Dissemination of carbapenem resistance and plasmids encoding carbapenemases in Gram-negative bacteria isolated in India

Prasanth Manohar¹†, Sebastian Leptihn (b^{2,3}, Bruno S. Lopes⁴ and Ramesh Nachimuthu^{1*}

¹Antibiotic Resistance and Phage Therapy Laboratory, Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; ²Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang 314400, China and Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; ³University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK; ⁴School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, University of Aberdeen, Aberdeen AB25 2ZD, UK

*Corresponding author. E-mail: drpnramesh@gmail.com

+Present address: Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang 314400, China.

Received 10 November 2020; accepted 27 January 2021

Background: Carbapenem resistance in Gram-negative bacteria is an ongoing public health problem of global dimensions leaving very few treatment options for infected patients.

Objectives: To study the dissemination of plasmid-borne carbapenemase genes in Gram-negative bacteria from a diagnostic centre in Tamil Nadu, India.

Methods: A total of 151 non-repetitive isolates belonging to 10 genera were collected between January 2015 and December 2016 from a diagnostic centre in Tamil Nadu. The isolates included *Escherichia coli* (n = 57), *Klebsiella pneumoniae* (n = 45), *Pseudomonas aeruginosa* (n = 10), *Salmonella* Typhi (n = 8), *Enterobacter cloacae* (n = 8), *Acinetobacter baumannii* (n = 7), *Serratia marcescens* (n = 5), *Achromobacter xylosoxidans* (n = 5), *Proteus mirabilis* (n = 5), *Klebsiella oxytoca* (n = 5) and *Elizabethkingia meningoseptica* (n = 1).

Results: Of the 151 isolates, 71% (n = 107) and 68% (n = 103) were found to be resistant to meropenem and imipenem, respectively. The most prevalent β -lactamase gene was bla_{NDM-1} (n = 22), followed by $bla_{OXA-181}$ (n = 21), bla_{GES-1} (n = 11), bla_{OXA-51} (n = 9), bla_{GES-9} (n = 8), bla_{OXA-23} (n = 7) and bla_{IMP-1} (n = 3). We also observed bla_{OXA-23} in *E. coli* (n = 4), and three *K. pneumoniae* were positive for both, bla_{OXA-23} and bla_{OXA-51} . Plasmid incompatibility (inc/rep) typing results showed that the resistance genes (n = 11) were present in the isolates carrying plasmid-types IncX, IncA/C, IncFIA-FIB and IncFIIA. The plasmid-borne resistance genes in *E. coli* and *K. pneumoniae* were transferred to susceptible *E. coli* AB1157.

Conclusions: This study highlights the prevalence of carbapenem resistance and the acquisition of plasmid-borne carbapenemase genes in Gram-negative bacteria isolated at this centre.

Introduction

Antibiotic resistance is an emerging global health problem due to the injudicious use of antibiotics.¹ It is considered as a major clinical and public health problem because of the limited treatment options available to treat infections caused by antibiotic-resistant bacteria. The increasing bacterial resistance rates to most available antibiotics, including penicillin, cephalosporins, carbapenems, and colistin pose a serious threat.¹ The WHO recently listed carbapenem-resistant *Acinetobacter baumannii, Pseudomonas aeruginosa* and ESBL-producing Enterobacteriaceae as pathogens of critical importance.² Gram-negative bacteria (GNB), especially Enterobacteriaceae, have developed resistance to a broadspectrum of antibiotics responsible for significant mortality around the globe.³ Carbapenems are considered as one of the last resort antibiotics against infections caused by multidrug-resistant GNB.⁴ The emergence of carbapenem resistance in Enterobacteriaceae is a major clinical problem, particularly for patients with complex infections, especially when they are immunocompromised or suffering from multiple diseases.⁵ Pathogens that are resistant to carbapenems often show high levels of resistance to other

[©] The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecom mons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

commonly used antibiotics. This not only leads to high mortality rates, but often the patient's time in the hospital is prolonged and medical expenses accumulate, placing an emotional, economic and financial burden on families, especially in resource-limited countries.⁶

The assessment of the worldwide rise in antibiotic resistance has become very difficult due to the increasing rates of multidrug resistance shown by pathogens and the lack of harmonized surveillance systems.⁷ Moreover, the coexistence of carbapenem resistance genes with other genes such as plasmid-mediated AmpC or plasmid-mediated quinolone resistance has resulted in an increased acquisition of resistance, causing community- and hospital-acquired infections.^{8,9} The carbapenem-hydrolysing oxacillinases (CHDL) are the major source of carbapenem resistance in A. baumannii. The first report of OXA-23-type β-lactamase in A. baumannii was in 1985 in Edinburgh, UK.¹⁰ Recently, OXA-23 was also reported in members of the Enterobacteriaceae family.¹¹⁻¹⁴ The OXA-51-like β -lactamase was first reported by the same laboratory in Edinburgh from isolates collected from three hospitals in Buenos Aires, Argentina. At present, more than 150 variants of OXA-51 have been reported worldwide.¹⁵ These intrinsic enzymes (OXA-51-like) in A. baumannii are naturally chromosome-borne, but in rare cases are also reported to be encoded on plasmids.¹⁶ Previously, we reported the distribution of colistin resistance in the study region, and investigated the importance of integrons in disseminating antibiotic resistance.^{17,18} In the present study, dissemination of carbapenem resistance among Gram-negative bacteria was evaluated, and the role of plasmid transfer in developing carbapenem resistance was also explored in further detail.

Materials and methods

Ethics approval

Ethics approval was from the Institutional Ethical Committee for studies on Human subjects (IECH), ref. no. VIT/IECH/004/Jan2015.

Isolate collection and classification

During January 2015 and December 2016, a total of 151 Gram-negative bacterial isolates were collected from Hi-Tech diagnostic centre in Chennai, Tamil Nadu, India. Bacteria were isolated from urine, blood, pus, bronchial secretion, CSF, pulmonary secretion and bile fluid. The collected isolates were received at the Antibiotic Resistance and Phage Therapy Laboratory, VIT, Vellore, for further analyses. Bacterial identification was carried out using the VITEK identification system (bioMérieux) and 16S rRNA gene nucleotide sequence analysis using universal primers 27 F and 1492 R.¹⁸ DNA was extracted from all the isolates using a boiling lysis method. Briefly, overnight-grown bacterial cultures were centrifuged at 8000 g for 10 min, and the bacterial pellet was resuspended in $100 \,\mu\text{L}$ of sterile distilled water. The cells were boiled at 100°C for 10 min and the mixture was centrifuged at 2000 g for 2 min. The supernatant was extracted and used as a source of template for PCR. The PCR products were sequenced and identified to the species level using the BLASTN tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi? PAGE TYPE=BlastSearch).

Antibiotic susceptibility testing and MICs

Antibiotic resistance profiling was performed using the disc diffusion method according to CLSI guidelines.¹⁹ The antibiotic discs used for this study were gentamicin (10 μ g), co-amoxiclav (30 μ g), cefotaxime (30 μ g), ertapenem (10 μ g), amikacin (30 μ g), meropenem (10 μ g), colistin (10 μ g)

and cefepime (30 µg). Briefly, on the Muller-Hinton (MH) agar plate, a lawn culture of bacteria was prepared by adjusting the bacterial culture to 0.5 McFarland turbidity standards. The antibiotic discs were placed on the bacterial lawn and the MH plates were incubated at 37°C for 18 h. Based on the zone of inhibition, the results were interpreted as susceptible, intermediate or resistant. MICs were determined by the broth microdilution method for meropenem and imipenem, as described previously.¹⁸ Briefly, in the 96-well microtitre plate, 100 µL of cation-adjusted MH broth was added to each well. Meropenem or imipenem was added at concentrations ranging from 0.06 to 128 mg/L in columns 1 to 11, whereas column 12 served as growth control. The bacterial culture at 5×10^5 dilutions from the overnight grown cells was added and the plates were incubated at 37°C for 20 h. *Escherichia coli* ATCC 25922 was used as a control strain and the results were interpreted according to CLSI guidelines.¹⁹

Molecular analysis of resistance-related genes

The isolates were screened for the presence of the carbapenem resistance genes $bla_{\rm NDM}$, $bla_{\rm OXA-48-like}$, $bla_{\rm KPC}$, $bla_{\rm IMP}$ and $bla_{\rm VIM}$.¹⁸ A second multiplex PCR was also performed for $bla_{\rm DIM}$, $bla_{\rm BLC}$, $bla_{\rm GIM}$, $bla_{\rm SIM}$ and $bla_{\rm AIM}$.²⁰ The $bla_{\rm OXA-4}$, $bla_{\rm OXA-30}$, $bla_{\rm GES-1-9}$ and $bla_{\rm GES-11}$ were screened as described earlier.²¹ The $bla_{\rm OXA-23-like}$, $bla_{\rm OXA-24-like}$, $bla_{\rm OXA-51-like}$ and $bla_{\rm OXA-51-like}$

Plasmid isolation and plasmid incompatibility grouping

Plasmid isolation was performed for all the isolates harbouring resistance genes. The isolation of plasmid DNA was performed using HiPurA Plasmid DNA Miniprep Purification Kit (Himedia, India). Chromosomal DNA contamination was checked using the 16S rRNA primers as described earlier.²³ The purified plasmid DNA was used for screening β-lactamase genes. Plasmid incompatibility (*inc/rep*) typing (FIA, FIB, FIC, HI1, HI2, I1-Ig, L/M, N, P, W, T, A/C, K, B/O, X, Y, F, and FIIA replicons) was performed using multiplex PCR following the primers and PCR conditions as described by Carattoli *et al.*²⁴ The primers and PCR conditions used for analysis are given in Table S6.

Conjugation studies

Representative carbapenem-resistant isolates harbouring plasmid-borne resistance were tested for conjugation using the broth-mating method.¹⁸ Briefly, the donor strain (strains carrying resistance genes) and the recipient strain (*E. coli* AB1157, Str^r) were grown overnight in MH broth at 37°C and mixed in 9:1 ratio each of donor and recipient. The cells were kept undisturbed for 6 h at 37°C and plated onto antibiotic-containing medium. The isolates which grew on both meropenem and streptomycin were considered as transconjugants. All the donor strains were tested for streptomycin resistance and MIC values (<2 mg/L) were found to be suitable for the assay. The transconjugants were confirmed for the presence of respective carbapenem resistance genes using PCR. The list of isolates used for conjugation studies is given in Table S7.

Results

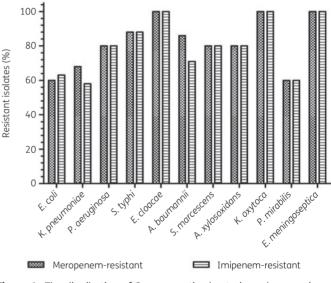
Bacterial identification

In this cross-sectional study, a total of 151 non-duplicate, Gramnegative bacteria belonging to 10 genera were studied which included *E. coli* (n = 57, 37.7%), *Klebsiella pneumoniae* (n = 40, 26.4%), *Klebsiella oxytoca* (n = 5, 3.3%), *P. aeruginosa* (n = 10, 6.6%), *Salmonella* Typhi (n = 8, 5.2%), *Enterobacter cloacae* (n = 8,

Table 1. Antibiotic susceptibility testing employing the disc diffusion method and the prevalence of MDR isolates among 151 Gram-negative bacteria isolated from clinical samples

No. of resistant isolates (%)									
Bacteria/antibiotic	GEN	AMC	IPM	ETP	AMK	MEM	CST	FEP	Total MDR isolates ($n = 151$)
E. coli (n = 57)	51 (89)	45 (79)	46 (81)	38 (67)	49 (86)	43 (75)	35 (61)	45 (79)	54 (95)
K. pneumoniae (n = 40)	33 (83)	31 (78)	32 (80)	28 (70)	36 (90)	32 (80)	29 (73)	30 (75)	32 (80)
P. aeruginosa (n = 10)	10 (100)	10 (100)	9 (90)	6 (60)	8 (80)	10 (100)	7 (70)	8 (80)	10 (100)
S. Typhi (<i>n</i> = 8)	6 (75)	7 (88)	5 (63)	5 (63)	6 (75)	7 (88)	5 (63)	7 (88)	7 (88)
E. cloacae ($n = 8$)	7 (88)	8 (100)	7 (88)	6 (75)	8 (100)	8 (100)	6 (75)	7 (88)	8 (100)
A. baumannii (n = 7)	7 (100)	6 (86)	7 (100)	6 (86)	7 (100)	7 (100)	5 (71)	7 (100)	7 (100)
S. marcescens ($n = 5$)	5 (100)	5 (100)	5 (100)	3 (60)	5 (100)	5 (100)	4 (80)	5 (100)	5 (100)
A. xylosoxidans ($n = 5$)	5 (100)	5 (100)	4 (80)	2 (40)	5 (100)	5 (100)	4 (80)	5 (100)	5 (100)
K. oxytoca ($n = 5$)	4 (80)	5 (100)	5 (100)	4 (80)	5 (100)	5 (100)	4 (80)	5 (100)	5 (100)
P. mirabilis (n = 5)	5 (100)	5 (100)	4 (80)	4 (80)	5 (100)	5 (100)	4 (80)	5 (100)	5 (100)
E. meningoseptica ($n = 1$)	1 (100)	1 (100)	1 (100)	0	1 (100)	1 (100)	1 (100)	1 (100)	1 (100)

Values represent the number of resistant isolates, % is listed in brackets. Isolates were defined as MDR only when the isolates are resistant to three or more antibiotics. Abbreviations: GEN, gentamicin; AMC, co-amoxiclav; IPM, imipenem; ETP, ertapenem; AMK, amikacin; MEM, meropenem; CST, colistin; FEP, cefepime.


5.2%), A. baumannii (n = 7, 4.6%), Serratia marcescens (n = 5, 3.3%), Achromobacter xylosoxidans (n = 5, 3.3%), Proteus mirabilis (n = 5, 3.3%) and Elizabethkingia meningoseptica (n = 1, 0.6%). Most of the isolates were isolated from urine (37%; 56/151) and blood (28%; 42/151) and from other sources such as pus (7%), bronchial secretion (2%), CSF (1%), pulmonary secretion (1%), bile fluid (5%) or from sources that were not documented (19%).

Antibiotic susceptibility studies

Table 1 summarizes the antibiotic susceptibility pattern of all the isolates tested against eight different antibiotics. Meropenem MICs showed that 107/151 (71%) isolates were resistant (Figure 1), whereas 128 (84.7%) isolates were meropenem-resistant when analysed by the disc diffusion method. For imipenem, 68% (n = 103) were resistant by microbroth dilution method whereas 83% (n = 125) were resistant according to the disc diffusion method. MIC₅₀ and MIC₉₀ values for meropenem were 4 mg/L and 16 mg/L, respectively, and for imipenem the MIC₅₀ was 4 mg/L and the MIC₉₀ was 16 mg/L.

Distribution of carbapenemase resistance genes

Of the 57 *E. coli*, 32 isolates carried carbapenemases (bla_{NDM} , $bla_{OXA-48-like}$, bla_{GES-1} , bla_{GES-9} , $bla_{OXA-23-like}$ and bla_{IMP}) and five *E. coli* isolates carried more than one of the carbapenem resistance genes (Figure 2). Among the *K. pneumoniae* strains, 19/40 carried the studied genes (bla_{NDM} , $bla_{OXA-48-like}$, bla_{GES-1} , bla_{GES-9} , $bla_{OXA-23-like}$, $bla_{OXA-51-like}$), and one isolate was positive for both bla_{NDM} and $bla_{OXA-48-like}$. Carbapenem resistance genes were detected in 70/151 by PCR, and 10 isolates had more than one gene type. The most prevalent resistance genes were bla_{NDM} (n = 22), $bla_{OXA-48-like}$ (n = 21), bla_{GES-1} (n = 11), bla_{GES-9} (n = 8), $bla_{OXA-23-like}$ (n = 7), $bla_{OXA-51-like}$ (n = 9) and bla_{IMP} (n = 3). None of the β -lactamase genes bla_{KPC} , bla_{VIM} , bla_{BIC} , bla_{GIM} , bla_{SIM} or bla_{AIM} were detected in the isolates. Sequencing of genes showed that all the

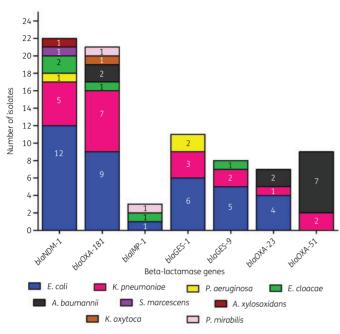


Figure 1. The distribution of Gram-negative bacteria and comparison of imipenem and meropenem resistance.

amplified $bla_{\rm NDM}$ genes were $bla_{\rm NDM-1}$, $bla_{\rm OXA-48-like}$ genes were $bla_{\rm OXA-181}$, and $bla_{\rm IMP}$ genes were $bla_{\rm IMP-1}$.

Plasmid incompatibility typing and conjugation

Plasmid DNA was isolated from 70 isolates that carried resistance genes (Table 2). In total, of the 151 isolates studied, 70 isolates carried resistance genes, of which 11 were plasmid-borne and 59 were chromosomal. Of the 37 *E. coli* isolates, 32 isolates carried resistance genes, of which six were plasmid-encoded. Among the 40 *K. pneumoniae* strains, only 19 isolates carried resistance genes, of which three were encoded on plasmids. In *E. cloacae*, one isolate carried *bla*_{NDM-1} on a plasmid and one *P. mirabilis* carried plasmid-borne *bla*_{IMP-1}. Plasmid incompatibility/replicon (inc/rep) typing

Figure 2. The distribution of carbapenemase genes among Gram-negative bacteria isolated from the clinical samples. A total of 20 resistance genes were studied that include $bla_{\rm NDM}$, $bla_{OXA-48-like}$, $bla_{\rm KPC}$, $bla_{\rm IMP}$, $bla_{\rm VIM}$, $bla_{\rm DIM}$, $bla_{\rm GIM}$, $bla_{\rm GIM}$, $bla_{\rm SIM}$, $bla_{\rm AIM}$, $bla_{OXA-48-like}$, $bla_{\rm KPC}$, $bla_{\rm IMP}$, $bla_{\rm VIM}$, $bla_{\rm DIM}$, $bla_{\rm GIM}$, $bla_{\rm SIM}$, $bla_{\rm AIM}$, $bla_{\rm OXA-41}$, $bla_{\rm OXA-420}$, $bla_{\rm OXA-300}$, $bla_{\rm GES-1-9}$, $bla_{\rm GES-11}$, $bla_{\rm OXA-23-like}$, $bla_{\rm OXA-24-like}$, $bla_{\rm OXA-58-like}$. The genes $bla_{\rm KPC}$, $bla_{\rm UIM}$, $bla_{\rm DIM}$, $bla_{\rm BIC}$, $bla_{\rm GIM}$, $bla_{\rm SIM}$, $bla_{\rm AIM}$, $bla_{\rm OXA-11}$, $bla_{\rm OXA-42-like}$, $bla_{\rm OXA-58-like}$ were not observed in any of the isolates.

results showed that the plasmids belonged to inc/rep types: IncX, IncA/C, IncFIA-FIB and IncFIIA (Table 2). *E. coli* isolates that carried IncX (EC10), IncA/C (EC21) and IncFIA-FIB (EC29) -type plasmids harboured *bla*_{NDM-1} genes. *E. coli* strains carrying IncFIIA (EC39) and IncFIA-FIB (EC29) harboured *bla*_{OXA-181} genes and IncFIA-FIB (EC47) type plasmids carried *bla*_{GES-1/9} genes. *K. pneumoniae* isolates carrying IncFIA-FIB (KP10) -type plasmids carried *bla*_{NDM-1} genes, and IncA/C (KP31 and KP39) carried *bla*_{GES-1}, *bla*_{OXA-23/51-like} genes. One *E. cloacae* isolate with IncFIIA (EL3)-type plasmid harboured *bla*_{NDM-1} gene and one *P. mirabilis* isolate carrying IncFIA-FIB (PM5)-type plasmid had the *bla*_{IMP-1} gene.

In total, 11 carbapenem-resistant isolates harbouring plasmid-encoded resistance were subjected to conjugation studies (Table 2). The six *E. coli* isolates EC10, 21, 29, 39, 44, and 47 were found to facilitate the transfer of plasmid-mediated resistance to susceptible *E. coli* AB1157. Inter-generic transfer of NDM-1 was observed in one *K. pneumoniae* isolate (KP10) (Table 2).

Discussion

In India, carbapenem-resistant Gram-negative bacteria have been reported as becoming more frequent.^{17,18} In this study, the distribution of carbapenem-resistant isolates in 10 genera of Gram-negative bacteria isolated at a diagnostic centre in Tamil Nadu, India, has been investigated. Previous studies describe the increasing prevalence of ESBL and MBL producers among Gram-negative bacteria in India.²⁵⁻²⁸

In this study, experiments determining MIC values show that 107/151 (71%) isolates were resistant to meropenem, correlating with the observation made by the disc diffusion method (n = 128). All the 70 isolates harbouring carbapenem resistance genes were resistant according to the results of both the methods (MIC and disc diffusion). As carbapenems are one of the last-resort antibiotics available to treat infections caused by Gram-negative bacteria. the prevalence of carbapenem resistance is of worldwide concern. Our previous studies had reported the dissemination of carbapenem-resistant bacteria and carbapenem resistance genes among Gram-negative bacteria in Tamil Nadu.^{17,18} Here, we report the prevalence (71%) of carbapenem-resistant isolates among 10 genera of Gram-negative bacteria. β-Lactamase genes such as bla_{NDM-1} (n = 22), $bla_{OXA-181}$ (n = 21), bla_{GES-1} (n = 11), bla_{GES-9} (n = 8), bla_{OXA-23} (n = 7), bla_{OXA-51} (n = 9) and bla_{IMP-1} (n = 3) were found in 70 isolates (with 10 isolates carrying more than one gene type), in contrast to our earlier study which reported a lower prevalence (27%) of *bla*_{NDM-1} and *bla*_{OXA-181} genes among carbapenemresistant isolates.¹⁸ The coexistence of *bla_{NDM-1}* and *bla_{OXA-181}* in E. coli is a reason for major concern from the healthcare perspective. All the A. baumannii isolates (n = 7) were found to have either OXA-23 or OXA-181 along with OXA-51 intrinsic β -lactamase.²⁹ Earlier reports from India showed the presence of OXA-23 and OXA-51 in carbapenem-resistant Acinetobacter causing serious healthcare problems.¹² Enterobacteriaceae carried OXA-48-like genes, which are carbapenem-hydrolysing class D β-lactamases.^{13,30} The unusual occurrence of *bla*_{OXA-23} in *E. coli*, and plasmid-encoded bla_{0XA-23} and bla_{0XA-51} in K. pneumoniae are very important findings of this study, as only very few earlier studies have reported the presence of the *bla*_{OXA-23} gene in *E. coli*.^{31,32} OXA-23-like genes in Enterobacteriaceae may be embedded within a transposon but were not characterized in this study. The resistance reports on *E. meningoseptica* are very rare in India,^{31,32} and in this study it was found that one isolate of E. meningoseptica was resistant to imipenem and meropenem. Although earlier studies showed the presence of carbapenemase genes in *E. meningoseptica*, in this study no carbapenem resistance genes were found.

Carbapenem resistance among Gram-negative bacteria is becoming very common in Tamil Nadu, India. The isolates producing carbapenemases are mostly MDR and the rapid spread of carbapenem resistance genes is highly concerning. These resistance genes are located adjacent to mobile genetic elements (integrons and transposons), which facilitates the easy transposition between replicons.³³ The extrachromosomal plasmids are the primary carriers of antibiotic resistance genes and can spread horizontally between strains or species. The recent molecular and genomic surveillance studies are also focused to track the clonally evolving lineages, besides plasmids being the primary focus.³⁴ The most common plasmid replicon types for carbapenem resistance genes are IncF, IncA/C₂, IncX3, IncL/M and IncH.³⁵ In this study, *bla*_{NDM-1} was found in the isolates that carried IncX, IncA/C, IncFIA-FIB and IncFIIA; bla_{OXA-181} in IncA/C, IncFIA-FIB and IncFIIA; bla_{GES-1/9} in IncFIA-FIB and IncA/C; bla_{IMP-1} in IncFIA-FIB; and $bla_{OXA-23/51}$ in IncA/C. The presence of plasmid-encoded bla_{OXA-23/51} is an important finding, considering the rapid spread of carbapenem resistance among Gram-negative bacteria. Interestingly, the isolates we investigated (such as P. aeruginosa, Salmonella Typhi, A. baumannii, S. marcescens, A. xylosoxidans, K. oxytoca, and E. meningoseptica) do not carry any plasmids harbouring **Table 2.** Distribution of resistance genes, plasmid incompatibility grouping and transconjugation studies on Gram-negative isolates that were harbouring resistance genes

		MIC (r	ng/L)		Plasmid <i>inc/rep</i> typing	Conjugative plasmid
Isolate	Source	Meropenem	Imipenem	Resistance gene		
E. coli EC1	Urine	16	8	bla _{NDM-1}	-	-
E. coli EC2	Urine	0.25	0.12	ND	-	-
E. coli EC3	Blood	1	1	ND	_	-
E. coli EC4	Pus	32	32	bla _{NDM-1}	_	-
E. coli EC5	Urine	8	16	bla _{NDM-1}	-	-
E. coli EC6	Pus	2	0.5	ND	-	-
E. coli EC7	Urine	8	8	bla _{NDM-1}	_	-
E. coli EC8	Urine	1	2	ND	_	-
E. coli EC9	Urine	0.25	0.5	ND	_	-
E. coli EC10	Blood	32	8	bla _{NDM-1}	IncX	+
E. coli EC11	Unknown	0.5	0.25	ND	-	_
E. coli EC12	Urine	64	32	bla _{NDM-1}	_	_
E. coli EC13	Unknown	0.5	1	ND	_	_
E. coli EC14	Unknown	2	2	ND	_	_
E. coli EC15	Urine	32	32	ND	_	_
E. coli EC16	Urine	0.5	1	ND	-	-
E. coli EC17	Urine	8	4		-	-
				bla _{NDM-1}	-	-
E. coli EC18	Urine	0.25	0.25	ND	-	-
E. coli EC19	Unknown	4	4	ND	-	-
E. coli EC20	Urine	0.12	0.25	ND	-	-
E. coli EC21	Blood	16	8	bla _{NDM-1}	IncA/C	+
E. coli EC22	Unknown	>128	>128	bla _{NDM-1}	-	-
E. coli EC23	Urine	64	8	bla _{NDM-1}	-	-
E. coli EC24	Unknown	1	1	ND	-	-
E. coli EC25	Urine	>128	128	bla _{NDM-1}	-	-
E. coli EC26	Urine	2	8	ND	-	-
E. coli EC27	Urine	0.25	0.5	ND	-	-
E. coli EC28	Bile fluid	1	1	ND	-	-
E. coli EC29	Unknown	8	32	bla _{NDM-1} , bla _{OXA-181}	IncFIA-FIB	+
E. coli EC30	Urine	4	4	bla _{OXA-181}	-	-
E. coli EC31	Unknown	16	32	bla _{OXA-181}	-	-
E. coli EC32	Blood	2	2	ND	-	-
E. coli EC33	Blood	8	8	bla _{OXA-181}	-	-
E. coli EC34	Bile fluid	16	8	bla _{OXA-181}	-	-
E. coli EC35	Urine	0.5	0.25	ND	-	-
E. coli EC36	Urine	32	16	bla _{OXA-181}	-	-
E. coli EC37	Bile fluid	2	8	ND	-	-
E. coli EC38	Urine	1	0.5	ND	-	-
E. coli EC39	Blood	64	> 128	bla 0XA-181	IncFIIA	+
E. coli EC40	Blood	8	8	bla _{OXA-181}	-	-
E. coli EC41	Blood	16	16	bla _{OXA-181}	_	-
E. coli EC42	Blood	32	16	bla _{IMP-1}	_	_
E. coli EC43	Urine	0.5	1	ND	_	_
E. coli EC44	Pus	16	64	bla _{GES-1}	IncFIA-FIB	+
E. coli EC45	Unknown	32	32	bla _{GES-1}	_	-
E. coli EC46	Urine	16	8	bla _{GES-1}	_	_
E. coli EC47	Blood	>128	> 128	bla _{GES-1}	IncFIA-FIB	+
	Pus	0.06	0.06	ND	-	т.
E. coli EC48 E. coli EC49			0.06 64	bla _{GES-1} , bla _{GES-9}	-	-
E. coli EC49	Blood	64			-	-
E. coli EC50	Pus	16	32	bla _{GES-1} , bla _{GES-9}	-	-

Continued

Manohar et al.

Table 2. Continued

			Cariantia			
Isolate	Source	Meropenem	Imipenem	Resistance gene	Plasmid <i>inc/rep</i> typing	Conjugative plasmid
E. coli EC51	Bile fluid	4	4	bla _{GES-9}	_	_
E. coli EC52	Unknown	>128	64	bla _{GES-9} , bla _{OXA-23}	-	-
E. coli EC53	Blood	64	>128	bla _{OXA-23}	-	-
E. coli EC54	Urine	8	8	bla _{OXA-23}	-	-
E. coli EC55	Unknown	1	0.5	ND	-	-
E. coli EC56	Urine	32	64	bla _{OXA-23}	-	-
E. coli EC57	Blood	0.5	0.5	ND	-	-
K. pneumoniae KP1	Urine	1	1	ND	-	-
K. pneumoniae KP2	Urine	0.5	0.25	ND	-	-
K. pneumoniae KP3	Blood	>128	128	bla _{NDM-1}	-	-
K. pneumoniae KP4	Bile fluid	2	1	ND	-	-
K. pneumoniae KP5	Urine	8	32	ND	-	_
K. pneumoniae KP6	Blood	0.25	0.12	ND	-	_
K. pneumoniae KP7	Blood	8	16	bla _{NDM-1}	_	_
K. pneumoniae KP8	Blood	0.5	0.25	ND	_	_
K. pneumoniae KP9	Urine	32	32	bla _{NDM-1}	_	_
K. pneumoniae KP10	Blood	64	> 128	bla _{NDM-1}	IncFIA-FIB	+
K. pneumoniae KP11	Unknown	8	8	bla _{NDM-1}	_	_
K. pneumoniae KP12	Bile fluid	1	1	ND	-	_
K. pneumoniae KP13	Urine	32	64	ND	_	_
K. pneumoniae KP14	Urine	0.06	0.12	ND	_	_
K. pneumoniae KP15	Pulmonary secretion	8	4	ND	_	_
K. pneumoniae KP16	Urine	2	2	ND	_	_
K. pneumoniae KP17	Blood	16	16	bla _{OXA-181}	_	_
K. pneumoniae KP18	Unknown	0.5	0.25	ND	-	-
K. pneumoniae KP19	Blood	32	8	bla _{OXA-181}	_	_
K. pneumoniae KP20	Unknown	128	64	bla _{OXA-181}	-	_
K. pneumoniae KP21	Unknown	8	8	bla _{OXA-181}	-	_
K. pneumoniae KP22	Unknown	16	2	ND	_	_
K. pneumoniae KP23	Blood	16	8	ND	_	_
K. pneumoniae KP24	Blood	0.25	0.25	ND	-	-
K. pneumoniae KP25	Unknown	32	64	bla _{OXA-181}	_	_
K. pneumoniae KP26	Blood	8	2	ND	_	_
K. pneumoniae KP27	Unknown	64	>128	bla _{OXA-181}	-	_
K. pneumoniae KP28	Blood	32	8	bla _{OXA-181}	_	_
K. pneumoniae KP29	Unknown	4	0.5	ND	_	_
K. pneumoniae KP30	Urine	1	2	ND	-	_
K. pneumoniae KP31	Blood	16	4	bla _{GES-1}	IncA/C	_
K. pneumoniae KP32	Unknown	32	32	bla _{GES-1}	_	_
K. pneumoniae KP33	Urine	128	>128	bla _{GES-1}	_	_
K. pneumoniae KP34	Blood	8	1	ND	_	_
K. pneumoniae KP35	Unknown	0.5	1	ND	_	_
K. pneumoniae KP36	Urine	64	16	bla _{GES-9}	-	_
K. pneumoniae KP37	Bile fluid	64	64	bla _{GES-9}	_	_
K. pneumoniae KP38	Blood	0.5	2	ND	_	_
K. pneumoniae KP39	Urine	>128	>128	bla _{OXA-23} , bla _{OXA-51}	IncA/C	_
K. pneumoniae KP40	Urine	32	8	bla _{OXA-51}	=	_
P. aeruginosa PA1	Pus	8	16	bla _{NDM-1}	_	_
P. aeruginosa PA2	Pus	1	0.5	ND	_	-
P. aeruginosa PA3	Pus	16	32	ND	-	_
P. aeruginosa PA4	Bronchial secretion	0.25	0.25	ND	_	_
-					_	_
P. aeruginosa PA5	Urine	>128	128	bla _{GES-1}	-	

Continued

Table 2. Continued

		MIC (r	ng/L)		Plasmid inc/rep	Conjugative
Isolate	Source	Meropenem	Imipenem	Resistance gene	typing	plasmid
P. aeruginosa PA6	Unknown	8	4	ND	-	-
P. aeruginosa PA7	Blood	32	32	bla _{GES-1}	-	-
P. aeruginosa PA8	Pus	64	128	ND	-	-
P. aeruginosa PA10	Pus	>128	64	ND	-	-
5. Typhi ST1	Blood	8	64	ND	-	-
5. Typhi ST2	Unknown	32	32	ND	-	-
. Typhi ST3	Urine	0.5	1	ND	-	-
. Typhi ST4	Blood	32	64	ND	-	-
. Typhi ST5	Urine	128	64	ND	-	-
. Typhi ST6	Blood	16	8	ND	-	-
. Typhi ST7	Blood	4	4	ND	-	-
. Typhi ST8	Unknown	8	32	ND	_	_
. cloacae EL1	Urine	64	>128	ND	_	_
. cloacae EL2	Blood	16	8	bla _{NDM-1}	-	-
. cloacae EL3	Urine	4	64	bla _{NDM-1}	IncFIIA	_
. cloacae EL4	Bronchial secretion	32	128	ND	-	_
. cloacae EL5	Blood	32	32	bla _{OXA-181}	_	_
. cloacae EL6	Urine	16	8		_	_
. cloacae EL7	Urine	128	128	bla _{IMP-1}	_	_
. cloacae EL8	Urine	32	8	bla _{IMP-1} bla _{GES-9}	_	_
. baumannii AB1	CSF	8	8	bla _{OXA-181} , bla _{OXA-51}	-	-
. baumannii AB1	Urine	16	64		-	-
. baumannii AB3	Unknown	0.5	1	bla _{OXA-181,} bla _{OXA-51}	-	-
. baumannii AB4		8	1 64	bla _{OXA-51}	-	-
	Pus			bla _{OXA-23} , bla _{OXA-51}	-	-
. baumannii AB5	Blood	32	32	bla _{OXA-23} , bla _{OXA-51}	-	-
A. baumannii AB6	Urine	32	>128	bla _{OXA-51}	-	-
. baumannii AB7	Urine	16	2	bla _{OXA-51}	-	-
. marcescens SM1	Bronchial secretion	8	4	ND	-	-
. marcescens SM2	Blood	32	64	bla _{NDM-1}	-	-
. marcescens SM3	Unknown	128	64	ND	-	-
. marcescens SM4	Urine	2	2	ND	-	-
. marcescens SM5	Unknown	32	8	ND	-	-
A. xylosoxidans AY1	Unknown	4	8	ND	-	-
A. xylosoxidans AY2	Blood	128	128	ND	-	-
A. xylosoxidans AY3	Urine	32	32	ND	-	-
. xylosoxidans AY4	Urine	1	0.5	ND	-	-
A. xylosoxidans AY5	Urine	64	128	bla _{NDM-1}	-	-
í. oxytoca KO1	Blood	32	128	ND	-	-
. oxytoca KO2	Urine	8	16	ND	-	-
. oxytoca KO3	Blood	32	32	ND	-	-
. oxytoca KO4	Blood	128	128	bla _{OXA-181}	-	-
. oxytoca KO5	Urine	8	2	ND	-	-
P. mirabilis PM1	Unknown	1	2	ND	-	-
P. mirabilis PM2	Blood	128	128	bla _{OXA-181}	-	-
P. mirabilis PM3	Urine	8	8	ND	-	-
P. mirabilis PM4	Blood	0.06	0.25	ND	-	-
P. mirabilis PM5	Urine	64	32	bla _{IMP-1}	IncFIA-FIB	_
. meningoseptica EM1	CSF	64	64	ND	-	_

ND, not detected; '-' denotes absence; '+' denotes conjugation positive; bold text indicates the isolates were carrying resistance genes on conjugative plasmids. The resistance breakpoint (CLSI) for both meropenem and imipenem is $MIC \ge 4 \text{ mg/L}$.

resistance genes. This clearly showed that the β-lactamase or carbapenemase genes were confined to certain strains and present in the different replicon types (plasmids) in the study region. Earlier, the *bla*_{NDM} IncFII plasmids were reported from India,³⁵ and IncFIA-FIB plasmids carrying carbapenem resistance genes such as blaNDM were described in samples collected from river and sewage treatment plants in India.^{7,35} This study also showed that some isolates with plasmids were carrying more than one resistance gene, an alarming public health threat. Conjugative plasmids are known to spread their resistance among the bacteria of the same or of different genera. This study showed that all the six E. coli isolates carrying plasmid-encoded resistance genes (bla_{NDM-} 1, bla_{OXA-181}, bla_{GES-1}, and bla_{GES-9}) were conjugative and one K. pneumoniae plasmid (IncFIA-FIB with bla_{NDM-1}) was transferable, illustrating how resistance genes rapidly spread in clinically relevant bacteria.

We acknowledge several limitations of our study. First, the clinical samples or isolates were collected randomly from the diagnostic centre, which receives clinical samples from multiple hospitals (both in- and out-patient) in the study region. Second, the presence of insertion sequence (IS) elements was not studied. Finally, the transfer of resistance genes between the bacteria was studied using simple conjugation experiments but we did not confirm the results using Southern hybridization or sequencing techniques.

Conclusions

The increasing frequency of antibiotic resistance in bacteria is a major healthcare problem. This study highlights the distribution of carbapenem-resistant isolates in the region we studied, with the emphasis on the existence of bla_{NDM-1} , $bla_{OXA-181}$, bla_{IMP-1} , bla_{GES-9} , $bla_{OXA-23-like}$, and $bla_{OXA-51-like}$ among the clinical pathogens. The unusual presence of an *E. coli* strain carrying bla_{OXA-23} , and *K. pneumoniae* isolates carrying bla_{OXA-23} and bla_{OXA-51} require targeted antibiotic resistance surveillance programmes. The development of alternative therapeutic options should be undertaken immediately to be able to combat the problem of resistance, especially to treat carbapenem-resistant infections in the future. Our study shows that conjugative plasmids are a major contributor to the transfer of resistance in pathogens leading to further dissemination of resistance genes. A One-Health approach is necessary to combat the problem of resistance both at the local and international level.

Acknowledgements

We thank Vellore Institute of Technology (VIT) for providing partial funding as 'VIT Seed Grant' and Council of Scientific and Industrial Research (CSIR) for providing financial assistance to P.M. in the form of senior research fellowship (SRF) to support this research work. A preprint of this article has been published in BioRxiv and Research Square (Manohar *et al.*).

Funding

This study was supported by internal funding.

Transparency declarations

None to declare. All the datasets are presented in the main manuscript. The raw datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Author contributions

Authors P.M. and R.N. collected the isolates from the clinical samples. Authors P.M. and R.N. undertook the laboratory work, R.N. and B.S.L. interpreted the data, and P.M. and R.N. wrote the initial manuscript. Authors S.L., R.N. and B.S.L. revised and finalized manuscript. All the authors read and approved the manuscript.

Supplementary data

Tables S1 to S7 are available as Supplementary data at JAC Online.

References

1 Roca I, Akova M, Baquero F *et al*. The global threat of antimicrobial resistance: science for intervention. *New Microbes New Infect* 2015; **6**: 22–9.

2 WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. http://www.who.int/mediacentre/news/releases/2017/bac teria-antibiotics-needed/en/.

3 Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. *PT* 2015; **40**: 277.

4 McKenna M. Antibiotic resistance: the last resort. Nat News 2013; 499: 394.

5 Ben-David D, Kordevani R, Keller N *et al.* Outcome of carbapenem resistant *Klebsiella pneumoniae* bloodstream infections. *Clin Microbiol Infect* 2012; **18**: 54–60.

6 Xu Y, Gu B, Huang M *et al.* Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000-2012 in Asia. *J Thorac Dis* 2015; **7**: 376–85.

7 Akiba M, Sekizuka T, Yamashita A *et al.* Distribution and relationships of antimicrobial resistance determinants among extended-spectrum-cephalosporin-resistant or carbapenem-resistant *Escherichia coli* isolates from rivers and sewage treatment plants in India. *Antimicrob Agents Chemother* 2016; **60**: 2972–80.

8 Chandran SP, Sarkar S, Diwan V *et al.* Detection of virulence genes in ESBL producing, quinolone resistant commensal *Escherichia coli* from rural Indian children. *J Infect Dev Ctries* 2017; **11**: 387–92.

9 Manohar P, Shanthini T, Marathe N *et al.* Genetic characteristics of plasmid-mediated extended-spectrum β -lactamases (CTX-M) and its coexistence with carbapenemases (NDM-1) in clinical Gram negative bacteria. *Ind J Biotechnol* 2017; **16**: 189–94.

10 Scaife W, Young HK, Paton RH *et al.* Transferable imipenem-resistance in *Acinetobacter* species from a clinical source. *J Antimicrob Chemother* 1995; **36**: 585–6.

11 Teixeira AB, Martins AF, Barin J *et al.* First report of carbapenem-resistant *Acinetobacter nosocomialis* isolates harboring ISAba1-bla OXA-23 genes in Latin America. *J Clin Microbiol* 2013; **51**: 2739–41.

12 La MV, Jureen R, Lin RT *et al.* Unusual detection of an *Acinetobacter* class D carbapenemase gene, bla OXA-23, in a clinical *Escherichia coli* isolate. *J Clin Microbiol* 2014; **52**: 3822–3.

13 Paul D, Ingti B, Bhattacharjee D *et al*. An unusual occurrence of plasmidmediated blaOXA-23 carbapenemase in clinical isolates of *Escherichia coli* from India. *Int J Antimicrob Agents* 2017; **49**: 642–5.

14 Österblad M, Karah N, Halkilahti J *et al.* Rare detection of the *Acinetobacter* class D carbapenemase blaOXA-23 gene in *Proteus mirabilis. Antimicrob Agents Chemother* 2016; **60**: 3243–5.

15 Brown S, Young HK, Amyes SGB. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of *Acinetobacter baumannii* from Argentina. *Clin Microbiol Infect* 2005; **11**: 15–23.

16 Chen TL, Lee YT, Kuo SC *et al.* Emergence and distribution of plasmids bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-

resistant Acinetobacter baumannii isolates in Taiwan. Antimicrob Agents Chemother 2010; **54**: 4575–81.

17 Nachimuthu R, Subramani R, Maray S *et al.* Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu. *J Chemother* 2016; **28**: 371–4.

18 Manohar P, Shanthini T, Ayyanar R *et al.* The distribution of carbapenemand colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. *J Med Microbiol* 2017; **66**: 874–83.

19 CLSI. Performance Standards for Antimicrobial Susceptibility Testing— Twenty-Sixth Edition: M100. 2017.

20 Gheorghe I, Czobor I, Chifiriuc MC *et al.* Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey. *J Med Microbiol* 2014; **63**: 1303–10.

21 Dallenne C, Da Costa A, Decré D *et al.* Development of a set of multiplex PCR assays for the detection of genes encoding important β -lactamases in Enterobacteriaceae. *J Antimicrob Chemother* 2010; **65**: 490–5.

22 Woodford N, Ellington MJ, Coelho JM *et al.* Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. Int J Antimicrob Agents 2006; **27**: 351–3.

23 Lin L, Ling BD, Li XZ. Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multipleantimicrobial-resistant clinical isolates of *Acinetobacter baumannii*-*Acinetobacter calcoaceticus* complex. *Int J Antimicrob Agents* 2009; **33**: 27–32.

24 Carattoli A, Bertini A, Villa L *et al.* Identification of plasmids by PCR-based replicon typing. *J Microbiol Methods* 2005; **63**: 219–28.

25 Oberoi L, Singh N, Sharma P *et al.* ESBL, MBL and AmpC β lactamases producing superbugs–Havoc in the Intensive Care Units of Punjab India. *J Clin Diagn Res* 2013; **7**: 70.

 ${\bf 26}~$ Azim A, Dwivedi M, Rao PB et al. Epidemiology of bacterial colonization at intensive care unit admission with emphasis on extended-spectrum β -lactamase-and metallo- β -lactamase-producing Gram-negative bacteria-an Indian experience. J Med Microbiol 2010; ${\bf 59}:$ 955–60.

27 Nordmann P, Naas T, Poirel L. Global spread of carbapenemase producing Enterobacteriaceae. *Emerg Infect Dis* 2011; **17**: 1791–8.

28 Khurana S, Mathur P, Kapil A *et al.* Molecular epidemiology of β -lactamase producing nosocomial Gram-negative pathogens from North and South Indian hospitals. *J Med Microbiol* 2017; **66**: 999–1004.

29 Durante-Mangoni E, Zarrilli R. Global spread of drug-resistant *Acinetobacter baumannii:* molecular epidemiology and management of antimicrobial resistance. *Future Microbiol* 2011; **6**: 407–22.

30 Bali NK, Fomda BA, Bashir H *et al.* Emergence of carbapenem-resistant *Acinetobacter* in a temperate north Indian State. *Br J Biomed Sci* 2013; **70**: 156–60.

31 Shinha T, Ahuja R. Bacteremia due to *Elizabethkingia meningoseptica*. *IDCases* 2015; **2**:13-5.

32 Bhat KS, Priya R, Krishnan L *et al. Elizabethkingia meningoseptica* bacteremia in a neonate: A case report and mini-review of the literature. *J Curr Res Sci Med* 2016; **2**: 42.

33 Partridge SR, Iredell JR. Genetic contexts of blaNDM-1. *Antimicrob Agents Chemother* 2012; **56**: 6065–7.

34 David S, Cohen V, Reuter S *et al.*; ESCMID Study Group for Epidemiological Markers (ESGEM). Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among *Klebsiella pneumoniae*. *Proc Natl Acad Sci Usa* 2020; **117**: 25043–54.

35 Sugawara Y, Akeda Y, Sakamoto N *et al.* Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant *Escherichia coli* from Myanmar. *PLoS One* 2017; **12**: e0184720.