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ABSTRACT
Heart function is a key component of whole-organismal
physiology. Bioimaging is commonly, but not exclusively, used for
quantifying heart function in transparent individuals, including early
developmental stages of aquatic animals, many of which are
transparent. However, a central limitation of many imaging-related
methods is the lack of transferability between species, life-history
stages and experimental approaches. Furthermore, locating the heart
in mobile individuals remains challenging. Here, we present HeartCV:
an open-source Python package for automated measurement of
heart rate and heart rate variability that integrates automated
localization and is transferrable across a wide range of species. We
demonstrate the efficacy of HeartCV by comparing its outputs with
measurements made manually for a number of very different species
with contrasting heart morphologies. Lastly, we demonstrate the
applicability of the software to different experimental approaches and
to different dataset types, such as those corresponding to longitudinal
studies.
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Introduction
Heart rate (HR) and heart rate variability (HRV) are key measures of
heart function (Stein et al., 1994; Malik et al., 1996; Acharya et al.,
2006) and in many species are proven indicators of cardiovascular
health, susceptibility to heart disease and cardiac arrest (Stein et al.,
1994;Malik et al., 1996; Norman et al., 2012; Zena et al., 2021). HR
and HRV can be measured using a broad range of approaches,
including ultrasound, electrocardiography and bioimaging (see
Santoso et al., 2020a; Zabihihesari et al., 2021). Bioimaging is a
common approach for species or developmental stages with a
transparent body wall (Brainerd and Hale, 2006; Salman and
Yalcin, 2020; Burggren, 2021) and is often preferred over other
approaches because of its transferability between species and
life-history stages (Colmorgen and Paul, 1995; Swedlow et al.,
2009; Meijering et al., 2016). Bioimaging is not reliant on a
particular experimental setup (Colmorgen and Paul, 1995;
Schindelin et al., 2012) and is non-invasive unlike other

acquisition technologies, such as electrocardiography (Colmorgen
and Paul, 1995; Zabihihesari et al., 2021). Furthermore,
advancements in imaging technologies have improved both the
quality and throughput of image acquisitions (Shariff et al., 2010;
Walter et al., 2010; Swedlow et al., 2009; Salman and Yalcin, 2020).
However, the size and magnitude of the image datasets generated
using these technologies can extend to millions of images and
hundreds of samples (Swedlow et al., 2009; Meijering et al., 2016;
Tills et al., 2018). Subsequent manual image analysis presents
significant data processing bottlenecks and can be limited by the
repeatability of analysis and human error (Zhou and Wong, 2006;
Cardona and Tomancak, 2012). Thus, the development of
automated computer vision methods to address these issues is an
important endeavor, especially within the broader field of bioimage
informatics (Swedlow et al., 2009; Cardona and Tomancak, 2012;
Myers, 2012).

Many researchers have developed semi- and fully-automated
computer vision methods to quantify both HR and HRV (Chan
et al., 2009; Fink et al., 2009; Tills et al., 2018; Gierten et al., 2020;
Zabihihesari et al., 2021). Generally, these methods are reliant on
relatively simple image measures to identify when heart beats occur,
such as mean or standard deviation in pixel values (e.g. Chan et al.,
2009; Fink et al., 2009; Tills et al., 2018; Gierten et al., 2020),
measures of motion revealed via frame subtraction approaches (e.g.
Fink et al., 2009; Zabihihesari et al., 2021) or M-modes, often
termed dynamic kymographs (e.g. Fink et al., 2009; Kurnia et al.,
2021). These image measures can be derived from any video
produced via bioimaging, and therefore should be applicable to any
species or life-history stage with visible cardiac activity. However,
accurate results typically depend on a localization step to identify
the region containing the heart, enabling the removal of non-cardiac
noise, such as whole-body movement, to generate an informative
cardiac signal. Manual localization is used by a number of
techniques (Santoso et al., 2020b; Kurnia et al., 2021), but this
greatly limits the size and scale of datasets that can be analyzed.
Some methods instead omit localization entirely, requiring sample
preparation to limit non-cardiac noise, often via anesthetization,
immobilization and/or dissection (Chan et al., 2009; Fink et al.,
2009; Hoage et al., 2012; Yozzo et al., 2013; Santoso et al., 2020b).
Such sample preparation is time consuming, often invasive and non-
reversible, and generally limits applications of the method to tested
species and/or specific experimental designs. A number of methods
of automated localization have been developed to overcome these
issues (e.g. Spomer et al., 2012; De Luca et al., 2014; Pylatiuk et al.,
2014; Gierten et al., 2020; Zabihihesari et al., 2021), but are often
species or life-history-stage specific, with transferrable methods
remaining scarce.

Recently developed techniques that integrate power spectral
analysis into software-driven localization have proven effective at
measuring both complex integrative physiological signals and heart
rate (Tills et al., 2018; Gierten et al., 2020). A key advantage of suchReceived 28 June 2022; Accepted 25 August 2022
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spectral methods is their transferability between species and life
history stages with considerable non-cardiac motion such as
muscular contractions and rotational movements (Tills et al.,
2018). Cardiac activity is located on the basis that the rhythmic
contractions of a heart produce quasi-periodic fluctuations in pixel
values between images in videos. Applying power spectral analysis
to these fluctuations in pixel values enables identification of the
temporal frequencies at which cardiac activity is occurring, and this
can therefore be used to identify regions of interest based on the
likelihood that they contain cardiac activity (Tills et al., 2018;
Gierten et al., 2020). The potential for spectral techniques to support
a method capable of capturing both HR and HRV across species,
life-history stages and experimental approaches remains untested.
Here, we present HeartCV, an open-source Python package for

measurement of HR and HRV that incorporates a transferrable
method for automated localization of cardiac regions. We
demonstrate the efficacy of HeartCV by comparison with manual
measures for disparate aquatic species with radically different heart
morphologies: (1) an ascidian (sea squirt), Ciona intestinalis; (2) a
mollusc (snail), Radix balthica; and (3) a crustacean (prawn),
Palaemon serratus. Radix balthica and P. serratus possess
superficially globular hearts (Smirthwaite et al., 2007; Dantzler,
1997), whereas C. intestinalis has a tubular heart (Davidson, 2007),
enabling the testing of automated localization of cardiac signals
without reliance on a particular cardiac morphology. To evaluate the
ability of HeartCV to measure HR and HRV responses in different
experimental contexts, we used: (1) ramping thermal assays in
C. intestinalis; (2) static thermal assays in hippo stage R. balthica
embryos; and (3) chronically elevated temperatures at different
developmental stages of P. serratus.

MATERIALS AND METHODS
Overview of HeartCV software
HeartCV is a Python package (https://github.com/Embryo
Phenomics/heartcv/) for measuring HR and HRV, via inter-beat
intervals from videos of transparent animals. The software operates
using a two-stageworkflow involving: (i) localization to identify the
predominant cardiac region in a video and thus extract a mean pixel
value (MPV) signal with minimal non-cardiac noise (Fig. 1A–F),
and (ii) peak detection to extract heart beats from this MPV signal
(Fig. 1F). Subsequently, HR and inter-beat interval (IBI; the timing
between individual heart beats) measures are quantified from the
MPV signal (Fig. 1G). HeartCV can be used in experiments involving
either single or multiple time points (see https://github.com/
EmbryoPhenomics/heartcv/blob/main/examples/example_1.py and
https://github.com/EmbryoPhenomics/heartcv/blob/main/examples/
example_2.py, respectively). Please refer to the documentation for a
detailed guide on installation and usage: https://heartcv.readthedocs.
io/en/stable/.

Localization
HeartCV initially resizes each image in a given video by a user-
defined factor to reduce computational load (Fig. 1B). Power
spectral analysis is then performed on the resized video to create
energy proxy traits (EPTs): the amount of energy within different
temporal frequencies in the pixel value fluctuations from video of
live biological material (Tills et al., 2018, 2021). EPTs are then
filtered to only specific, or a range of, temporal frequencies at which
cardiac activity is expected. Filtered EPTs are subsequently
collapsed into a two-dimensional heatmap by computing the total
energy at these specified temporal frequencies (Fig. 1C). This
heatmap is then processed using the OTSU thresholding algorithm

(Otsu, 1979), and the largest shape found in the thresholded image
using contour detection and filtering is identified as corresponding
to the largest region of cardiac activity in the video (Fig. 1D). This
cardiac region is isolated using a rectangular bounding box and is
used in all subsequent steps.Where necessary, or preferred, the steps
of localizing heart function (Fig. 1B–D) can be supervised through
the use of a graphical user interface, to finely tune parameters to
identify the temporal frequencies corresponding to cardiac activity
(Fig. 1E). Note that users can only select specific frequencies via the
graphical user interface (e.g. 2.6 Hz), whereas a range can be
selected when addressing the underlying functions directly in
Python. The final step of the localization stage of HeartCV is the
calculation of an MPV time series from the filtered image sequence
to enable identification of the timing of individual heat beats
(Fig. 1F).

Peak detection
The MPV time series produced in the localization stage is first up-
sampled via linear interpolation to emphasize the dominance of
peaks and thereby increase the ability of subsequent analyses to
identify the timing of individual heart beats. Automatic multiscale
peak detection (AMPD; Scholkmann et al., 2012) is then applied to
the processed MPV signal to extract peaks that correspond to heart
beats (Fig. 1F). These peaks are directly used to quantify beats per
minute (bpm) and IBI measures.

Experimental approach
Ciona intestinalis
Adult individual Ciona intestinalis (Linnaeus 1767) were collected
by hand from Sutton Harbour Marina in Plymouth, UK (50.22N,
4.08W). They were used to establish a laboratory culture using the
methods of Sato et al. (2014) via in vitro fertilization. Juveniles were
maintained in 5 liter aquaria containing native sea water (NSW) at
15°C with a salinity (S) of 34, and were later transferred to larger
aquaria (7 liters) at approximately 10 weeks post-fertilization. Full
water changes were carried out weekly and individuals were fed
Isochrysis galbana and Chaetoceros gracilis ad libitum.

Initially, 1st ascidian stage juveniles (n=13, ∼2 weeks post-
fertilization) were imaged (720×540 pixels, 25 frames s–1, 8-bit
depth) to produce videos (duration=10 s) to validate against manual
measures. Imaging was carried out using a Sony Nex-5N camera
(Sony, Tokyo, Japan) attached to a Euromex RZ microscope.
These videos were then processed using a supervised approach
(Fig. 1E; see https://github.com/EmbryoPhenomics/heartcv/blob/
main/examples/example_1.py) to produce the validation dataset. To
address a hardware issue with the camera resulting in frame
doubling that effectively halved the number of usable images, we
smoothed the MPV signals produced by HeartCV using the
LOWESS algorithm with fraction set to 0.015 (Cleveland, 1979).

To assess the ability of HeartCV to quantify responses to a rapid
ramping thermal challenge, 2nd ascidian stage juveniles (n=8,
∼8 months post-fertilization) were imaged (QImaging R3 Retiga
camera, QImaging, Birmingham, UK: 480×364 pixels, 20 frames s–1,
16-bit depth, 10× magnification, attached to a Leica M205C
microscope, Leica, Wetzlar, Germany) continuously throughout
ramping assays (30 min at a ramping rate of 0.4°C min−1 from 16°C
to 29°C). Individuals were transferred from aquaria to Petri dishes
containing NSW and placed on a heated glass table (T-Glass
controlled via a OkoLab H401-T, OkoLab, Naples, Italy) positioned
over a dissecting microscopewith darkfield lighting (Leica CLS 150
LED). Temperature was monitored using a thermocouple secured in
the Petri dish containing the individual and this was logged to the
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OkoLab H401-T controller. MicroManager (Edelstein et al., 2010)
was used to acquire continuous video in the form of OME TIFF
stacks that were converted to 8-bit video to be compatible with
HeartCV using a custom Python script (https://github.com/
EmbryoPhenomics/heartcv/blob/main/utils/conversion_16bit_to_
8bit.py). HR and IBI measures were then quantified using an
iterative supervised approach, where each video was processed at
intervals of 20 s (Fig. 1; https://github.com/EmbryoPhenomics/
heartcv/blob/main/examples/example_2.py). An iterative approach
with intervals was required here because the cardiac frequencies
changed during the exposure trials, and so processing the footage in
small intervals was required for accurate measurement of HR and
IBI measures.

Radix balthica
Embryos of Radix balthica (Linnaeus 1758) (n=144) were imaged
(750×750 pixels, 20 frames s–1, 16-bit depth, 200× magnification,
subsequently converted to 8-bit depth using a custom Python
script: https://github.com/EmbryoPhenomics/heartcv/blob/main/
utils/conversion_16bit_to_8bit.py) at chronic temperatures of
20°C (n=42), 25°C (n=44) and 30°C (n=32), for 30 s every hour
from the first cell division until hatching. This was achieved
using the OpenVIM system: open-source software controlled
videomicroscope with a robotic X–Y stage for high-throughput
time-lapse imaging of developing embryos (see Tills et al., 2018).
Embryos were held in 96-well microtiter plates housed within jacket
incubation chambers maintained at 20°C, 25°C or 30°C, located
within each OpenVIM. This video dataset was subsampled to

extract only videos of hippo stage embryos [20°C (n=10), 25°C
(n=10) and 30°C (n=10)]. HR and IBI measures were then
quantified using the supervised approach to produce the
experimental dataset (Fig. 1E). One-way ANOVA followed by
Tukey’s post hoc comparisons was used to test for differences in
treatment responses for each of the cardiac measures produced via
HeartCV. This was conducted in R v.3.6.3 (https://www.r-project.
org/).

Finally, videos (n=28) from this subsample were trimmed to the
first 10 s for manual validation. Two replicates from the 30°C
treatment were excluded because whilst usable MPV signals could
be produced via HeartCV, their heart rate was too high to perform
reliable manual measurement at the frame rate at which the videos
were captured. Capturing video at higher frame rates would help
overcome this issue and so we recommend that users capture video
at a frame rate at which the cardiac cycle can be observed clearly.

Palaemon serratus
Three gravid Palaemon serratus (Pennant 1777) females were
collected using a hand-held net from tidepools at Jennycliff Bay in
Plymouth, UK (50.20N, 4.07W). They were maintained in a 20 liter
outdoor tank (S=30–40) for 9 days before being transferred to
laboratory conditions, where they were kept at∼15°C and salinity of
∼35. Individuals were fed marine pellet (New Era Aquaculture™)
ad libitum throughout, and supplemented with locally sourced
seaweeds in the laboratory (Fucus serratus,Ulva lactuca, Chondrus
crispus, Mastocarpus stellatus, Ceramium spp. and Cladophora
spp.). Water changes were carried out every other day.
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Fig. 1. HeartCV processing pipeline, shown for hippo stage Radix balthica. Video (A) is down-sampled (B) and used to produce energy proxy traits
(EPTs; Tills et al., 2021) then visualized as an EPT heatmap (C), where the cardiac region detected via segmentation (D) is used to filter the video and
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Embryos at each of three different developmental stages were
carefully removed from the females’ swimmerets when and as
required. Developmental stages were defined as follows: ‘Early’:
Stage 5, ‘Middle’: Stage 6, ‘Late’: Stage 7, in accordance with
Müller et al. (2004). Embryos from each developmental stage were
acclimated to 15°C throughout development until the treatments
commenced. Time-lapse recordings of the three developmental
stages of P. serratus were acquired (750×750 pixels, 25 frames s–1,
16-bit depth, 200x magnification, subsequently converted to 8-bit
depth using a custom Python script: https://github.com/
EmbryoPhenomics/heartcv/blob/main/utils/conversion_16bit_to_
8bit.py) using the OpenVIM system (Tills et al., 2018) at chronic
temperatures of 15°C (n=8 per developmental stage) and 20°C (n=8
per developmental stage), for 24 s every hour for 40 h. Embryos
were held in 96-well microtiter plates housed within jacket
incubation chambers maintained at 15°C or 20°C, located within
each OpenVIM. Heart rate and measures of IBI were then quantified
using HeartCV through an automated approach for multiple
time points (Fig. 1; https://github.com/EmbryoPhenomics/heartcv/
blob/main/examples/example_2.py), where the upper and lower
frequency limits for filtering EPTs were 2 and 6 Hz, respectively.
Note that for time points where automated localization was
unsuccessful because of little to no cardiac activity (i.e.<2
heartbeats per time point), cardiac measures were set to empty
values (i.e. NAN). Finally, for manual validation, videos (n=24,
n=8 per developmental stage, length=10 s, timepoint=1) from

time-lapse recordings corresponding to 15°C were subsequently
used for quantification of HR and IBI measures manually.

Manual validation
HR and IBI measures from HeartCV were validated by comparison
with measures made via manual observation of the same videos.
Manual analysis was performed using a custom web application
developed in Python primarily using Dash (v.1.9.1), Flask (v.1.1.2,
Grinberg, 2018) and OpenCV (v.4.5.2, Bradski, 2000) (Fig. S1). The
application was used to manually record the image(s) at which heart
beats occur for a given video. For the globular hearts of P. serratus
(n=24) and R. balthica (n=28), heartbeats were recorded at the point
of end diastole in the cardiac cycle. Conversely, for the tubular heart
ofC. intestinalis (n=13), heartbeats were recorded at the point when a
contractile wave had completed. For each sample, we validated 10 s
of footage against the equivalent measures produced by HeartCV.
Formal comparison between manual and automated measures of
cardiac traits was carried out using Pearson’s correlation coefficient
via SciPy (Virtanen et al., 2020).

RESULTS AND DISCUSSION
Validation
Concordance between manual and HeartCV produced data was high
for all cardiac measures in all three species tested, despite their very
different cardiac morphologies (Fig. 2). The localization workflow
was effective without restrictive sample preparation, such as
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immobilization or dissection, meaning that HeartCV has promising
applicability to experimental contexts in which movement cannot be
restricted. The method does rely on direct visibility of cardiac
function and hence this is a general limitation of the approach, but it is
likely to be a less frequent constraint in early developmental stages.

Cardiac responses to a rapid thermal challenge in
C. intestinalis
To test the applicability of HeartCV to dynamic treatments, rapid
thermal ramping assays were conducted with 2nd ascidian stage
C. intestinalis (n=8). Heart rate and mean IBI exhibited gradual
changes with increasing temperature (Fig. 3A,B); however, standard
deviation in IBI exhibited more erratic trends throughout the assays
(Fig. 3C). To visualize the integrated cardiac response of
C. intestinalis encompassing all the cardiac measures produced by
HeartCV, principal component analysis (PCA) was used (Fig. 3D).
The first two principal components (PC1, PC2) captured 99.4% of
the variance in the cardiac measures. The combinatorial signal
quantified via PCA revealed relationships between the various
cardiac measures and temperature that were not apparent based on
individual comparisons alone. PC1 was primarily driven by heart
rate and minimum, mean and maximum IBI (Fig. 3D), whereas
standard deviation and RMSSD in IBI were most aligned with PC2
(Fig. 3D), indicating that these variables are responsible for the
breakpoints observed in the coordinate space. The rapid decline in
standard deviation in IBI above 26°C could indicate that these
individuals would experience sudden cardiac arrest if the ramping
continued to higher temperatures: a consistent short-term reduction in
the variation in IBIs is a key indicator for sudden cardiac arrest in
humans (Schechtman et al., 1992; Stein et al., 1994; Tsuji et al., 1994;
Hillebrand et al., 2013), but also in mice (Norman et al., 2012) and
rainbow trout (Zena et al., 2021). Indeed, other studies measuring
thermal performance in C. intesinalis have observed that individuals
were able to tolerate static exposures of up to 28°C for 6 h (Serafini
et al., 2011) and cardiac arrest was only observed above 32°C during
short term static exposure (<1 h) (Wolf, 1932), so the detection of this
response at a significantly lower temperature is of particular interest.

Cardiac responses to contrasting thermal environments in
hippo stage R. balthica
To assess the ability of HeartCV to measure cardiac responses
to chronic thermal assays, we analyzed video of hippo stage
R. balthica embryos exposed to three constant temperatures (20, 25
and 30°C). There were significant effects of temperature on HR
(F2,27=36.29, P<0.0001), minimum (F2,27=33.97, P<0.0001),
maximum (F2,27=16.08, P<0.0001) and mean IBI (F2,27=59.28,

P<0.0001) (Fig. 3E–I), but no effect on standard deviation in IBIs
(F2,27=2.957, P=0.901) (Fig. 3I). Whilst heart rate and mean,
minimum and maximum IBI responded clearly to increasing
temperature, standard deviation in IBI exhibited little change with
increasing temperature (Fig. 3E–I). These responses are
unsurprising given that the thermal optimum (Topt) for respiration
in adults has been found to be at 33–38°C (Schaum et al., 2018), and
upper critical thermal limits (CTmax) in juveniles were identified at
36–38°C, using loss in foot attachment as an endpoint (Johansson
and Laurila, 2017). Therefore, any aberrations in HR and HRV
may not be observed until warmer temperatures are reached.
Furthermore, development to hatching has been observed at 30°C in
this population (Tills et al., 2018).

Cardiac responses to chronic elevated temperatures in three
developmental stages of P. serratus
Time-series video of three developmental stages of P. serratus
exposed to chronically elevated temperatures was analyzed
using HeartCV. Significant effects of temperature on the cardiac
traits measured by HeartCV were evident: embryos at early and
intermediate developmental stages exhibited significantly increased
HR (young: F1,78=208.6, P<0.0001; medium: F1,78=399.5,
P<0.0001, Fig. 3J) and consequently reduced mean IBI at 20°C
relative to 15°C (young: F1,78= 165.5, P<0.0001; medium:
F1,78=111.5, P<0.0001, Fig. 3K). Embryos at intermediate
developmental stages exhibited more constrained mean IBI at
higher temperatures (Fig. 3K). Conversely, whilst embryos at late
developmental stages exhibited significantly increased mean HR
(F1,30=55.28, P<0.0001, Fig. 3J) and reduced mean IBI
(F1,30=36.5, P<0.0001, Fig. 3K) early on in the exposure period
(0–15 h) at higher temperatures, this was followed by a collapse in
heart function in most animals (n=6), evidenced by the marked
decrease in mean HR (F1,20=13.91, P<0.001) and rapid increase in
mean IBI parameters (F1,20=6.779, P<0.01) (15–25 h) (Fig. 3J–K).
The gradual increase in mean HR in the remaining timepoints
(25–40 h) was caused by two remaining embryos whose
development continued (Fig. 3J).

Together, these responses indicate an increased sensitivity to
chronic warmer temperatures in late developmental stages of
P. serratus. In adult P. serratus, loss of the righting reflex has
been observed at ∼33°C (Madeira et al., 2015), and so the mortality
observed at 20°C herewould suggest heightened embryonic thermal
sensitivity. However, it should be noted that Madeira et al. (2015)
acclimated adults at 20°C and the thermal assays were dynamic, in
contrast to the acclimation at 15°C preceding static thermal assays in
the present study. The sensitivity of critical thermal limits to
methodological context is widely recognized, and a matter of
considerable debate (Terblanche et al., 2007; Rezende et al., 2014;
Jørgensen et al., 2019). Thus, differences in responses between that
of the present study and Madeira et al. (2015) could be attributed to
these methodological differences.

Conclusion
HeartCV is an open-source Python package for noninvasive
quantification of cardiac rhythm traits from video of transparent
animals and encompasses an effective automated localization
technique that is highly transferrable and versatile, making it a
powerful tool for experimental biologists.
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in 2nd ascidian stage C. intestinalis (no. juveniles=8). (D) The first two
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measures quantified for hippo stage R. balthica exposed to a range of
constant temperatures (n=10 for 20°C, 25°C and 30°C). **P≤0.01,
***P≤0.005 determined via one-way ANOVA followed by Tukey’s post hoc
comparisons; n.s., non-significant results. Developmental time series for HR
(J) and mean IBI (K) quantified for three different developmental stages
(early, intermediate, late) of P. serratus in response to chronic elevated
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lines represent the mean response whilst translucent lines represent
individual responses.
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