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Abstract
Anthropogenic contamination has been detected in glacial and proglacial environments around the globe.
Through mechanisms of secondary release, these contaminants are finding their way into glacial hydrological
systems and downstream environments, with potential to impact hundreds of millions of people who rely on
glacial meltwater for water, food and energy security worldwide. The first part of our progress report
outlined the sources and accumulation mechanisms of contaminants in glacial environments (Part I: Inputs and
accumulation). Here we assess processes of contaminant release, pathways to downstream environments,
and socio-environmental consequences. We reflect on the potential impacts these contaminants could have
for human, ecosystem, and environmental health, as well as framing glacial contaminants within the context of
the water-food-energy nexus. Improved understanding of these processes and impacts, while crucially
embedding local knowledge, will help to develop key policy and mitigation strategies to address future risk of
contaminant release from glaciers.
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I Introduction

One billion people worldwide rely on glacial
meltwater for uses such as crop irrigation and

Corresponding author:
Dylan B Beard, School of Geography, Earth and Environmental
Sciences, University of Plymouth, SoGEES, B409 Portland Square,
Plymouth PL4 8AA, UK.
Email: dylan.b.beard@gmail.com

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/03091333221127342
https://journals.sagepub.com/home/ppg
https://orcid.org/0000-0001-7289-8225
https://orcid.org/0000-0002-0772-8630
mailto:dylan.b.beard@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03091333221127342&domain=pdf&date_stamp=2022-09-26


animal husbandry (Biemans et al., 2019), energy
production (Carey et al., 2014; Mark et al., 2017), and
domestic needs, including drinking water, food prep-
aration and sanitation (Hodson, 2014). Populations in
mountain glacier regions are at risk from contamination
due to accumulation processes in glaciated environ-
ments and the substantial demand for glacier meltwater
as a resource (Biemans et al., 2019; Rowan et al., 2018;
Synnove et al., 2018). It is thus important to examine
the range of processes and mechanisms controlling
contaminant levels in glaciated environments, and
assess how this can impact on water, food, and energy
security, as well as on human and ecosystem health.

Our previous progress report, Part I: Inputs and
accumulation (Beard et al., 2022), reviewed
current knowledge of six main contaminants
found within glacial environments (black carbon,
fallout radionuclides, potentially toxic elements,
microplastics, nitrogen-based contaminants, per-
sistent organic pollutants), with a focus on their
sources, and processes of transport and accumu-
lation. Here we review the factors controlling the
release of these contaminants from glaciers and
the potential impacts this can have downstream.
The aim of this progress report is thus to look at
contaminants through an eco-social lens to un-
derstand how future glacier melt could pose risks
to both nature and society. We identify gaps in
knowledge where further work is required to
contribute to the development of appropriate
policy, mitigation, and adaptation strategies in
order to protect glacial meltwater as an essential
resource, and to sustain ecosystem and human
health in glaciated environments.

II Factors controlling secondary
contaminant release

Contaminants stored within glaciers are primarily
transported into downstream environments through
downwasting (i.e. the thinning of a glacier due to the
melting of ice), glacier retreat (Sommer et al., 2020),
and through fluxes of meltwater and sediments (Zhu
et al., 2020). The timing of the release of meltwater
and the contained contaminants from glaciers de-
pends on various factors, including water chemistry

(Staniszewska et al., 2020), glacier hydrology
(Milner et al., 2017), climate and local weather
(Hung et al., 2022), glacier dynamics (Barry, 2006),
and duration of the melt period (Bizzotto et al.,
2009). This section discusses some of these factors
and their contribution to the release of glacial
contaminants.

2.1 Climate and weather

It is widely recognised that glaciers are shrinking and
retreating globally in response to the planet’s
warming climate (e.g. Braithwaite and Hughes,
2022). However, area-specific weather phenomena
such as El Niño Southern Oscillation (ENSO) events
have also been shown to increase both rainfall and
glacier recession within areas such as the Andes and
the Antarctic ice shelf (López-Moreno et al., 2014;
Mernild et al., 2015; Seehaus et al., 2019; Steig et al.,
2012; Veettil et al., 2017; Veettil and Simões, 2019).
Extended and seasonal drought periods, coupled with
warm temperatures, are known to increase melting
events within glaciated catchments (Van Tiel et al.,
2021). Similarly, studies have shown that monsoonal
weather events have comparable impacts on Hima-
layan glaciers, due to the scrubbing effect of pre-
cipitation on airborne contaminants (Pant et al.,
2020). The atmospheric scavenging of contami-
nants varies during storm events, due to higher ve-
locity winds and heavy precipitation within short
timespans (Offenberg and Baker, 2002). Model
predictions have shown that both ENSO events and
monsoon seasons are becoming more intense, and
the number of localised storm events will increase
with a warming climate (Konisky et al., 2016;
Rummukainen, 2012; Stott, 2016).

Climate models predict that within 25–50 years,
precipitation could increase by up to 20–30% in the
Arctic (IPCC, 2018) and 26–31% in the Himalayas
(Ali and Khan, 2021). These expected changes to
global precipitation will have significant implications
for the dynamics of contaminant transport and in-
creased washing of contaminants from glacier sur-
faces by rainfall and/or higher ratios of contaminant
release from meltwaters with decreased melt (Hock
et al., 2005). Glaciated regions such as the Andes are
more vulnerable to extreme weather events due to the
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strong orographic variability of mountain ranges
(Poveda et al., 2020). Some areas of the tropical belt
of South America are predicted to become drier and
more arid as the climate changes. A drier climate
means additional dust, a higher likelihood of wild-
fires, and increased drought periods (Pritchard,
2017). It is important to understand the implica-
tions that weather patterns and climatic changes will
have on contaminant release within the cryosphere in
order to better predict the impact of contaminant
release on downstream water resources.

2.2 Glacier recession

Glacier recession has multiple implications for wider
glacial systems, including changes to meltwater and
discharge, the quality and quantity of water re-
sources, direct and indirect socio-economic impacts
from water scarcity, and changes to downstream
ecosystems and geomorphology. Additionally, there
may potentially be an increase in the concentration of
contaminants within water systems, via a reduction
in contaminant dilution due to reduced water
quantity (Guittard et al., 2020). Research has shown
that rapid glacier recession can release stored con-
taminants and sediments downstream in high con-
centrations (Bogdal et al., 2009; Kang et al., 2009).
Glaciers are efficient erosion agents (Koppes and
Montgomery, 2009) and are a dominant sediment
source in many mountain catchments (Tsyplenkov
et al., 2020; Yao et al., 2020) and polar landscapes
(Dubnick et al., 2017; Overeem et al., 2017; Witus
et al., 2014). Changes in sediment discharge from
glaciers affects water quality, which can have sig-
nificant impacts for downstream communities and
ecosystems (Stott and Convey, 2020).

Furthermore, the sediment itself can also be seen
as a contaminant for many communities and in-
dustries (CCME, 2002; Chapman et al., 2013), as it
can require management, monitoring and removal.
Ice surface materials, such as cryoconite (Beard et al.,
2022), can be easily mobilised by supraglacial
meltwater, resulting in the potential for contaminants
sorbed onto particles to enter the downstream hy-
drological system. Some ice surfaces (e.g. flat ice
caps) store much larger quantities of sediment
(Figure 1) than steeper valley glaciers.

As a result of climate warming, glacier recession
may lead to increased risk from contaminants and
associated hazards. Given that water security relies
on both water quantity and quality, mitigating the
impacts on the quality of glacier-fed waters is crucial.
There are only a handful of detailed studies available
at present to underpin our understanding of current
and future regulating services of glacier-fed rivers
(e.g. Dorava and Milner, 2000; Maldonado et al.,
2011; Milner et al., 2017)

2.3 Localised hazards and event-scale
contaminant release

Mountain ranges are prone to mass movements of
snow, ice, rock and sediment due to characteristics
such as steep slopes, high topographic relief, seismic

Figure 1. An example of mass sediment (cryoconite)
storage on the surface of the Flade Isblink ice cap,
Greenland. Photography by Dylan B. Beard.
For interpretation of the references to colours in this
figure legend, refer to the online version of this article.
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activity, and hazard cascades (Shugar et al., 2021).
These mass movements, such as avalanches and
rockfall, can occur in response to natural instabilities
in the snowpack or mountain permafrost (Owen,
1991), or in response to anthropogenic activity and
accidents (Clason et al., 2015). The rapid mass
movement of material on glacier surfaces can scrub
contaminants from the supraglacial environment,
transporting them downslope with other materials
such as snow, ice blocks and water, leading to ac-
cumulation of contaminants at lower elevations
(Lawson, 1982; Owen, 1991). Once in the ablation
zone, contaminants are more susceptible to rapid
melting and release into downstream environments
(Hodson, 2014).

Once released into meltwater, glacial lakes can
accumulate contaminants in lake-bottom sediments
(Beard et al., 2022), but during glacier lake outburst
floods (GLOFs) these sediments can be mixed into
the water and released downstream in a concentrated
burst (Bazai et al., 2021; Harrison et al., 2018;
Vandekerkhove et al., 2021), also acting to increase
the area over which sediments and contaminants are
spread within downstream environments. GLOFs are
predicted to become more frequent due to increased
glacier retreat and high-energy weather events
caused by a warming climate (Veh et al., 2022; Zheng
et al., 2021). These localised hazards have the po-
tential to increase the secondary release of glacial
contaminants and therefore need to be considered
when evaluating future environmental risks.

III Threats to humans, flora, and fauna

It is crucial to evaluate the risks associated with the
accumulation, release and deposition of contami-
nants into downstream environments, to establish
effective policies and mitigation strategies for
managing the risks of glacial contaminants to the
wider environment. To date, there is has been very
limited research into the implications of contaminant
release from glaciers. Nonetheless, this next section
outlines current understanding, particularly in rela-
tion to contaminants in other environmental systems,
and how this knowledge can be applied to the as-
sessment of glaciated environments.

3.1 Contaminant toxicity and implications for
flora, fauna, and human health

Ecosystems in glaciated environments depend on a
delicate balance of nutrient availability and envi-
ronmental chemistry for survival and optimal living
conditions. Therefore, the re-introduction of an-
thropogenic contaminants into meltwater could have
detrimental implications for both human and eco-
system health (Borgå et al., 2022). After being re-
leased into glaciated environments, contaminants are
often diluted into safe concentrations once they enter
water systems, due to the increased ratio of water to
contaminants (Baccolo et al., 2020) and mixing with
inorganic sediments (McGovern et al., 2022).
However, these concentrations can rise to unsafe
levels via two processes: (i) bioaccumulation, which
is the gradual accumulation of a substance within an
organism caused when the organism absorbs the
substance at a faster rate than the loss or elimination
(Vorkamp and Rigét, 2014); and (ii) bio-
magnification, which is the progressive build-up of
toxic substances by successive trophic levels
(Clayden et al., 2015; Van Der Velden et al., 2013).
Both processes can pose threats to the health of apex
predators, as well as to humans that ingest organisms
at high trophic levels. There are significant known
impacts from the ingestion of contaminated flora and
fauna, particularly those with biomagnified con-
taminants (Kumar et al., 2019). The uptake from
contaminated and eco-toxic glacier-fed water sources
could thus pose issues for both wildlife and human
health (Carbery et al., 2018; Donaldson et al., 2010,
2016; Hembrom et al., 2020; Kallenborn et al.,
2011).

The release of toxic contaminants into hydro-
logical systems in glacial regions also presents an
immediate exposure risk to aquatic biological
communities (Bizzotto et al., 2009). The ecosystems
within these environments often have low biodi-
versity due to reduced nutrient availability and harsh
environmental conditions, which results in lower
species stability and greater food chain vulnerability
(Bizzotto et al., 2009). Similarly, increased levels of
contaminants have been implicated in the disruption
of animal physiology (Edwards et al., 2006; Saaristo
et al., 2018). Furthermore, lowered pH and the
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introduction of dissolved metals and potentially toxic
elements into habitats is stressful for most organisms,
with sensitive taxa and life stages negatively affected
where pH is <5.5 (Jennings et al., 2000). While
mobile organisms, such as fish, can move away from
stressful environments and contaminant hotspots,
stationary organisms found in glaciated areas, such
as algae, mosses, and lichens, cannot escape and
must either adapt, or not survive. Whilst the health
risks posed by the release of contaminants from
glaciers remains poorly understood, the impacts of
contaminants that have been evaluated in other en-
vironments can be used to estimate potential risks
within glaciated environments (Table 1).

Many contaminants also cause human health im-
pacts due to toxicity and carcinogenic properties
(Erickson et al., 2019; Miner et al., 2018). These im-
pacts, which affect both physical andmental health, can
be more severe for rural and Indigenous communities
due to a lack of accessibility to appropriate services,
social vulnerability, and reduced medical intervention
andmonitoring (Mead et al., 2013;Wilson et al., 2018).
To date there has been limited research conducted into
the potential harm caused to people consuming local
crops and animal produce in glaciated regions.

3.2 Impacts of contaminants on
microbial communities

Microbial communities not only influence the mo-
bility and toxicity of contaminants (Beard et al.,
2022), but can also be affected by them. Microbial
communities in other areas, such as salt marshes,
have demonstrated that exposing bacteria to a variety
of microplastics (e.g. polyethylene, polyvinyl chlo-
ride, polyurethane foam, or polylactic acid) affects
the composition of microorganisms and biogeo-
chemical processes such as nitrogen cycling (Prata
et al., 2019). Microplastics have also been found to
be a favourable substrate for microorganisms in these
areas (Hale et al., 2020; Seeley et al., 2020). Other
contaminants, such as fallout radionuclides (FRNs)
and potentially toxic elements (PTEs), can also affect
the microbial community structure and functionality
(Alrumman et al., 2015; Sutton et al., 2013). FRN
contamination can reduce microbial biomass in soils

and sediments (Khovrychev et al., 1994; White and
Gadd, 1990). This in turn can negatively impact
nutrient cycling and availability, plus soil health and
recovery (Smith and Paul, 1990). Increased depo-
sition of nitrogen-based contaminants on glaciers
since pre-industrial time has likely led to a reduced
demand for microbial nitrogen fixation on glaciers,
as nitrogen is no longer a limiting factor throughout
most of the melt season (Telling et al., 2011, 2012).

IV Glacial contaminants, the
water-food-energy nexus and
environmental justice

The water-food-energy (WFE) nexus is established
in sustainability studies, interlinking water, food, and
energy security in the context of growing demands
due to population growth, climate change, and
shifting environments (Cai et al., 2018; D’Odorico
et al., 2018; Scanlon et al., 2017). The nexus ap-
proach illustrates the intersectionality between the
primary resources that are required for a secure future
and calls for a cross-sector approach to meet global
demands. As such, the World Economic Forum sees
it as a priority development goal, with the framework
having high importance within international policy
(Terrapon-Pfaff et al., 2018). However, the WFE
nexus has been criticised for being apolitical and
ignoring the importance of environmental justice
(Allouche et al., 2019).

Studies have discussed the interlinkages between
water, energy, and food within glaciated catchments
(Faramarzi et al., 2019; Momblanch et al., 2019;
Wang et al., 2021b), however, there is a paucity of
data exploring the role which glacial contaminants
may play in the nexus. Meltwater is at the heart of the
WFE nexus in many glacial regions, and crucial for
downstream water resources, food production, and
for energy generation (Momblanch et al., 2019;
Rasul, 2014). Figure 2 shows the primary threats that
glacial contaminants pose to the WFE nexus.

4.1 Water scarcity

It has been estimated that 1.8 billion people will be
living with absolute water scarcity by 2025, and two
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thirds of the global population could be subject to
water stress (FAO, 2020), defined as the threshold
for meeting the water requirements for agriculture,
industry and domestic purposes (Kaltenborn et al.,
2010). Water is a crucial resource for human health,
resource production, and economic development,

and as such, access to clean water is an important
sustainable development goal (UN SDG 6), and a
fundamental human right (Hering et al., 2016).

Glaciers are often referred to as “water towers”,
storing vast amounts of the Earth’s freshwater
(Viviroli et al., 2011), which is a crucial element in

Table 1. Example toxicologic implications of contaminants for: Fl (flora); Fa (fauna); Hu (humans), and studies in which
these examples can be found in other environmental systems.

Risk to

Toxicologic impacts
caused by
contaminant(s) Contaminant class

Fl Fa Hu BC FRNs PTEs MPs NBCs POPs

Photosynthesis/
oxygen intake

Knauer
et al.,
2007

Shaw and Bell,
1994

Manara,
2012

Colzi et al.,
2022

Camargo
and
Alonso,
2006

Tomar et al.,
2019

Biodiversity Zainab
et al.,
2022

Wilhelmsson
et al., 2013

Tovar-
Sánchez
et al.,
2018

Guzzetti
et al.,
2018

Nie et al.
2009

Jones, 2021

Nutrient uptake Foereid
et al.,
2011

Shaw and Bell,
1994

Manara,
2012

Wright
et al.,
2013

Camargo
and
Alonso,
2006

Adeola,
2004

Growth/yield Brown,
2014

Shaw and Bell,
1994

Manara,
2012

Guzzetti
et al.,
2018

Chen et al.,
2019a

Chen et al.,
2019b

Fertility/
reproduction

Foereid
et al.,
2011

Suchanek, 1994 Canipari
et al.,
2020

Wright
et al.,
2013

Camargo
and
Alonso,
2006

Alharbi
et al.,
2018

Cellular implications Wang
et al.,
2021

Rajković et al.,
2006

Engwa et al.,
2019

Hale et al.,
2020

Chen et al.,
2019a

Chen et al.,
2019b

Cardiovascular/
endocrine

Kirrane
et al.,
2019

Rajković et al.,
2006

Engwa et al.,
2019

Wright
et al.,
2013

Camargo
and
Alonso,
2006

Hoondert
et al.,
2021

Neurological/brain
function

Sunyer,
2008

Gagnaire et al.,
2011

Engwa et al.,
2019

Yong et al.,
2021

Camargo
and
Alonso,
2006

Wahlang,
2018

Carcinogenic Lin et al.,
2019

Suchanek, 1994 Engwa et al.,
2019

Wright
et al.,
2013

Nie et al.
2009

Wahlang,
2018

Contaminant classes include: black carbon (BC); fallout radionuclides (FRNs); potentially toxic elements (PTEs); microplastics (MP);
nitrogen based contaminants (NBCs); persistent organic pollutants (POPs). Grey shading indicates potential risk(s) to either Fl, Fa, or Hu.
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sustaining both human and ecosystem health
(WHO, 2008). Contaminants released from glaci-
ated environments are most mobile in fluvial set-
tings, due to the speed at which sediment is
transported in water and the gravity driven
movements downstream (Choudhary et al., 2020;
Strumness et al., 2004). High levels of nitrates
can lead to eutrophication which can reduce
water quality and endanger the sustainability of
riverine ecosystems (Erickson et al., 2019;
Owens et al., 2019; Schriks et al., 2010). Addi-
tionally, natural processes like weathering, and
anthropogenic activities like mining, can result in
high acidity of glacier-fed water. Leachate and
water run-off can then re-enter water systems
with an increased concentration of contaminants
(Chen et al., 2020; Pratt and Fonstad, 2017). For

example, in parts of the Andes, where geology is
iron rich, glacier retreat and metal mining has
resulted in very low pH glacial tributaries with
high levels of acid rock drainage, making water
un-useable for the local populations (Fortner
et al., 2011; Meza et al., 2015; Synnove et al.,
2018).

Reductions in either water quality or quantity can
have life-threatening implications to communities
who rely on these resources (Vergara et al., 2011),
especially where there is a lack of both water
treatment and water testing regulations in many of
the rural environments where many Indigenous
Peoples reside (Bressler and Hennessy, 2018; Daniel
et al., 2021). Contamination of water in glacial
catchments is therefore a huge challenge for, and risk
to, local water security and health.

Figure 2. The water-food-energy nexus in the context of meltwater use and primary threats from glacial contaminants.
For interpretation of the references to colours in this figure legend, refer to the online version of this article.
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4.2 Food security

Food security means that all people, at all times, have
physical, social, and economic access to sufficient,
safe, and nutritious food that meets their food
preferences and dietary needs for an active and
healthy life (FAO, 2020). The main emphasis of food
security is in relation to inequitable food availability
worldwide (Prosekov and Ivanova, 2018), with
considerably less focus on the safety of food re-
sources within the context of contaminants. Many
populations living in, or near, glaciated regions use
glacier meltwater for farming, irrigation, and animal
husbandry (Meza et al., 2015). The use of land within
close proximity to glaciers may increase the likeli-
hood that contaminants will leach into the soil and be
consumed by crops and grazing animals, affecting
the quality of produce as well as posing risks to
human health (Carey, 2013; Guittard et al., 2017;
Hansen et al., 2021; Synnove et al., 2018). Fur-
thermore, the accumulation of contaminants can
reduce the fertility of the soil, prevent the uptake of
nutrients, and increase the uptake of toxic elements
by plants, reducing the sustainability of crops and
threatening the survival of ecosystems and food
security (Bargagli, 2008; Howells et al., 2018).

Organic farming results in higher concentrations
of contaminants than intensive farming due to as-
sociated practices such as the use of waste-based
manures and organic amendments (Diacono and
Montemurro, 2011; Ramakrishnan et al., 2021). It
has been reported that Indigenous and rural com-
munities use more natural farming practices
(Chaudhry and Chaudhry, 2011; Dey and Sarkar,
2011). Thus, it is possible that these crops may be
susceptible to high contaminant concentrations and
cascading environmental hazards from the intro-
duction of more contaminants from the glacial sys-
tem. Conversely, intensive farming practices lead to
higher soil loss, increased fertilizer use, and the
introduction of synthetic pesticides and fungicides
(Solgi et al., 2018), which can be equally, if not more
problematic. It is therefore important to consider
localised land use and practices when looking to
assess contaminant risk from glaciers.

Communities that rely on livestock and herding in
polar and alpine regions are more susceptible to the

risks associated with contaminants in glaciated en-
vironments, due to the grazing habits of herds and the
biomagnification of contaminants within larger
mammals, notably reindeer and caribou (Hong et al.,
2011; Guillen et al., 2012; Stocki et al., 2016). For
example, Sámi people, a community that live in
northern areas of Scandinavia and Russia (Sápmi),
have a culture based primarily around reindeer
herding and the spiritual connection between people
and their animals (Ness and Munkejord, 2021;
Österlin, 2020). Reindeer largely feed on lichens,
mosses, and fungi – all organisms that have been
found to readily absorb and retain contaminants.
Their style of herding involves an annual migration,
sometimes over 1000 km, mostly across glaciated or
peri-glaciated landscapes (Forbes, 2013; Golovnev
and Osherenko, 2018). The increased exposure to the
vast ground they cover means that they are far more
likely to encounter contaminated zones within gla-
ciated environments.

Risks to reindeer were identified and assessed
after the Chernobyl disaster in 1986 (Skuterud et al.,
2005; Skuterud and Thørring, 2012). This resulted in
reindeer health monitoring, which led to a reduction
of ingested doses of FRN contamination within Sámi
communities (Kurttio et al., 2010; Skuterud and
Thørring, 2012). However, many other contami-
nants have not undergone such investigation and
evaluation; this example shows the considerable
need for assessment and mitigation implementations
to help reduce exposure to other contaminants
identified in glacial regions. Additionally, the bio-
accumulation of multiple contaminants in the same
area could raise the environmental risk of an area to
above a level of concern and jeopardise the liveli-
hoods of these communities (Mora et al., 2022).
Therefore, it is important to investigate the interac-
tions between contaminants when in the same en-
vironment and how these contaminants can impact
crop health, food quality, and sustainability of
resources.

4.3 Energy resources

Energy generation fits into the WFE nexus in many
ways, such as water used for cooling in energy
production, and energy used for food production.
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However, in the context of glacial contaminants, the
primary threats are to hydropower systems, which
are often located in glacial regions. Sediment itself
can be considered as a contaminant, by affecting
sediment flux, water turbidity, and congestion in
hydropower dams (Pralong et al., 2015), resulting in
additional costs for the removal of sediment over
time. The finer grained sediments carry contaminants
picked up from the water, as well as trapping nu-
trients essential to aquatic ecosystems. These
contaminant-rich sediments are then released in bulk
via sediment removal strategies such as sluicing,
dredging, or flushing (Davidson et al., 2005). These
can be hazardous to the environment if not done with
consideration to contaminant loads. As demand and
pressure on global water resources increases, it is
likely that treated water will be prioritised for mu-
nicipal and agricultural usage, due to the need for
better water quality in these sectors. Therefore, water
with a lower quality will likely be distributed for
energy production, particularly in areas with negative
water budgets.

4.4 Environmental injustice

The Environmental Protection Agency defines
environmental justice as “the fair treatment and
meaningful involvement of all people regardless of
race, colour, national origin, or income with re-
spect to the development, implementation, and
enforcement of environmental laws, regulations,
and policies” (EPA, 2020: p. 47). Socio-politically,
glaciers are currently an important marker for
climate change impacts, and have been discussed
at international events such as the G7 and G20
summits. Both the preservation and conservation
of glacier environments, as well as the ecological
and social impacts of glacier retreat, have been the
subject of global media coverage and a significant
political focus (Brugger et al., 2013; Carey et al.,
2016, 2021; Marr et al., 2022; Taillant, 2015;
Walker-Crawford, 2021). However, the spotlight
on these factors has not yet translated to an increase
in research funding needed to improve our un-
derstanding of the manifold impacts of glacier
change, nor marked changes to climate policy. In
addition, there is insufficient research into the

impact and effects of contaminants to Indigenous
Peoples within glaciated catchments, which has
prevented community governance (Nuttall, 2018,
2021; Wilson et al., 2018), resulting in inadequate
access to water testing and treatment; lack of in-
formation about contaminant risk in their current
environment; and a lack of socio-political voice
that would enable Indigenous and local commu-
nities the opportunity to be able to have a say or
alter their situation (Huntington et al., 2019; Ryder
et al., 2021; Tsosie, 2007).

Within glaciated regions, there is still a lack of
community input and collaboration to the design,
development, and implementation of policy and
mitigation strategies, particularly those affecting
Indigenous Peoples (McGregor et al., 2020).
Communities who live in close proximity to glacial
areas often have a lack of political voice, limited
access to resources, and are unable to change their
exposure to contaminants within proglacial envi-
ronments, without support from external services
and implementation of interventions (Hegglin and
Huggel, 2008). These are key socio-political in-
dicators of vulnerability across the globe and
suggest that addressing social injustices is crucial
to fully understanding the impacts that glacial
contaminants may have on human, ecosystem, and
environmental health.

Whilst the physical impacts of glacier behav-
iour, such as regulating climate, contributing to
landscape evolution, and providing water re-
sources is now very well understood, the socio-
cultural impacts such as the stimulation of art and
literature, tourist economies, community liveli-
hoods, globalisation, and political agendas have
largely been omitted in the context of glacial
contaminants and the potential negative implica-
tions to these aspects (Hovelsrud et al., 2011).
Similarly, there has been considerably less re-
search on the negative health impacts from con-
taminants to the communities living within, and
immediately downstream from, glaciated envi-
ronments, nor on the impacts on the social, cul-
tural, religious, and spiritual importance of
glaciers.

In addition to better incorporating key justice
issues within research, we must also recognise that
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traditional ecological knowledge (TEK) can be a
vital ingredient for improving understanding of
environmental quality (Allison, 2015; Nelson and
Shilling, 2018). A substantial challenge of miti-
gating future glaciological contamination is the
notion that the regions and communities impacted
by glacial contaminants are not the primary
producers/emitters of those contaminants. It is
therefore important to use TEK, co-design poli-
cies, and enable collaborative management with
the communities who live in areas impacted by
glacial contaminants. To the best of our knowl-
edge, no previous studies have integrated TEK to
design data collection, assess future risk, or de-
velop mitigation strategies, within the context of
glacial contaminants. In addition, raising aware-
ness of contaminant transport pathways to pol-
luting nations and industries can support the
mitigation of risks from contaminants globally.

V Summary

Anthropogenic contamination has been detected in
glacial and proglacial environments around the
globe, and research has begun to assess and quantify
the level and spatial distribution of contaminants
within the cryosphere (Beard et al., 2022). More
research is required to address gaps in knowledge on
areas of potential risk from the release of glacially
stored contaminants, and the impacts of these con-
taminants for human and ecosystem health, and
livelihoods. We highlight the need to incorporate
Traditional Ecological Knowledge (TEK) in re-
search to better share and disseminate information
about glacial contaminants, in addition to contrib-
uting to the development of strategies to protect
future water resources as glaciers continue to melt.
Furthermore, the water-food-energy nexus frame-
work can be an important tool in the progression of
future research concerning both meltwater quality
and quantity. It is essential to ensure that commu-
nities who are at risk from glacial contaminants are
at the forefront of the development of key policy
and mitigation strategies, and can regain agency and
self-determination. From this, we can build a better
foundation for understanding and quantifying the
current and future risks to humans and ecosystems

posed by anthropogenic contaminants in glacial
environments.
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norwegian sámi reindeer herders after the chernobyl
accident. Health Physics 102(2): 208–216. DOI: 10.
1097/HP.0b013e3182348e12

Skuterud L, Gaare E, Eikelmann IM, et al. (2005) Cher-
nobyl radioactivity persists in reindeer. Journal of
Environmental Radioactivity 83(2): 231–252. DOI:
10.1016/j.jenvrad.2005.04.008

Smith JL and Paul EA (1990) The significance of soil
microbial biomass estimations. In: Soil Biochemistry.
New York: Routledge.

Solgi E, Sheikhzadeh H and Solgi M (2018) Role of ir-
rigation water, inorganic and organic fertilizers in soil
and crop contamination by potentially hazardous el-
ements in intensive farming systems: Case study from
Moghan agro-industry, Iran. Journal of Geochemical
Exploration 185: 74–80. DOI: 10.1016/j.gexplo.
2017.11.008

Sommer C, Malz P, Seehaus TC, et al. (2020) Rapid glacier
retreat and downwasting throughout the European Alps
in the early 21st century. Nature Communications 11:
3209. DOI: 10.1038/s41467-020-16818-0

Staniszewska K, Cooke C and Reyes A (2020) Are melting
alpine glaciers a source of legacy priority contami-
nants to downstream environments? A High-
Frequency Analysis of Water Chemistry in the Ca-
nadian Rockies 22: 11516.

Steig EJ, Ding Q, Battisti DS, et al. (2012) Tropical forcing
of Circumpolar Deep Water Inflow and outlet glacier
thinning in the Amundsen Sea Embayment, West
Antarctica. Annals of Glaciology 53(60): 19–28. DOI:
10.3189/2012AoG60A110

Stocki TJ, Gamberg M, Loseto L, et al. (2016) Mea-
surements of cesium in Arctic beluga and caribou
before and after the Fukushima accident of 2011.
Journal of Environmental Radioactivity 162(163):
379–387. DOI: 10.1016/j.jenvrad.2016.05.023

Stott P (2016) How climate change affects extreme weather
events. Science 352(6293): 1517–1518. DOI: 10.
1126/science.aaf7271

Beard et al. 17

https://doi.org/10.2298/JAS0601087R
https://doi.org/10.2298/JAS0601087R
https://doi.org/10.1016/j.scitotenv.2021.145079
https://doi.org/10.1016/j.envsci.2014.01.010
https://doi.org/10.1016/j.envsci.2014.01.010
https://doi.org/10.1144/SP462.12
https://doi.org/10.1002/wcc.160
https://doi.org/10.1098/rspb.2018.1297
https://doi.org/10.1002/2017WR020889
https://doi.org/10.1016/j.watres.2009.08.023
https://doi.org/10.5194/tc-13-2537-2019
https://doi.org/10.1038/s41467-020-16235-3
https://doi.org/10.1002/9783527615919.ch7
https://doi.org/10.1002/9783527615919.ch7
https://doi.org/10.1126/science.abh4455
https://doi.org/10.1097/HP.0b013e3182348e12
https://doi.org/10.1097/HP.0b013e3182348e12
https://doi.org/10.1016/j.jenvrad.2005.04.008
https://doi.org/10.1016/j.gexplo.2017.11.008
https://doi.org/10.1016/j.gexplo.2017.11.008
https://doi.org/10.1038/s41467-020-16818-0
https://doi.org/10.3189/2012AoG60A110
https://doi.org/10.1016/j.jenvrad.2016.05.023
https://doi.org/10.1126/science.aaf7271
https://doi.org/10.1126/science.aaf7271


Stott T and Convey P (2020) Seasonal hydrological and
suspended sediment transport dynamics and their
future modelling in the Orwell Glacier proglacial
stream, Signy Island, Antarctica. Antarctic Science
33: 1–21. DOI: 10.1017/S0954102020000607

Strumness LA, Hooper RL and Mahoney JB (2004)
Contaminant pathways and metal sequestration pat-
terns in the lower coeur d’Alene River Valley, Idaho:
Mechanics of Trace Metal Mobility. AGU Spring
Meeting Abstracts 2004: H41E–04.

Suchanek TH (1994) Temperate coastal marine com-
munities: biodiversity and threats. American Zo-
ologist 34(1): 100–114. DOI: 10.1093/icb/34.1.
100

Sunyer J (2008) The neurological effects of air pollution in
children. European Respiratory Journal 32(3):
535–537. DOI: 10.1183/09031936.00073708

Sutton NB, Maphosa F, Morillo JA, et al. (2013) Impact of
long-term diesel contamination on soil microbial
community structure. Applied and Environmental
Microbiology 79(2): 619–630. DOI: 10.1128/AEM.
02747-12

Synnove JK, Björn A, Elaine B, et al. (2018) The Andean
Glacier and Water Atlas: The Impact of Glacier
Retreat on Water Resources. Paris and Arendal:
UNESCO Publishing.

Taillant JD (2015)Glaciers: The Politics of Ice. New York:
Oxford University Press.

Telling J, Anesio AM, Tranter M, et al. (2011) Nitrogen
fixation on Arctic glaciers, Svalbard. Journal of
Geophysical Research: Biogeosciences 116(G3):
G03039. DOI: 10.1029/2010JG001632

Telling J, Stibal M, Anesio AM, et al. (2012) Microbial
nitrogen cycling on the Greenland Ice Sheet. Bio-
geosciences 9(7): 2431–2442. DOI: 10.5194/bg-9-
2431-2012

Terrapon-Pfaff J, Ortiz W, Dienst C, et al. (2018) En-
ergising the WEF nexus to enhance sustainable de-
velopment at local level. Journal of Environmental
Management 223: 409–416. DOI: 10.1016/j.
jenvman.2018.06.037

Tomar RS, Singh B and Jajoo A (2019) Effects of or-
ganic pollutants on photosynthesis. In: Photosyn-
thesis, Productivity and Environmental Stress.
Hoboken: John Wiley & Sons, pp. 1–26. DOI: 10.
1002/9781119501800.ch1

Tovar-Sánchez E, Hernández-Plata I, SantoyoMartı́nez M,
et al. (2018) Heavy metal pollution as a biodiversity
threat. In:Heavy Metals. Rijeka: IntechOpen, pp. 383.
DOI: 10.5772/intechopen.74052.

Tsosie R (2007) Indigenous people and environmental
justice: the impact of climate change. University of
Colorado Law Review 78: 1625.

Tsyplenkov A, Vanmaercke M, Golosov V, et al. (2020)
Suspended sediment budget and intra-event sediment
dynamics of a small glaciated mountainous catchment
in the Northern Caucasus. Journal of Soils and
Sediments 20(8): 3266–3281. DOI: 10.1007/s11368-
020-02633-z

Van Der Velden S, Dempson JB, Evans MS, et al. (2013)
Basal mercury concentrations and biomagnification
rates in freshwater and marine food webs: Effects on
Arctic charr (Salvelinus alpinus) from eastern Canada.
Science of the Total Environment 444: 531–542. DOI:
10.1016/j.scitotenv.2012.11.099

Van Tiel M, Van Loon AF, Seibert J, et al. (2021) Hy-
drological response to warm and dry weather: do
glaciers compensate? Hydrology and Earth System
Sciences 25(6): 3245–3265. DOI: 10.5194/hess-25-
3245-2021

Vandekerkhove E, Bertrand S, Torrejón F, et al. (2021)
Signature of modern glacial lake outburst floods in
fjord sediments (Baker River, southern Chile). Sedi-
mentology 68(6): 2798–2819. DOI: 10.1111/sed.12874

Veettil BK and Simões JC (2019) The 2015/16 El Niño-
related glacier changes in the tropical Andes. Fron-
tiers of Earth Science 13(2): 422–429. DOI: 10.1007/
s11707-018-0738-4
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