, γ:,i denotes the membership of the ith pixel amongst the k components.

The analytical derivation of the EM parameter updates for the mixture model in (2.5) is

included in the supplementary material.

Once we optimize the objective introduced in the previous subsection, the responsi-

bility matrix and parameter estimates can then be used to drive the segmentation and

neuron labeling, respectively. Namely, we can use responsibility matrix terms, γl,i, to

infer whether the ith pixel is occupied by the kth neuron, or the bth background compo-

nent. Additionally, we can infer the neuron positions and colors with the µn
k estimates.

Lastly, Σn
k can inform us about the neuron shapes and color variability.

Sinkhorn EM algorithm: By definition, the rows of the responsibility matrix, γl,;,

must sum to one, in order to be a bonafide probability. In other words, the lth component

must exist somewhere within the image. However, in vEM (2.11), the only way to control

the row sum of this matrix is through the constraints on component proportions or

distribution-specific component parameters (such as constraining covariance eigenvalues

to stay within a range for the Gaussian distribution). Both of these types of constraints

effectively act as regularization on the responsibility matrix, γ. However, in practice,

it is common that responsibilities for a component can collapse to zero through the

mode collapse phenomenon [Archambeau et al., 2003]. This effectively prevents the

segmentation of the lth object from the image, leading to false negatives.

In image segmentation, there often exists some information about the size of each

component to be segmented. In our application of neuron segmentation, we have an

estimation of how many pixels a neuron should occupy. To incorporate this information

into the EM algorithm, we can explicitly constrain the row sum of the responsibility

matrix, γ, to match the desired number of pixels (or weights), while keeping the column

sum normalized to one. Specifically, in each iteration of EM algorithm, we aim to find a
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matrix γ̂ that is close to γ while satisfying
∑

l γl,i = 1 and
∑

i γl,i =αl where αl encodes

the proportion of pixels that the lth object must occupy. This procedure we describe has

been explored by Sinkhorn and Knopp in [Sinkhorn and Knopp, 1967] in what is known

as the matrix balancing algorithm. In each iteration of EM, We use Sinkhorn’s algorithm,

to efficiently approximate γ̂ by iteratively normalizing the row and column of γ matrix

to sum to the pre-determined marginals αl (Fig. 4.8). We term the resulting algorithm

“Sinkhorn Expectation Maximization" (sEM) and study its empirical performance in

comparison with vEM in the following subsections.

2.3.2 Results

More formally, sEM deviates from vEM in the evaluation of the responsibilities.

Instead of evaluating the expectation of the complete log likelihood, we base our algorithm

on the recent finding that the E-step can be modified to be cast as an entropic optimal

transport problem. Mena et al. in [Mena et al., 2020] have shown that this modification

of the E-step still yields a monotonic increase in the log-posterior function and enjoys

better convergence properties. We perform the iterations:

Sinkhorn EM:



E-step: update γ̂ by solving:

γ̂= argmin
γ∈Π(α, 1

N )

∑
i,l − logPl(X i,θ)γl,i +H (γ|α⊗ 1

N )

M-step: solve θt+1 = argmax
θ

Q(θ|θt)

(2.12)

Here α= (α1, . . . ,αK+B) is a vector that encapsulates our desired component proportions,

1 denotes a vector of ones with length N, Π(V1,V2) is the set of all matrices with

marginals equal to vectors V1 and V2, and H (γ|A) is the relative entropy between

probability measures γ,A which in our case simplifies to
∑

l,i γl,i logγl,i. As noted above,

the E-step here can be solved by Sinkhorn iterations, the details of which can be found

in the supplementary material.
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Datasets: We ran the proposed algorithm on a C. elegans dataset consisting of images

of 10 heads and 10 tails from the NeuroPAL strain. The images were captured using a

spinning-disk confocal microscope with resolution (x,y,z)=(0.27,0.27,1.5) microns. There

were three color channels encoding red, green, and blue fluorescence excitation. Each

head and tail image roughly consists of about 190 and 40 neurons, respectively, which

were annotated by an expert who determined their positions. Processing and annota-

tion details are described in [Yemini et al., 2019a]. Note that the only ground truth

available were point markers that denoted the neuron centers. Complete ground truth

segmentation of the cell shapes was not provided.

Compared Methods: We compare our algorithm, sEM, with a method that is designed

specifically toward neural identification in NeuroPAL strains of C. elegans [Yemini

et al., 2019a]. The neuron identification algorithm in [Yemini et al., 2019a], termed

CELL-ID, employs a 3 (or 2) step process of filtering, detection, and identification.

We hereafter refer to detect+identify version of this method as CELL-ID (2) and the

filter+detect+identify version as CELL-ID(3). The filtering steps here involve heuristic

methods and the detection system uses a greedy matching pursuit algorithm. Lastly, the

neuron identification is done by a variant of the iterative closest point algorithm [Besl

and McKay, 1992].

Additionally, we compare with the segmentation and labeling performance of vEM as

described in equation 2.11. Due to a lack of ground truth, we evaluated the segmentation

results qualitatively by visualizing the spread and sharpness of the segmentation maps.

Neuron Identification: For each worm image, we first spatially smoothed it using a

small 3D Gaussian filter (width 0.5 µm in each dimension). We then removed the low-

intensity background pixels using a small threshold to ensure that only dark background

pixels are removed (70-th percentile).
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Each of sEM and vEM outputs the cell centers, colors, and shapes (in terms of 3D

covariance matrices) as well as a γ matrix that includes neuron-specific probabilistic

segmentation maps. CELL-ID on the other hand only outputs the centers and identities

of neurons. The cell centers are used to quantify the accuracy of sEM in comparison to

vEM and CELL-ID (2)/(3). For each method, the accuracy is computed by counting the

number of mixture components that are within a radius of 3 microns from their true

location (annotated by an expert), dividing this by the total number of neurons. We detail

the quantitative neuron identification results in Fig.2.7A-B. In Fig.2.7A, we show the

neuron identification accuracy for the four compared methods. Due to the higher density

of neurons in the head, the accuracies of all methods tended to be lower in the head than

in the tail. However, sEM displayed significantly higher accuracies than all compared

methods, with about 72% accuracy in the head and 89% in the tail. Similarly, Fig. 2.7B

demonstrates that the distance of the cell centers inferred by sEM is less than 3 microns

away from the expert annotations, on average, roughly corresponding to the average

diameter of neurons.

Robustness to Initialization and the Number of Landmark Cells: To evaluate

the robustness of sEM and vEM to the selection of landmark cells, we did the following

experiment: For κ ∈ {5,7,9,11,13} we randomly selected a set of κ cells. Both sEM and

vEM were run such that these positions and the identity of these cells were used as

landmark cells for computing the initial alignment, β, that transforms the neuron

positions from their atlas-based locations. The average accuracy increases with more

landmark cells (Fig. 2.7C), but the best results are obtained if the landmark cells

accurately portray the posture of the worm.

We further evaluated the robustness of our algorithm to initialization. Instead of

initializing the centers and colors using an atlas, we initialized them using a random
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subset of the points selected uniformly from the observed pixels. Although initialized

randomly, the effect of the atlas as a prior on the cell centers and colors led both sEM

and vEM to converge quickly toward the actual cell locations, with accuracies reaching

80% (std = 0.07) for sEM and 79% (std = 0.1) with vEM.

Segmentation Quality: The probabilistic segmentation maps are used to qualitatively

evaluate sEM and vEM. In Fig. 2.6, we observe that sEM provides sharper and more

localized segmentation maps for neurons with boundaries that are more visible and more

similar to the presumed borders. To quantify these sharpness attributes, we computed

the spatial spread of the segmentations for the lth neuron by computing the spatial

variance of using the following formula:

Location spread(l)=Varl i∼γi,l (l i), (2.13)

where we compute the variance of the lth neuron’s map by using the γ matrix as weights.

Note that l i denotes the coordinates of the ith pixel. We then compared this metric

between vEM and sEM across all neurons of the head and tail (Fig. 2.7D). The results

show that while both methods perform similarly in the tail, sEM yields significantly

sharper and more localized segmentation maps in the denser head images.

Our results show that in addition to the theoretical properties examined in [Mena

et al., 2020], another advantage of sEM over vEM in the context of image segmentation

with shape or size priors, is that mode collapse is prevented due to matrix balancing on

γ (see vEM components of LUAR and PVR in Fig. 2.6).

2.4 Tracking Neurons in Behaving C. elegans

Imaging sparse fluorescent signals has become a standard tool for observing neuronal

activity. To place that activity in the context of behavior, it becomes increasingly impor-

tant to perform that imaging in naturally behaving animals [Lin et al., 2022]. Tracking
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the fluorescent sources through the moving and deforming tissue of these behaving

animals is a challenging instance of a multiple object tracking (MOT) problem, and this

step is typically a bottleneck for extracting clean measures of activity [Luo et al., 2021].

Recently, deep learning with convolutional neural networks has been leveraged for

many MOT problems with video data including controlling self-driving cars, inferring

postural dynamics in humans and animals (DeeperCut [Insafutdinov et al., 2016],

DeepLabCut [Mathis et al., 2018], etc. [Wu et al., 2020]), and computational video

editing (non-tracking CGI problems). These advances don’t immediately generalize to

videos of fluorescence reported dynamics in living tissue for several reasons.

(1) In contrast to applications like human or vehicle tracking where each object has

unique identifiers that can be exploited, two fluorescence signals in the same video are

often generated by nearly identical sources and therefore lack distinguishable features

[Mathis et al., 2018; Meijering, 2012; Tinevez et al., 2017; Wu et al., 2020]. (2) While

transfer learning has been successfully implemented in scientific applications involving

natural videos (a horse galloping) [Jia Deng et al., 2009; Mathis et al., 2018], the low-

level spatial and temporal features detected by these networks rarely reflect structures

found in fluorescence microscopy data [Moen et al., 2019; Weigert et al., 2020]. Thus,

this approach rarely reduces the quantity of additional training data required [Jia

Deng et al., 2009; Mathis et al., 2018; Wang et al., 2021; Wen et al., 2021; Yu et al.,

2021]. Approaches that successfully reduce training data must make hard assumptions

about the underlying structure via direct parameter reduction, regularization, or data

augmentation [Chaudhary et al., 2021; Nguyen et al., 2017a; Schulter et al., 2017;

Wu et al., 2021]. (3) At the finest spatial scale, convolutional networks rely on images

composed of many discriminable textures that typically fill an image [Weng and Zhu,

2015]. Fluorescence microscopy data, however, often has regions of interest with similar

fluorescent cells surrounded by voids of black pixels. The combination of sparse global
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distributions and locally dense homogeneous peaks are less well-suited to convolutional

networks, as it becomes harder for convolutional networks to extract useful features for

downstream tasks [Maška et al., 2014; Yan et al., 2018]. Some methods are proposed

to improve the performance of convolutional networks on sparse data but their utility

is not shown in the context of MOT [Jaritz et al., 2018; Yan et al., 2018]. (4) Biological

videos often exhibit complex motion patterns with nonlinear deformations whereas, in

contrast, most vehicle and pedestrian tracking algorithms use linear models or random

walks to capture the motion [Hallinen et al., 2021].

With sufficiently high frame rates, temporal information can be used to search the

vicinity of a cell’s previous location and match identities by minimizing displacement

over time. However, motion can often preclude achieving such a frame rate, especially

when serially imaging slices of a volume or attempting to recover a signal from a dim flu-

orescent source. Furthermore, this motion often provides critical context for the problem

being investigated (e.g. imaging neuronal dynamics to understand behavior [Susoy et al.,

2021]). In these cases, it becomes beneficial to constrain a motion model by maintaining

relative positions of cells, correlated motion, and priors for fluorescence dynamics.

Cell tracking methods can be categorized into the following two groups: (1) de-

tect and link, and (2) registration-based. Detect and link algorithms have two distinct

steps [Chaudhary et al., 2021; Magnusson et al., 2015; Nguyen et al., 2017a; Tinevez

et al., 2017; Wang et al., 2021; Yu et al., 2021]: (1) Detection, where identity-blind

candidate locations for objects are proposed by a segmentation or keypoint detection

algorithm at each time frame independently. (2) Linking, where temporal associations

between detected objects are determined to establish a single continuous worldline across

all frames for each individual object. A major drawback of this two-step approach is

the propagation of errors from the detection step. Errors that occur in the detection

step are difficult to recover from, and they can have detrimental effects on linking and
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overall tracking quality. Several linking methods have been proposed that are robust

to detection outliers, but they either require training with large amounts of manually

produced ground-truth data, or are not scalable to lengthy videos [Magnusson et al.,

2015; Yu et al., 2021].

An alternative approach is to directly operate in the image space and optimize some

transformation parameters that align a frame to some other frame [Detlefsen et al.,

2018; Lee et al., 2019; Ma et al., 2016; Mathis et al., 2018; Park et al., 2022; Schulter

et al., 2017; Wen et al., 2021]. This is done by mapping the underlying image grid from

the source to the reference space using the transformation parameters and interpolated

pixel values. The transformation parameters must be optimized for each new image over

a number of iterations.

Fortunately, recent advances in spatial transformers and differentiable grid sampling

have dramatically decreased computational burden and increased performance via

GPU acceleration [Detlefsen et al., 2018; Lee et al., 2019; Mazza and Pagani, 2021;

Sandkühler et al., 2018; Schneider et al., 2012]. Similarly, modern optimization packages

such as PyTorch allow the construction of dynamic computational graphs that support

more complex nonlinear transformation families and novel cost functions with various

regularizers.

Here, we build upon these recent advances to develop ZephIR, a semi-supervised mul-

tiple object tracking algorithm with a novel cost function that can incorporate a diverse

set of spatio-temporal constraints that can change dynamically during optimization. Our

proposed method is capable of efficiently and accurately tracking a wide range of 2D

or 3D videos. It allows the user to tune a number of easily interpretable parameters

controlling the relative strengths of the registration loss and other constraints, and hence

generalizes well to a wide range of biological assumptions. To showcase the efficacy and
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versatility of our method, we demonstrate its performance on a number of biological

applications, including cell tracking and posture tracking.

2.4.1 Methods

ZephIR tracks a fixed set of keypoints within a volume over time by matching

keypoints between an annotated reference frame and an unlabeled child frame. This

matching is done by minimizing a loss function L with four contributions:

L =λRLR +λNLN +λDLD +λTLT =λλλ ·LLL

We measure overlap of local image features around the keypoint via LR . We measure

relative elastic motion between keypoints via LN . We measure the distance of each

keypoint to the nearest candidate location from a precomputed set via LD . We measure

smoothness of keypoint-determined dynamical features (e.g. fluorescence or motion) via

LT . Each is described in more detail below.

The relative weights of each term, λλλ, can be freely adjusted by the user to better fit a

particular dataset. The user can also set the relative weights to change while tracking

a single frame to allow the algorithm to shift focus to different loss components over a

number of optimization iterations.

Image registration, LR

The first term of our algorithm measures overlap of local image descriptors.

For each keypoint i in a child frame, I(c), an image descriptor (a low-dimensional

representation of the local image information), D, is sampled according to a sampling

grid centered around that keypoint’s coordinates in 3D space, ρ(c)
i (with fixed z = 0 for 2D
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images). We define a set of parameters, θ(c)
i , that is closely related to ρ(c)

i but may include

additional transformation models, such as rotation, to characterize the sampling grid, i.e.

how each descriptor is sampled from the child frame: D(I(c),θ(c)
i ).

The descriptors are foveated to prioritize more local information relative to the

neighboring features. In lieu of image pyramids [Thévenaz et al., 1998], we dynamically

increase the effective resolution of the descriptors by applying a Gaussian blur at the

start of optimization. The blur is decreased in magnitude every few registration iterations.

Doing so avoids vanishing or exploding gradients, both of which can occur in regions

with sharp, well-defined edges surrounded by a uniform background. On the other hand,

restoring the original resolution of the image still provides the best available information

for fine-tuning tracking results towards the end of the optimization loop.

Similarly, a set of reference descriptors that serve as registration targets are sampled

from a reference frame, I(r). These are sampled around the user-defined annotations for

that reference frame, ρ(r)
i , according to a fixed set of parameters, θ(r)

i .

Using the two sets of image descriptors, our registration loop optimizes the transfor-

mation parameters, θ(c)
i , to minimize the following loss term:

LR(θ(c))=∑
i

[
1−CorrCoef

(
D(I(r),θ(r)

i ),D(I(c),θ(c)
i )

)]

The optimized parameters θ(c)
i are then used to calculate the desired results, the

keypoint coordinates for the child frame, ρ(c)
i . Note that these coordinates are also used

for different loss components below, but as ρ(c)
i is calculated from θ(c)

i , gradients are

always accumulated at θ(c)
i .
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Spatial regularization, LN

Cellular motion within a tissue tends to be highly correlated, but these correlations

can be hidden in sparse fluorescent movies that only highlight a small number of cells

(or subcellular features) [Luo and Bhandarkar, 2005]. Even in less sparse movies, corre-

lations between nearby keypoints may not be well-captured by descriptors, especially

when deformations, noise, or lighting conditions prevent descriptor alignment. In order

to reintroduce a similar spatial structure to the data without relying on highly special-

ized skeletal models, we add an elastic spring network between neighboring keypoints

[Freifeld et al., 2015, 2016; Luo and Bhandarkar, 2005]. The resulting penalty to relative

displacement of neighboring keypoints prevents unreasonable deformations, providing a

simple and flexible spatial heuristic of the global structure and motion present in the

data.

Despite ZephIR tracking a fixed a number of keypoints across the video, the spring

network makes it robust to fluctuations in the number of keypoints visible in a frame. In

frames where a keypoint may not be visible or present, it fails to produce useful image

descriptors for registration, but the spring connections to its neighboring keypoints allow

us to keep track of its approximate location.

Each of the i keypoints being tracked is connected to j nearest neighbors to define

the following loss term:

LN =∑
i, j

ki j
∣∣d(c)

i j −d(r)
i j

∣∣
where
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d(t)
i j = ∥ρ(t)

i −ρ(t)
j ∥

describes the distance between keypoints i and j in the frame t.

When multiple reference frames are available, the stiffness of each spring connection,

ki j, is further adjusted to better model the spatial patterns in the data:

ki j = cov(ρ(r)
i ,ρ(r)

j )

This ensures that connections between highly covariant keypoints are made stronger

while connections between keypoints with more weakly correlated motion are weakened

or cut accordingly.

Feature detection, LD

For this component of the algorithm, we solve an easier problem of identity-blind

feature detection, as such detection algorithms have been shown to be fruitful in the

context of tracking [Tinevez et al., 2017]. Namely, we identify key features (such as the

center of a cell) present in a volume without matching them to a specific feature in some

other volume.

This object or feature detection problem has been well-studied, and a wide variety

solutions have been proposed. Solutions can range from more parameter-free algorithms

(e.g. Richardson-Lucy deconvolution [Lucy, 1974; Richardson, 1972]), to algorithms re-

quiring more fine-tuning (e.g. watershed [Beucher and Lantuejoul, 1979]). More recently,

deep convolutional neural networks have shown to be powerful, effective solutions as

well (e.g. StarDist [Weigert et al., 2020]). Importantly, each of these approaches may
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work better or worse on different classes of images. Generalization to new datasets can

be hard to predict, especially for neural networks that are trained on data generated

from a single source.

Our approach is to automatically evaluate simple combinations of these established

algorithms by using a shallow model-selecting network. After identifying a set of can-

didate models, we provide the outputs of these models as input channels to a shallow

and narrow convolutional neural network (CNN). If a particular model is best suited for

a dataset, network weights for the corresponding input channel are increased during

training while suppressing other channels. The low number of learnable parameters in

the network also allows fast training for each new type of data or imaging condition,

which in turn allows rapid experimentation with new selections of models to test as

inputs.

The ultimate output of this selector network, C(I(c)), is formulated as a probability

map, where each pixel of the original image is assigned some probability of being a

desired feature. We use this information to push tracking results towards detected

features:

LD =∑
i

(
1−C(I(c))[ρ(c)

i ]
)

Temporal smoothing, LT

Given a sufficiently fast imaging rate, we expect pixel intensity values to be smooth

across a small local patch of frames, even for cellular datasets where pixel intensities

represent smoothly-varying dynamical signals [Clark et al., 2009; Dufour et al., 2015].

Thus, we attempt to maintain smoothly-varying local pixel intensities as a form of

temporal regularization. For datasets where expected dynamics are appreciably slower
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than the imaging rate, the strongest version of this regularization is to penalize any

deviation from a local zeroth-order fit. We apply this across a small patch of frames

(c−ϵ, ..., c+ϵ) that are registered at once, and add this to the loss for the center frame, c:

LT =∑
i

c+ϵ∑
t=c−ϵ

∣∣I(t)[ρ(t)
i ]− I(c)[ρ(c)

i ]
∣∣

Note that since the loss term is applied for the center frame only, it does not affect

the results for the other frames despite registering all frames in the patch together.

Additionally, this component of the algorithm requires registration (or approximate

registration) of nearby frames, making it more appropriate in low-motion conditions or

after initial coarse registration is complete.

Frame sorting

Using all or some of the loss terms listed above, a single child frame is registered to

a reference frame, and all keypoints in the frame are tracked simultaneously. To fully

analyze a movie, we need to register every frame to a reference frame.

For many datasets, it is best to register every child frame directly to a coarsely

similar reference frame, and let annotations for that reference frame provide initial

guesses for keypoints in the child frame (Fig. 2.9A). For this, we must identify a set of

representative reference frames that capture the range of deformation patterns present

in the movie, and we must assign each remaining frame to one of those reference frames.

A pairwise distance between all pairs of frames is determined by some similarity metric

(e.g. correlation coefficient) applied to low-resolution thumbnails. A k-medoids clustering

algorithm is applied to these pairwise distances to identify a small number of median

frames to best serve as reference frames for all other frames in the corresponding cluster

(Fig. 2.9) [Mathis et al., 2018; Park et al., 2022].
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In other datasets, the registration results from one frame in a cluster may provide

useful insight into the solution for a different frame in that cluster. For example, a frame

that is close (in deformation space) to the reference may be easy to track. The tracked

results from that frame, in turn, may provide a better guess for keypoints in a frame

that is further away from the reference. This can reduce the distance between the initial

guess and correct positions, and thus reduce the difficulty of the optimization problem.

Thus, every child frame being registered is associated not only with a reference frame (a

registration target), but also a previously registered parent frame, which provides the

initialization prior to optimization (Fig. 2.9B).

Additionally, the learning rate for the child frame is partly determined by the distance

between the parent and child frames. We expect that when a parent-child pair are close

in the deformation space, the keypoints do not undergo significant local displacements.

Hence, a low learning rate is applied for a similar parent-child pair, scaling up to a high

learning rate in the case of a dissimilar pair to allow tracking of features much further

away. The combination of these effects produces a flexible limit on the range of possible

optimization results for the child frame based on coarse similarity to its parent frame

[Keskar et al., 2016; Ruder, 2016; Schaul et al., 2012].

To take full advantage of this parent-child interaction, we sort all frames into distinct

sequences of parent-child frames based on similarity. Each of the resulting branches

begins from a previously selected median reference frame. The subsequent child frames

are selected to minimize the distance from a parent frame until every frame is assigned

to a branch. Doing so produces unique sets of frames that stem from each reference

frame, naturally forming clusters that separate similar frames from dissimilar ones. This

is particularly useful for datasets that repeatedly sample from a limited set of postures

or global spatial structures (e.g. locomotion).
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However, not all datasets have temporal patterns that can reliably make use of the

similarity-based initialization method. For such datasets, a chronologically sorted queue

may be more reasonable and provide better accuracy overall, where a branch simply

stems from each reference frame both forwards and backwards in time until it encounters

the first frame, the last frame, or another branch (Fig 2.9). Note that the parent-child

interactions during tracking are still the same regardless of the sorting method. For a

chronologically sorted queue, the controlled variation of learning rates effectively allows

us to adapt to different capture frame rates. A high frame rate video often captures

smooth motion that benefits from low learning rates but a low frame rate video does not.

User intervention

Our pipeline allows a user to dramatically improve tracking quality in various ways

by providing further supervision. Providing additional fully annotated frames will im-

prove registration targets to better match descriptors from similar frames. Strategically

selecting a new reference frame can have dramatic impacts on frame sorting as well,

creating opportunities to form tighter clusters of parent-child branches.

Furthermore, when multiple reference frames are present, covariance of keypoints

in those frames helps better define an implicit global spatial structure by modulating

stiffnesses of the spring connections between neighboring keypoints, ki j. Any additional

reference frames can provide more accurate covariances, and thus a spatial model that

is more accurately tailored for that particular dataset.

Partially annotated frames are not used to seed sorted frame branches nor used to

sample reference descriptors. Still, all user annotations present in the frame are utilized

to improve the tracking quality of the remaining keypoints in that frame (Fig. 2.8D).

Firstly, prior to gradient descent, displacements between all available annotations
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and their corresponding coordinates from the parent frame are used to interpolate a

flow field. This flow field serves as a rough model of the global motion between the two

frames [Freifeld et al., 2015; Ma et al., 2016; Schulter et al., 2017]. We sample from

the flow field at the remaining keypoints coordinates in the parent frame and apply the

resulting estimated displacements to initialize the keypoints closer to their new positions

in the child frame. This is particularly helpful for pairs of parent-child frames with large

motion between them, and the flow field can always be improved in both precision and

accuracy by adding more annotations for the child frame.

Secondly, the spatial regularization during the optimization process, LN , also makes

good use of any partial annotations. The annotations are fixed in place, but the spring

connections to their neighbors remain a crucial component of the backwards gradient

calculations and helps to “pull” the connected keypoints into place.

To streamline the process of providing user supervision, we offer a browser-based

graphical user interface that provides an intuitive, simple environment to produce and

save further annotations. Since our approach lacks a slow “training” phase, any new

annotations can be applied to tracking a frame directly from the GUI. A macro available

in the GUI executes a temporary state of the algorithm quickly and efficiently, allowing

users to see the precipitated improvements immediately.

Additionally, the GUI provides an opportunity for users to provide supervision with-

out creating new annotations. The user may upgrade individual results into annotations

or entire frames into new reference frames by marking them as correctly tracked. These

user-confirmed frames will be treated as a regular reference frame next time the algo-

rithm is executed, benefiting from all the improvements to tracking quality discussed

previously. These improvements to the rest of the results can be observed immediately

by executing the algorithm from the GUI.
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2.4.2 Results

Neurons in crawling worms (C. elegans)

Optical methods based on fluorescence activity of calcium binding indicators has

become a standard tool for observing neuronal activity in C. elegans. To do so, it is

necessary to track fluorescent signals from individual neurons across every frame in a

recording. This poses a significant challenge, particularly when the animal is allowed

to freely crawl. The worm’s brain undergoes fast, dramatic, nonaffine deformations,

exhibiting a large variety (forward and backward motion, omega turns, coils, pharyngeal

pumping, etc.) and magnitude (up to ten microns relative to an internal reference frame)

of movements as the animal behaves [Hallinen et al., 2021; Nguyen et al., 2016a; Susoy

et al., 2021; Venkatachalam et al., 2016a].

Many solutions have been proposed to track fluorescent neurons in C. elegans. Two

step (detect and link) approaches often suffer from the lack of reliable detection algo-

rithms and require relatively low frame-to-frame motion in order to accurately link the

detected neurons [Nguyen et al., 2017a; Tinevez et al., 2017; Wen et al., 2021]. Similarly,

deep learning approaches are limited by insufficient training data, often failing to gener-

alize across different animals, even those within the same strain [Lagache et al., 2020b;

Park et al., 2022; Yu et al., 2021]. While these approaches have provided important

insight and progress, there remains substantial need for improvement in accuracy and

efficiency when tracking many neurons in freely behaving worms.

Fig. 2.10 describes the workflow and performance of ZephIR on tracking a set of

178 fluorescent neurons in the head of a freely behaving worm across a 3D recording of

approximately 4.4 minutes (1060 frames @ 4Hz). We collected this data for the purpose

of testing this algorithm using a microscope and technique similar to that described

in [Venkatachalam et al., 2016a]. The video has been centered and rigidly rotated to
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maintain a consistent orientation of the worm, but no further straightening has been

done. With only a few manually annotated reference frames, ZephIR already achieves

state-of-the-art MOT accuracy [Chenouard et al., 2014; Maška et al., 2014; Matula et al.,

2015] as reported on similar datasets in recently published works [Nguyen et al., 2017a;

Wen et al., 2021; Yu et al., 2021] (Fig. 2.10A,B).

We further improve on the accuracy of the initial results by providing additional

supervision. We randomly selected ten neurons uniformly distributed throughout the

brain to verify and use as partial annotations across all frames. Because the initial

results already achieved high accuracy, they only required correction for a subset of

frames (≈ 15%). After this correction and validation, annotations for these ten neurons

were re-classified as manual annotations in all frames. The partial annotations produce

a dramatic improvement in accuracy (red data point in Fig. 2.10B) without the need to

verify entire frames.

Through this workflow, we are able to achieve a sufficiently high accuracy to extract

good, meaningful neuronal activity traces across the entire recording (Fig. 2.10D) [Clark

et al., 2009; Dufour et al., 2015]. Many neurons show clear correlation with observed

behaviors, and the activity patterns are comparable to previously published works

[Hallinen et al., 2021; Leifer et al., 2011; Nguyen et al., 2017a; Shipley et al., 2014].
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Figure 2.6: Qualitative comparison of sEM and vEM segmentation maps A max-
imum intensity projection of the volumetric NeuroPAL image is shown in the Data
panel. To show the segmentation performance we zoom in on the Right Lumbar Ganglion
(Zoomed panel; red rectangle in Data panel). Green circles represent expert annotations.
Segmentation panels show the probabilistic segmentation of the components (γl). Each
component is shown in its inferred color (µn

l ) using both algorithms; sEM provides seg-
mentation maps that are sharper and more cell-like, with more visible boundaries and
less spread. Components panels show example per-component probabilistic segmentation
maps (γl), with darker pixels having posterior assignment probabilities closer to one
for each component. Red dots are the centers inferred by both algorithms. vEM tends to
miss some components (LUAR, PVR) and spreads its mass to irrelevant regions for some
other components (PHAR, PLNR).
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Figure 2.7: Quantitative evaluations for neuron identification and segmentation
sharpness A: Comparison of neuron identification accuracy between sEM, vEM, CELL-
ID (2) (detect+id) [Yemini et al., 2019a], and CELL-ID (3) (filter+detect+id); sEM
accuracy is significantly higher than all other methods in the head, and slightly better
than vEM in the tail. Both vEM and sEM outperform the multi-step CELL-ID approach.
B: Root Mean Squared Error (RMSE) between the inferred neural locations and their
expert annotated location; similar to A, vEM and sEM outperform CELL-ID, and sEM
achieves lower RMSE than vEM in both head and tail. C: Average accuracy of sEM and
vEM as a function of randomly chosen landmark cells; sEM slightly outperforms vEM
and the accuracy increases as we use more landmark cells for the initial alignment. D:
Median spatial spread of the neuron segmentation maps resulting from sEM and vEM.
Here each dot indicates the spread of a particular neuron, with median taken across
the population of worms. vEM spreads its mass for each component more than sEM,
resulting in lower confidence in segmentation assignments. This is visually observed in
Fig. 2.6 where the segmentation maps of sEM are more localized and sharper than those
from vEM.

74



A. 3D-5D Input

D. Verification

C. Tracking:

B. Frame Sorting
C. elegans neurons
(time, channel, XYZ)

Mouse
(time, channel, XY)

Hydra
(time, XY)

Fluorescent cells
(time, XYZ)

grid sample
from child

grid sample
from reference

Springs connect each keypoint to
m nearest neighbors

Stiffness of each spring determined
by covariance of connected pairs
in reference frames

update keypoint
coordinates

register to
reference

backwards
propagation
& gradient
descent

Model Selector

Computer vision
algorithms

(e.g. threshold)

Model-based
algorithms

(e.g. RL-deconvolution)

Convolution layerOther SotA
algorithms

(e.g. StarDist)
ReLU activation
2x2 Max Pool
Sigmoid activation
Upsample

16

32 32

Branch chronologically from root frame

Identify poor
tracking results

Manually fix
key results

Reanalyze frame to
correct nearby results

Minimize parent-child similarity distance

Identify good
tracking results

Figure 2.8: Overview of ZephIR algorithm A. Examples of input datasets. ZephIR
can track keypoints in various biological systems, including fluorescent cellular nuclei
in a tissue and body parts that summarize a posture. Input dimensions can range from
3D (time, XY) to 5D (time, channel, XYZ). Colored dots indicate example keypoints to be
tracked. B. Frame sorting schemes. A branch defines an ordered queue of frames to be
tracked. Each branch begins at a manually annotated reference frame (orange), (cont. on
next page)
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Figure 2.8: B. but subsequent parent (blue) and child (green) frames in a single branch
can be sorted either by chronology (top) or by minimizing the similarity distance between
each parent-child pair (bottom). C. Overview of tracking loss. Tracking loss is comprised
of four terms: 1) overlap of local image features around each keypoint, sampled from the
current frame and its nearest reference frame, 2) elastic connections between neighboring
keypoints with varying stiffnesses based on covariance of the connected keypoints, 3)
proximity to features detected by a shallow model selector network that takes in a number
of existing feature detection software as input channels, 4) smoothness of temporal
dynamics at each keypoint position. D. Overview of steps for manual verification and
additional supervision. Users can verify tracking results as correct or identify incorrect
results. After fixing a few key incorrect results, ZephIR can use those new annotations
as well as the verified correct tracking results to improve tracking results for all other
keypoints in that frame (and all its child frames).

All frames initialized by closest reference frameA

2
89 70 34

5
61

941

Frames branch out chronologically from reference frameC

2 8 970 3 4 5 61

Frame branch minimizes parent-child distanceB
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87
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Figure 2.9: Overview of frame sorting strategies Orange indicates fully annotated
reference frames, blue indicates parent frames with at least one child frame, and green
indicates child frames. A. In the simplest strategy, all frames are initialized by the
closest reference frame. B. Frames are sorted into ordered queues based on similarity.
Each of these branches start with a reference frame, and new child frames are added
such that the parent-child similarity distance is minimized, naturally clustering similar
frames around each reference frame. C. Frames are sorted chronologically, branching
both forward and backwards from each reference frame.
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Figure 2.10: Results for tracking GCamP fluorescent neuron nuclei in 3D vol-
umes of freely behaving C. elegans A. Plot of mean distance to the nearest reference
frame vs the number of reference frames (left), and the first three median frames rec-
ommended by ZephIR’s k-medoids clustering algorithm (right). The first three median
frames clearly represent the three main postures that the worm cycles through as it
crawls. B. MOT accuracy (higher is better) and precision (lower is better) vs the number
of reference frames. Note that once the majority of the postures present in the data
is well-represented by the first three reference frames, subsequent additions returns
diminished improvements. Last data point shows ZephIR’s accuracy using 10 reference
frames with 10 partial annotations across all frames (panel C). We also compare ZephIR’s
accuracy with Neuron Registration Vector Encoding (NeRVE) [Nguyen et al., 2017a],
fast Deep Neural Correspondence (fDNC) [Yu et al., 2021], and 3DeeCellTracker [Wen
et al., 2021] in both single (3DCT(s)) and ensemble (3DCT(e)) modes as reported in their
respective publications.
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Figure 2.10: (cont. from previous page) Note that the accuracies from 3DeeCellTracker
reflects both errors in detection and tracking. C. 10 neurons were randomly selected
to be verified or corrected to serve as partial annotations. Traces of 5 of these neurons
extracted using the initial ZephIR results with 10 reference frames (left), and those
using verified true positions (right) are shown, along with 5 other randomly selected
neurons. Traces are calculated as fold change over the baseline, where the baseline
is defined as the intensity in the first frame. Tracking quality for these 10 neurons
can also be seen in individual crops around the neurons averaged across all frames
(sharper image of the cell at the center reflects better accuracy and precision in tracking).
Note how the five unannotated neurons show improvements in tracking quality after
the addition of partial annotations, exemplifying the effects of partial annotations on
the unannotated neurons in the same frame. D. Neuronal activity traces from 178
neurons, extracted using results from ZephIR with 10 reference frames and 10 partial
annotations in all frames. Traces are calculated as fold change over the baseline, where
the baseline is defined as the intensity in the first frame. Behavior is shown in the
ethogram below the heatmap. Trajectory of the worm (t=0 at bottom right) is also
colored with the behavior state at the time. Trajectory of the worm matches changes
in behavior over time as expected, and many of the neuronal activity traces show
strong correlation with behavior. A video marked with tracking results is available at:
https://github.com/venkatachalamlab/ZephIR/blob/main/docs/examples.md.
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Demixing Signals in Deforming Tissues

3.1 Introduction

Recent advances in imaging techniques have enabled the capture of functional neural

ensembles in vivo within a wide variety of animal models [Ahrens et al., 2013a; Flusberg

et al., 2008; Mann et al., 2017; Prevedel et al., 2014]. Demixing the recorded video signals

into estimates of individual neural activity remains a critical bottleneck in the analysis of

these large and complex datasets. Previous approaches for extracting individual neural

activity traces have involved either region of interest (ROI) methods [Barbera et al., 2016;

Dombeck et al., 2007; Göbel et al., 2007; Hofer et al., 2011; Kerlin et al., 2010; Kerr et al.,

2005; Nguyen et al., 2016b; Niell and Smith, 2005; Tian et al., 2009; Venkatachalam

et al., 2016c] or matrix factorization methods based on principal components analysis

(PCA) or independent components analysis (ICA) [Mukamel et al., 2009; Reidl et al.,

2007; Siegel et al., 2007; Stetter et al., 2001] or sparse coding [Pachitariu et al., 2013,

2017].

Non-negative matrix factorization (NMF) [Lee and Seung, 1999, 2001; Paatero and

Tapper, 1994] based models have been introduced to demix signals from recordings of
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calcium activity [Andilla and Hamprecht, 2013, 2014; Haeffele et al., 2014; Maruyama

et al., 2014; Pachitariu et al., 2017; Pnevmatikakis et al., 2016; Zhou et al., 2018]. A

prerequisite for the success of these methods, to permit blind-source separation, is that

the imaged ROI remains motionless even when the animal is awake, satisfying the

assumption that the spatial footprints of signal sources remain stationary. To facilitate

NMF assumptions and remove excess motion variability, a common pre-processing step

before NMF is the registration of the imaging volumes to a common template space.

There is a wealth of literature in the medical imaging community regarding the

registration of volumetric images to template volumes to account for morphological vari-

ability [Klein et al., 2009]. These methods have proven to be very effective in registering

images that have similar intensity profiles but they tend to introduce artifacts when the

template image and the moving image have different appearances, low signal to noise

ratio, or abnormalities [Zeng et al., 2016]. Furthermore, the computational complexity of

these methods is a bottleneck since there are potentially tens of thousands of frames in

volumetric calcium videos that need to be registered. A number of pipelines [Dubbs et al.,

2016; Pachitariu et al., 2017; Pnevmatikakis and Giovannucci, 2017] implement existing

sub-pixel registration techniques [Guizar-Sicairos et al., 2008] to enable the rigid and

non-rigid registration of calcium videos in a computationally efficient manner. Assuming

that the motion does not involve large shifts in the field of view (FOV), these techniques

aim to register individual video frames to a template frame through fast patchwise rigid

transformations. However, they too are not built to handle severe deformations and large

intensity variations.

Recent whole-brain imaging techniques of the model organism C. elegans [Kato et al.,

2015; Nguyen et al., 2016b; Prevedel et al., 2014; Schrödel et al., 2013; Venkatachalam

et al., 2016c] have opened up an exciting new avenue of research, enabling simultaneous

recording of neural dynamics and freely-moving behaviors in the same animal. Even
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during restrained imaging, worms can exhibit highly-nonlinear motion [Girard et al.,

2007; Larsch et al., 2013; Voleti et al., 2019], violating the assumptions that enable

NMF-based signal separation and overstretching the capabilities of fast piecewise rigid

registration techniques. Therefore, common approaches have been to apply motion

tracking and simple pixel-averaging around cellular tracking ROIs in two discrete steps,

often followed by time-consuming supervision and manual correction of the results [Kato

et al., 2015; Nguyen et al., 2016b; Venkatachalam et al., 2016b]. One way to perform

motion tracking is to use a second imaging channel to record a temporally-invariant

fluorescent marker (such as RFP) which is insensitive to calcium activity. By using such

cellular motion tracking markers, calcium activity can then be extracted by averaging

the pixel values in the ROI that overlap with the marker. However, this approach is

flawed for at least two reasons: 1) ROI averaging in densely-packed cell regions is prone

to mixing signal between different neurons, due to limitations in optical resolution, and

2) introducing a second imaging channel effectively requires experimenters to reduce the

frame rate and/or spatial resolution by at least half in order to acquire this channel or

add an additional optical path and camera. On the other hand, if tracking is performed

only on the calcium imaging channel, due to the low signal-to-noise regime and calcium

signal fluctuations, tracking approaches may miss cellular markers at time points when

the cells become dim, creating downstream errors in tracking and demixing.

In general, tracking cells in moving animals (and even restrained animals with

restricted mobility), has proven to be a challenging machine vision problem [Hirose et al.,

2017]. Cell nuclei have similar shapes, thus providing only a limited set of unique features

to facilitate their tracking. Spatial noise represents a further, inherent limitation, due

to the microscopic size of the objects under investigation. Most available microscopy

approaches scan the animal in both space and time to achieve volumetric video recordings.

Therefore, there are fundamental limits in reaching the high spatiotemporal resolution
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necessary to resolve unique cell identities and extract their calcium signals through

tracking techniques.

Even if high accuracy cell tracking can be achieved, another issue with extracting

calcium signal around tracked ROIs is that many existing volumetric optical imaging

setups have a relatively poor resolution in the depth axis, characterized by an elongated

point-spread-function [Yang and Yuste, 2017]. This phenomenon causes the calcium

signals of nearby cells to be mixed, which in turn causes the pixel-wise signal read-out to

be an inaccurate portrayal of actual neural activity.

Orthogonally, there have been NMF techniques that are invariant to signal shift, such

as convolutive NMF [O’grady and Pearlmutter, 2006; Smaragdis, 2006]. However, these

techniques model discrete translation based shifts and are not suitable for modeling the

complex deformable motion exhibited across biological volumetric recordings.

In the case of C. elegans imaging, worms can exhibit nonlinear motion (even when

immobilized using popular paralytics [Larsch et al., 2013; Venkatachalam et al., 2016b;

Voleti et al., 2019]) and variability in their neural firing patterns over time, making the

application of previous techniques such as Normcorre [Pnevmatikakis and Giovannucci,

2017] or convolutive NMF ineffective. To surmount these issues, we introduce deformable

non-negative matrix factorization (dNMF) to jointly model the motion, spatial shapes,

and temporal traces of the observed neurons in a tri-factorization framework. Instead

of the two-step approach of sequentially tracking then demixing calcium signals, we

update motion parameters together with updates in the spatial and temporal matrices.

To ensure that our model is not overfitting and picking up spurious motion and signal,

we use regularized models for cell shapes, temporal fluctuations, and deformations.

The model parameters capture the worm’s motion corresponding to a fixed, spatial

representation of the video, enabling the deformation terms to match the worm’s posture
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at each time frame. Our framework is general and is suitable for decomposing videos

into a set of motion parameters, fixed spatial representations for image components,

and temporally varying signals with underlying linear and/or nonlinear motion. This

approach can be considered a generalization of the model developed in [Peng et al., 2012]

(applied to calcium imaging data by [Poole et al., 2015]), which restricts attention to

affine transformations.

We validate our method on an intensity-varying particle-tracking simulation and com-

pare it to state-of-the-art calcium-imaging motion-correction techniques [Pnevmatikakis

and Giovannucci, 2017] followed by NMF [Pnevmatikakis et al., 2016]. We then demon-

strate the ability of our framework to extract calcium traces from all neurons in the head

and tail of semi-immobilized C. elegans exhibiting nonlinear motion. We use a dataset

of 42 animals, 21 worm heads and 21 worm tails, recorded for 4 minutes each while

presenting three stimuli, a repulsive concentration of salt and two attractive odors. We

find that the proposed approach outperforms both ROI averaging and standard NMF,

delivering more accurate tracking and demixing than either of these methods in this

dataset.

Finally, after accurate extraction of neural activity signals from each animal, a post-

processing normalization step is still required in order to compare neurons of the same

type, across a population of animals. This is because factors such as variable illumination,

anisotropy associated with animal orientation, and a lack of stereotypy in fluorescence

expression across animals introduce substantial variability into the baseline and ampli-

tude of the extracted neural activity signals. Standard post-processing approaches based

on estimating ∆F/F0, do not resolve this variability, which if uncorrected will confound

any group-type neural comparisons across animals. Even worse, outlier signals that

arise due to mistracking and demixing can considerably warp the mean signal measured

across a population of animals, especially when the neuron type of interest is dim and is
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present next to neuron types with brighter signal.

To reduce this excess variability across animals, we introduce a time-series nor-

malization approach, termed quantile regression. This approach optimizes for a linear

transformation of time-series intensities in a group of samples (e.g., all traces extracted

from a given cell type over all animals), transforming the time-series samples to have

matched histograms. We compare this approach with z-scoring and advocate its adoption

for population-based time-series analysis due to several desirable properties. In particu-

lar, our approach retains the approximate baseline and magnitude across a population of

neurons of the same type, while maintaining robustness against outlier signals. Lastly,

we introduce an option for ensuring the non-negativity of the normalized signals, when

appropriate for the biological measurements being performed.

3.2 Deformable Non-negative Matrix Factorization

Figure 3.1: Schematic of the deformable non-negative matrix factorization model
The volumetric time series data Y (t) is factorized into time-varying deformation + motion
maps f β(t) which transform the factorized signal (with spatial footprints A multiplied by
time-varying intensity coefficients, C(t)) onto the observed data volumes.

The joint motion correction and signal extraction framework proposed here involves
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several steps illustrated in Figure 4.8. First, the volumes undergo several pre-processing

steps that involve coarse tracking, background subtraction and smoothing, details of

which are discussed in the "Pre-processing steps" subsubsection below. The pre-processed

volumes are then subjected to simultaneous deformation compensation and signal demix-

ing using a matrix tri-factorization model.

First, we introduce notation. Let Y t ∈ Rd denote the d-pixel vectorized volumetric

image at time t = 1, . . . ,T. We seek to decompose the observations, Y t, into a factorization

involving a time-varying deformation term, f βt that acts on a time-invariant canonical

representation of k object shapes encoded by A. The time-varying spatial signatures,

f βt(A) ∈Rd×k, are then multiplied by signal carrying coefficients Ct ∈Rk. We also encour-

age model parameters to be "well-behaved" using regularization functions, R (details of

which will be outlined later). The resulting objective function is:

min
A,C,β

T∑
t=1

∥∥∥Y t − f βt
(A)Ct

∥∥∥2

2
+R(A,C,β) (3.1)

s.t. A,C1:T ≥ 0.

This formulation differs from standard NMF techniques [Lee and Seung, 2001] in that

the spatial footprint term consists of a time invariant term, A and a time varying

term, f βt
, which is a differentiable transformation parametrized by βt, that deforms the

canonical representation into the t-th time frame. βt encapsulates the motion parameters

and is usually low dimensional to avoid over-parameterization and overfitting. The

regularization R(·) further constrains the possible choice of spatial footprints, signal

coefficients, and spatial deformations. Figure 4.8 illustrates the model. Next, we detail

two possible parameterizations of the spatial terms, A and f .
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3.2.0.1 Spatial component: non-parametric model

Similar to the standard NMF models, we can parameterize A using a d-by-k matrix,

where d is the number of pixels of one time frame of the video and k is the number of

objects that are present. We use a Gaussian interpolant, T t, to transform these spatial

footprints to arbitrary locations such that f βt
(A)= T t A, where T t:Rd×d and

T t[i, j]= exp
(∥∥βtΨ(x j)− xi

∥∥2
2

2σ2

)
. (3.2)

Here, xi, x j ∈R3 denote the coordinates of two arbitrary pixels in the volume. Ψ:R3 →Rp

denotes a basis mapping of coordinates to enable non-linear deformations and βt is a

3-by-p matrix that parametrize the deformations. For example, in the case of a quadratic

polynomial basis, βt would be a 3-by-10 matrix, and Ψ:R3 →R10 would be the quadratic

basis function Ψ([x, y, z]T)= [1, x, y, z, x2, y2, z2, xy, yz, xz]T . The choice of σ controls the

amount of the spread of the mass of a pixel into nearby pixels.

3.2.0.2 Spatial component parametrization: Gaussian functions

When we have strong prior information about the component shapes we can incorpo-

rate that into the model using an appropriate parameterization for the spatial footprints.

Neural activity is most commonly imaged using cytosolic or nuclear-localized calcium

indicators; nuclear-localized indicators can be reasonably modeled using ellipsoidally-

symmetric shape models. Specifically, we observed that the spatial component of the

neurons in the videos analyzed here, of C. elegans imaged using nuclear-localized calcium

indicators, can be well approximated using three-dimensional Gaussian functions. By

taking advantage of this observation we can reduce the number of parameters in A from

one parameter per pixel per component, to k 3D centers (3 parameters per each neuron)

and k covariance matrices (6 parameters per each neuron using the Cholesky param-

eterization). Formally, we model the footprint of component k using a 3-dimensional

Gaussian function with location parameters µk ∈ R3 and shape parameters Σk ∈ R3×3.
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Under this new spatial model for A = {µ1:K ,Σ1:K }, we modify the f βt
function to match

this parameterization to have f βt
(A) ∈Rd×k:

f βt
(A)[i,k]≈ exp

(
[pi −βtΨ(µk)]TΣ−1

k [pi −βtΨ(µk)]
)
, (3.3)

where pi is the 3D coordinate of the i-th pixel in the image. (Note that non-negativity of

the spatial components is enforced automatically here.) Due to the differentiability of

f βt
, it is straightforward to compute gradients with respect to βt and Σk.

3.2.0.3 Regularization: temporal continuity

To enforce smoothness of the temporal traces and motion trajectories in time we add a

regularizer that penalizes discontinuities in the neural trajectories and signal coefficients.

Specifically, we encourage the neural centers and signal coefficients at neighboring time

points to be close. The regularizer for this purpose is:

RT(C,β)=λβ
T−1∑
t=0

∥∥ψ(µ1:K )βt−1 −ψ(µ1:K )βt
∥∥2

F (3.4)

+λC

T−1∑
t=0

∥Ct−1 −Ct∥2
F . (3.5)

In this formulation ψ(µ1:K ) is the quadratic transformation of the canonical neural

centers. When multiplied by βt−1 and βt the result will be the neural centers at time

t−1 and t respectively.

3.2.0.4 Regularization: Jacobian constraints for plausible deformations

The term f βt
induces a deformable transformation of the pixel correspondences

between time t and the canonical representation A. In order to constrain this transfor-

mation to yield physically realistic deformations that respect volumetric changes, we

regularize the cost function using the determinant of the Jacobian of the transforma-

tion term to encourage the Jacobian to be close to 1 and prevent the deformation from
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contracting or expanding unrealistically. The Jacobian can be represented as:

J β(x1, x2, x3) with J i j =
∂(f β)i

∂x j
.

Using the Jacobian, the regularizer is:

RJ (β)=λJ

T∑
t=1

j∑
i=1

(det Jβt(xi, yi, zi)−1)2, (3.6)

where the Jacobian is evaluated on a grid where we want to ensure its proximity to one.

3.2.0.5 Optimization

All the variations of the dNMF cost function are optimized in the following way. To

update β and A we use the autograd tool and PyTorch library to automatically compute

gradients of the cost function and Adam optimizer to back-propagate the gradients. A

forward pass of computation is evaluating the cost function with β1:T and A (in the fully

parametric case, or β1:T (in the Gaussian case) as parameters. Note that for a fixed C,

all compartments of the cost function are differentiable with respect to the parameters.

To update C we use multiplicative updates as described in [Taslaman and Nilsson,

2012]:

Ct ←Ct ⊙
f T
βt

Y t +λC(Ct−1 +Ct+1)

f T
βt

f βt
Ct +2λCCt

. (3.7)

The key difference between these multiplicative updates from those found in [Lee and

Seung, 2001] is that the parts of the derivatives of the temporal smoothness regular-

ization terms 2λCCt and λC(Ct−1 +Ct+1) appear in the denominator and numerator to

promote smoothly varying signal.

3.2.0.6 Initialization

One key advantage of the C. elegans datasets considered here is that we can reliably

identify the locations of all cells in the field of view, using methods developed in [Yemini
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et al., 2019b]. Using the location of cells in the initial frame (for example) can tremen-

dously aid the optimization of the objective 3.1 for two main reasons. First, it serves

as a very good initializer for the µk parameters for cell spatial footprints mentioned in

subsection 3.2.0.2. Second, we know a priori the correct number of cells to be demixed in

the FOV. These two factors enable our framework to operate in a semi-blind manner

towards the deconvolution of neural signals of C. elegans, unlike fully blind deconvolution

techniques such as e.g. PCA-ICA [Mukamel et al., 2009] or CNMF [Pnevmatikakis et al.,

2016].

3.2.0.7 Using dNMF for image registration

The transformation terms fβt , learned using dNMF, can be used to obtain a pixel-level

transformation of the video frames to a reference frame in order to yield a registered

video; in the ideal case this registered video would remove all the motion from the video,

leaving each neuron to flicker in place as its internal activity modulates its fluorescence

level. In the current formulation, fβt represent push-forward mappings of a reference

frame to all the frames in the video. However, to obtain a registration, we need to recover

the inverse mappings from all of the video frames to the reference frame. We solve this

inverse transform, βi
t, by optimizing the following objective:

min
βi

t

T∑
t=1

∥µ1:K −βi
tψ(β∗

t ψ(µ1:K ))∥2
F +RJ (βi) (3.8)

where µ1:K ∈ ZK×3+ indicates the set of neuron coordinates at the reference frame and

β∗
t ψ(µ1:K ) indicates the forward polynomial mapping of these neurons in the t-th video

frame after optimization, with β∗
t indicating the transformation optimized through (3.1).

Lastly, RJ (β) indicates the same Jacobian regularizer as in (3.6). In the simplest case

that β∗
t ψ is restricted to be affine, and the regularizer weight λJ in RJ (βi

t) is negligible,

then βi
tψ simply implements the shift and matrix inversion of β∗

t ψ. More generally, the

exact inverse mapping may not exist or may be unstable; in this more general setting
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(3.8) will output a smooth approximation to the inverse mapping.

Note that Eq. (3.8) solves a labeled point-set registration problem (since it oper-

ates on the neuron centers µ1:K ), not an image registration problem per se. Next we

use the recovered inverse mapping βi
t to perform image registration, using pixel-wise

interpolation:

pt 7→ Interp.[βi
tψ(pt)]. (3.9)

Here, pt ∈Zd×3+ denotes the mesh of pixel coordinates that span the entire volume of the

image and Interp. refers to an interpolation function such as linear, nearest neighbor,

or bicubic, that can be used to convert non-integer values of pixel coordinates to map

to discrete pixels. In practice, we set the reference frame to be the first frame in the

video series and use linear interpolation. Note that this way of performing registration

differs from traditional registration techniques such as Normcorre [Pnevmatikakis and

Giovannucci, 2017] in a critical way: the deformation terms that are used to drive the

registration are informed by the neural activity and are decoupled from the inferred

activity in the joint objective function (3.1). Thus, in theory, large fluctuations in neural

activity from frame to frame should not affect the deformation terms. In contrast, pure

registration techniques on functional neural data may be driven to poor local optima if

the neural activity in a particular frame differs strongly from the reference frame.

3.2.0.8 Population neural analysis

After we have extracted activity traces from each neuron in a single field of view,

a typical next step is to compile and analyze a collection of extracted traces across

multiple imaged animals. The traces exhibit variability due to both methodological

variability (e.g., variability inherent in imaging equipment) and biological variability

(e.g., variability inherent in the levels of fluorescent-protein expression across neurons of

the same type). These “extra" sources of variability can obscure the changes in neural
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activity that we wish to extract and analyze here. Consequently, a neuron’s calcium

trace, measured across multiple animals, can exhibit differences in overall intensity

that require correction to obtain valid comparisons across animals. As a simple example,

many neuron classes are composed of a symmetric left and right pair that often show

identical calcium activity. With most imaging equipment, when the left neuron is near

the lens, the corresponding right neuron is far away, leading to a false differential

reading of brightness. Thus, even within a single animal, symmetric neurons can require

corrections to be comparable.

The commonly used technique of converting neural traces to ∆F/F0 aims to correct

these issues in mismatched fluorescence intensity profiles but is often insufficient (see

Results subsection below and Figure 3.2). One way to further normalize time-series data

is through z-scoring the signal such that the mean and variance across time is zero and

one, respectively. However, in practice, simply mean-shifting to zero often misrepresents

the neuron’s baseline signal. Similarly, scaling to unit variance will scale unresponsive

and responsive neurons to the same magnitude, thus inflating instead of suppressing

measurement noise in unresponsive cells.

A method that employs a more robust view of the distribution of neural signal would

provide a more accurate normalization. Here we generalize the concept of z-scoring time-

series by first observing that z-scoring is a linear transform that matches the histogram of

the time series to a standard Gaussian distribution with zero mean and unit variance. We

then cast histogram normalization in a way such that the transformation is constrained

to be a linear transform that minimizes distance to the distribution as a whole, leading

to more robust results compared to z-scoring, which restricts attention to two non-robust

summary statistics of the histogram (the mean and variance). Lastly, we provide a

strategy for normalizing a population of time series data by transforming to the medoid

of these time series (i.e., the time series which is on average closest to all the others
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in the population). Empirically, the resulting approach preserves signal while reducing

variability across the population.

Quantile regression Let C i ∈RT denote the time series of a neuron in the ith animal

over T time steps. Suppose we want to match the neural time-series of the ith animal

to the jth animal using a linear transform. One possible strategy to match two time-

series signals to one another is to match their baselines and match their peaks. This

corresponds to transforming the minimum and the maximum of one time series such that

they match the minimum and maximum of the other time series. This is equivalent to

matching their minimal and maximal quantiles through a transformation term involving

scaling and shifting.

We can generalize this procedure with more quantiles to yield a transformation

estimate that is more robust to noise. Matching multiple quantiles using a linear trans-

formation term can be represented by the following linear model:

F−1
C j (a)= F−1

C i (a)ν+ν0 +ϵ (3.10)

where F−1 denotes the inverse cumulative distribution function and ν,ν0 denote the

scaling and magnitude shift of the time-series, respectively, and ϵ represents an error

term. This model posits that each time series signal consists of a baseline and several

peaks which can be represented as quantiles of histograms that require matching;

baselines and peaks of the same neuron, across different animals, should roughly have

similar values.

We can then estimate ν and ν0 by solving the following least squares problem:

W2,L(C i,C j)=min
ν,ν0

∫ 1

0
∥F−1

C j (a)−F−1
C i (a)ν−ν0∥2

2da. (3.11)

The arg-min of (3.11) yields the linear estimates ν,ν0 that can be used to transform

the time series C i to match the time series C j, where Ĉ i, j = C iν∗+ν∗0 . We term this
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regression model, quantile regression (QR), since the predictors and responses are

quantiles of time-series data. If only two quantiles are used i.e. the bottom and topmost

quantiles, this procedure is equivalent to matching the minimum/maximum of the two

time-series.

Optimizing (3.11) yields the transformation that best matches the histogram of

the ith time series C i with that of the jth time series C j. The residual discrepancy

between the transformed ith time series Ĉ i, j and the jth time series C j can be thought

of a distance between these time series. In fact, the minimum of (3.11) is a linear

approximation of a bona fide distance metric, termed the Wasserstein metric [Peyré et al.,

2019], that is a distance between probability distributions.

Using this notion of proximity between time series, if we have a population of N

samples C1, . . . ,CN , the strategy for normalizing the time series we advocate here is

to compute pairwise Wasserstein distance approximations between all time series and

choose the medoid time series to normalize to:

C0 ← argmin
Cℓ

N∑
i=1

W2,L(Cℓ,C i) (3.12)

In other words, we can find the best fit of each time series through quantile regression

to all other time series, and set as a reference the time series that has the minimal

average distance to all the other time series. Once the reference is set, all the samples

are transformed to match the reference quantiles using (3.11). See Figure 3.2 for an

illustration.

Lastly, if the time series all capture non-negative signal (as is often encountered

in calcium imaging) the regression in (3.11) can be constrained to be non-negative to

ensure the transformed time series maintains its positivity. This yields the non-negative

linear estimate of the Wasserstein metric. We term this variant of the quantile regression
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model as non-negative quantile regression (NQR):

W2,N(C i,C j)= min
ν,ν0≥0

∫ 1

0
∥F−1

C j (a)−F−1
C i (a)ν−ν0∥2

2da (3.13)

3.2.0.9 Evaluation metrics

To evaluate the performance of the proposed method as well as the compared methods,

we focus on several metrics that shed light both on the signal demixing capabilities of

the methods as well as their ability to track objects in time. Namely we focus on two

major metrics: trajectory correlation, which measures the ability of the deformation

model to keep track of the observed motion, and signal correlation, which measures

the demixing performance by comparing the correlation of demixed signal intensities

relative to the ground truth. Specifically, these metrics can be expressed as

Trajectory correlation:

ρ(β̂,β)=
∑

i, j,t(β̂
i j
t − ¯̂β)(βi j

t − β̄)√∑
i, j,t(β̂

i j
t − ¯̂β)2

√∑
i, j,t(β

i j
t − β̄)2

Signal correlation:

ρ(Ĉ,C)=
∑

kt(Ĉkt − ¯̂C)(Ckt − C̄)√∑
kt(Ĉkt − ¯̂C)2

√∑
kt(Ckt − C̄)2

.

The above metrics are applicable when the ground truth motion trajectories and the

signal coefficients are known. To evaluate the performance of the methods using unsuper-

vised registration heuristics, we focus on the correlation of registered frames to the

average frame (after registration). Heuristically, this measure has been demonstrated

to be an effective indicator of successful registration [Pnevmatikakis and Giovannucci,

2017]. Furthermore, in the real data experiments, we also evaluate the average spread

of cell locations before and after registration. This is computed by taking the average

distance of the cells to the average cell location. Similar to the frame correlation measure,

94



H
is

to
g
ra

m
s

Tr
ac

es
C
D

Fs

Raw Z-score Quantile regression (QR) Non-negative QR

Figure 3.2: A demonstration of quantile regression for the tail neuron LUAL in
C. elegans, across 21 animals Different colors indicate different animals. First column:
The raw traces superimposed exhibit variability in intensity profiles due to imaging and
biological differences (top). The histograms and cumulative distribution functions (CDFs)
of the time-series signals display the differing distributions representing these traces
(middle and bottom). Second column: Z-scored traces exhibit tighter grouping than
raw traces (top) further shown in their CDFs (bottom). However, these z-scored traces
are shifted towards zero mean (top) which is misrepresentative of the signal magnitude
and also exhibit significant remaining variability. Third and fourth columns: After
quantile regression (QR) and non-negative quantile regression (NQR) to the medoid
of the traces, we see that the normalized traces retain their shape (top), exhibiting
even tighter grouping than after z-scoring. In comparison with the z-scored traces, both
QR and NQR preserve the median signal magnitude, ∆F/F0=~2 (top and middle) with
smaller tails in their histogram (middle), implying a better fit across the population of
animals.
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this metric allows us to diagnose whether certain cells are registered better than others.

While the average correlation of frames is a high-level measure of registration perfor-

mance, the measure of cellular spread is a localized metric, indicating whether certain

regions of the volume are registered better than others. In other words, the former metric

measures global sharpness while the latter measures local sharpness.

The added benefit of the latter two evaluation metrics is that since they do not require

any ground truth, they can be used for hyperparameter selection; i.e., we can select

regularization parameters that yield the sharpest registration results. Furthermore, we

can use the sharpness criteria to evaluate the goodness of fit for different deformation

models such as quadratic polynomials (as used here), b-splines [Rueckert et al., 1999], or

higher order polynomials.

3.2.0.10 Compared methods

We argue in this paper that jointly optimizing for deformable registration and time-

series signal extraction has the potential to improve the quality of both the registration

and signal extraction. Therefore, we compare the registration performance of dNMF

against the state-of-the-art method for calcium video motion registration, named Norm-

corre [Pnevmatikakis and Giovannucci, 2017]. Normcorre does not explicitly model

the presence of independent signal carrying units in the FOV and instead performs

piecewise-rigid transformations on overlapping sub-blocks of the volume using a fast

fourier transform based technique [Guizar-Sicairos et al., 2008]. Furthermore, Norm-

corre uses a normalized cross-correlation registration loss function that is less prone to

intensity variations across time-frames.

Next, we also evaluate the signal extraction performance of dNMF against two

standard routines in calcium imaging. First, we compare against region of interest

(ROI) tracking and pixel averaging within the ROI [Venkatachalam et al., 2016b]. This
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method tracks the positions of cells across time and extracts signal by taking the average

pixel intensity value in a pre-defined radial region around the tracking marker. We

also compare against the routine of performing motion correction first and then signal

extraction through NMF [Pnevmatikakis et al., 2016]. To replicate this routine in our

experiments, we motion correct using Normcorre and then use the Gaussian cell shape

parametrization version of NMF that is described in subsection 3.2.0.2. We use this

variant of NMF rather than non-parametric variants such as CNMF [Pnevmatikakis

et al., 2016] to bring the comparison against dNMF to an equal footing since dNMF

already uses this parametrization that tends to model nuclear shapes well.

3.2.0.11 Implementation details

All the optimization codes are implemented in Python 3.7.3 using the autograd

tool and the PyTorch 1.5 package. We used the Adam optimizer with learning rate 0.001

for the simulations and 0.00001 for the worm experiments. Large learning rates lead

to jumps in the tracks and lower quality traces, while small learning rates need more

iterations to converge. The experiments are run on a Lenovo X1 laptop with Microsoft

Windows operating system using 64 GB RAM and Intel(R) Core(TM) i7-8850H CPU

@ 2.60GHz, 2592 Mhz, 6 Core(s), 12 Logical Processor(s). We further implemented a

sequential optimizer for the demixing of an online stream of videos where each batch of

data consisting of a few time frames of the video is processed with parameters initialized

using the previous batch. In addition, to improve the memory and time efficiency of our

algorithms we also introduced a stochastic variant of dNMF, where in each iteration, to

compute the loss and its gradient, we randomly subsample the pixels both in the spatial

and temporal domains and update the parameters based on those samples.
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3.2.0.12 C. elegans video description

Videos of calcium activity in C. elegans were captured via a spinning-disk confocal

microscope with resolution (x,y,z)=(0.27,0.27,1.5) microns. Whole-brain calcium activity

was measured using the fluorescent sensor GCaMP6s in animals expressing a stereo-

typed fluorescent color map that permitted class-type identification of every neuron in

the worm’s brain (NeuroPAL strain OH16230) [Yemini et al., 2019b]. Each video was 4

minutes long and was acquired at approximately 4Hz. Worms were paralytically immo-

bilized (using tertramisole) in a microfluidic chip capable of delivering chemosensory

stimuli (salt and two odors) [Chronis et al., 2007; Si et al., 2019]. This setup allows

for the controlled delivery of multiple soluble stimuli to the animal with high-temporal

precision. See [Yemini et al., 2019b] for full experimental details.

Despite paralytic immobilization, we still observed some motion of the worm within

the chip, primarily over small distances of several microns and over slow, multi-second

time scales. Some of this motion was driven by the animal, while some was the result of

the animal drifting passively due to minute pressure differences in the chip. This motion

was strongest in the tail, which, due to its taper, was not well secured by the channel

walls of the microfluidic chip. Despite the smaller scale of this motion (as compared

to freely-moving behavior such as crawling), motion artifacts could strongly confound

traces, particularly in the head of the animal where the neurons are very tightly packed.

Thus, these motion artifacts required algorithmic correction.

Each dataset from this collection is a video in the form of a 4D tensor W ×H×D×T

(approximately 256×128×21×960) where the value of the tensor at (x, y, z, t) corresponds

to the activity of a neuron located near the point (x, y, z) at time t. To extract the neural

activity from the videos we first reformat the data into a d×T matrix where d =WHD

that is called the data matrix Y . We then run the Gaussian dNMF with cell centers
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initialized using the cell locations in the initial frame, determined using the semi-

automated methods described in [Yemini et al., 2019b]. Since the cells are approximately

spherical in this video we used a fixed spherical covariance matrix for all the cells with

squared root diagonal entries equal to 0.57µm (roughly a third of the minimal diameter

of adult worm neurons).

3.2.0.13 Pre-processing steps

Neuron centers were first tracked using a local image registration approach through-

out the time series, using the approach in [Venkatachalam et al., 2016b]. After identifying

each neuron center in the first frame, every subsequent frame was registered to this first

frame. The registration was performed on x-, y-, and z- maximum-intensity projections

of a small volume around the neuron center using the imregister function in MATLAB.

The volume was chosen to be small enough that nonrigid deformations could generally be

neglected, so we used a rigid registration model (translation and rotation only). Because

motion is continuous between frames, the initial guess for the transformation was taken

to be the calculated transformation from the previous time frame.

We use the initial trajectories of the neurons to initialize our motion parameters βt

by solving βt = argminβ
∥∥βψ(P1)−Pt

∥∥2
2 where Pt contains the locations of neurons in

time t tracked using local image registration techniques. For computational efficiency,

we also mask out pixels that are outside of the circles with radii 3µm from the location

of all neurons in all time points.

3.2.1 Results

3.2.1.1 Simulation experiments

To evaluate the effectiveness of our algorithm in capturing motion and demixing

time-series traces, we simulated the trajectory of 10 neurons, with a time-specific trace
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Figure 3.3: Demixing calcium signals in simulated videos A: Neurons are generated
as Gaussian shapes and undergo motion and simulated calcium activity in a 100-second
long video. Static snapshots of the video are shown (left) and spatial footprints for each
cell are assigned unique colors with intensities proportional to calcium activity (right).
Note that the spatial footprints of cells are also in motion, tracking the position of the
cells.

assigned to each (Fig. 3.3A-B). The signal for each neuron is modeled as a binary vector

with length T and probability p of observing a unit spike, convolved with a decaying

exponential kernel. Each trajectory was generated using quadratic transformations of

the point cloud in its previous time point, starting from a random initial point cloud.

(Note that the composition of many such quadratic mappings is non-quadratic, and

therefore the generative model here does not perfectly match the model dNMF uses

to fit the data, where a quadratic transformation maps the spatial components A to

match the observed data at each frame; nonetheless, despite this model mismatch, dNMF
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Figure 3.3: (cont. from previous page) B: The ground truth calcium activity for each
cell (left) is compared with the neural activity extracted using dNMF (second column),
Normcorre [Pnevmatikakis and Giovannucci, 2017]+NMF (third column) and ROI track-
ing and pixel averaging (fourth column). dNMF recovers the ground truth signal well
whereas Normcorre+NMF and ROI methods yield significantly more mixed signals (in-
dicated by red arrows) due to the proximity of the cells and the tendency of the spatial
footprints of mobile cells to overlap. C: The correlation of the recovered signal to the
ground truth signal as a function of the image signal-to-noise ratio (SNR). D: The cor-
relation of the recovered cell movement trajectories to the ground truth trajectories as
a function of trajectory SNR. E: The correlation of the recovered signals to the ground
truth as a function of the density of independent objects in the FOV. F: The correlation
of the recovered signals to the ground truth as a function of the density of signaling
events (simulating neural excitation) exhibited by the cells. Note that we provided ROI
tracking here with access to the ground truth cell centers at all times (explaining why
ROI averaging correlation values remain high even in the limit of very high activity
density); nonetheless, even with artificially perfect tracking accuracy, mixing of nearby
signals remains a significant issue. See MOVIE LINK for further details.

achieves accurate results here, as discussed below.) The trajectory of each neuron was

then convolved with a fixed 3D Gaussian filter that represents the shape of that neuron

and then multiplied with the time course assigned to that neuron. The simulated video

is the result of the superposition of these moving Gaussian functions.

We compare the performance of dNMF, Normcorre+NMF, and ROI pixel averaging in

a variety of confounding scenarios using the metrics defined in subsection 3.2.0.9. In all

simulation experiments, the ROI averaging method is provided with the ground truth

cell positions — i.e., we examine the accuracy of this method under the (unrealistically

optimistic) assumption that neurons are tracked perfectly, to evaluate the demixing

performance of ROI signal extraction without the additional confound of tracking perfor-

mance.

In Fig. 3.3C-F, we explore the performance limits of dNMF, Normcorre+NMF, and

ROI pixel averaging as a function of imaging noise and motion variability. Signal SNR

is defined by the peak-to-trough difference between the neural activity signals during
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Figure 3.4: Simulated data registration results A: Top row: The mean video frame
prior to registration (left), after dNMF based registration (middle), and after Norm-
corre [Pnevmatikakis and Giovannucci, 2017] registration. Middle Row: Mean of the
absolute value of the video frames subtracted from the first frame prior to registration
(left), after dNMF based registration (middle) and after Normcorre (right). If registration
is perfect, this image will look like a weighted sum of Gaussian shapes, one for each cell
(corresponding to the cell dimming and brightening, but remaining in place); imperfect
registrations are indicated by “spreading" or “doubling" of the cell shapes, as indicated
by red arrows.
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Figure 3.4: (cont. from previous page) Bottom row: The locations of the cells across time
(colors denote different times) superimposed on the first frame prior to registration (left),
after dNMF based registration (middle) and after Normcorre (right). Red arrows indicate
cells with imperfect registration, with significant remaining movement of the cells across
frames. B: The correlation of the video frames to the mean video frame before registration
(blue), after dNMF based registration (red), and after Normcorre (cyan); higher values
indicate better performance here. C: The correlation of individual registered frames to
the mean video frame after dNMF registration (x-values) and Normcorre (y-values). The
straight line indicates x = y; points below this line indicate the higher correlation of
dNMF registered frames to the mean frame. D: The spread of the cell position centers,
relative to their average. in the unregistered video (blue), after dNMF-based registration
(red), and after Normcorre (cyan). A lower standard deviation for cell spread indicates
better performance for local registration of cell shapes. See MOVIE LINK for further
details.

times of activity. Trajectory SNR is quantified by how well the cells adhere to the motion

of all other cells; high trajectory SNR indicates all cells move in unison, resembling a

deformable medium, and low trajectory SNR indicates each cell is moving like inde-

pendent particles. Mathematically, this is proportional to the log ratio of the variance

of the average location of the cells versus the variance of the time differences of these

locations. It can be seen in Fig. 3.3D that dNMF is robust to noise but ultimately may

introduce errors to demixing and trajectory tracking if the signal and trajectory SNR

(Fig. 3.3D) are too low. Normcorre+NMF does relatively worse than dNMF as a function

of signal SNR and trajectory SNR. ROI pixel averaging has the poorest signal recovery

performance of the three compared methods as a function of signal SNR. (Note that ROI

pixel averaging enjoys a constant trajectory estimation rate in Fig. 3.3D, since it has

access to ground truth cell locations, as discussed above.)

Next, we evaluated the signal extraction performance as a function of the cell density

in the FOV. Increased cell density indicates an increased superpositioning of independent

signals and therefore a higher degree of signal mixing. dNMF demixing performance de-

grades linearly as the density of independent objects within the FOV increases (Fig. 3.3E)

but enjoys higher rates of recovery than both Normcorre+NMF and ROI pixel averaging.
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Figure 3.5: Demixing neural calcium signal in semi-immobilized C. elegans
videos A: Three static, z-axis maximum projected frames from a representative 4-
minute long video of GCaMP6s neural activity. We focus on the signal from five pairs
of spatially-neighboring neurons in the tail: DVA/DVB, PVNR/PVNL, PVWL/PHCR,
PLNR/LUAR, and VD13/DA8.

Lastly, we observe that the density of signaling events changes the demixing perfor-

mance for the three compared methods. In particular, low signal densities (simulating

weak excitation) make it harder to track individual cells, which may be dim and therefore

hard to detect and track in many frames.

In Fig. 3.4, we qualitatively demonstrate the registration performance of dNMF

versus Normcorre [Pnevmatikakis and Giovannucci, 2017]. We see that the average

frame, after registering with dNMF, is sharper than the non-registered average frame,

with better-localized and less-variable cell center locations. In comparison, Normcorre

yields a higher spread of cells, even after registration, which may lead to erroneous signal
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Figure 3.5: (cont. from previous page) B: Calcium signals extracted by dNMF (left),
Normcorre [Pnevmatikakis and Giovannucci, 2017] + NMF (middle), and ROI tracking
and averaging (right). dNMF extracts uncoupled signals that demonstrate independent
neural activity. The selected cells were chosen such that the signal recovered by ROI
averaging is inconsistent with dNMF (quantified by having correlation smaller than 0.4).
Normcorre + NMF partially mixes signals between both PHCR/PVWL and PVNL/PVNR
around the 30-second mark and DVB/DVA around the 120-second mark (red arrows),
and loses nearly all signal from PLNR, due to motion exhibited by the semi-immobilized
animal. ROI averaging produces completely correlated signal (red arrows) between all
of the labeled neurons, and loses most of the signal from LUAR and PLNR, due to
overlap in their spatial footprints. C: Calcium activity traces, of the labeled tail neurons,
extracted from a population of 21 worms. The unique colors label traces from the same
neurons, across different animals. Here, the dNMF traces are tightly grouped, exhibiting
minimal variability between animals. Normcorre+NMF traces exhibit mixed-signal and
mistracked neurons. ROI traces exhibit wider variability than dNMF, due to mixed
signals and, potentially, noise common to ROI averaging. D: Pairwise neuron distances
versus pairwise correlation of neural signals for all three methods. Note that signal
mixing tends to occur when the signal sources are close to one another, necessitating
techniques such as NMF to disentangle independent signals. For this reason, dNMF is
well suited to demix spatially-close neuron pairs. Normcorre+NMF experiences mixing
effects due to motion for which it fails to account (seen in the supplementary movie
linked below). ROI averaging does mix traces and thus shows increasingly correlated
signals between neuron pairs as they get nearer to each other (indicated by the red
arrow). See MOVIE LINK for further details.

recovery. Both of these global and local sharpness metrics are quantified in Fig. 3.4C-D.

3.2.1.2 Demonstration of demixing in real C. elegans data

In the simulated data analyzed above, dNMF exhibits superior registration perfor-

mance due to its ability to decouple the intensity signal from the motion of objects.

Conversely, coupling registration with signal extraction enables dNMF to capture the

neural signal and demix it from nearby cells more accurately.

We extend this demonstration further with a real data example. The worm’s tail

contains several ganglia, with densely-packed neurons, whose spatial footprints often

overlap due to insufficient spatial resolution. Additionally, even neurons in separate

ganglia can end up in sufficient proximity, due to microfluidic confinement or other
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imaging-setup induced deformations, such that their spatial footprints overlap. The

spatial overlap represents a significant challenge, both for tracking individual neurons

and demixing their signal. Figure 3.5 shows an example of the difficulty present when

tracking and demixing neural activity signals from animals with spatially overlapping

neural footprints in their recorded images. In this example, ROI tracking loses most

of the signal from the LUAR and PLNR neurons and further mixes signals between

the DA8/VD13, DVA/DVB, PHCR/PVWL, and PVNL/PVNR neurons. Normcorre+NMF

performs better but loses nearly all signals from PLNR while also still mixing signals

between the DVA/DVB, PHCR/PVWL, and PVNL/PVNR neurons. In comparison, dNMF

recovers strong, independent signals from all ten neurons. Thus dNMF can track and

differentiate signals from neurons, even within areas containing multiple spatially-

overlapping neural footprints where other comparable algorithms fail.

Additionally, in figure 3.5, we quantify the demixing performance by computing

the pairwise correlation of nearby neurons as a function of the distance between these

neurons. Signal mixing is expected to occur when the spatial footprints of nearby neurons,

blurred by the point spread function and/or insufficient spatial resolution, overlap with

another. Therefore, one heuristic to determine how well demixing was performed is

the correlation of pairwise distances of neurons to the pairwise correlations of their

activity. Indeed, both matrix factorization methods, dNMF and Normcorre+NMF, yield

uncorrelated trends between neuron pair distance and the correlation of their respective

trace activity. On the other hand, simple ROI averaging tends to visibly mix signals in

closely-neighboring neurons, resulting in unrealistically high correlation values near 1

for the closest neighbors.
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3.2.1.3 Worm registration

After optimizing dNMF, we can obtain registered videos of worms to evaluate per-

formance and compare against Normcorre (Figure 3.6A). Similar to simulated data,

we can once again observe that the mean video frame after registering with dNMF is

sharper when compared to both the raw average frame and this average after applying

Normcorre. Furthermore, the mean of the absolute difference between video frames and

the first frame shows that the dNMF registration has fewer distorted toroidal shapes

than Normcorre, indicating better registration of cell shapes. Lastly, we can also see that

after registering with dNMF the cell centers have a tighter grouping than Normcorre;

this is another indication of better registration performance.

Figure 3.6B-D evaluates these observations quantitatively. The subfigures B and

C indicate that the frames registered via dNMF tend to have a higher correlation to

the mean registered frame than Normcorre, which indicates the quality of registration.

Furthermore, the dNMF and Normcorre registration results diverge most in the initial

frames, where the majority of deformable motions are observed. Since Normcorre is a

piecewise rigid registration technique, its deformation model may be misspecified to

capture such motions, whereas the dNMF motion model is more accurate. Figure 3.6D

demonstrates that the cell grouping after dNMF is indeed tighter than Normcorre.

3.2.1.4 Population study of C. elegans

Using the neural traces extracted with dNMF (converted to ∆F/F0), we demonstrate

the time-series histogram-normalization technique of quantile regression (QR), show its

non-negative regression variant (NQR), and compare these with z-score normalization.

The time-series data we used is the brain-wide neural GCaMP6s intensity extracted from

21 worm heads (up to 189 neurons in each head) and 21 worm tails (up to 42 neurons

in each tail). In these animals, neurons with the same identity often exhibited very
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different intensity distributions across individual animals. In the course of a time series,

neuron intensities change to reflect the underlying activities but, given a sufficiently

long recording, after proper alignment, the probability density function (PDF) should be

roughly equivalent for neurons of the same class type.

Differences in the intensity PDFs of neurons with identical class types are due

to variability in imaging conditions, anisotropy due to random animal orientations,

and biological variability in fluorescence expression. To properly compare one animal to

another, class-specific neural intensity distributions must be corrected so that they match

each other appropriately (e.g., all LUA neurons should exhibit similar PDFs); otherwise,

this variability will distort population representations of the signal. In figure 3.2, we

explore these population representations of signal by focusing on a single neuron, LUAL,

to compare raw, z-scored, QR, and NQR normalized neural traces. Although the LUAL

neurons should preserve similar PDFs, instead they exhibit high variability in both

their signal magnitude and baseline activity in their traces, histograms, and cumulative

distribution functions (CDFs). Z-scoring partially corrects this variability but retains

long tails in the PDFs (histograms), while shifting them to zero mean, which is far less

than the median signal observed in the raw traces (a median ∆F/F0 of approximately

2). In comparison, QR and NQR reduce LUAL neural variability substantially, when

compared to z-scoring. Moreover, both QR and NQR preserve the median exhibited by the

raw traces and, thereby, retain a better approximation of the neural baseline, whereas

z-scoring distorts this baseline.

In figure 3.7, we extend our demonstration to all head and tail neurons. In this

broader representation of neural activity, one can see that the raw traces and even the z-

scored traces distort the neural signal, exhibiting a flat appearance with outliers flanking

this flattened signal. In contrast, the QR and NQR traces exhibit strong signals without

obvious outliers. Thus both QR and NQR can correct variability in neural intensities to
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help compare signals from neurons with identical types, recorded from a population of

animals.
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Figure 3.6: C. elegans neural activity video registration results A: Top row: The
mean video frame prior to registration (left), after dNMF based registration (middle),
and after Normcorre (right). Overall conventions are similar to Fig. 3.4. Middle row:
The mean, of the absolute value, of the difference between the first video frame (prior
to registration) and subsequent video frames (left). We show these results for dNMF-
base registration (middle) and Normcorre (right). Distorted toroidal shapes (indicated
by red arrows) denote the superposition of mismatched spatial footprints, indicating a
misestimation of deformation. The yellow arrow indicates Normcorre’s boundary pixel
extrapolation, which introduces blocky artifacts. Bottom row: The positions of cells over
time superimposed on the first video frame (left), after dNMF-based registration (middle),
and after Normcorre (right). Tighter grouping of cell centers indicates a good correction
of motion. Spread groupings of cells indicate poor registration (indicated by red arrows).
B: Correlation of the video frames to the mean frame, across time, for the unregistered
video (blue), after dNMF-based registration (red), and after Normcorre (cyan). dNMF
slightly outperforms Normcorre here. C: Correlation of the individual video frames, to
the mean video frame, after registering with dNMF (x-values) and after Normcorre
(y-values). The solid line denotes x = y. Points below this line (which indicate a higher
correlation of registered frames to the average frame) represent better performance for
dNMF, and points above this line represent better performance for Normcorre. D: The
spread of the cell position centers, relative to their average. in the unregistered video
(blue), after dNMF-based registration (red), and after Normcorre (cyan). Again, a lower
standard deviation for cell spread indicates better performance for local registration of
cell shapes. See MOVIE LINK for further details.
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Raw Z-score Quantile regression (QR) Non-negative QR

Figure 3.7: dNMF was used to motion correct, extract, and demix calcium traces
of C. elegans neurons from 21 animal heads and 21 animal tails We demonstrate
four strategies for superimposing multi-animal traces for different neuron types. First
column: Raw traces superimposed, colors indicate different neuron types. Within the
same color, different traces indicate different animals. (Y-axis: neuron types), (X-axis)
time (s). Second column: Z-scored neuron time series. Third column: Quantile regres-
sion (QR) normalized time series. Fourth column: Non-negative quantile regression
(NQR). Z-scores use only two summary statistics (mean and variance) for normalization.
Z-score scaling to unit variance is strongly influenced by any large-magnitude fluctua-
tions in the signal. Consequently, in a mixture of responsive and unresponsive traces
from the same neuron, across multiple animals, z-scored traces with a response will be
scaled to match their unresponsive counterparts, thus muting signal in these traces.
This is exhibited by the compressed appearance of the z-scored traces in the second
column. In contrast, quantile regression uses a more robust and rich set of summary
statistics to determine an appropriate scaling. As such responsive and unresponsive
neural traces retain appropriate differential scales. This is exhibited by the quantile
regression methods shown in third and fourth columns which show better preservation of
neuron responses when compared to their z-scored equivalents. Additionally, the z-score
translates to zero mean and thus can misrepresent the signal baseline. In contrast,
both QR methods preserve the correct signal baseline and, when appropriate, the NQR
method can be used to further maintain non-negativity of signals (see Fig. 3.2).
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Causal Models of Neural Data

T
he fundamental goal of machine learning (ML) has been to build intelligent

models that can learn from data and bypass requiring detailed knowledge of

the physical processes involved in the underlying system. Ultimately, these

models are applied to downstream decision-making or policy-making processes, or they

are interrogated to achieve a causal understanding of the underlying system. However,

the change in the environment and distributions that generate data are often ignored

when using the models for downstream applications. Specifically, in biological settings,

the collected data rarely exhibits iid assumptions, and systems often involve complex

nonlinear dynamic interactions and history dependence. Formalized by J. Pearl, causal

inference describes a causal model by defining a hierarchy consisting of observational,

interventional, and counterfactual layers [Pearl, 2009]. This hierarchy is motivated by

intuition from human reasoning and thinking in a changing environment which consists

of seeing, interacting with, and imagining the counterfactual effect of potential outcomes.

The notation p(y|do(x)) defines the interventional distribution, modeling the density of

variable y if a variable x is intervened on. This is very different from the conditional

distribution p(y|x) because it involves a conditional distribution in a modified graphical
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model where the causal arrows into the variable x are removed. This distinction allows

us to model the changing and fixed aspects of the environment, and find conditions under

which we can use a combination of observational and interventional data and answer

causal queries in a changing environment.

4.1 Introduction to Causal Inference

The focus of ML in the prior decade has been on dataset where samples are iid.

The main underlying assumption in this setting is that the data used for training the

models exhibits similar statistical patterns to the data that the model will be tested

on. This assumption is not valid in most applications due to constant changes in the

environment that the data is collected from. The classical ML paradigm assumes the

existence of an unknown true model M that generates sample of the data x and some

dependent aspect of x denoted by f M (x). In this setting, training ML models amounts

to finding a function h ∈ H that best approximates f M (x). The set H is called the

hypothesis class and contains the functions that can be achieved using the training

process. In the supervised case, the data consists of pairs {(x, y)} and the goal is to

model p(y|x) whereas in the unsupervised case we are given vectors {(x)} and we

want find patterns by means of modeling p(x). Examples of supervised learning are

classification and regression and examples of unsupervised learning are clustering and

dimensionality reduction.

How should we move away from the iid assumption and what is missing in the

classical ML paradigm? The case is made by several examples popularized as Simpson’s

paradox (see [Pearl, 2009] for reference). The intuition comes from the observation that

different generative processes of the data can give rise to identical joint distributions.

Therefore solely acquiring the information of associations between the random variables

is not sufficient for making causal conclusions. To cure this, the framework of structural
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causal models (SCM) is introduced by Judea Pearl incorporating causal statements in the

form of functional arguments. Below we will introduce this framework and we reference

it throughout this chapter.

Definition 4.1.1 (Structural Causal Models). SCMs consist of two sets of variables, U

and V , and a set of functions F. Variable X is cause of Y if it appears as an argument in

the function that assigns Y values. U is called exogenous and V is called endogenous

variables.

Definition 4.1.2 (Causal Diagrams). Each SCM induces a causal diagram where nodes

represent variables and arrows correspond to causal influences.

Remark. Notice that causal diagrams are different from probabilistic graphical models

(PGM) in that an arrow in PGM is merely an association between variables but in SCM

arrows entail causal relations which is a stronger form of association. Of note, each SCM

induces a joint distribution on its variables.

Classical statistics manoeuvres around joints, marginals, and conditionals but equipped

with SCMs we are now able to define distributions that are non-associative. In Pearl’s

words, if p(y|x) corresponds to the observational distribution and can be achieved by

means of "seeing" the world, p(y|do(x)) is defined as the interventional distribution and

is achieved by acting in the world. Below we have a formal definition of interventional

distributions through the language of SCMs.

Definition 4.1.3 (Interventional Distribution). For an SCM with joint distribution p and

causal diagram G , the interventional distribution p(y|do(x)) is defined as a conditional

distribution in a modified causal diagram pGm(y|x) where the incoming arrows to x are

removed.
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Table 4.1: Table summarizing the effect of the drug on men, women, and the combined
population with a certain disease (taken from [Pearl, 2009]).

Recovery table Drug No Drug
Men 81/87 (93%) 234/270 (87%)
Women 192/263 (73%) 55/80 (69%)
Combined 273/350 (78%) 289/350 (83%)

It is exactly this property of SCMs that allow us to make causal conclusions in an ever-

changing environment by the virtue of modifying the causal diagrams and incorporating

the changes by adding and removing causal arrows. Consider the following example

known in the literature as Simpson’s Paradox. The Table. 4.1 shows the number and

percentage of people recovered by using a certain type of drug when diagnosed with

a particular disease. The table shows that if we do take into account gender (male or

female) we should prescribe the drug, but if we do not know a patient’s gender we should

not! It is a paradox.

We can resolve this contradition by considering a causal story behind the creation of

the disease.

• Case 1: Estrogen has a negative effect on recovery. Consider a scenario in which

women are less likely to recover from the disease (regardless of taking the drug),

also women are more likely to take the drug. In this case the reason for the

combined effect of being a woman is a common cause of both drug-taking and

failure to recovery. Notice that if we believe that this is the undelrying causal story,

then we should consult the separated table since difference in recovery rates is not

ascribed to estrogen.

• Case 2: Drug affects recovery by lowering blood pressure (BP), but also has a toxic

effect. In this case if we separate the data by post-treatment BP, in the combined

table we see improved recovery rate due to the effect on BP but in the separated
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Figure 4.1: Causal graphical model for the first scenario of Simpson’s paradox
Left: the underlying causal graph for case 1 in Simpson’s paradox; Right: the modified
graph used for computing the interventional distribution.

tables we only see the toxic effect. Therefore if we believe that this is the underlying

causal story, then we should consult the segregated tables.

We illustrate the first scenario by the causal graph in Fig. 4.1. In this case we can write

the joint distribution of Drug denoted by X , Recovery denoted by Y , and Estrogen denoted

by Z as P(X ,Y , Z)= P(Z)P(X |Z)P(Y |X , Z). To decide whether to consult the separated

or combined table, we need to compute the interventional distribution P(Y |do(X )) which

corresponds to the causal effect of Drug on Discovery when controlling for all other causal

factors in play such as Estrogen.

To compute this we need to do a graph surgery and remove the incoming edges to X
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and compute the conditional Pm(Y |X ) in the modified graph.

P(Y |do(X ))= Pm(Y |X ) Definition

=∑
Z

Pm(Y |X , Z)P(Z|X ) Probability Rules

=∑
Z

Pm(Y |X , Z)Pm(Z) Independece of X , Z in Gm

=∑
Z

P(Y |X , Z)Pm(Z) Pm(Y |X , Z)= P(Y |X , Z)

=∑
Z

P(Y |X , Z)P(Z) Pm(Z)= P(Z),

This is an example where we can compute the interventional distribution using

observational data. This process is called Causal Identification and the equations used

above are examples of do-calculus. Going back to our original motivation, making causal

conclusions in a changing environment, one can observe that P(Y |do(X )) can adapt itself

to changes in Z if we assume the graph in Fig. 4.1.

So far the examples described above only considered the case in which the underlying

causal structure is known. This is unrealistic in a real world application because often

determining the causal variables in play is not possible, let alone having access to the

underlying SCM. The field of Causal Inference has recently focused on discovering the

causal structure from single or multi-environment observational data or both obser-

vational and interventional data. This process is referred to as Causal Discovery in

the literature. Since obtaining interventional data is an expensive process, there is an

interest in active learning setting, where the interventions are sequentially designed to

provide the most information about the target causal query. Finding the most informative

intervention is referred to as Active Causal Discovery.
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4.1.1 Identifiable Models

A closely related topic in statistics is identifiable models which refer to statistical

models where datasets can only be uniquely generated by the parameters of the model

(up to a certain known family of transformations such as affine). These models are of

particular interest by statisticians because they can lead to interpretations that are not

consistent across different datasets (say coming from different labs or environments).

Therefore if the ranodm variables of the model have causal interpretations, then inference

in these models using observational data is equivalent to performing causal discovery.

4.1.2 Causal Inference in Time Series

For time series, existing methods mainly use the potential outcome framework.

Synthetic Controls (SC) aim to identify the counterfactual effect of an intervention at

a given time point using autoregressive models [Abadie et al., 2010; Alberto Abadie,

2021]. Under the SC framework, the intervened signal is first estimated as a convex

combination of non-intervened signals, referred to as the donor pool. This estimation only

uses the time series before the intervention. The estimated coefficients are then used

to extrapolate the value of the intervened time series after the time of the intervention,

had it not been intervened. The effect of intervention is measured as the mean difference

between intervened and not intervened signal denoted by Average Treatment Effect (ATE).

More recently the framework of Synthetic Intervention (SI) was introduced [Agarwal

et al., 2020]. The main benefit of SI is that instead of estimating the counterfactual effect,

it allows for estimating the intervention effect in time, but it requires the donor pool to

exist both in the observational and interventional layers.

To account for temporal dependencies in the data, differential equations are shown

to be simple and powerful tools. Instead of modeling the input-output relationship, differ-

ential equations model the changes in the data from each time point to the next [Peters
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et al., 2017]. Often the observations of a time-varying system are accompanied by some

noise, either introduced by the measurement device, or during the information transmis-

sion between different components of the system. Having a model with stochastic and

deterministic separate components allows us to capture the noise and isolate the time

dynamics for further interpretability [Roweis and Ghahramani, 1999].

4.1.3 Causal Inference in Neuroscience

Interventional studies are becoming a quintessential part of systems neuroscience

studies. When a circuit mechanism is hypothesized based on observational data, the next

step is to confirm the correlational hypothesis using a causal intervention. Various tools

in experimental neuroscience is developed for this purpose ranging from intervening

on specific neurons using optogenetic stimulations to intervening on groups of neurons

using electrophysiological microcircuit stimulations or intervening on brain regions using

lesioning studies.

In addition to the above, another popular development in the field is to infer the

causal influence of one variable (neuron, brain region, etc.) onto the other, or infer the

hierarchy of influence in a network of interacting units. This is referred to as causal

functional connectivity with a long-standing literature of developed methods and their

interpretations [Edinburgh et al., 2021].

This chapter is organized as following. In the first section I define the notion of

interventional connectivity (IC), summarizing the treatment effect of a multivariate time

series with N nodes in an N×N matrix. I then investigate which of the developed causal

connectivity metrics can best recover IC for simulated chaotic network dynamics and

monkey electrophysiology data from prefrontal cortex [Nejatbakhsh et al., 2020a]. In

the second chapter I build on the literature of model identification and active causal

discovery and develop a time series model for improving the fitting and generalization
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properties of switching models (unpublished).

4.2 Functional Causal Flow

4.2.1 Introduction

Complex cognition in humans and other primates is an emergent property of the

collective interactions of large networks of cortical and subcortical neurons. Targeted

manipulation of the brain to alter cognitive behavior will be greatly facilitated by un-

derstanding the causal interactions within ensembles. Examples of such manipulations

include altering the perceptual judgement of motion direction in area MT [Salzman et al.,

1990, 1992], biasing object classification towards faces in the inferior temporal cortex

[Afraz et al., 2006; Moeller et al., 2017; Parvizi et al., 2012], changing the value of an

associated stimulus in the anterior caudate [Santacruz et al., 2017], and controlling

movements and postures in motor and premotor cortex [Graziano et al., 2002]. Recent

experimental [Chettih and Harvey, 2019] and modeling studies [Sadeh and Clopath,

2020] in mice showed that targeted optogenetic manipulations of single neuron activity

evoking just a few spikes can reveal the local functional structure of cortical circuits.

Although opto- and chemo-genetic manipulations have become recently available for

monkeys, the prevalent technique for perturbation in both human and non-human pri-

mates is targeted electrical stimulation. Here, we focus on electrical stimulation as

other alternatives remain infrequently used in humans. Perturbations of neural circuits

represent a promising avenue for ameliorating cognitive dysfunction in the human brain,

as well as development of future brain-machine interfaces.

A crucial challenge in targeted perturbation is to identify perturbation sites, satisfying

at least two requirements. The first is selectivity: the local neural population around

the site should exhibit specific selectivity properties for the desired perturbation effect,

e.g., motion direction selectivity in area MT [Salzman et al., 1990, 1992], face selectivity
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in face patches of inferotemporal cortex [Afraz et al., 2006; Moeller et al., 2017; Parvizi

et al., 2012], or the locus of seizures in epilepsy [Fisher and Velasco, 2014]. The second

is efficacy: stimulation of the local population should exert some significant effect on

the activity of the rest of the brain, and consequently on behavior. While selectivity of

sensory and motor neurons may be estimated by recording neural activity in simple and

well-defined tasks, selectivity tends to be quite complex or variable across tasks in many

regions of the association cortex. Further, discovering efficacy is currently achieved by

trial-and-error: many perturbations are performed until a site whose stimulation leads

to a significant change in activity is located. As a result, current methods for targeted

perturbations are labor intensive, time consuming, and often unable to generalize beyond

the limited task set they are optimized for.

A promising avenue for predicting the efficacy of a potential perturbation site is to

examine its functional connectivity within a local neural circuit. Intuitively, one expects

that perturbing a node with strong functional connectivity to other nodes within a circuit

may exert stronger effects than perturbing the nodes that are functionally isolated.

Estimating the functional connectivity in cortical circuits is a central open problem

in neuroscience [Marinescu et al., 2018]. Existing methods for estimating functional

interactions between multi-dimensional time series are challenged by the properties of

neural activity in the cortex. Cortical circuits comprise highly recurrent neural networks

[Binzegger et al., 2004; Braitenberg and Schüz, 2013; Lefort et al., 2009; Thomson and

Lamy, 2007], where the notion of directed functional couplings is not obvious. Correlation-

based methods [Cocco et al., 2009] lack sufficient power when correlations are weak,

as in most cortical circuits [Cohen and Kohn, 2011]. Granger causality, a widely used

method [Dhamala et al., 2008; Faes et al., 2011; Granger, 1969; Sheikhattar et al.,

2018], relies on the assumption of linear dynamics and thus it is challenged when the

circuit’s dynamical properties are not well known. Transfer entropy [Schreiber, 2000a],
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applicable to non-linear systems, requires large datasets hard to acquire in conventional

experiments. Critically, both Granger- and entropy-based methods require stochasticity

and are challenged in the presence of self-predictability in deterministic dynamics such

as nonlinear couplings between variables [Sugihara et al., 2012]. Moreover, commonly

encountered confounding effects such as phase delay [Vakorin et al., 2013] or common

inputs [Sugihara et al., 2012] render these methods unreliable. It is thus of paramount

importance to develop new theoretical tools. These new tools should be able to estimate

functional connectivity in the presence of common inputs using extremely sparse record-

ings, typical of cortical recordings in humans and monkeys. A promising approach is

offered by delay embedding methods, in particular, convergent cross-mapping, which

is capable of reconstructing nonlinear dynamical systems from their time series data

[Sugihara et al., 2012]. These methods were expressly developed to work precisely in the

sparse recording regime [Sauer et al., 1991; Takens, 1981] and in the presence of noise,

of common inputs, and of nonlinear couplings between variables [Sugihara et al., 2012],

all of which are hallmarks of cortical dynamics and explicitly violate the assumptions

underlying Granger-based methods. While this powerful framework, rigorously articu-

lated in [Cummins et al., 2015], has been successfully applied in ecology [Sugihara et al.,

2012], and in vitro [Sugihara et al., 2012; Tajima et al., 2017] and ECoG neural activity

[Tajima et al., 2015], it has never been adapted to spiking activity in vivo.

Here, we build on the delay embedding method to develop a statistical approach for

predicting the effects of stimulation using causal functional connectivity (“functional

causal flow,” FCF) based on spiking activity of a simultaneously recorded ensemble in

the cortex of awake monkeys (Fig 4.2). We characterize the effects of perturbation by

introducing the concept of interventional connectivity, an observable that is agnostic to

the underlying structural connectivity and only depends on responses to perturbations;

and show that one can efficiently predict interventional connectivity solely based on FCF
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inferred from small snippets of data collected during resting blocks. We first performed a

series of simulated experiments to precisely quantify regime of applicability of FCF and

compare its performance to existing methods such as Granger causality (GC) and other

traditional methods for estimating functional connectivity. Our simulated experiments

are designed to present strong challenges for the inference methods, such as noise and

common inputs, yet retaining features of biological plausibility from known cortical

circuit dynamics. These validation studies revealed that FCF can predict interventional

connectivity accurately even in the extremely sparse recording regime, solely based

on short snippets of resting data. We then demonstrate that our method infers the

causal flow of ensembles of neurons from sparse recordings of spiking activity, obtained

from chronically implanted prefrontal multi-electrode arrays in awake, resting monkeys.

Using the causal flow inferred during resting activity, we successfully predict the effect

of electrical microstimulations of single electrodes on the rest of the circuit. A critical

comparison of FCF with GC and other alternative methods demonstrates the superior

performance of FCF both in the simulated as well as in the empirical data. This highlights

the advantages of deploying causal flow to guide perturbation experiments compared

to traditional methods, opening the way for much more efficient protocols for targeted

manipulations of cortical ensembles in primates and humans.

4.2.2 Results

4.2.2.1 Uncovering the functional causal flow with delay embedding

To illustrate the concept and methods of functional causal flow (FCF) and establish

its regime of validity, we performed a series of simulated experiments using ground truth

data from recurrent network simulations. We chose two sets of neural networks (Fig.

4.2). In the first experiment, we simulated a continuous rate network comprising both

feedforward and recurrent features in its structural connectivity, where we arbitrarily

varied the noise levels and features to assess FCF robustness against different signal-
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Figure 1. Large-Scale Multielectrode Recordings from the Prearcuate Gyrus during a Direction Discrimination Task
(A) Behavioral task. Monkeys viewed the random dot motion for 800 ms and, after a variable delay, reported the perceived motion direction with a saccad
movement. Correct responses were rewarded with juice after a short hold period. The strength and direction of motion varied randomly from trial to tri
(B) Behavioral performance. The three psychometric functions depict performance for the three monkeys (T, V, and C), averaged across all sessions. P
chophysical thresholds were 9.3% coherence for monkey T, 17.9% coherence for monkey V, and 51% coherence for monkey C. Monkey C’s perceptual
sensitivity was poor relative to most animals; threshold remained high despite months of training. The results in this paper, however, do not depend u
perceptual sensitivity. Our only requirement is that the animal was under behavioral control during task performance, which is demonstrated by the r
psychometric function.
(C) Target area (blue box) for implantation of the multichannel electrode array on the prearcuate gyrus. Arcuate (as) and principal (ps) sulci are mar
dashed lines on the surface of a typical macaque brain (University of Wisconsin Brain Collection).
(D) The actual location of each array with respect to arcuate and principal sulci. The white squares show the ground pins. In monkey C, the array could no
placed at the concavity of arcuate sulcus due to the unusually short distance between the arcuate and the posterior termination of the principal sulcu
lines at the end of a sulcus indicate the sulcus extends in this direction beyond our craniotomy.
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Figure 4.2: Conceptual summary of Functional Causal Flow Top left: Functional
causal flow (FCF) map inferred from the prefrontal cortex activity of a resting alert
monkey. Each square represents an electrode of a 96-electrode Utah array (yellow square:
stimulated electrode; orange dots: electrodes with significant FCF and functionally down-
stream to the stimulated one). Top right: Schematics of an electrical microstimulation
experiment and prediction of stimulation effects from FCF. The scatter plot shows the
correlations of resting state FCF vs. perturbation effects on efferents with significant
(orange dots) and non-significant FCF (black dots). Bottom: We validated our method
for predicting perturbation effects from resting state FCF in three different datasets:
a chaotic rate network, a spiking network with cell-type specific connectivity, and a
prefrontal cortical circuit in alert monkeys.

to-noise ratios and common inputs. In the second experiment, we simulated a cortical

circuit model based on a spiking network with cell-type specific connectivity endowed

with functional assemblies. This class of spiking models captures the intrinsic neural

variability observed in various cortical areas across different tasks and behavioral

states[Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015,

2019; Wyrick and Mazzucato, 2020]. Calibrating our FCF inference on this spiking model

served as a guide for our experimental design in the case of alert monkey.
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We first examined a deterministic network Z, comprising N units zi = xi, yi arranged

in two subnetworks X and Y, each endowed with their own local recurrent connectivity

and, crucially, directed projections from X to Y with coupling strength g; but no feedback

couplings from Y to X. Units in X represent a chaotic Rossler attractor and have strong

all-to-all recurrent couplings, while units in Y have only sparse and weak recurrent

couplings. We aimed to capture the intuitive idea that the upstream subnetwork X

drives the activity of the downstream subnetwork Y (Fig. 4.3). It is well known from the

theory of deterministic dynamical systems that one can (at least partially) reconstruct

the N-dimensional attractor topology of a network of coupled units, represented by the

vector time series of the activity of all units {⃗z(t)}t=1:T , by using only the information

encoded in the temporal trajectory of a single unit {zi(t)}t=1:T . From the mapping between

the activity of the full network and the activity of a single unit, one can derive a map

between the activity of the units themselves and (at least partially) reconstruct the

activity of one unit {zi(t)}t=1:T from the activity of a different unit {z j(t)}t=1:T , for i ̸= j.

The reconstruction is possible whenever the two units are functionally coupled. This

general property of dynamical systems is known as "delay embedding" [Sauer et al.,

1991; Takens, 1981] and relies on a representation of network dynamics using "delay

coordinates" (see Fig. 4.3A for details). This reconstruction has also been shown to be

robust to noise in driven dynamical systems [Casdagli et al., 1991].

We used convergent cross-mapping based on delay embedding to infer the FCF

between all pairs of network units. We first considered the FCF between a unit yi in the

downstream subnetwork Y and a unit x j in the upstream subnetwork X. The activity

of unit x j only depends on the other units in X, to which it is recurrently connected,

but not on the units in Y, as there are no feedback couplings from Y to X. On the other

hand, the activity of unit yi depends both on the units in X, from which it receives direct

projections, and on the other units in Y to which it is recurrently connected. In other
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words, yi(t) is causally influenced by units in both Y and X, whereas x j(t) depends only

on other units in X. Thus, we expect that the reconstruction of x j(t) from yi(t) will be

more accurate than the reconstruction of yi(t) from x j(t), because in the latter case the

causal influence on yi from the other recurrently connected units in Y is being neglected.

We tested our prediction by reconstructing the temporal series of unit x j(t) given

yi(t) from the corresponding delay vectors [x(t), x(t−τ), . . . , x(t−dτ+τ)] and [y(t), y(t−τ),

. . . , y(t−dτ+τ)] of dimension d with a step τ. Reconstruction accuracy was quantified

as the Fisher z-transform z[ρ(yi|x j)] of the Pearson correlation ρ(x j|yi) between the

empirical activity of the delay vector of unit x j and its predicted activity obtained from

the delay vector of unit yi. Whereas the Pearson correlation is bounded between −1 and 1,

its Fisher z-transform is approximately normally distributed thus facilitating statistical

comparisons [Fisher, 1925]. The process was cross-validated to avoid overfitting (see

Methods for details). Similarly, we estimated cross-validated reconstruction accuracy

z[ρ(yi|x j)] of the temporal series of unit yi(t) given x j(t). As expected, reconstruction

accuracy increased as a function of the dimensionality of the delay coordinate vector (i.e.,

how many time steps back we utilize for the reconstruction, Fig. 4.3A). The accuracy

plateaued beyond a certain dimensionality (related to the complexity of the time series

[Tajima et al., 2017]), whose value we fixed for our subsequent analyses. We define

the functional causal flow (FCF) from x j to yi as Fi j = z[ρ(x j|yi)] (see Methods and

table 4.2 for a summary of our conventions). Columns of the FCF represent the afferent

units, whose activity is being reconstructed, and rows represent the efferent units, whose

activity is used for the reconstruction. As explained above, the FCF was estimated

using a cross-validation procedure to avoid overfitting. Model selection for the FCF

hyperparameters d (delay dimension) and τ (time step) depended on the specific datasets.

For the continuous rate network considered here model selection yielded optimal values

of d = 7 and τ= 4 ms. For delay dimensions d ≥ 5, the sample size dependence of FCF
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FCF Feature
Upstream Fi j > 0 & sig; F ji non-sig j is causally upstream of i.
Downstream Fi j non-sig; F ji > 0 & sig j is causally downstream from i.
Reciprocal Fi j ∼ F ji & both sig i and j are reciprocally functionally connected.
Independent Fi j, F ji both non-sig i and j are causally independent.

Table 4.2: Definitions and notations for the functional causal flow (FCF).

plateaued at about 1500 ms.

We established statistical significance by comparing the FCF estimated from the

empirical data with that estimated from surrogate datasets carefully designed to preserve

the temporal statistics of the network activity while destroying its causal structure (see

[Thiel et al., 2006] for details). Surrogates are produced in three stages: first, nearest

neighbors of a state are identified in the delay-embedding space, and "twin" states

are constructed for each state including all neighbors within a small distance; finally,

surrogate trajectories are generated by temporally concatenating states from the same

coarse-grained sets of twins, allowing for jumps backward or forward in time while

preserving all large-scale nonlinear properties of the system.

Unlike the Pearson correlation r i j, which is a symmetric quantity, the FCF is a

directed measure of causality. By comparing the value and significance of Fi j with F ji,

we can establish the directionality of the functional relationship between yi and x j,

uncovering several qualitatively different cases which we proceed to illustrate (table

4.2).

In the example above, the reconstruction accuracy of x j given yi was significant

and large, while that of yi given x j was not significant. In other words, while one can

significantly reconstruct x j with high accuracy from yi, because the latter receives

information from the former, the opposite is not possible, matching predictions based on

the simulated network architecture. We refer to x j as being causally upstream to yi in
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the network functional causal flow.

4.2.2.2 Functional causal flow uncovers hierarchical structures

The notion of being causally upstream or downstream is an entirely functional rela-

tion and a priori different from the underlying structural/anatomical coupling between

units. We illustrate here two more examples from the network in Fig. 4.3 to reveal the

variety of the relationships encoded in the FCF. We considered the FCF between x1(t)

and x3(t) within the subnetwork X, whose units are part of a Rössler attractor, a well

studied dynamical system (see Fig. 4.3B and Methods). Because the X subnetwork does

not receive inputs from other network units in Y, it is causally isolated (i.e., its activity

is conditionally independent from Y). Hence one can reconstruct the activity of one xi

unit from another with high accuracy, yielding large and significant values for any pair

of X units. Fig. 4.3B shows large values for both ρ(x1|x3) and ρ(x3|x1). This is a classic

demonstration of the embedding theorem [Takens, 1981], ensuring accurate bidirectional

reconstruction of variables mapping a chaotic attractor. The large and significant Fx1x3

and Fx3x1 reveal that the unit pair has a strong reciprocal functional coupling, and the

two units lie at the same level of the functional hierarchy. This is unlike the case of

pairs xi, yj described above, where a significant Fi j but a non-significant F ji showed a

strong directional coupling and a functional hierarchy [Stark et al., 1997]. As another

qualitatively different pair, we considered two units y4 and y5 within the subnetwork

Y , whose units are only sparsely recurrently coupled. The FCFs were not significant for

this pair (Fig. 4.3C), suggesting that the two units are functionally independent, namely,

their activities do not influence each other significantly. The taxonomy of causal flows

are summarized in table 4.2 and Fig. 4.3D.

The variety of FCF features discussed so far suggests that, even if the FCF is a

measure of pairwise causal interactions, it may reveal a network’s global causal structure.
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We thus analyzed the N-dimensional causal vectors f( j) = {Fi j}N
i=1, representing the

reconstruction accuracy of unit j given the activity of each one of the efferents i. The

causal vector f( j) encodes the FCF from unit j to the rest of the network. For example,

a significant positive entry i of the causal vector implies that the afferent unit j has a

strong functional coupling with efferent i. A Principal Component analysis of the causal

vectors from a sparse subsample of the network units (10 out of 103) revealed a clear

hierarchical structure present in the network dynamics showing two separate clusters

corresponding to the subnetworks X and Y (Fig. 4.3E-F). Thus, causal vectors revealed

the global network functional hierarchy from sparse recordings of the activity.

We further quantified the hierarchical functional structure of causal vectors, mea-

sured by their Gini coefficients (Fig. 4.3F), which estimates the degree of inequality in a

distribution. For example, a delta function, where all points have the same value, has

zero Gini coefficient, while an exponential distribution has a Gini coefficient equal to

0.5. In the absence of hierarchies, one would expect all efferents from a given afferent

unit to have comparable values, namely, yielding a low Gini coefficient. Alternatively,

heterogeneity of FCFs across efferents for a given afferent would suggest a network

hierarchy with a gradient of functional connectivities, yielding a large Gini coefficient.

For our simulated network, we found a large heterogeneity in the distribution of causal

vectors Gini coefficients, capturing the functional hierarchy in the network. For compari-

son, when restricting the causal vectors to afferents in either X or Y (green and brown

bars in Fig. 4.3F, respectively), we found a clear separation with larger Gini coefficients

for X afferents and lower Gini coefficients for Y afferents. This result shows that the

feedforward structural couplings from X to Y introduce a hierarchy in the full network

Z, encoded in the network causal vectors. Importantly, inferring this structure does not

require observing the full network and can be achieved by recording from a small subset

of the network units.
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4.2.2.3 Inferred causal flow predicts the effects of perturbation

Can we predict the effects of perturbations on network activity from the causal flow

inferred in the unperturbed system? We hypothesized that the effects of stimulating

a specific node on the rest of the network can be predicted by the causal flow inferred

during the resting periods.

We simulated a perturbation protocol where we artificially imposed an external

input on one afferent network unit for a brief duration, mimicking electrical or optical

stimulation protocols to cortical circuits (Fig. 4.4A). We estimated the stimulation effect

on each efferent unit, by comparing the distribution of binned activity in each efferent in

intervals preceding the stimulation onset and following its offset (Fig. 4.4B). We found

that stimulation exerted complex spatiotemporal patterns of response across efferent

units, which we captured in the perturbation vector: I( j) = {Ik j}N
k=1, where Ik j is the

interventional connectivity matrix (Fig. 4.4B). The entries in the perturbation vector

represent the Kolmogorov-Smirnov test statistics between pre- and post-stimulation

spiking activity aggregated over several stimulation trials of the same neural cluster.

Stimulation effects across efferents k strongly depended on the afferent unit j that was

stimulated. Perturbation effects increased with stimulation strength for afferent-efferent

pairs in X → X , X →Y and Y →Y , but did not depend on stimulation strengths for pairs

Y → X , consistent with the underlying structural connectivity lacking feedback couplings

Y → X (Fig. 4.4C). Can one predict the complex spatiotemporal effects of stimulation

solely based on the FCF inferred during resting activity?

We hypothesized that, when manipulating afferent unit i, its effect on efferent unit

k could be predicted by the FCF estimated in the absence of perturbation (Fig. 4.4D).

Specifically, we tested whether: stimulation of afferent unit i would exert effects only on

those efferent units k that have significant FCFs, Fki; but no effects on units whose FCFs
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were not significant; and that stimulation of "downstream" units in Y would not exert

any effect on "upstream" units in X. We found a strong predictive power of FCF regarding

perturbation effects (Fig. 4.4D). More specifically, we found that the perturbation effects

on the efferent units were localized on units with significant FCFs (dots in Fig. 4.4D);

no effects were detected on pairs with non-significant FCF. In particular, we found that

pairs where the stimulated afferent was in Y and the efferent in X did not show any

significant effects of perturbations (Fig. 4.4E); this was expected given the absence of

feedback couplings Y → X . Two crucial features of the FCF, underlying its predictive

power, were its directed structure and its causal properties.

We thus conclude that the causal effect of perturbations on network units can be

reliably and robustly predicted by the FCF inferred during the resting periods (i.e., in

the absence of the perturbation).

4.2.2.4 Inferring the causal flow from alert monkeys during resting periods

To test our theory, we performed an experiment comprising recording and stimulation

of spiking activity in alert monkey prefrontal cortex (pre-arcuate gyrus, area 8Ar) during

a period of quiet wakefulness (resting) while the animal was sitting awake in the dark.

The experiment had two phases (Fig. 4.2 and 4.5). In the first phase, we recorded

population neural activity from a multi-electrode array (96-channel Utah array, with

roughly one electrode in each cortical column in a 4×4mm2 area of the cortex), estimating

the FCF between pairs of neural clusters (multiunit activities collected by each recording

electrode). In the second phase, we perturbed cortical responses by delivering a train

of biphasic microstimulating pulses (15 µA, 200 Hz) to one of the clusters for a brief

period (120ms), recording population neural activity across the array before and after

the stimulation.

We first examined whether causal flow could be estimated reliably for the recorded
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population, which constituted a small fraction of neurons in the circuit. Following

previous experimental evidence supporting the existence of assemblies in monkey pre-

arcuate gyrus [Kiani et al., 2015], we reasoned that the activity of neural clusters around

each electrode may represent sparse samples from a local cortical assembly. In Fig. 4.5A

we show four representative 96-dimensional causal vectors representing the FCF for

each of four different afferent clusters recorded in two different sessions (channels 14 and

56 from session 1 and channels 42 and 29 from session 2). We overlaid the causal vectors

onto the array geometry (location of recording electrodes in the array) for illustration.

Comparison of the causal vectors across afferents revealed remarkable features about

the structure of the functional connectivity. First, FCF is channel-specific, namely, it

depends on the afferent clusters whose activity is being reconstructed. Second, each

causal vector shows a hierarchical structure, with significant FCF in a subset of down-

stream efferents, while most efferents cannot reconstruct the afferent activity (Fig. 4.5A).

This result is qualitatively consistent with the FCF obtained from our model in Fig. 4.4,

supporting the hypothesis of functional hierarchies embedded within prefrontal cortical

circuits [Kiani et al., 2015].

Is the FCF of an afferent cluster to different efferent clusters uniformly distributed

across the array, or is there a preferential spatial footprint of FCF? We found a spatial

gradient whereby FCF was largest in the efferent clusters immediately surrounding the

afferent cluster, while FCF for distant efferents typically plateaued at low but nonzero

values (Fig. 4.5C).

We thus concluded that FCF inferred during the resting periods was cluster-specific

and revealed a hierarchy of functional connectivity where functionally downstream

neural clusters are spatially localized around the afferent cluster. These results extend

previous correlation analyses of spatial clusters in alert monkeys [Kiani et al., 2015]
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highlighting a spatial gradient of directed functional couplings at the mesoscale level.

4.2.2.5 Perturbation effects on cortical circuits in alert monkeys

We next proceeded to examine the effect of microstimulation on the cortical activity

in alert monkeys. We estimated perturbation effects by comparing the activity of neural

clusters in the intervals preceding the onset and following the offset of the stimulation

of the afferent, for each pair of stimulated afferent and recorded efferent (see Fig.

4.5B). We focused on the activity after offset as opposed to during the stimulation

period to minimize the effects potential stimulation artifacts on the recording apparatus.

Perturbation effects were quantified via a Kolmogorov-Smirnov test statistics aggregated

over all stimulations of a specific neural cluster (comparison between the pre- and

post-perturbation distributions of activity, see Methods).

We first examined the spatiotemporal features of stimulation effects. We found that

perturbations exerted a strong effect on ensemble activity, and that these effects where

specific to which afferent channel was stimulated (Fig. 4.5B; perturbation effects for each

stimulated afferent j are visualized as a perturbation vector I( j) overlaid on the array

geometry). By comparing the effects of perturbing a single cluster across all efferents, we

found a hierarchical structure with strong effects elicited in specific subsets of efferent

clusters. The identity of strongly modulated efferents was specific to the stimulated

channel. We found a spatial gradient in perturbation effects, whereby distant efferents

were less affected by perturbation, though the effects were nonzero even far away from

the stimulated afferent (Fig. 4.5D).

4.2.2.6 Predicting perturbation effects from resting activity in alert monkeys

Our theory posits that the effects of stimulation of afferent cluster j on the efferent

neural clusters can be predicted by the corresponding causal vector f( j) inferred at rest
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(i.e., a column of the FCF matrix; four representative causal vectors are overlaid on

the array geometry in Fig. 4.5A). Specifically, our theory predicts that perturbing an

afferent cluster exerts a strong effect on those efferent clusters which have a strong

functional connectivity to the afferent, identified by a significant resting state FCF as

read out from the afferent causal vector. Moreover, perturbation effects on efferents

with significant FCF should be stronger compared to efferents with non-significant FCF.

Visual inspection of the resting state FCF causal vectors (Fig. 4.5A) and comparison

to the map of perturbation effects (Fig. 4.5B, perturbation vectors) suggest that the

FCF and perturbations are strikingly similar for a given afferent. We confirmed this

intuition quantitatively and found that the FCF inferred at rest was indeed predictive

of perturbation effects at the level of single stimulated afferent (Fig. 4.5E, Pearson

correlations between causal vectors and perturbation vectors). In particular, we found

that for all stimulated clusters, the effect of a perturbation was significantly stronger

on efferents with strong functional connectivity to the stimulated cluster compared to

efferents with weak functional connectivity, as predicted by our theory (Fig. 4.5F). The

predictive power of FCF held at the level of single stimulated afferents, thus achieving a

high level of granularity in prediction.

These results demonstrate that the causal flow estimated from sparse recordings

during the resting periods accurately predicts the effects of perturbation on the neural

ensemble at the single channel level, thus establishing the validity of our theory in

cortical circuits of alert primates.

4.2.2.7 Comparison to Other Causality Indices: Results

A recent paper [Edinburgh et al., 2021] investigates how different causality indices

recover the direction of causation in simulations where there is a clear unidirectional

influence from one variable onto the other. Here we apply those indices to our simulations
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and real data to address whether or not other indices can recover the direction of influence

in the presence of recurrence and network dynamics. Below we first briefly explain each

causality index. Then, we present results on the simulated rate network from Figs.

4.3-4.4 and monkey prefrontal data from Fig. 4.5 to investigate which indices can predict

perturbation effects measured by interventional connectivity.

A general principle underlying all alternative causality indices is that causality

is defined by the precedence of influence in time. If the past of variable X contains

information about or allows the prediction of the future of variable Y then there is

causal influence from X to Y . This is precisely the idea behind the definition of Granger

Causality (GC) and its variants. If we assume that two signals evolve jointly according to

an autoregressive model, then GC measures if the past of X ,Y together helps predicting

the future of Y better than the past of Y alone. The significance test is performed using

F-test as commonly done in the GC literature.

Transfer Entropy (TE) is defined similarly, but TE relaxes the autoregressive as-

sumption to arbitrary rules for the stochastic evolution of time series, computing the

conditional mutual information between the future of Y and past of X conditioned on

the past of Y [Marschinski and Kantz, 2002; Schreiber, 2000b]. It is worth noting that if

the data follows an autoregressive model, GC and TE become equivalent. Although TE

is nonparametric, its estimation is a challenging statistical task often requiring large

amounts of data. For TE, here we use an estimator developed by [Kraskov et al., 2004]

and employed by [Edinburgh et al., 2021] which is based on nearest neighbor methods.

Although GC is originally developed for univariate and autoregressive signals, one

can generalize it to multivariate and nonlinear counterparts. Multivariate GC (MGC)

computes the same criterion as GC with the difference that the conditioning is done on all

the other variables in the multivariate time series. This allows for measuring the unique
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predictability of future of Y from past of X when we control for other intermediate signals

in the network. Nonlinear GC (NGC) performs the autoregression using radial basis

functions [Ancona et al., 2004]. Extended GC (EGC) provides another generalization to

GC based on locally linear approximation [Chen et al., 2004].

Notice that in contrast to these methods which rely on the stochastic fluctuations of

signals, FCF is based on the deterministic aspects of a dynamical system and instead of

measuring noise statistics it uses nearest neighbors in the state space of a stationary

dynamical system to predict one signal from the other. Moreover, in the limit of large

datasets, FCF is less affected by the unobserved nodes due to the topological correspon-

dence between the time-lagged history of each variable and the high-dimensional data

generating system which includes the unobserved nodes.

We summarize the results obtained from different causality indices in Figs. 4.6

and 4.7. In the simulated rate network, FCF and GC show significant positive correlations

with IC, and FCF performs best. For the monkey data, GC and FCF show positive

correlations with IC but FCF is more robust and outperforms other indices. TE fails

perhaps due to the small sample size or the presence of observed and unobserved nodes in

the network which are not accounted for. A summary of the hyperparameters used for the

simulations and calculating different causality indices are included in the corresponding

config file on the code repository released with this paper:

https://github.com/amin-nejat/CCM/tree/master/example_configs.

4.3 Controlled Switching Linear Dynamical Systems

4.3.1 Introduction

Time Series The literature on causal inference has mainly focused on directed acyclic

graphs (DAG). This is because the notion of causal interaction is substantiated in terms
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of function arguments and it is not possible to have functions f , g such that x = f (y) and

y= g(x). However bidirectional interactions are fundamental to biological systems and

modeling them is essential in most applications. This limitation of CI can be bypassed

using time series models where signals are modeled as sequences of random variables.

For time series, existing methods mainly use the potential outcome framework.

Synthetic controls (SC) aim to identify the counterfactual effect of an intervention at

a given time point using autoregressive models [Abadie et al., 2010; Alberto Abadie,

2021]. Under the SC framework, the intervened signal is first estimated as a convex

combination of non-intervened signals, referred to as the donor pool. This estimation only

uses the time series before the intervention. The estimated coefficients are then used to

extrapolate the value of the intervened time series after the time of the intervention, had

it not been intervened. More recently the framework of synthetic intervention (SI) was

introduced [Agarwal et al., 2020]. The main benefit of SI is that instead of estimating

the counterfactual effect, it allows for estimating the intervention effect in time, but it

requires the donor pool to exist both in the observational and interventional layers.

To account for temporal dependencies in the data, differential equations are shown

to be simple and powerful tools. Instead of modeling the input-output relationship, differ-

ential equations model the changes in the data from each time point to the next [Peters

et al., 2017]. Often the observations of a time-varying system are accompanied by some

noise, either introduced by the measurement device, or during the information transmis-

sion between different components of the system. Having a model with stochastic and

deterministic separate components allows us to capture the noise and isolate the time

dynamics for further interpretability [Roweis and Ghahramani, 1999].

State Space Models There is a long-standing literature on statistical inference in

noisy dynamic systems. In the simplest case, a Markov model consists of a discrete set of
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states and stochastic transitions between them where a transition matrix encodes the

probability of transitioning between pairs of states. In most applications, the states and

transitions between them are unobserved latent variables, instead a temporal rule deter-

mines the dynamic regime of a different set of observed variables that evolve according

to the state rules. For example, in a Hidden Markov Model, the observed variables can

follow linear dynamics where the linear matrix is indexed by the discrete state. Instead

of discrete latent dynamics, we can consider cases where latent dynamics follow low-

dimensional continuous dynamics and the observations are noisy projections of the latent

space. If both latent dynamics and observed projections are parameterized by linear

functions, the model is called a Linear Dynamical System [Roweis and Ghahramani,

1999]. Combining the two ideas, we can build hybrid models where a set of latent discrete

states inform the dynamics of a low-dimensional continuous latent dynamics, and the

observations are generated by the noisy projection of continuous latents [Linderman

et al., 2017]. This family of models is called Switching Linear Dynamical Systems [Fox

et al., 2009]. Depending on the problem at hand, more complex structures and parame-

terizations can be incorporated into these models. For example, discrete state transitions

can be made a function of observations and the observations can evolve according to

nonlinear dynamics parameterized by a neural network [Gao et al., 2016].

The graphical model shown in Fig. 4.8 is of special interest, where the observations

follow piecewise linear dynamics, with transition boundaries defined by hyperplanes

crossing observational space. This provides a flexible function family as all stochastic

dynamical systems can be approximated up to arbitrary precision with this class of model

with an increasing number of pieces, much like piecewise linear function can globally

approximate smooth functions as the number of pieces grows larger. The functional space

given by this model is equivalent to that of ReLU networks if there is no observational

noise. Although SLDS models have shown to be successful in fitting complex biological
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data and their fitted parameters are associated with biological interpretations, there

is no guarantee that the fitted SLDS has any causal correspondence to the underlying

dynamics if we only use observational data for fitting, even if the underlying system is

governed by switching dynamics [Linderman et al., 2019].

Recently, SLDS models are used as simpler models to describe and understand the

dynamics of trained complex nonlinear RNNs. RNNs trained for a motor reaching task

show switching dynamics between linear pieces with each piece corresponding to a reach

direction [Smith et al., 2021].

4.3.2 Methods

This has motivated the recent line of research on performing inference using both

interventional and observational data. Intuitively, we expect the real-world interventions

in the system to influence a small subset of variables, locally or sparsely. This principle

which is referred to as Sparse Mechanism Shift (SMS) by Scholkopf can be used to

distinguish between causal and non-causal representations or can be applied in the

form of regularization to encourage disentangled and causal representations [Scholkopf

et al., 2021]. The significance of causal representations is that not only can lead to a

stronger form of understanding of the underlying system, but also they can provide

models that are robust to distribution shifts and enjoy out-of-distribution generalization

properties. [Peters et al., 2016] shows that given interventional data (xe, ye), treating

each intervention as an environment we can use a form of invariant risk minimization

to identify variables that are causally downstream of xe. [Brehmer et al., 2022] shows

that if we have access to pairs of intervened and non-intervened variables under the

same realization of exogenous variables, we can learn a latent space that is identifiable

to the data generating latent space up to component-wise transformations. Following

this line of work, here we take a step towards the identification of switching systems and
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extending them to reflect some causal characteristics of the underlying system.

Assuming that the underlying process follows a set of differential equations denoted

by xt+1 = f (xt), traditional fitting uses the observation from this system to fit a simpler

model, say a ARHMM, parameterized by θ and described by

zt+1|zt ∼Categorical(σ(V xt))

xt+1|xt, zt ∼N (Azt xt +bzt ,Q)

where θ = {A1:K ,b1:K ,Q,V } such that the data generated from the fitted system is close

to that of generated from the original system in a probabilistic sense, namely they aim to

solve max
θ

logP(θ|x1:T). The data generating system can be a RNN trained for solving a

task, the firing rate of a set of neurons in the brain, or trajectories simulated from a set

of differential equations. Alternative to the traditional approach, if we have access to the

components of the underlying system in an interventional level, we would like to apply

informative dynamic interventions to augment the collected data with interventional

data. Formally, we introduce a matrix B and control inputs u1:T and intervene the

system by injecting the inputs in the following way xt+1 = f (xt)+But. Now instead of

the original optimization problem, we replace it with the following optimization that

involves both observational and interventional data with the knowledge of matrix B:

max
θ

logP(θ|x1:T ,u1:T). We choose the following class of probabilistic models for fitting

purposes.

zt+1|zt ∼Categorical(σ(V xt))

xt+1|xt, zt ∼N (Azt xt +bzt +But,Q)

Since we are fixing the matrix B, the controlled model does not include new parameters,

but the space of possible parameters describing the data is now further constrained by

the interventional data u1:T . Notice that we are not the first to propose this model and

it is referred to as Input-Output Hidden Markov Model or IO-HMM in the statistics
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literature [Bengio]. However, in IO-HMM we assume that the control inputs are observed,

without having a rule to determine the informative interventions; whereas here we use

insights from computational neuroscience literature to propose a method for generating

the control inputs given some knowledge about the underlying system.

Linear Quadratic Regulators (LQR) provide the analytical treatment of controlling

linear dynamical systems. Given a LDS described by xt+1 = Axt +b+But the inputs

u1:T to control the state of the system xT towards a pre-determined point x f is given by

the solution to the following optimization problem [Chow and others, 1975].

L (u1:T)=min
u1:T

T∑
t=1

(
xt − x f

)TR
(
xt − x f

)+γuT
t Qut

where the hyperparameter γ controls how the total energy of the input. If we assume

that the underlying system is confined to evolve on a low-dimensional manifold in the

high-dimensional space, locally there are only a few directions that can be explored

by the system trajectory. Although we do not have access to those directions, but we

can use a locally linear approximation of the dynamics to estimate those directions. To

formalize this intuition and develop a concrete control rule accordingly, we consider an

isotropic sphere with radius r around the initial point of the trajectory x0 denoted by

Sr(x0), and aim to find the point that traverses the maximum distance after a fixed

duration T1. We call this point maximally deviant or max-dev and provide a derivation

in the supplementary for linear systems. The extension of max-dev from LDS to SLDS

is straightforward as shown in the supplementary. Controlling the state of the system

towards max-dev point has two advantages, 1) it allows the system to explore a small

neighborhood around the spontaneous manifold defined by the radius r and 2) the

explored regions correspond to the "natural" directions of expansion in the original

system. The former results in improving the switching fit up to certain pre-defined radius

and the latter enables energy efficiency, meaning that instead of wasting the energy of

control inputs along irrelevant dimensions, it focuses the energy of the input along the
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relevant directions. This is specifically important in high-dimensional systems where

computational efficiency becomes a bottleneck. We summarize our proposed algorithm

in 4.8.

4.3.3 Results

We applied our proposed CSLDS fitting algorithm to multiple systems, each of which

is detailed below. In each case, we apply 3 strategies for generating a sequence of control

inputs and appending the controlled data to the observations. The first strategy is using

the LQR framework as demonstrated in Fig. 4.8, the second strategy is to inject random

noise input with a standard deviation equal to r, and the third strategy is to use zero

control input and continue appending spontaneous data to the observations. In each case

we follow training log likelihood and test flow error defined by the difference between the

ground truth and fitted flow fields in a neighbourhood around some randomly sampled

trajectory from the system.

Ground Truth SLDS To investigate whether the proposed sequence of interventions

and our CSLDS fitting procedure helps with identification, we generated signals from a

4-state SLDS described by the following parameters with K = 4.

Ak = 0.99×R(0.01π+ϵk),ϵk ∼N (0,0.003π) bk =
[

cos
(kπ

K
)
,sin

(kπ
K

)]T

B = I2 Q = 10−5 × I2 V = 106 ×b1:K

In Fig. 4.10 we show the difference in the flow fields fitted by LQR and other control

strategies in the CSLDS framework.

Trained RNN for Cycling Task SLDS models provide approximations to more com-

plex nonlinear systems, and provide a mechanistic understanding of the underlying

system. Different linear pieces correspond to regions of the state space where the dy-

namics either demonstrate a limit cycle, stable, or unstable fixed points. Depending on
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the organization of the linear pieces, the fixed points can either be inside or outside of

the corresponding region, nevertheless the state of the system will either move towards,

repel away from those points in the case of stable and unstable fixed points. These intu-

itions can be translated into dynamical mechanisms governing the underlying nonlinear

system. To investigate whether the CSLDS fitting approach can provide a mechanistic

understanding of the underlying mechanism, we trained an RNN to generate a sequence

of 3 or 5 sinusoidal cycles when the input in dimension 1 or 2 turns on respectively.

This task is motivated by findings in [Russo et al., 2020] where the task solving RNNs

are shown to rely on transient dynamics to generate the output. Given two sequences

(x1:T , y1:T) the RNN is described by the following equations:

ht+1 = f h
φ(ht)+ f i

φ(xt)

where h denotes the hidden state of the RNN, f h, f i, f o denote the hidden, input, and

output functions respectively, and π denotes all the parameters of the RNN. Training the

RNN is performed via Backprop Through Time (BPTT) minimizing the following loss:

L (φ)=
T∑

i=1

∥∥∥yt − f o
φ(ht)

∥∥∥2

2

In Fig. 4.11 we show examples of inputs and outputs, test performance, the dynamics of

the hidden state, and the result of the CSLDS fitting. We used a 20-dimensional hidden

space for training the RNN. In this high dimensional setting, MaxDeviant outperforms

two other strategies by large margins. We hypothesize that this happens because the

dynamics in high dimensions evolve on a lower dimensional space and MaxDeviant

strategy allows for exploring only those dimensions which leads to faster convergence of

the test error in the vicinity of the observed trajectories.
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Figure 4.3: Functional causal flow of a simulated rate network A) Left: Schematic
of network architecture Z: two subnetworks X (blue nodes) and Y (pink nodes) compris-
ing strong and weak recurrent couplings, respectively, are connected via feedforward
couplings from X to Y (thickness of black arrows represents the strength of directed
structural couplings). Center: Activity of units y4(t) (orange, bottom) and x1(t) (in blue,
top) are mapped to the delay coordinate space X1 = [x1(t), x1(t−τ), . . . , x1(t− (d−1)τ)]and
Y4 (right, τ= 4ms, confirmed by model selection. Reconstruction accuracy increases with
delay vector dimension d before plateauing. The reconstruction accuracy ρ(x1|y4) of
upstream unit x1 given the downstream unit y4 is significant and larger than the recon-
struction accuracy ρ(y4|x1) of y4 given x1 (non-significant). The FCF value F41 reveals
a strong and significant functional connectivity from upstream node x1 to downstream
node y4.



Figure 4.3: (cont. from previous page) B) The significant FCF between two units x1 and
x3 within the strongly coupled subnetwork X reveal strong and significant causal flow
between them, but no preferred directionality of causal flow. C) The non-significant FCF
between two units y4 and y5 in the weakly coupled subnetwork Y suggests the absence of
a causal relationship. D) Summary of the FCF cases in panels A, B, C (see table 4.2). E)
The FCF between 10 representative units sparsely sampled from the network (columns
and rows represent afferent and efferent units, respectively; columns are sorted from
functionally upstream to downstream units). F) The functional hierarchy in the network
structure is encoded in the causal vectors (Left: PCA of columns of the FCF matrix, each
dot represents one afferent, see Methods; Right: Gini coefficient of causal vectors).
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Figure 4.4: Causal flow predicts perturbation effects A) Perturbation protocol: sin-
gle nodes are stimulated with a pulse of strength S lasting for 100ms (representative
trials with stimulation of unit y8). B) Perturbation effects on efferent units are estimated
by comparing the activity immediately preceding onset and following offset of the per-
turbation (Kolmogorov-Smirnov test statistics, black dot represents significant effect,
p < 0.05). The effects of stimulating one afferent i on all efferents k is encoded in the
perturbation vector I(i). C) Perturbation effects increase with the stimulation strength
S for afferent-efferent pairs in populations X → X , Y →Y , and X →Y , but not Y → X ,
reflecting the absence of feedback structural couplings from Y to X (mean±s.e.m. across
stimulations). D) For each afferent, its causal vector (column of the resting state FCF
matrix representing unit y4) is compared with the perturbation vector (columns of the
interventional connectivity matrix), revealing that FCF predicts perturbation effects. E)
Efferent units with significant resting state FCF had a larger response to perturbation,
compared to pairs with non-significant FCF (red and gray bars, respectively; t-test,
∗∗∗= p < 10−6).
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spaced intervals across a specific region of PFC. Second, we
used unsupervised algorithms to identify natural groupings of
neurons based on their response covariation, both task driven
and task independent. Finally, we projected the objectively iden-
tified groupings of neurons back onto the arrays to determine
whether they were spatially segregated in a topographic manner.

We report recordings from the prearcuate gyrus, a region of
PFC that carries visual, cognitive, and eye movement-related
signals in a variety of behavioral tasks ( Constantinidis and Gold-
man-Rakic, 2002; Hussar and Pasternak, 2009; Kiani et al., 2014;
Kim and Shadlen, 1999; Lennert and Martinez-Trujillo, 2013;
Mante et al., 2013 ). The prearcuate gyrus is traditionally divided
into the ‘‘core’’ FEF, located in the rostral bank and lip of the
arcuate sulcus, and area 8Ar, located between the arcuate sul-
cus and the posterior tip of principal sulcus ( Gerbella et al.,
2007; Schall, 1997; Stanton et al., 1989 ). Area 8Ar o�ers a conve-
nient target for dense multielectrode arrays because it is rela-
tively flat. It is unknown if area 8Ar is a homogenous piece of
cortex or divides further into smaller subregions. Moreover, elec-
trophysiological recordings are generally considered insufficient
to detect the boundary between FEF and 8Ar or to explore sub-

divisions of area 8Ar, because the neurons appear to have similar
response properties across the prearcuate gyrus ( Constantinidis
and Goldman-Rakic, 2002; Hussar and Pasternak, 2010; Kim
and Shadlen, 1999 ).
Here we show that the recorded population in area 8Ar is not

homogenous and can be divided into smaller subnetworks
based on task-independent covariation of neural responses.
The subnetworks are spatially segregated within the prearcuate
gyrus, revealing a topography that is defined at the population
level by measurements o�arge-scale, simultaneous recordings.
The prearcuate subnetworks may reflect novel areal boundaries
within area 8Ar or pronounced interanimal variation of known
boundaries (see Discussion ). Our new approach will be valuable
for detecting boundaries of both kinds as large-scale array and
optical recordings become increasingly common in the future.

RESULTS

We used 96-channel multielectrode arrays to record from neural
populations in area 8Ar of the prearcuate gyrus ( Figure 1 ) while
our subjects, three macaque monkeys, performed a direction
discrimination task ( Britten et al., 1992; Kiani et al., 2008 ). On
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Figure 1. Large-Scale Multielectrode Recordings from the Prearcuate Gyrus during a Direction Discrimination Task
(A) Behavioral task. Monkeys viewed the random dot motion for 800 ms and, after a variable delay, reported the perceived motion direction with a saccad ic eye
movement. Correct responses were rewarded with juice after a short hold period. The strength and direction of motion varied randomly from trial to tri al.
(B) Behavioral performance. The three psychometric functions depict performance for the three monkeys (T, V, and C), averaged across all sessions. P sy-
chophysical thresholds were 9.3% coherence for monkey T, 17.9% coherence for monkey V, and 51% coherence for monkey C. Monkey C’s perceptual
sensitivity was poor relative to most animals; threshold remained high despite months of training. The results in this paper, however, do not depend u pon
perceptual sensitivity. Our only requirement is that the animal was under behavioral control during task performance, which is demonstrated by the r egular
psychometric function.
(C) Target area (blue box) for implantation of the multichannel electrode array on the prearcuate gyrus. Arcuate (as) and principal (ps) sulci are mar ked with red
dashed lines on the surface of a typical macaque brain (University of Wisconsin Brain Collection).
(D) The actual location of each array with respect to arcuate and principal sulci. The white squares show the ground pins. In monkey C, the array could no t be
placed at the concavity of arcuate sulcus due to the unusually short distance between the arcuate and the posterior termination of the principal sulcu s. Dashed
lines at the end of a sulcus indicate the sulcus extends in this direction beyond our craniotomy.
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movement. Correct responses were rewarded with juice after a short hold period. The strength and direction of motion varied randomly from trial to tri al.
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Figure 4.5: Causal flow predicts perturbation effects in alert monkeys A) Left:
Ensemble spiking activity in representative session from multi-electrode array activity
in the pre-arcuate gyrus during quiet wakefulness (black tick marks are spikes from
each neural cluster, defined as the aggregated spiking activity around each recording
electrode). Right: FCF inferred from resting periods for four representative afferent
clusters (clusters 15 and 56 from session 1 and clusters 42 and 29 from session 2;
yellow squares represent the reconstructed afferent cluster for each causal vector). FCF
causal vectors for each afferent are overlaid to the array geometry (black dots represent
significant FCF values, established by comparison with surrogate datasets, p < 0.05).
B) Left: The perturbation effect from electrical microstimulation of cluster 15 (120ms
stimulation train, blue shaded area) was estimated by comparing the activity in the
200ms intervals immediately preceding and following the perturbation (grey shaded
areas). Right: Perturbation effects from four stimulated clusters (same clusters as in
A) overlaid on the array geometry (Kolmogorov-Smirnov test statistics between post-
vs. pre-perturbation activity distribution; black dots represent a significant difference,
p < 0.05).
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Figure 4.5: (cont. from previous page) C) The spatial footprint of resting state FCF decays
with increasing distance of the efferent from the afferent cluster (mean±s.e.m. across 96
clusters in two sessions). D) Spatial footprint of perturbation effects for the four stimu-
lated clusters decays with increasing distance from the stimulated cluster (mean±s.e.m.
across four stimulated afferents). E) Resting state FCF predicts perturbation effects.
For each stimulated afferent, the perturbation effects on all efferent clusters are shown
(Kolmogorov-Smirnov test statistics between post- and pre-stimulation activity) as func-
tions of the corresponding resting state FCF (gray and red dots represent efferents with
non-significant and significant FCF, respectively, p < 0.05; black line: linear regression,
R2 and p-value reported). F) For each stimulated afferent in panel E, aggregated pertur-
bation effects are larger over efferents with significant resting state FCF vs. efferents
with non-significant FCF (mean±s.e.m. across gray and red-circled dots from panel E;
t-test, ∗,∗∗,∗∗∗= p < 0.05,0.01,0.001). G) After removing the spatial distance effects
from the FCF and perturbation effects, the residual aggregated perturbation effects
are larger over efferents with significant residual resting state FCF vs. efferents with
non-significant residual FCF.
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Figure 4.6: Comparison of causality indices on the simulated rate network A)
Different causality indices applied to the simulated rate network of Fig. 4.3-4.4; from left:
Granger Causality (GC), Transfer Entropy (TE), Extended Granger Causality (EGC),
Nonlinear Granger Causality (NGC), Multivariate Granger Causality (MGC), Functional
Causal Flow (FCF), Interventional Connectivity (IC). B) Scatter plots of correlations
between measured causality index on the x-axis and interventional connectivity values
on the y-axis (SP, PE represent Spearman and Pearson correlation coefficients and
p-values, respectively). In this simulation FCF can best predict IC among the indices.
C) Each bar plot corresponds to the causality index values separated according to the
significance of IC matrix (t-test with respective p-values reported); FCF best reflects
upstream vs. downstream as defined by the significant elements of IC. The rightmost
bar plot corresponds to the IC values separated by their significance, providing a ceiling
for the causality indices.
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Figure 4.7: Comparison of causality indices on the monkey data: A, B, E, F)
Causality indices computed on two stimulated channels during the resting activity (see
Fig. 4.6 for notations);
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Figure 4.7: (cont. from previous page) each image corresponds to the causality between
the stimulated channel and all other channels organized in the physical layout of the
electrode array (same as in Fig. 4.5; Gini index of causal vector reported on top). C,
G) Scatter plots of correlations between measured causality index on the x-axis and
interventional connectivity values on the y-axis (SP, PE represent Spearman and Pearson
correlation coefficients and p-values, respectively), in this dataset FCF can best predict
IC among the indices. D, H) Each bar plot corresponds to the causality index values
separated according to the significance of IC matrix; FCF best reflects upstream vs.
downstream as defined by the significant elements of IC. A-D and E-H correspond to the
two different recording sessions, respectively.

Figure 4.8: Schematic of proposed CSLDS Starting from a small sphere around the
initial points, we analytically derive the shape of the deformed ellipsoid after time T1
and use LQR to control the state of the system towards the max-dev point shown in
green trajectory; red trajectory is non-driven trajectory of the initial point.

Figure 4.9: Recurrent ARHMM and Recurrent IO-ARHMM Graphical Models
Observed (designed) input is injected to the model and system to tune the fit in the
neighborhood of the observed trajectory.
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Figure 4.10: Results on SLDS System (a) Controlled trajectories generated by 3 control
strategies, RandomMagnitudeMatched strategy explores parts of the state space that
are far from the observed trajectory and "wastes" the pieces of SLDS in irrelevant
regions whereas MaxDeviant leads to efficient exploration of the vicinity of the observed
trajectory (b) Test flow error for three control strategies showing that MaxDeviant
(proposed) and Constant input strategies achieve comparable performance whereas
RandomMagnitudeMatched cannot estimate the underlying flow field. (c) Demonstration
of fitted flow fields using 3 control strategies, black is the fitted flow field and yellow is
the true flow field; colors correspond to the partitioning of the space given by the CSLDS
model.
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Figure 4.11: Results on Trained RNN on Cycling Task (a) The schematic of the
architecture of RNNs used for training, the input is a 2-dimensional signal, we chose
the hidden layer dimension to be 20 (N=20), the output is a sequence of 3 or 5 cycles
generated when the input in dimension one or two turns on (b) A few examples of task
inputs and targets and predictions made by the trained RNN, the RNN achieves test
MSE near zero (c) PCA of the trajectories of hidden units; blue and red trajectories
corresponds to 3 and 5 cycles; the trained RNN reuses the first 3 cycles for generating
5 cycles, consistent with [Russo et al., 2020] (d) Test flow error of fitted CSLDS to
hidden dynamics decreases faster for MaxDeviant (proposed) through iterations of fitting
compared to two other strategies.
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5
Measuring the Unique Information of Neurons

5.1 Introduction and Background

In neural systems, often multiple neurons are driven by one external event or stim-

ulus; conversely multiple neural inputs can converge onto a single neuron. A natural

question in both cases is how multiple variables hold information about the singleton

variable. In their seminal work [Williams and Beer, 2010], Williams and Beer proposed

an axiomatic extension of classic information theory to decompose the mutual informa-

tion between multiple source variables and a single target variable in a meaningful

way. For the case of two sources X1, X2, their partial information decomposition (PID)

amounts to expressing the mutual information of X1, X2 with a target Y as a sum of four

non-negative terms,

I(Y : (X1, X2))=U(Y : X1\X2)+U(Y : X2\X1)+R(Y : (X1, X2))+S(Y : (X1, X2)) , (5.1)
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corresponding to unique (U1, U2), redundant (R) and synergistic (S) contributions,

respectively. These terms should also obey the consistency equations

I(Y : X1)= R(Y : (X1, X2))+U(Y : X1\X2) , (5.2)

I(Y : X2)= R(Y : (X1, X2))+U(Y : X2\X1) . (5.3)

The PID has proved useful in understanding information processing by distributed

systems in a diverse array of fields including machine learning [Tax et al., 2017; Wollstadt

et al., 2021], earth science [Goodwell et al., 2020] and cellular automata [Flecker et al.,

2011], and particularly in neuroscience [Kay et al., 2019; Pica et al., 2017; Timme et al.,

2016; Wibral et al., 2015, 2017b], where notions of synergy and redundancy, traditionally

considered mutually exclusive and distinguished by the sign of

∆ = I(Y : (X1, X2))− I(Y : X1)− I(Y : X2) ,

= S(Y : (X1, X2))−R(Y : (X1, X2)) , (5.4)

have long played a central role in the quest to understand how neural circuits integrate

information from multiple sources [Brenner et al., 2000; Gat and Tishby, 1999; Quiroga

and Panzeri, 2009; Schneidman et al., 2003]. The novelty of the PID framework here is

in separating the measures of synergy and redundancy in (5.4).

The above abstract formulation of PID provides three equations for four unknowns,

and only becomes operational once one of U1, U2, R, or S is defined. This has been done

in [Bertschinger et al., 2014] via a definition of the unique information:

Definition 5.1.1 (BROJA [Bertschinger et al., 2014]). Given three random variables

(Y , X1, X2) with joint probability density p(y, x1, x2), the unique information U1 of X1

with respect to Y is

U(Y : X1\X2) = min
q∈Q

Iq(Y : X1|X2) , (5.5)

= min
q∈Q

∫
d ydx1dx2 q(y, x1, x2) log

(
q(y, x1|x2)

q(y|x2)q(x1|x2)

)
, (5.6)
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where

Q = {q(y, x1, x2) |q(y, xi)= p(y, xi), i = 1,2} . (5.7)

In words, we minimize the conditional mutual information I(Y : X1|X2) over the space

of density functions that preserve the marginal densities p(y, x1) and p(y, x2). The above

definition implies, along with (5.2)-(5.3), that the unique and redundant information only

depend on the marginals p(y, x1), p(y, x2), and that the synergy can only be estimated

from the full p(y, x1, x2).

The original definition in [Bertschinger et al., 2014] was limited to discrete random

variables. Here, we show that the extension to continuous variables is well-defined and

can be practically estimated.

Motivation from decision theory [Bertschinger et al., 2014]. Consider for sim-

plicity discrete variables. A decision maker DM1 can choose an action a from a finite

set A , and receives a reward u(a, y) based on the selected action and the state y, which

occurs with probability p(y). Notably, DM1 has no knowledge of y, but observes instead

a random signal x1 sampled from p(x1|y). Choosing the action maximizing the expected

reward for each x1, his maximal expected reward is

R1 =
∑
x1

p(x1)max
a|x1

∑
y

p(y|x1)u(a, y) . (5.8)

DM1 is said to have no unique information about y w.r.t. another decision maker DM2

that observes x2 ∼ p(x2|y) – if R2 ≥ R1 for any set A , any distribution p(y), and any

reward function u(a, y). A celebrated theorem by Blackwell [Blackwell, 1951; Leshno

and Spector, 1992] states that such a generic advantage by DM2 occurs iff there exist a

stochastic matrix q(x1|x2) which satisfies

p(x1|y)=∑
x2

p(x2|y)q(x1|x2) . (5.9)
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But this occurs precisely when the unique information (5.5) vanishes, since then there

exists a joint distribution q(y, x1, x2) in Q for which y⊥ x1|x2, which implies q(x1|x2, y)=
q(x1|x2), and thus (5.9) holds. Similar results exist for continuous variables [Le Cam,

1996; Torgersen, 1991]. Thus the unique information from Definition 5.1.1 quantifies a

departure from Blackwell’s relation (5.9).

In this work we present a definition and a method to estimate the BROJA unique

information for generic continuous probability densities. Our approach is based on

the observation that the constraints (5.7) can be satisfied with an appropriate copula

parametrization, and makes use of techniques developed to optimize variational autoen-

coders. We only consider one-dimensional Y , X1, X2 for simplicity, but the method can

be naturally extended to higher dimensional cases. In Section 5.2 we review related

works, in Section 5.3 we present our method and Section 5.4 contains several illustrative

examples.

5.2 Related Work

Partial information decomposition offers a solution to a repeated question that was

not addressed by ‘classical’ information theory regarding the relations between two

sources and a target [Williams and Beer, 2010]. From a mathematical perspective a

’functional definition’ has to be made, meaning that such a definition should align with our

intuitive notions. Yet, as shown in [Bertschinger et al., 2013], not all intuitively desirable

properties of a PID can be realized simultaneously. Thus, different desirable properties

are chosen for distinct application scenarios. Thus, various proposals for decomposition

measures are not seen as conflicting but as having different operational interpretations.

For example, the BROJA approach used here builds on desiderata from decision theory,

while other approaches appeal to game theory [Ince, 2017] or the framework of Kelly

gambling [Finn and Lizier, 2018]. Yet other approaches use arguments from information

157



geometry [Harder et al., 2013]. Other approaches assume agents receiving potentially

conflicting or incomplete information about the source variables for the purpose of

inference or decryption (see e.g. [Makkeh et al., 2021; Rauh, 2017]). In [Gutknecht et al.,

2021] the authors separate the specific operational interpretations of PID measures from

the general structure of information decomposition.

The actual computation of the BROJA unique information is non-trivial, even for

discrete variables. Optimization methods exist for the latter case [Banerjee et al., 2018;

Makkeh et al., 2017, 2018], and analytic solutions are only known when all the variables

are univariate binary [Rauh et al., 2019]. For continuous probability densities, an earlier

definition aligned with the BROJA measure was made by Barret [Barrett, 2015], but

only applies to Gaussian variables. For Barret’s measure, an analytic solution is known

when p(y, x1, x2) is a three-dimensional Gaussian density [Barrett, 2015], but does not

generalize to higher dimensional Gaussians [Schamberg and Venkatesh, 2021].

5.3 Bounding and Estimating the Unique Information

We proceed in two steps. We first introduce a parametrization of the optimization

space Q in (5.7) and then introduce and optimize an upper bound on the unique informa-

tion.

5.3.1 Parametrizing the Optimization Space with Copulas

To characterize the optimization space Q in (5.5)-(5.7), it is convenient to recall that

according to Sklar’s theorem [Sklar, 1959], any n-variate probability density can be

expressed as

p(x1 . . . xn)= p(x1) . . . p(xn)c(u1 . . .un) , (5.10)

where p(xi) is the marginal and ui = F(xi) is the CDF of each variable. The dependency

structure among the variables is encoded in the function c:[0,1]n → [0,1]. This is a copula
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density, a probability density on the unit hypercube with uniform marginals [Joe, 1997],∫
[0,1]n−1

n∏
j=1, j ̸=i

du j c(u1 . . .un)= 1 ∀i . (5.11)

Note that under univariate reparametrizations z′i = g(zi), the ui ’s and the copula c

remain invariant. For an overview of copulas in machine learning, see [Elidan, 2013].

Proposition 4. Under the BROJA Definition 5.1.1 of unique information, all the terms

of the partial information decomposition in (5.1)-(5.3) are independent of the univariate

marginals p(x1), p(x2), p(y), and only depend on the copula c(uy,u1,u2).

Proof. Expressing q(y, x1, x2), q(x1, x2), q(y, x2) via copula decompositions (5.10), and

changing variables as duy = q(y)d y, etc., the objective function in (5.6) becomes

Iq(Y : X1|X2) =
∫

[0,1]3

duydu1du2 c(uy,u1,u2) log
( c(uy,u1,u2)

c(uy,u2)c(u1,u2)

)
. (5.12)

Note that the copula of any marginal distribution is the marginal of the copula:

c(uy,u2)=
∫

[0,1]

du1 c(uy,u1,u2) , c(u1,u2)=
∫

[0,1]

duy c(uy,u1,u2) . (5.13)

Thus the optimization objective and the unique information are independent of the

univariate marginals. A similar result holds for the mutual information terms in the

l.h.s. of (5.1)-(5.3).1 It follows that none of the PID terms in (5.1)-(5.3) depend on the

univariate marginals, and therefore all the PID terms are invariant under univariate

reparametrizations of (y, x1, x2). ■

In order to parametrize the optimization space Q in (5.7) using copulas, consider the

factorization

p(y, x1, x2)= p(x1)p(y|x1)p(x2|y, x1) . (5.14)
1The connection between mutual information and copulas was discussed in [Calsaverini and Vicente,

2009; Ma and Sun, 2011].
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Using the copula decomposition (5.10) for n = 2, the last two factors in (5.14) can be

expressed as

p(y|x1) = p(y, x1)
p(x1)

= p(y)p(x1)c(y, x1)
p(x1)

= c(uy,u1)p(y) , (5.15)

and similarly

p(x2|y, x1) = p(x1, x2|y)
p(x1|y)

, (5.16)

= c1,2|y(u1|y,u2|y)p(x2|y) , (5.17)

= c1,2|y(u1|y,u2|y)c(uy, x2)p(x2) , (5.18)

where we defined the conditional CDFs,

ui|y = F(ui|uy)= ∂C(uy,ui)
∂uy

i = 1,2 (5.19)

and C(uy,ui) is the CDF of c(uy,ui). Note that the function c1,2|y(u1|y,u2|y) in (5.17) is

not the conditional copula c(u1,u2|uy), but rather the copula of the conditional p(x1, x2|y).

Using expressions (5.15) and (5.18), the full density (5.14) becomes

p(y, x1, x2) = p(y)p(x1)p(x2)c(uy,u1,u2) , (5.20)

where

c(uy,u1,u2)= c(uy,u1) c(uy,u2)c1,2|y(u1|y,u2|y) . (5.21)

This is a simple case of the pair-copula construction of multivariate distributions [Aas

et al., 2009; Bedford and Cooke, 2001; Czado, 2010], which allows to expand any n-variate

copula as a product of (conditional) bivariate copulas.

Proposition 5. The copula of the conditional, c1,2|y(·, ·), parametrizes the space Q in

(5.7).

Proof. Since q(y, xi)= p(y, xi) (i = 1,2), the copula factors in

p(y, xi)= p(y)p(xi) c(uy,ui) , i = 1,2 (5.22)
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are fixed in Q. Therefore, in the copula decomposition (5.21) for q(y, x1, x2) ∈Q, only the

last factor can vary in Q. Let us denote by θ the parameters of a generic parametrization

for the copula c1,2|y(u1|y,u2|y). Since the latter is conditioned on uy, the parameters can

be taken as a function θ(uy). It follows that the copula of q necessarily has the form

cθ(uy,u1,u2)= c(uy,u1) c(uy,u2) c1,2|θ(uy)(u1|y,u2|y) , (5.23)

and the parameters of the function θ(uy) are the optimization variables.2 ■

5.3.2 Optimizing an Upper Bound

Inserting now the expression (5.23) into the objective function (5.12) we get

I[θ]= Ecθ(uy,u1,u2) log
[
c(uy,u1)c1,2|θ(uy)(u1|y,u2|y)

]−Ecθ(u1,u2) log cθ(u1,u2) , (5.24)

which is our objective function and satisfies the marginal constraints (5.7). Note that

apart from the optimization parameters θ, it depends on the bivariate copulas c(uy,u1)

and c(uy,u2) which should be estimated from the observed data. Given D observations

{y(i), x(i)
1 , x(i)

2 )}D
i=1, we map each value to [0,1] via the empirical CDFs of each coordinate

(y, x1, x2). Computing the latter has a O(D logD) cost from sorting each coordinate and

yields a data set {u(i)
y ,u(i)

1 ,u(i)
2 )}D

i=1. The latter set is used to estimate copula densities

c(uy,u1) and c(uy,u2) by fitting several parametric and non-parametric copula mod-

els [Nelsen, 2007], and choosing the best pair of models using the AIC criterion.3 From

the learned copulas we also get the conditional CDF functions ui|y = F(ui|uy) that appear

in the arguments of the first term in (5.24).

A variational upper bound. Minimizing (5.24) directly w.r.t. θ is challenging

because the second term depends on the copula marginal cθ(u1,u2) which has no closed
2We note that in multivariate pair-copula expansions it is common to assume constant conditioning

parameters θ [Nagler and Czado, 2016], but we do not make such a simplifying assumption.
3For this fitting/model selection step, we used the pyvinecopulib python package [Nagler and Vatter,

2020].
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form, as it requires integrating (5.23) w.r.t. uy. We introduce instead an inference dis-

tribution rφ(uy|u1,u2), with parameters φ, that approximates the conditional copula

cθ(uy|u1,u2), and consider the bound

log cθ(u1,u2)= log
∫

du′
y cθ(u′

y,u1,u2)≥
∫

du′
y rφ(u′

y|u1,u2) log
cθ(u′

y,u1,u2)

rφ(u′
y|u1,u2)

, (5.25)

which follows from Jensen’s inequality and is tight when rφ(u′
y|u1,u2) = cθ(u′

y|u1,u2).

This expression gives an upper bound on Iq[θ], which can be minimized jointly w.r.t.

(θ,φ).

A disadvantage of the bound (5.25) is that its tightness depends strongly on the

expressiveness of the inference distribution rφ(u′
y|u1,u2). This situation can be improved

by considering a multiple-sample generalization proposed by [Burda et al., 2016],

log cθ(u1,u2)≥ DA,θ,φ(u1,u2)≡ Ep(u(1)
y ...u(A)

y ) log

[
1
A

A∑
a=1

cθ(u(a)
y ,u1,u2)

rφ(u(a)
y |u1,u2)

]
, (5.26)

where the expectation is w.r.t. A independent samples of rφ(u′
y|u1,u2). DA,θ,φ(u1,u2)

coincides with the lower bound in (5.25) for A = 1 and satisfies [Burda et al., 2016]

DA+1,θ,φ(u1,u2) ≥ DA,θ,φ(u1,u2), (5.27)

lim
A→∞

DA,θ,φ(u1,u2) = log cθ(u1,u2) . (5.28)

Thus, even when rφ(u′
y|u1,u2) ̸= cθ(u′

y|u1,u2), the bound can be made arbitrarily tight

for large enough A. Inserting (5.26) in (5.24), we get finally

Iq[θ]≤ B1[θ]+B2[θ,φ] , (5.29)

where

B1[θ] = Ecθ(uy,u1,u2) log
[
c(uy,u1)c1,2|θ(uy)(u1|y,u2|y)

]
, (5.30)

B2[θ,φ] = −Ecθ(u1,u2)DA,θ,φ(u1,u2) , (5.31)

and we minimize the r.h.s. of (5.29) w.r.t. (θ,φ). Low-variance estimates of the gradients to

perform the minimization can be obtained with the reparametrization trick [Kingma and
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Figure 5.1: Estimated vs. exact values of unique information for Gaussians For
a three-dimensional Gaussian, we show estimates of U(Y : X1\X2) as a function of the
correlations ρ y,xi (i = 1,2), compared with the exact results from [Barrett, 2015]. Only for
Gaussian distributions are exact results known for continuous variables.

Welling; Tucker et al., 2019]. In our examples below we use for c1,2|θ(uy) a bivariate Gaus-

sian copula. Such a copula has just one parameter θ ∈ [−1,+1], and thus the optimization

is done over the space of functions θ(uy):[0,1] → [−1,+1], which we parametrize with

a two-layer neural network. Similarly, we parametrize rφ(uy|u1,u2) with a two-layer

neural network.

While the term B2 in our bound is similar to the negative of the ELBO bound

in importance weighted autoencoders (IWAEs) [Burda et al., 2016], there are some

differences between the two settings, the most important being that we are interested

in the precise value of the bound at the minimum, rather than the learned functions

cθ, rφ. Note also that our latent variables u(k)
y are one-dimensional, as opposed to the

usual higher dimensional latent distributions of variational autoencoders, and that

the empirical expectation over data observations in IWAEs is replaced in B2 by the

expectation over cθ(u1,u2), whose parameters are also optimized.

Estimating the other PID terms In the following we adopt the minimal value

taken by the upper bound (5.29) as our estimate of U1. The other terms in the partial

information decomposition are obtained from the consistency relations (5.1)-(5.3), after

estimating the mutual informations I(Y : (X1, X2)), I(Y : X1), I(Y : X2). There are several
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methods for the latter. In our examples, we use the observed data to fit additional copulas

c(u1,u2) and c12|θ(uy) and estimate I(Y : X1)≃ 1
D

∑D
i=1 log c(u(i)

y ,u(i)
1 ) and similarly for the

other terms. Note that all our estimates have sources of potential bias. Firstly, the

estimation of the parametric copulas is subject to model or parameter misspecification,

which can be ameliorated by more refined model selection strategies. Secondly, the

optimized bound might not saturate, biasing the estimate upwards. This can be improved

using higher A values and improving the gradient-based optimizer used.

5.4 Examples

Comparison with exact results for Gaussians. Consider a three-dimensional

Gaussian with correlations ρ y,xi between y, xi for i = 1,2. The exact solution to (5.5) in

this case is [Barrett, 2015]

U(Y : X1\X2)= 1
2

log

(
1−ρ2

y,x2

1−ρ2
y,x1

)
1
[
ρ y,x2 < ρ y,x1

]
. (5.32)

Fig. 5.1 compares the above expression with estimates from our method. Here we know

that cy,1 and cy,2 are Gaussian copulas, with parameters ρ y,x1 ,ρ y,x2 , and we assumed a

Gaussian copula for c1,2|y,θ(u1|y,u2|y) as well. For each pair of values ρ y,x1 ,ρ y,x2 . In this

and the rest of the experiments, we optimized the parameters (θ,φ) using the ADAM

algorithm [Kingma and Ba] with a fixed learning rate 10−2 during 1200 iterations, and

using A = 50. The results reported correspond to the mean of the bound in the last 100

iterations. The comparison in Fig. 5.1 shows excellent agreement.

Model systems of three neurons. The nature of information processing of neural

systems is a prominent area of application of the PID framework, since synergy has been

proposed as natural measure of information modification [Lizier et al., 2013; Timme
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Figure 5.2: Partial information decomposition for two neural network models.
In both models (5.33) we fixed w1 = 0.5,ρ12 = 0.3, and show the PID terms as a function
of the synaptic strength w2, normalized by I(Y : (X1, X2)). We show mean (lines) and
standard deviations (shaded area around each line) from 3 runs. Left: Model 1: The input
of greatest weight conveys all the unique information, and synergy and redundancy both
peak as w1 = w2. Right: Model 2: The second input X2 has negligible unique information
contribution, but its synaptic strength w2 modulates the synergistic term, associated to
the modification of information the neuron performs [Lizier et al., 2013].

et al., 2016]. We consider two models:

M1

(X1, X2)∼N (0,ρ2
12),

Y = tanh(w1X1 +w2X2).

M2

(X1, X2)∼N (0,ρ2
12),

Y = X2
1 /

(
0.1+w1X2

1 +w2X2
2
)
.

(5.33)

Both models are parameterized by the correlation ρ12 and weights w1,w2. Model 1 is

a particularly simple neural network. The tanh activation does not affect its copula,

and even for a linear activation function the variables are not jointly Gaussian since

Y is deterministic on (X1, X2). Model 2 is inspired by a normalization operation widely

believed to be canonical in neural systems [Carandini and Heeger, 2011] and plays a

role in common learned image compression methods [Ballé et al., 2017]. The results,

presented in Figure 5.2. are obtained from 3000 samples from each model

Computational aspects of connectivity in recurrent neural circuits. We apply

our continuous variable PID to understand computational aspects of the information

processing between recurrently coupled neurons (Fig. 5.3). A large amount of work has

been devoted to applying information theoretic measures for quantifying directed pair-
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wise information transfer between nodes in dynamic networks and neural circuits [Reid

et al., 2019]. However, classical information theory only allows for the quantification

of information transfer, whereas the framework of PID enables further decomposition

of information processing into transfer, storage, and modification, providing further

insights into the computation within a recurrent system [Wibral et al., 2017a]. Transfer

entropy (TE) [Schreiber, 2000b] is a popular measure to estimate the directed transfer

of information between pairs of neurons [Novelli and Lizier, 2021; Vicente et al., 2011],

and is sometimes approximated by linear Granger causality. Intuitively, TE between a

process X and a process Y measures how much the past of X , X−, can help to predict the

future of Y , Y+, accounting for its past Y−. Although TE quantifies how much informa-

tion is transferred between neurons, it does not shed light on the computation emerging

from the interaction of X− and Y−. Simply put, the information transferred from X−

could enter Y+, independently of the past state Y−, or it could be fused in a non-trivial

way with the information in the state in Y−[Wibral et al., 2017a; Williams and Beer,

2011]. PID decomposes the TE into modified transfer (quantified by S(Y+:X−,Y−)) and

unique transfer (quantified by U(Y+:X− \Y−)) terms (see the Appendix for a proof):

TE(X →Y )= I(Y+:X−|Y−)=U(Y+:X− \Y−)+S(Y+:X−,Y−) .

Furthermore, the information kept by the system through time can be quantified by

the unique storage (given by U(Y+:Y− \ X−)) and redundant storage (given by

R(Y+:X−,Y−)) in PID [Lizier et al., 2013]. This perspective is a new step towards

understanding how the information is processed in recurrent systems beyond merely

detecting the direction functional interactions estimated by traditional TE methods. To

explore these ideas, we simulated chaotic networks of rate neurons with an a-priori

causal structure consisting of two sub-networks X and Y (Fig. 5.3a, see [Nejatbakhsh

et al., 2020a] for more details on causal analyses of this network model). The sub-network
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X is a Rossler attractor of three neurons obeying the dynamical equations:

Ẋ1 =−X2 − X3

Ẋ2 = X1 +αX2

Ẋ3 =β+ X3(X1 −γ)

(5.34)

where {α,β,γ}= {0.2,0.2,5.7}. There are 100 neurons in the sub-network Y from which

we chose the first three, Y1:3, to simulate the effect of unobserved nodes. Neurons within

the sub-network Y obey the dynamical equations

Ẏ =−λY +10tanh(JY X X + JY Y Y ) (5.35)

where JY X ∈ R100×3 has all its entries equal to 0.1, and JY Y is the recurrent weight

matrix of the Y sub-network, sampled as zero-mean, independent Gaussian variables

with standard deviation g = 4. No projections exist from the downstream sub-network Y

to the upstream sub-network X. We simulated time series from this network (exhibiting

chaotic dynamics, see Fig. 5.3a) and estimated the PID as unique, redundant, and

synergistic contribution of neuron i and neuron j at time t in shaping the future of neuron

j at time t+1. For each pair of neurons Zi, Z j ∈ {X1:3,Y1:3} we treated (Z t
i , Z t

j, Z t+1
j )T

t=1 as

iid samples4 and ran PID on these triplets (i, j represent rows and columns in Fig. 5.3b-d).

The PID uncovered the functional architecture of the network and further revealed non-

trivial interactions between neurons belonging to the different sub-networks, encoded in

four matrices: modified transfer S, unique transfer U1, redundant storage R, and unique

storage U2 (details in Fig. 5.3d). The sum of the modified and unique transfer terms

was found to be consistent with the TE (Fig. 5.3c, TE equal to S+U1, up to estimation

bias). The TE itself captured the network effective connectivity, consistent with previous

results [Nejatbakhsh et al., 2020a; Novelli and Lizier, 2021].
4Note that the estimation of the PID from many samples of the triplets (Z t

i , Z t
j, Z t+1

j ) is operationally
the same whether such triplets are iid or, as in our case, temporally correlated. This is similar to estimating
expectations w.r.t. the equilibrium distribution of a Markov chain by using temporally correlated successive
values of the chain. In both cases, the temporal correlations do not introduce bias in the estimator but can
increase the variance.
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Figure 5.3: PID uncovers the effective connectivity and allows for the quan-
tification of storage, modification, and transfer of information in a chaotic
network of rate neurons. a: Schematics of recurrent network architecture (left) and
representative activity (right). b: Schematic of the PID triplets for each 3×3 block of
the matrices in c, d. c: PID decomposition into modified transfer S, unique transfer
U1, redundant storage R, and unique storage U2 for the rate network. The future of
X neurons only depends on unique information in the past of X neurons and their
synergistic interactions. The interactions between the X and Y sub-networks only con-
tain synergistic information regarding the future of Y but no redundant information;
the latter is only present in the interactions confined within each sub-network. d: The
transfer entropy (TE), estimated via IDTxl [Wollstadt et al., 2019], recovers the sum of
modified and unique transfer terms S+U1.

Uncovering a plurality of computational strategies in RNNs trained to solve

complex tasks. A fundamental goal in neuroscience is to understand the computational

mechanisms emerging from the collective interactions of recurrent neural circuits lead-

ing to cognitive function and behavior. Here, we show that PID opens a new window

for assessing how specific computations arise from recurrent neural interactions. Un-

like MI or TE, the PID quantifies the alternative ways in which a neuron determines

the information in its output from its inputs, and thus can be a sensitive marker of

168



Figure 5.4: PID of RNNs trained to solve generalized XOR problem a: In-
put data drawn from a 2D Gaussian Mixture Model with K mixture components
X ∼ ∑K

k=1
1
K N (X |µk,σI) with means lying on the unit circle (grey and black dots rep-

resent the two class labels). b: Two layer network with 2D input layer, 5 recurrently
connected hidden neurons X and one readout neuron Y ; RNN activity unfolds in time
(horizontal axis). The input is presented at time t = 0, then withdrawn, and the RNN
is trained with BPTT to report the decision at t = 10. In this representation, layers
correspond to time-steps and weights WX X are shared between layers. c: PID between
output Y (t) and pairs of hidden neurons X i(t−1), X j(t−1) for t = 10 yielding S,R,U1,U2
(distribution over 1000 input samples for each task K ; 20 networks per task). Harder
tasks led to an increase in PID measures. d: Example receptive fields for a network
with U > S shows emergence of grand-mother cells in the hidden layer (red and blue
colors represent hidden neurons outputs; grandmother cell, second from left). e: Example
receptive fields for a network with S >U , relying on higher synergy between neurons to
solve the task.

different computational strategies. We here trained RNNs as models of cortical circuits

[Mante et al., 2013] and used the PID to elucidate how the computations emerging

from recurrent neural interactions contribute to task performance. We trained RNNs to

solve a generalized version of the classic XOR classification problem with target labels
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corresponding to odd vs. even mixture components (Fig. 5.4a). Stimuli were presented

for one time step (t = 0) and the network was trained to report the decision at t = 10. By

tracking the temporal trajectories of the hidden layer activity we found that the network

recurrent dynamics (represented as unfolded in time in Fig. 5.4b) progressively pulls

the two input classes in opposite directions along the output weights (see Appendix). We

used PID to dissect how a plurality of different strategies emerge from recurrent neural

interactions in RNNs trained for solving a classification task. The computation emerged

from the recurrent interaction between hidden neurons at different time steps. Do all

successfully trained networks have a similar profile in terms of the PID terms? If so,

this hints at a single computational strategy across these networks. If not, it is safe to

assume that task performance is reached via different mechanisms, despite identical

network architecture and training algorithm.

We found that on average across multiple networks S, R, and U rose with task

difficulty (Fig. 5.4c), yet at all difficulties, individual networks differed strongly with

respect to the ratio S/U, i.e. there were networks with larger average synergy across

neuron pairs compared to the average unique information, and vice versa. For simple

networks like the ones used here, one can inspect receptive fields to understand the

reason for this differential behaviour (Fig. 5.4d-e). Indeed, networks with high average

unique information displayed ’grandmother-cell’-like neurons, that would alone classify

a large parts of the sample space, while in networks with higher average synergy such

cells were absent (Fig. 5.4d). The emergence of these ’grandmother-cell’-like receptive

fields is due to the recurrent dynamics. While in a feedforward architecture (WX X = 0)

hidden layer receptive fields are captured by hyperplanes in input space, in the RNN the

receptive fields are time dependent, where later times are interpreted as deeper layers

(Fig. 5.4b) and thus can capture highly non-linear features in input space. The advantage

of PID versus a manual inspection of receptive fields is twofold: First, the PID framework
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abstracts and generalizes descriptions of receptive fields as being e.g. ’grandmother-cell’-

like; thus the concept of unique information stays relevant even in scenarios where the

concept of a receptive field becomes meaningless, or inaccessible. Second, the quantitative

outcomes of a PID rest only on information theory, not specfic assumptions about neural

coding or computational strategies, and can be obtained for large numbers of neurons.

Comparison of our PID-based approach with the concept of neuronal selectivity used

in neuroscience highlights interesting similarities and differences. Several kinds of

selectivity (pure, mixed linear, and mixed non-linear) can be identified by performing

regression analysis of neural responses vs. task variables [Rigotti et al., 2013]. In this

framework, our grand-mother cells correspond to neurons with pure selectivity to the

input class labels (a.k.a. "choice-selective" neurons). In the XOR task, [Rigotti et al.,

2013] showed that non-linear mixed selectivity of neurons to the class labels is beneficial

when solving the XOR task, by leading to a high-dimensional representation of the task

variables. While selectivity profiles are a property of single neuron responses to task

variables, our PID measures are a property of the combined activity of triplets of neurons

and thus reveal emerging functional interactions between units and their computational

algorithms (see also [Timme et al., 2016] and [Wibral et al., 2017a]). This allowed us

to characterize a functional property of neural systems less studied than task variable

selectivity: the computations that require functional mixing of the information from

multiple units (measured by the average synergistic information) vs. the computations

that rely on the output of individual neurons (measured by the unique information

and described as grandmother cells). Concretely, by comparing PID and receptive fields

we found that that in networks with high unique information, neurons typically have

receptive fields with pure selectivity (grandmother cells, with large unique information to

the class labels). In networks with high synergy, neurons show complex mixed selectivity

to class labels.

171



A
P

P
E

N
D

I
X

A
Conclusions

Large scale experimentation and massive datasets in neuroscience present challenges

and opportunities to the computational neuroscience community. We need to build models

that make use of the right information, but also leave room for new discoveries. This is

the case both for models that extract signals from raw data and models that aim to make

sense of those signals. In this thesis I presented a number of ideas from computer vision,

statistics, machine learning, and dynamical systems aiming at automating the repeating

steps of data analysis that do not require expert supervision.

In chapter 1, we introduced a general probabilistic framework to compute statistical

atlases in novel imaging datasets in model organisms such as C. elegans and fruit flies.

As new imaging modalities emerge to capture different views of nervous systems of model

animals, we expect that the flexibility of our framework will be valuable in generating

common coordinate spaces for downstream analyses. Involving more complex motion

models, neural network architectures and different loss functions are important future

directions of our framework.

In chapter 2, we expanded on the linear regression without correspondence model [Abid
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et al., 2017; Hsu et al., 2017; Pananjady et al., 2016; Unnikrishnan et al., 2018] to account

for missing data and outliers. Furthermore, we provided several exact and approximate

algorithms for the recovery of regression coefficients under noiseless and noisy regimes.

The proposed algorithms are combinatorial at worst with variable dimensions. However,

randomization procedures make the average-case complexity in constant dimension

tractable given enough tolerance for failure. We provided several theoretical guarantees

for exact recovery and running time complexity. A future algorithmic direction is to

employ branch and bound techniques found in [Tsakiris and Peng, 2019] to reduce the

computational complexity of the brute force nature of the algorithms. We then introduced

algorithms for segmentation and tracking neurons in images and videos of worms. A no-

table limitation of our approach is that at least one annotated frame is required. We hope

to mitigate this issue through future key upgrades. For example, we hope to use an object

detection algorithm to automatically annotate the images, where identity-classification

is not necessary [Meijering, 2012; Schneider et al., 2012; Spilger et al., 2020; Weigert

et al., 2020; Wu et al., 2021].

In chapter 3, we considered the problem of extracting and demixing calcium signals

from microscopy videos of C. elegans. We developed an extension of NMF, with a nonlinear

motion model applied to the spatial cellular footprints, to deform the static image of

these cells, modeling the worm’s posture at each time frame. We provided different

parameterizations for the spatial footprints and described regularizations that can help in

finding smooth trajectories and signals. We further showed that our method outperforms

state-of-the-art models that use a two-step process for motion stabilization/tracking and

signal extraction. Finally, we demonstrated the effectiveness of our model by extracting

calcium signals from videos of semi-immobilized C. elegans. In this chapter we focused

on nuclear-localized calcium imaging in semi-immobilized C. elegans. We believe that

a similar approach will be useful with other indicators [Chen et al., 2020] and in other
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preparations, e.g. larval zebrafish [Vanwalleghem et al., 2018], Drosophila [Schaffer

et al., 2020],and Hydra [Szymanski and Yuste, 2019]; see, in particular, the preprint

by [Lagache et al., 2020a], who develop improved tracking methods that may nicely

complement the dNMF approach. We look forward to exploring these directions further

in future work.

In chapter 4, we first introduced interventional connectivity and functional causal

flow as its functional counterpart and demonstrated a new framework for predicting the

effect of perturbations to a cortical circuit based solely on the causal interactions within a

circuit inferred from sparsely recorded spiking activity at rest. A limitation of FCF stems

from the fact that neuronal activity in frontal areas likely receives time-varying input

from several other cortical and subcortical areas. These contextual effects might present

a potential challenge when generalizing FCF predictions across different conditions

(such as resting vs. task engaged sessions). It is an interesting open question to estimate

how FCF may generalize across different behavioral conditions and we hope to report on

this in the future. Next in chapter 4 we introduced controlled switching linear dynamical

systems as a method to causally interrogate RNNs. While we focused on toy examples in

this thesis extending the methods to larger systems as well as real biological circuits are

interesting future works to explore.

Finally in chapter 5, we presented a partial information decomposition measure for

continuous variables with arbitrary probability densities, thereby extending the popular

BROJA PID measure for discrete variables. Extending PID measures to continuous

variables drastically broadens the possible applications of the PID framework. This is

important as the latter provides key insights into the way a complex system represents

and modifies information in a computation – via asking which variables carry infor-

mation about a target uniquely (such that it can only be obtained from that variable),

redundantly, or only synergistically with other variables. Answering these questions
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is pivotal to understanding distributed computation in complex systems in general,

and neural coding in particular. We believe that the methods presented here will allow

PIDs to be extended efficiently in neuroscience for multiple continuous sources with

potentially complex dependency structures, as would be common in cellular imaging

data or activation properties of brain modules or areas in functional imaging.

A.1 Contributions

The contributions to specific papers are clarified in the following tables.

Table A.1: NeuroPAL [Yemini et al., 2021] Contributions

EY AL AN EV RS GM AS LP VV OH
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing

Table A.2: StatAtlas [Varol et al., 2020] Contributions

EV AN RS GM EY OH LP
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing
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Table A.3: dNMF [Nejatbakhsh et al., 2020c] Contributions

AN EV EY VV AS LP
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing

Table A.4: MaleAtlas [Tekieli et al., 2021] Contributions

TT EY AN CW EV RF NM LP OH
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing

Table A.5: DeformableAtlas Contributions

AN ND EV EY OH LP
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing

Table A.6: RRWOC [Nejatbakhsh and Varol, 2021] Contributions

AN EV
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing
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Table A.7: SinkhornEM [Nejatbakhsh et al., 2020b] Contributions

AN EV EY OH LP
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing

Table A.8: FCF [Nejatbakhsh et al., 2020a] Contributions

AN FF SE TT RK LM
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing

Table A.9: CSLDS Contributions

AN MB LL
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing

Table A.10: Zephir [Yu et al., 2022] Contributions

JY AN MT SG MS JK LP VV
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing
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Table A.11: PID [Pakman et al., 2021] Contributions

AP AN DG AM LM MW ES
Conceptualization
Data Collection
Data Analysis
Code Develop-
ment
Writing
Editing
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P. Roland, C. Graufelds, J. Wǎhlin, L. Ingelman, M. Andersson, A. Ledberg, J. Pedersen,

S. Åkerman, A. Dabringhaus, and K. Zilles.

Human brain atlas: for high-resolution functional and anatomical mapping.

Human Brain Mapping, 1(3):173–184, 1994.

S. Roweis and Z. Ghahramani.

A unifying review of linear gaussian models.

Neural Computation, 11(2):305–345, 1999.

ISSN 08997667.

doi: 10.1162/089976699300016674.

S. Ruder.

An overview of gradient descent optimization algorithms.

arXiv:1609.04747, 9 2016.

doi: 10.48550/arxiv.1609.04747.

URL https://arxiv.org/abs/1609.04747v2.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes.

Nonrigid registration using free-form deformations: application to breast mr images.

IEEE transactions on medical imaging, 18(8):712–721, 1999.

A. A. Russo, R. Khajeh, S. R. Bittner, S. M. Perkins, J. P. Cunningham, L. F. Abbott, and

M. M. Churchland.

Neural trajectories in the supplementary motor area and motor cortex exhibit distinct

geometries, compatible with different classes of computation.

Neuron, 107(4):745–758, 2020.

208

https://arxiv.org/abs/1609.04747v2


S. Sadeh and C. Clopath.

Theory of neuronal perturbome in cortical networks.

Proceedings of the National Academy of Sciences, 117(43):26966–26976, 2020.

C. D. Salzman, K. H. Britten, and W. T. Newsome.

Cortical microstimulation influences perceptual judgements of motion direction.

Nature, 346(6280):174–177, 1990.

C. D. Salzman, C. M. Murasugi, K. H. Britten, and W. T. Newsome.

Microstimulation in visual area mt: effects on direction discrimination performance.

Journal of Neuroscience, 12(6):2331–2355, 1992.

M. Sammut, S. J. Cook, K. C. Nguyen, T. Felton, D. H. Hall, S. W. Emmons, R. J. Poole,

and A. Barrios.

Glia-derived neurons are required for sex-specific learning in c. elegans.

Nature, 526(7573):385–390, 2015.

R. Sandkühler, C. Jud, S. Andermatt, and P. C. Cattin.

AirLab: Autograd Image Registration Laboratory.

arXiv:1806.09907, 6 2018.

URL http://arxiv.org/abs/1806.09907.

S. R. Santacruz, E. L. Rich, J. D. Wallis, and J. M. Carmena.

Caudate microstimulation increases value of specific choices.

Current Biology, 27(21):3375–3383, 2017.

T. Sauer, J. A. Yorke, and M. Casdagli.

Embedology, 1991.

S. Saxena et al.

Localized semi-nonnegative matrix factorization (locanmf) of widefield calcium imaging

data.

bioRxiv, page 650093, 2019.

W. Schafer.

Egg-laying., wormbook: the online review of c. elegans biology.

2005.

E. Schaffer, N. Mishra, W. Li, et al.

flygenvectors: large-scale dynamics of internal and behavioral statesin a small animal.

209

http://arxiv.org/abs/1806.09907


COSYNE, (III-19), 2020.

G. Schamberg and P. Venkatesh.

Partial Information Decomposition via Deficiency for Multivariate Gaussians.

arXiv preprint arXiv:2105.00769, 2021.

T. Schaul, S. Zhang, and Y. LeCun.

No More Pesky Learning Rates.

30th International Conference on Machine Learning, ICML 2013, (PART 2):1380–1388,

6 2012.

doi: 10.48550/arxiv.1206.1106.

URL https://arxiv.org/abs/1206.1106v2.

L. K. Scheffer and I. A. Meinertzhagen.

The fly brain atlas.

Annual review of cell and developmental biology, 35:637–653, 2019.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri.

NIH Image to ImageJ: 25 years of image analysis.

Nat. Methods, 9(7):671–675, 7 2012.

ISSN 15487091.

doi: 10.1038/nmeth.2089.

E. Schneidman, W. Bialek, and M. J. Berry.

Synergy, redundancy, and independence in population codes.

Journal of Neuroscience, 23(37), 2003.

B. Scholkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio.

Toward Causal Representation Learning.

Proceedings of the IEEE, 109(5):612–634, 2021.

ISSN 15582256.

doi: 10.1109/JPROC.2021.3058954.

T. Schreiber.

Measuring information transfer, 2000a.

T. Schreiber.

Measuring information transfer.

Physical review letters, 85(2):461, 2000b.

210

https://arxiv.org/abs/1206.1106v2


T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri.

Brain-wide 3d imaging of neuronal activity in caenorhabditis elegans with sculpted

light.

Nature methods, 10(10):1013, 2013.

S. Schulter, P. Vernaza, W. Choi, and M. Chandraker.

Deep network flow for multi-object tracking.

Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-Janua:2730–2739, 2017.

doi: 10.1109/CVPR.2017.292.

E. Serrano-Saiz, L. Pereira, M. Gendrel, U. Aghayeva, A. Bhattacharya, K. Howell, L. R.

Garcia, and O. Hobert.

A neurotransmitter atlas of the caenorhabditis elegans male nervous system reveals

sexually dimorphic neurotransmitter usage.

Genetics, 206(3):1251–1269, 2017.

A. Sheikhattar, S. Miran, J. Liu, J. B. Fritz, S. A. Shamma, P. O. Kanold, and B. Babadi.

Extracting neuronal functional network dynamics via adaptive granger causality

analysis.

Proceedings of the National Academy of Sciences, 115(17):E3869–E3878, 2018.

F. B. Shipley, C. M. Clark, M. J. Alkema, and A. M. Leifer.

Simultaneous optogenetic manipulation and calcium imaging in freely moving C.

elegans.

Frontiers in Neural Circuits, 8(MAR), 3 2014.

ISSN 16625110.

doi: 10.3389/FNCIR.2014.00028.

G. Si, J. K. Kanwal, Y. Hu, C. J. Tabone, J. Baron, M. Berck, G. Vignoud, and A. D.

Samuel.

Structured Odorant Response Patterns across a Complete Olfactory Receptor Neuron

Population.

Neuron, 101(5):950–962.e7, mar 2019.

ISSN 10974199.

doi: 10.1016/j.neuron.2018.12.030.

R. M. Siegel, J.-R. Duann, T.-P. Jung, and T. Sejnowski.

211



Spatiotemporal dynamics of the functional architecture for gain fields in inferior

parietal lobule of behaving monkey.

Cerebral cortex, 17(2):378–390, 2007.

R. Sinkhorn and P. Knopp.

Concerning nonnegative matrices and doubly stochastic matrices.

Pacific Journal of Mathematics, 21(2):343–348, 1967.

M. Sklar.

Fonctions de repartition a n dimensions et leurs marges.

Publ. inst. statist. univ. Paris, 8:229–231, 1959.

M. Skuhersky, T. Wu, E. Yemini, E. Boyden, and M. Tegmark.

Toward a more accurate 3d atlas of c. elegans neurons.

bioRxiv, 2021.

P. Smaragdis.

Convolutive speech bases and their application to supervised speech separation.

IEEE Transactions on Audio, Speech, and Language Processing, 15(1):1–12, 2006.

J. T. H. Smith, S. W. Linderman, and D. Sussillo.

Reverse engineering recurrent neural networks with Jacobian switching linear dynam-

ical systems.

(NeurIPS), 2021.

A. Sonnenschein, D. VanderZee, W. R. Pitchers, S. Chari, and I. Dworkin.

An image database of drosophila melanogaster wings for phenomic and biometric

analysis.

GigaScience, 4(1):s13742–015, 2015.

R. Spilger, A. Imle, J. Y. Lee, B. Muller, O. T. Fackler, R. Bartenschlager, and K. Rohr.

A Recurrent Neural Network for Particle Tracking in Microscopy Images Using Future

Information, Track Hypotheses, and Multiple Detections.

IEEE Transactions on Image Processing, 29:3681–3694, 2020.

ISSN 19410042.

doi: 10.1109/TIP.2020.2964515.

J. Stark, D. Broomhead, M. Davies, and J. Huke.

Takens embedding theorems for forced and stochastic systems.

Nonlinear Analysis: Theory, Methods & Applications, 30(8):5303–5314, 1997.

212



M. Stetter, H. Greve, C. G. Galizia, and K. Obermayer.

Analysis of calcium imaging signals from the honeybee brain by nonlinear models.

Neuroimage, 13(1):119–128, 2001.

G. Sugihara, R. May, H. Ye, C.-H. Hsieh, E. Deyle, M. Fogarty, and S. Munch.

Detecting causality in complex ecosystems, 2012.

J. E. Sulston and H. R. Horvitz.

Post-embryonic cell lineages of the nematode, caenorhabditis elegans.

Developmental biology, 56(1):110–156, 1977.

J. E. Sulston, D. G. Albertson, and J. N. Thomson.

The caenorhabditis elegans male: postembryonic development of nongonadal struc-

tures.

Developmental biology, 78(2):542–576, 1980.

V. Susoy, W. Hung, D. Witvliet, J. E. Whitener, M. Wu, C. F. Park, B. J. Graham, M. Zhen,

V. Venkatachalam, and A. D. Samuel.

Natural sensory context drives diverse brain-wide activity during C. elegans mating.

Cell, 184(20):5122–5137, 2021.

ISSN 10974172.

doi: 10.1016/j.cell.2021.08.024.

URL https://doi.org/10.1016/j.cell.2021.08.024.

B. Szigeti, P. Gleeson, M. Vella, S. Khayrulin, A. Palyanov, J. Hokanson, M. Currie,

M. Cantarelli, G. Idili, and S. Larson.

Openworm: an open-science approach to modeling caenorhabditis elegans.

Frontiers in computational neuroscience, 8:137, 2014.

J. R. Szymanski and R. Yuste.

Mapping the whole-body muscle activity of hydra vulgaris.

Current Biology, 29(11):1807–1817, 2019.

S. Tajima, T. Yanagawa, N. Fujii, and T. Toyoizumi.

Untangling Brain-Wide dynamics in consciousness by Cross-Embedding.

PLoS Comput. Biol., 11(11):e1004537, Nov. 2015.

S. Tajima, T. Mita, D. J. Bakkum, H. Takahashi, and T. Toyoizumi.

Locally embedded presages of global network bursts.

Proc. Natl. Acad. Sci. U. S. A., 114(36):9517–9522, Sept. 2017.

213

https://doi.org/10.1016/j.cell.2021.08.024


F. Takens.

Detecting strange attractors in turbulence, 1981.

G. K. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu, D. Marshall, R. R. Martin, X.-F.

Sun, and P. L. Rosin.

Registration of 3d point clouds and meshes: a survey from rigid to nonrigid.

IEEE transactions on visualization and computer graphics, 19(7):1199–1217, 2013.

L. Taslaman and B. Nilsson.

A framework for regularized non-negative matrix factorization, with application to the

analysis of gene expression data.

PLOS ONE, 7(11):1–7, 11 2012.

doi: 10.1371/journal.pone.0046331.

T. Tax, P. A. Mediano, and M. Shanahan.

The partial information decomposition of generative neural network models.

Entropy, 19(9):474, 2017.

S. R. Taylor, G. Santpere, A. Weinreb, A. Barrett, M. B. Reilly, C. Xu, E. Varol,

P. Oikonomou, L. Glenwinkel, R. McWhirter, et al.

Molecular topography of an entire nervous system.

Cell, 184(16):4329–4347, 2021.

T. Tekieli, E. Yemini, A. Nejatbakhsh, C. Wang, E. Varol, R. W. Fernandez, N. Masoudi,

L. Paninski, and O. Hobert.

Visualizing the organization and differentiation of the male-specific nervous system of

c. elegans.

Development, 148(18):dev199687, 2021.

P. Thévenaz, U. E. Ruttimann, and M. Unser.

A pyramid approach to subpixel registration based on intensity.

IEEE Transactions on Image Processing, 7(1):27–41, 1998.

ISSN 10577149.

doi: 10.1109/83.650848.

M. Thiel, M. C. Romano, J. Kurths, M. Rolfs, and R. Kliegl.

Twin surrogates to test for complex synchronisation.

EPL (Europhysics Letters), 75(4):535, 2006.

214



A. M. Thomson and C. Lamy.

Functional maps of neocortical local circuitry.

Frontiers in neuroscience, 1:2, 2007.

L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu,

J. Akerboom, S. A. McKinney, E. R. Schreiter, et al.

Imaging neural activity in worms, flies and mice with improved gcamp calcium indica-

tors.

Nature methods, 6(12):875, 2009.

N. M. Timme, S. Ito, M. Myroshnychenko, S. Nigam, M. Shimono, F.-C. Yeh, P. Hottowy,

A. M. Litke, and J. M. Beggs.

High-degree neurons feed cortical computations.

PLoS computational biology, 12(5):e1004858, 2016.

J. Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y.

Bednarek, S. L. Shorte, and K. W. Eliceiri.

TrackMate: An open and extensible platform for single-particle tracking.

Methods, 115(2017):80–90, 2017.

ISSN 10959130.

doi: 10.1016/j.ymeth.2016.09.016.

URL http://dx.doi.org/10.1016/j.ymeth.2016.09.016.

T. Tokunaga, O. Hirose, S. Kawaguchi, Y. Toyoshima, T. Teramoto, H. Ikebata, S. Kuge,

T. Ishihara, Y. Iino, and R. Yoshida.

Automated detection and tracking of many cells by using 4d live-cell imaging data.

Bioinformatics (Oxford, England), 30(12):i43–i51, Jun 2014.

ISSN 1367-4811.

doi: 10.1093/bioinformatics/btu271.

URL https://pubmed.ncbi.nlm.nih.gov/24932004.

24932004[pmid].

E. Torgersen.

Comparison of statistical experiments.

Cambridge University Press, 1991.

P. H. Torr and A. Zisserman.

Mlesac: A new robust estimator with application to estimating image geometry.

Computer vision and image understanding, 78(1):138–156, 2000.

215

http://dx.doi.org/10.1016/j.ymeth.2016.09.016
https://pubmed.ncbi.nlm.nih.gov/24932004


Y. Toyoshima, S. Wu, M. Kanamori, H. Sato, M. S. Jang, S. Oe, Y. Murakami, T. Teramoto,

C. Park, Y. Iwasaki, T. Ishihara, R. Yoshida, and Y. Iino.

An annotation dataset facilitates automatic annotation of whole-brain activity imaging

of c. elegans.

bioRxiv, 2019.

doi: 10.1101/698241.

URL https://www.biorxiv.org/content/early/2019/07/18/698241.

Y. Toyoshima, S. Wu, M. Kanamori, H. Sato, M. S. Jang, S. Oe, Y. Murakami, T. Teramoto,

C. Park, Y. Iwasaki, et al.

Neuron id dataset facilitates neuronal annotation for whole-brain activity imaging of c.

elegans.

BMC biology, 18(1):1–20, 2020.

M. Tsakiris and L. Peng.

Homomorphic sensing.

In International Conference on Machine Learning, pages 6335–6344, 2019.

G. Tucker, D. Lawson, S. Gu, and C. J. Maddison.

Doubly reparameterized gradient estimators for Monte Carlo objectives.

ICLR, 2019.

J. Unnikrishnan, S. Haghighatshoar, and M. Vetterli.

Unlabeled sensing: Solving a linear system with unordered measurements.

In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 786–793. IEEE, 2015.

J. Unnikrishnan, S. Haghighatshoar, and M. Vetterli.

Unlabeled sensing with random linear measurements.

IEEE Transactions on Information Theory, 64(5):3237–3253, 2018.

A. E. Urai, B. Doiron, A. M. Leifer, and A. K. Churchland.

Large-scale neural recordings call for new insights to link brain and behavior.

Nature neuroscience, 25(1):11–19, 2022.
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